1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15# pylint: disable=protected-access
16"""Utilities for Keras classes with v1 and v2 versions."""
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21from tensorflow.python.eager import context
22from tensorflow.python.framework import ops
23from tensorflow.python.keras.utils.generic_utils import LazyLoader
24
25# TODO(b/134426265): Switch back to single-quotes once the issue
26# with copybara is fixed.
27# pylint: disable=g-inconsistent-quotes
28training = LazyLoader(
29    "training", globals(),
30    "tensorflow.python.keras.engine.training")
31training_v1 = LazyLoader(
32    "training_v1", globals(),
33    "tensorflow.python.keras.engine.training_v1")
34base_layer = LazyLoader(
35    "base_layer", globals(),
36    "tensorflow.python.keras.engine.base_layer")
37base_layer_v1 = LazyLoader(
38    "base_layer_v1", globals(),
39    "tensorflow.python.keras.engine.base_layer_v1")
40callbacks = LazyLoader(
41    "callbacks", globals(),
42    "tensorflow.python.keras.callbacks")
43callbacks_v1 = LazyLoader(
44    "callbacks_v1", globals(),
45    "tensorflow.python.keras.callbacks_v1")
46
47
48# pylint: enable=g-inconsistent-quotes
49
50
51class ModelVersionSelector(object):
52  """Chooses between Keras v1 and v2 Model class."""
53
54  def __new__(cls, *args, **kwargs):  # pylint: disable=unused-argument
55    use_v2 = should_use_v2()
56    cls = swap_class(cls, training.Model, training_v1.Model, use_v2)  # pylint: disable=self-cls-assignment
57    return super(ModelVersionSelector, cls).__new__(cls)
58
59
60class LayerVersionSelector(object):
61  """Chooses between Keras v1 and v2 Layer class."""
62
63  def __new__(cls, *args, **kwargs):  # pylint: disable=unused-argument
64    use_v2 = should_use_v2()
65    cls = swap_class(cls, base_layer.Layer, base_layer_v1.Layer, use_v2)  # pylint: disable=self-cls-assignment
66    return super(LayerVersionSelector, cls).__new__(cls)
67
68
69class TensorBoardVersionSelector(object):
70  """Chooses between Keras v1 and v2 TensorBoard callback class."""
71
72  def __new__(cls, *args, **kwargs):  # pylint: disable=unused-argument
73    use_v2 = should_use_v2()
74    start_cls = cls
75    cls = swap_class(start_cls, callbacks.TensorBoard, callbacks_v1.TensorBoard,
76                     use_v2)
77    if start_cls == callbacks_v1.TensorBoard and cls == callbacks.TensorBoard:
78      # Since the v2 class is not a subclass of the v1 class, __init__ has to
79      # be called manually.
80      return cls(*args, **kwargs)
81    return super(TensorBoardVersionSelector, cls).__new__(cls)
82
83
84def should_use_v2():
85  """Determine if v1 or v2 version should be used."""
86  if context.executing_eagerly():
87    return True
88  elif ops.executing_eagerly_outside_functions():
89    # Check for a v1 `wrap_function` FuncGraph.
90    # Code inside a `wrap_function` is treated like v1 code.
91    graph = ops.get_default_graph()
92    if (getattr(graph, "name", False) and
93        graph.name.startswith("wrapped_function")):
94      return False
95    return True
96  else:
97    return False
98
99
100def swap_class(cls, v2_cls, v1_cls, use_v2):
101  """Swaps in v2_cls or v1_cls depending on graph mode."""
102  if cls == object:
103    return cls
104  if cls in (v2_cls, v1_cls):
105    return v2_cls if use_v2 else v1_cls
106
107  # Recursively search superclasses to swap in the right Keras class.
108  new_bases = []
109  for base in cls.__bases__:
110    if ((use_v2 and issubclass(base, v1_cls)
111         # `v1_cls` often extends `v2_cls`, so it may still call `swap_class`
112         # even if it doesn't need to. That being said, it may be the safest
113         # not to over optimize this logic for the sake of correctness,
114         # especially if we swap v1 & v2 classes that don't extend each other,
115         # or when the inheritance order is different.
116         or (not use_v2 and issubclass(base, v2_cls)))):
117      new_base = swap_class(base, v2_cls, v1_cls, use_v2)
118    else:
119      new_base = base
120    new_bases.append(new_base)
121  cls.__bases__ = tuple(new_bases)
122  return cls
123
124
125def disallow_legacy_graph(cls_name, method_name):
126  if not ops.executing_eagerly_outside_functions():
127    error_msg = (
128        "Calling `{cls_name}.{method_name}` in graph mode is not supported "
129        "when the `{cls_name}` instance was constructed with eager mode "
130        "enabled. Please construct your `{cls_name}` instance in graph mode or"
131        " call `{cls_name}.{method_name}` with eager mode enabled.")
132    error_msg = error_msg.format(cls_name=cls_name, method_name=method_name)
133    raise ValueError(error_msg)
134
135
136def is_v1_layer_or_model(obj):
137  return isinstance(obj, (base_layer_v1.Layer, training_v1.Model))
138