1syntax = "proto3";
2
3package tensorflow.data.model;
4
5option cc_enable_arenas = true;
6
7// Class of a node in the performance model.
8enum NodeClass {
9  UNKNOWN = 0;
10  INTERLEAVE_MANY = 1;
11  ASYNC_INTERLEAVE_MANY = 2;
12  KNOWN_RATIO = 3;
13  ASYNC_KNOWN_RATIO = 4;
14  UNKNOWN_RATIO = 5;
15}
16
17// Algorithm used for model autotuning optimization.
18enum AutotuneAlgorithm {
19  HILL_CLIMB = 0;
20  GRADIENT_DESCENT = 1;
21}
22
23// Protocol buffer representing the data used by the autotuning modeling
24// framework.
25message ModelProto {
26  // General representation of a node in the model.
27  message Node {
28    // Unique node ID.
29    int64 id = 1;
30
31    // Human-readable name of the node.
32    string name = 2;
33
34    // An indication whether autotuning is enabled for this node.
35    bool autotune = 3;
36
37    // The number of bytes stored in this node's buffer.
38    int64 buffered_bytes = 4;
39
40    // The number of elements stored in this node's buffer.
41    int64 buffered_elements = 5;
42
43    // The number of bytes consumed by the node.
44    int64 bytes_consumed = 6;
45
46    // The number of bytes produced by the node.
47    int64 bytes_produced = 7;
48
49    // The number of elements produced by the node.
50    int64 num_elements = 8;
51
52    // The aggregate processing time spent in this node.
53    int64 processing_time = 9;
54
55    // An indication whether this node records metrics about produced and
56    // consumed elements.
57    bool record_metrics = 10;
58
59    // Represents a node parameter.
60    message Parameter {
61      // Human-readable name of the parameter.
62      string name = 1;
63
64      // Identifies the model value of the parameter. This can be different from
65      // the actual value (e.g. during optimization search).
66      double value = 2;
67
68      // The actual value of the parameter.
69      double state_value = 3;
70
71      // Minimum value of the parameter.
72      double min = 4;
73
74      // Maximum value of the parameter.
75      double max = 5;
76
77      // Identifies whether the parameter should participate in autotuning.
78      bool tunable = 6;
79    }
80
81    // Parameters of this node.
82    repeated Parameter parameters = 11;
83
84    // Statistic of inputs processing time history.
85    double input_processing_time_sum = 12;
86    int64 input_processing_time_count = 13;
87
88    // Inputs of this node.
89    repeated Node inputs = 14;
90
91    // Class of this node.
92    NodeClass node_class = 15;
93
94    // Ratio of input to output elements. This is only used by KNOWN_RATIO and
95    // ASYNC_KNOWN_RATIO nodes.
96    double ratio = 16;
97
98    // Ratio identifies how many parallelism calls are introduced by one
99    // buffered element. This is only used by ASYNC_KNOWN_RATIO nodes.
100    double memory_ratio = 17;
101  }
102
103  // Output node of this model.
104  Node output = 1;
105
106  // Counter for node IDs of this model.
107  int64 id_counter = 2;
108
109  // Indicates whether the modeling framework should collect resource usage,
110  // e.g. CPU, memory.
111  bool collect_resource_usage = 3;
112
113  // Contains parameters of the model autotuning optimization.
114  message OptimizationParams {
115    // Algorithm used for autotuning optimization.
116    AutotuneAlgorithm algorithm = 1;
117
118    // Number of available logical threads.
119    int64 cpu_budget = 2;
120
121    // Amount of available memory in bytes.
122    int64 ram_budget = 3;
123
124    // Time between two consecutive `GetNext` calls to the iterator represented
125    // by the output node.
126    double model_input_time = 4;
127  }
128
129  OptimizationParams optimization_params = 4;
130}
131