1 /*
2  * Copyright © 2014 Connor Abbott
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Connor Abbott (cwabbott0@gmail.com)
25  *
26  */
27 
28 #ifndef NIR_H
29 #define NIR_H
30 
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/enum_operators.h"
40 #include "util/macros.h"
41 #include "util/format/u_format.h"
42 #include "compiler/nir_types.h"
43 #include "compiler/shader_enums.h"
44 #include "compiler/shader_info.h"
45 #define XXH_INLINE_ALL
46 #include "util/xxhash.h"
47 #include <stdio.h>
48 
49 #ifndef NDEBUG
50 #include "util/debug.h"
51 #endif /* NDEBUG */
52 
53 #include "nir_opcodes.h"
54 
55 #if defined(_WIN32) && !defined(snprintf)
56 #define snprintf _snprintf
57 #endif
58 
59 #ifdef __cplusplus
60 extern "C" {
61 #endif
62 
63 #define NIR_FALSE 0u
64 #define NIR_TRUE (~0u)
65 #define NIR_MAX_VEC_COMPONENTS 16
66 #define NIR_MAX_MATRIX_COLUMNS 4
67 #define NIR_STREAM_PACKED (1 << 8)
68 typedef uint16_t nir_component_mask_t;
69 
70 static inline bool
nir_num_components_valid(unsigned num_components)71 nir_num_components_valid(unsigned num_components)
72 {
73    return (num_components >= 1  &&
74            num_components <= 4) ||
75            num_components == 8  ||
76            num_components == 16;
77 }
78 
79 bool nir_component_mask_can_reinterpret(nir_component_mask_t mask,
80                                         unsigned old_bit_size,
81                                         unsigned new_bit_size);
82 nir_component_mask_t
83 nir_component_mask_reinterpret(nir_component_mask_t mask,
84                                unsigned old_bit_size,
85                                unsigned new_bit_size);
86 
87 /** Defines a cast function
88  *
89  * This macro defines a cast function from in_type to out_type where
90  * out_type is some structure type that contains a field of type out_type.
91  *
92  * Note that you have to be a bit careful as the generated cast function
93  * destroys constness.
94  */
95 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
96                         type_field, type_value)         \
97 static inline out_type *                                \
98 name(const in_type *parent)                             \
99 {                                                       \
100    assert(parent && parent->type_field == type_value);  \
101    return exec_node_data(out_type, parent, field);      \
102 }
103 
104 struct nir_function;
105 struct nir_shader;
106 struct nir_instr;
107 struct nir_builder;
108 
109 
110 /**
111  * Description of built-in state associated with a uniform
112  *
113  * \sa nir_variable::state_slots
114  */
115 typedef struct {
116    gl_state_index16 tokens[STATE_LENGTH];
117    uint16_t swizzle;
118 } nir_state_slot;
119 
120 typedef enum {
121    nir_var_shader_in       = (1 << 0),
122    nir_var_shader_out      = (1 << 1),
123    nir_var_shader_temp     = (1 << 2),
124    nir_var_function_temp   = (1 << 3),
125    nir_var_uniform         = (1 << 4),
126    nir_var_mem_ubo         = (1 << 5),
127    nir_var_system_value    = (1 << 6),
128    nir_var_mem_ssbo        = (1 << 7),
129    nir_var_mem_shared      = (1 << 8),
130    nir_var_mem_global      = (1 << 9),
131    nir_var_mem_generic     = (nir_var_shader_temp |
132                               nir_var_function_temp |
133                               nir_var_mem_shared |
134                               nir_var_mem_global),
135    nir_var_mem_push_const  = (1 << 10), /* not actually used for variables */
136    nir_var_mem_constant    = (1 << 11),
137    /** Incoming call or ray payload data for ray-tracing shaders */
138    nir_var_shader_call_data = (1 << 12),
139    /** Ray hit attributes */
140    nir_var_ray_hit_attrib  = (1 << 13),
141    nir_var_read_only_modes = nir_var_shader_in | nir_var_uniform |
142                              nir_var_system_value | nir_var_mem_constant,
143    nir_num_variable_modes  = 14,
144    nir_var_all             = (1 << nir_num_variable_modes) - 1,
145 } nir_variable_mode;
146 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_variable_mode)
147 
148 /**
149  * Rounding modes.
150  */
151 typedef enum {
152    nir_rounding_mode_undef = 0,
153    nir_rounding_mode_rtne  = 1, /* round to nearest even */
154    nir_rounding_mode_ru    = 2, /* round up */
155    nir_rounding_mode_rd    = 3, /* round down */
156    nir_rounding_mode_rtz   = 4, /* round towards zero */
157 } nir_rounding_mode;
158 
159 typedef union {
160    bool b;
161    float f32;
162    double f64;
163    int8_t i8;
164    uint8_t u8;
165    int16_t i16;
166    uint16_t u16;
167    int32_t i32;
168    uint32_t u32;
169    int64_t i64;
170    uint64_t u64;
171 } nir_const_value;
172 
173 #define nir_const_value_to_array(arr, c, components, m) \
174 { \
175    for (unsigned i = 0; i < components; ++i) \
176       arr[i] = c[i].m; \
177 } while (false)
178 
179 static inline nir_const_value
nir_const_value_for_raw_uint(uint64_t x,unsigned bit_size)180 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
181 {
182    nir_const_value v;
183    memset(&v, 0, sizeof(v));
184 
185    switch (bit_size) {
186    case 1:  v.b   = x;  break;
187    case 8:  v.u8  = x;  break;
188    case 16: v.u16 = x;  break;
189    case 32: v.u32 = x;  break;
190    case 64: v.u64 = x;  break;
191    default:
192       unreachable("Invalid bit size");
193    }
194 
195    return v;
196 }
197 
198 static inline nir_const_value
nir_const_value_for_int(int64_t i,unsigned bit_size)199 nir_const_value_for_int(int64_t i, unsigned bit_size)
200 {
201    nir_const_value v;
202    memset(&v, 0, sizeof(v));
203 
204    assert(bit_size <= 64);
205    if (bit_size < 64) {
206       assert(i >= (-(1ll << (bit_size - 1))));
207       assert(i < (1ll << (bit_size - 1)));
208    }
209 
210    return nir_const_value_for_raw_uint(i, bit_size);
211 }
212 
213 static inline nir_const_value
nir_const_value_for_uint(uint64_t u,unsigned bit_size)214 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
215 {
216    nir_const_value v;
217    memset(&v, 0, sizeof(v));
218 
219    assert(bit_size <= 64);
220    if (bit_size < 64)
221       assert(u < (1ull << bit_size));
222 
223    return nir_const_value_for_raw_uint(u, bit_size);
224 }
225 
226 static inline nir_const_value
nir_const_value_for_bool(bool b,unsigned bit_size)227 nir_const_value_for_bool(bool b, unsigned bit_size)
228 {
229    /* Booleans use a 0/-1 convention */
230    return nir_const_value_for_int(-(int)b, bit_size);
231 }
232 
233 /* This one isn't inline because it requires half-float conversion */
234 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
235 
236 static inline int64_t
nir_const_value_as_int(nir_const_value value,unsigned bit_size)237 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
238 {
239    switch (bit_size) {
240    /* int1_t uses 0/-1 convention */
241    case 1:  return -(int)value.b;
242    case 8:  return value.i8;
243    case 16: return value.i16;
244    case 32: return value.i32;
245    case 64: return value.i64;
246    default:
247       unreachable("Invalid bit size");
248    }
249 }
250 
251 static inline uint64_t
nir_const_value_as_uint(nir_const_value value,unsigned bit_size)252 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
253 {
254    switch (bit_size) {
255    case 1:  return value.b;
256    case 8:  return value.u8;
257    case 16: return value.u16;
258    case 32: return value.u32;
259    case 64: return value.u64;
260    default:
261       unreachable("Invalid bit size");
262    }
263 }
264 
265 static inline bool
nir_const_value_as_bool(nir_const_value value,unsigned bit_size)266 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
267 {
268    int64_t i = nir_const_value_as_int(value, bit_size);
269 
270    /* Booleans of any size use 0/-1 convention */
271    assert(i == 0 || i == -1);
272 
273    return i;
274 }
275 
276 /* This one isn't inline because it requires half-float conversion */
277 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
278 
279 typedef struct nir_constant {
280    /**
281     * Value of the constant.
282     *
283     * The field used to back the values supplied by the constant is determined
284     * by the type associated with the \c nir_variable.  Constants may be
285     * scalars, vectors, or matrices.
286     */
287    nir_const_value values[NIR_MAX_VEC_COMPONENTS];
288 
289    /* we could get this from the var->type but makes clone *much* easier to
290     * not have to care about the type.
291     */
292    unsigned num_elements;
293 
294    /* Array elements / Structure Fields */
295    struct nir_constant **elements;
296 } nir_constant;
297 
298 /**
299  * \brief Layout qualifiers for gl_FragDepth.
300  *
301  * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
302  * with a layout qualifier.
303  */
304 typedef enum {
305     nir_depth_layout_none, /**< No depth layout is specified. */
306     nir_depth_layout_any,
307     nir_depth_layout_greater,
308     nir_depth_layout_less,
309     nir_depth_layout_unchanged
310 } nir_depth_layout;
311 
312 /**
313  * Enum keeping track of how a variable was declared.
314  */
315 typedef enum {
316    /**
317     * Normal declaration.
318     */
319    nir_var_declared_normally = 0,
320 
321    /**
322     * Variable is implicitly generated by the compiler and should not be
323     * visible via the API.
324     */
325    nir_var_hidden,
326 } nir_var_declaration_type;
327 
328 /**
329  * Either a uniform, global variable, shader input, or shader output. Based on
330  * ir_variable - it should be easy to translate between the two.
331  */
332 
333 typedef struct nir_variable {
334    struct exec_node node;
335 
336    /**
337     * Declared type of the variable
338     */
339    const struct glsl_type *type;
340 
341    /**
342     * Declared name of the variable
343     */
344    char *name;
345 
346    struct nir_variable_data {
347       /**
348        * Storage class of the variable.
349        *
350        * \sa nir_variable_mode
351        */
352       unsigned mode:14;
353 
354       /**
355        * Is the variable read-only?
356        *
357        * This is set for variables declared as \c const, shader inputs,
358        * and uniforms.
359        */
360       unsigned read_only:1;
361       unsigned centroid:1;
362       unsigned sample:1;
363       unsigned patch:1;
364       unsigned invariant:1;
365 
366      /**
367        * Precision qualifier.
368        *
369        * In desktop GLSL we do not care about precision qualifiers at all, in
370        * fact, the spec says that precision qualifiers are ignored.
371        *
372        * To make things easy, we make it so that this field is always
373        * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
374        * have the same precision value and the checks we add in the compiler
375        * for this field will never break a desktop shader compile.
376        */
377       unsigned precision:2;
378 
379       /**
380        * Can this variable be coalesced with another?
381        *
382        * This is set by nir_lower_io_to_temporaries to say that any
383        * copies involving this variable should stay put. Propagating it can
384        * duplicate the resulting load/store, which is not wanted, and may
385        * result in a load/store of the variable with an indirect offset which
386        * the backend may not be able to handle.
387        */
388       unsigned cannot_coalesce:1;
389 
390       /**
391        * When separate shader programs are enabled, only input/outputs between
392        * the stages of a multi-stage separate program can be safely removed
393        * from the shader interface. Other input/outputs must remains active.
394        *
395        * This is also used to make sure xfb varyings that are unused by the
396        * fragment shader are not removed.
397        */
398       unsigned always_active_io:1;
399 
400       /**
401        * Interpolation mode for shader inputs / outputs
402        *
403        * \sa glsl_interp_mode
404        */
405       unsigned interpolation:3;
406 
407       /**
408        * If non-zero, then this variable may be packed along with other variables
409        * into a single varying slot, so this offset should be applied when
410        * accessing components.  For example, an offset of 1 means that the x
411        * component of this variable is actually stored in component y of the
412        * location specified by \c location.
413        */
414       unsigned location_frac:2;
415 
416       /**
417        * If true, this variable represents an array of scalars that should
418        * be tightly packed.  In other words, consecutive array elements
419        * should be stored one component apart, rather than one slot apart.
420        */
421       unsigned compact:1;
422 
423       /**
424        * Whether this is a fragment shader output implicitly initialized with
425        * the previous contents of the specified render target at the
426        * framebuffer location corresponding to this shader invocation.
427        */
428       unsigned fb_fetch_output:1;
429 
430       /**
431        * Non-zero if this variable is considered bindless as defined by
432        * ARB_bindless_texture.
433        */
434       unsigned bindless:1;
435 
436       /**
437        * Was an explicit binding set in the shader?
438        */
439       unsigned explicit_binding:1;
440 
441       /**
442        * Was the location explicitly set in the shader?
443        *
444        * If the location is explicitly set in the shader, it \b cannot be changed
445        * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
446        * no effect).
447        */
448       unsigned explicit_location:1;
449 
450       /**
451        * Was a transfer feedback buffer set in the shader?
452        */
453       unsigned explicit_xfb_buffer:1;
454 
455       /**
456        * Was a transfer feedback stride set in the shader?
457        */
458       unsigned explicit_xfb_stride:1;
459 
460       /**
461        * Was an explicit offset set in the shader?
462        */
463       unsigned explicit_offset:1;
464 
465       /**
466        * Layout of the matrix.  Uses glsl_matrix_layout values.
467        */
468       unsigned matrix_layout:2;
469 
470       /**
471        * Non-zero if this variable was created by lowering a named interface
472        * block.
473        */
474       unsigned from_named_ifc_block:1;
475 
476       /**
477        * How the variable was declared.  See nir_var_declaration_type.
478        *
479        * This is used to detect variables generated by the compiler, so should
480        * not be visible via the API.
481        */
482       unsigned how_declared:2;
483 
484       /**
485        * Is this variable per-view?  If so, we know it must be an array with
486        * size corresponding to the number of views.
487        */
488       unsigned per_view:1;
489 
490       /**
491        * \brief Layout qualifier for gl_FragDepth. See nir_depth_layout.
492        *
493        * This is not equal to \c ir_depth_layout_none if and only if this
494        * variable is \c gl_FragDepth and a layout qualifier is specified.
495        */
496       unsigned depth_layout:3;
497 
498       /**
499        * Vertex stream output identifier.
500        *
501        * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
502        * indicate the stream of the i-th component.
503        */
504       unsigned stream:9;
505 
506       /**
507        * See gl_access_qualifier.
508        *
509        * Access flags for memory variables (SSBO/global), image uniforms, and
510        * bindless images in uniforms/inputs/outputs.
511        */
512       unsigned access:8;
513 
514       /**
515        * Descriptor set binding for sampler or UBO.
516        */
517       unsigned descriptor_set:5;
518 
519       /**
520        * output index for dual source blending.
521        */
522       unsigned index;
523 
524       /**
525        * Initial binding point for a sampler or UBO.
526        *
527        * For array types, this represents the binding point for the first element.
528        */
529       unsigned binding;
530 
531       /**
532        * Storage location of the base of this variable
533        *
534        * The precise meaning of this field depends on the nature of the variable.
535        *
536        *   - Vertex shader input: one of the values from \c gl_vert_attrib.
537        *   - Vertex shader output: one of the values from \c gl_varying_slot.
538        *   - Geometry shader input: one of the values from \c gl_varying_slot.
539        *   - Geometry shader output: one of the values from \c gl_varying_slot.
540        *   - Fragment shader input: one of the values from \c gl_varying_slot.
541        *   - Fragment shader output: one of the values from \c gl_frag_result.
542        *   - Uniforms: Per-stage uniform slot number for default uniform block.
543        *   - Uniforms: Index within the uniform block definition for UBO members.
544        *   - Non-UBO Uniforms: uniform slot number.
545        *   - Other: This field is not currently used.
546        *
547        * If the variable is a uniform, shader input, or shader output, and the
548        * slot has not been assigned, the value will be -1.
549        */
550       int location;
551 
552       /**
553        * The actual location of the variable in the IR. Only valid for inputs,
554        * outputs, and uniforms (including samplers and images).
555        */
556       unsigned driver_location;
557 
558       /**
559        * Location an atomic counter or transform feedback is stored at.
560        */
561       unsigned offset;
562 
563       union {
564          struct {
565             /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
566             enum pipe_format format;
567          } image;
568 
569          struct {
570             /**
571              * For OpenCL inline samplers. See cl_sampler_addressing_mode and cl_sampler_filter_mode
572              */
573             unsigned is_inline_sampler : 1;
574             unsigned addressing_mode : 3;
575             unsigned normalized_coordinates : 1;
576             unsigned filter_mode : 1;
577          } sampler;
578 
579          struct {
580             /**
581              * Transform feedback buffer.
582              */
583             uint16_t buffer:2;
584 
585             /**
586              * Transform feedback stride.
587              */
588             uint16_t stride;
589          } xfb;
590       };
591    } data;
592 
593    /**
594     * Identifier for this variable generated by nir_index_vars() that is unique
595     * among other variables in the same exec_list.
596     */
597    unsigned index;
598 
599    /* Number of nir_variable_data members */
600    uint16_t num_members;
601 
602    /**
603     * Built-in state that backs this uniform
604     *
605     * Once set at variable creation, \c state_slots must remain invariant.
606     * This is because, ideally, this array would be shared by all clones of
607     * this variable in the IR tree.  In other words, we'd really like for it
608     * to be a fly-weight.
609     *
610     * If the variable is not a uniform, \c num_state_slots will be zero and
611     * \c state_slots will be \c NULL.
612     */
613    /*@{*/
614    uint16_t num_state_slots;    /**< Number of state slots used */
615    nir_state_slot *state_slots;  /**< State descriptors. */
616    /*@}*/
617 
618    /**
619     * Constant expression assigned in the initializer of the variable
620     *
621     * This field should only be used temporarily by creators of NIR shaders
622     * and then lower_constant_initializers can be used to get rid of them.
623     * Most of the rest of NIR ignores this field or asserts that it's NULL.
624     */
625    nir_constant *constant_initializer;
626 
627    /**
628     * Global variable assigned in the initializer of the variable
629     * This field should only be used temporarily by creators of NIR shaders
630     * and then lower_constant_initializers can be used to get rid of them.
631     * Most of the rest of NIR ignores this field or asserts that it's NULL.
632     */
633    struct nir_variable *pointer_initializer;
634 
635    /**
636     * For variables that are in an interface block or are an instance of an
637     * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
638     *
639     * \sa ir_variable::location
640     */
641    const struct glsl_type *interface_type;
642 
643    /**
644     * Description of per-member data for per-member struct variables
645     *
646     * This is used for variables which are actually an amalgamation of
647     * multiple entities such as a struct of built-in values or a struct of
648     * inputs each with their own layout specifier.  This is only allowed on
649     * variables with a struct or array of array of struct type.
650     */
651    struct nir_variable_data *members;
652 } nir_variable;
653 
654 static inline bool
_nir_shader_variable_has_mode(nir_variable * var,unsigned modes)655 _nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
656 {
657    /* This isn't a shader variable */
658    assert(!(modes & nir_var_function_temp));
659    return var->data.mode & modes;
660 }
661 
662 #define nir_foreach_variable_in_list(var, var_list) \
663    foreach_list_typed(nir_variable, var, node, var_list)
664 
665 #define nir_foreach_variable_in_list_safe(var, var_list) \
666    foreach_list_typed_safe(nir_variable, var, node, var_list)
667 
668 #define nir_foreach_variable_in_shader(var, shader) \
669    nir_foreach_variable_in_list(var, &(shader)->variables)
670 
671 #define nir_foreach_variable_in_shader_safe(var, shader) \
672    nir_foreach_variable_in_list_safe(var, &(shader)->variables)
673 
674 #define nir_foreach_variable_with_modes(var, shader, modes) \
675    nir_foreach_variable_in_shader(var, shader) \
676       if (_nir_shader_variable_has_mode(var, modes))
677 
678 #define nir_foreach_variable_with_modes_safe(var, shader, modes) \
679    nir_foreach_variable_in_shader_safe(var, shader) \
680       if (_nir_shader_variable_has_mode(var, modes))
681 
682 #define nir_foreach_shader_in_variable(var, shader) \
683    nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
684 
685 #define nir_foreach_shader_in_variable_safe(var, shader) \
686    nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
687 
688 #define nir_foreach_shader_out_variable(var, shader) \
689    nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
690 
691 #define nir_foreach_shader_out_variable_safe(var, shader) \
692    nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
693 
694 #define nir_foreach_uniform_variable(var, shader) \
695    nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
696 
697 #define nir_foreach_uniform_variable_safe(var, shader) \
698    nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
699 
700 static inline bool
nir_variable_is_global(const nir_variable * var)701 nir_variable_is_global(const nir_variable *var)
702 {
703    return var->data.mode != nir_var_function_temp;
704 }
705 
706 typedef struct nir_register {
707    struct exec_node node;
708 
709    unsigned num_components; /** < number of vector components */
710    unsigned num_array_elems; /** < size of array (0 for no array) */
711 
712    /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
713    uint8_t bit_size;
714 
715    /** generic register index. */
716    unsigned index;
717 
718    /** only for debug purposes, can be NULL */
719    const char *name;
720 
721    /** set of nir_srcs where this register is used (read from) */
722    struct list_head uses;
723 
724    /** set of nir_dests where this register is defined (written to) */
725    struct list_head defs;
726 
727    /** set of nir_ifs where this register is used as a condition */
728    struct list_head if_uses;
729 } nir_register;
730 
731 #define nir_foreach_register(reg, reg_list) \
732    foreach_list_typed(nir_register, reg, node, reg_list)
733 #define nir_foreach_register_safe(reg, reg_list) \
734    foreach_list_typed_safe(nir_register, reg, node, reg_list)
735 
736 typedef enum PACKED {
737    nir_instr_type_alu,
738    nir_instr_type_deref,
739    nir_instr_type_call,
740    nir_instr_type_tex,
741    nir_instr_type_intrinsic,
742    nir_instr_type_load_const,
743    nir_instr_type_jump,
744    nir_instr_type_ssa_undef,
745    nir_instr_type_phi,
746    nir_instr_type_parallel_copy,
747 } nir_instr_type;
748 
749 typedef struct nir_instr {
750    struct exec_node node;
751    struct nir_block *block;
752    nir_instr_type type;
753 
754    /* A temporary for optimization and analysis passes to use for storing
755     * flags.  For instance, DCE uses this to store the "dead/live" info.
756     */
757    uint8_t pass_flags;
758 
759    /** generic instruction index. */
760    uint32_t index;
761 } nir_instr;
762 
763 static inline nir_instr *
nir_instr_next(nir_instr * instr)764 nir_instr_next(nir_instr *instr)
765 {
766    struct exec_node *next = exec_node_get_next(&instr->node);
767    if (exec_node_is_tail_sentinel(next))
768       return NULL;
769    else
770       return exec_node_data(nir_instr, next, node);
771 }
772 
773 static inline nir_instr *
nir_instr_prev(nir_instr * instr)774 nir_instr_prev(nir_instr *instr)
775 {
776    struct exec_node *prev = exec_node_get_prev(&instr->node);
777    if (exec_node_is_head_sentinel(prev))
778       return NULL;
779    else
780       return exec_node_data(nir_instr, prev, node);
781 }
782 
783 static inline bool
nir_instr_is_first(const nir_instr * instr)784 nir_instr_is_first(const nir_instr *instr)
785 {
786    return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
787 }
788 
789 static inline bool
nir_instr_is_last(const nir_instr * instr)790 nir_instr_is_last(const nir_instr *instr)
791 {
792    return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
793 }
794 
795 typedef struct nir_ssa_def {
796    /** for debugging only, can be NULL */
797    const char* name;
798 
799    /** Instruction which produces this SSA value. */
800    nir_instr *parent_instr;
801 
802    /** set of nir_instrs where this register is used (read from) */
803    struct list_head uses;
804 
805    /** set of nir_ifs where this register is used as a condition */
806    struct list_head if_uses;
807 
808    /** generic SSA definition index. */
809    unsigned index;
810 
811    uint8_t num_components;
812 
813    /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
814    uint8_t bit_size;
815 
816    /**
817     * True if this SSA value may have different values in different SIMD
818     * invocations of the shader.  This is set by nir_divergence_analysis.
819     */
820    bool divergent;
821 } nir_ssa_def;
822 
823 struct nir_src;
824 
825 typedef struct {
826    nir_register *reg;
827    struct nir_src *indirect; /** < NULL for no indirect offset */
828    unsigned base_offset;
829 
830    /* TODO use-def chain goes here */
831 } nir_reg_src;
832 
833 typedef struct {
834    nir_instr *parent_instr;
835    struct list_head def_link;
836 
837    nir_register *reg;
838    struct nir_src *indirect; /** < NULL for no indirect offset */
839    unsigned base_offset;
840 
841    /* TODO def-use chain goes here */
842 } nir_reg_dest;
843 
844 struct nir_if;
845 
846 typedef struct nir_src {
847    union {
848       /** Instruction that consumes this value as a source. */
849       nir_instr *parent_instr;
850       struct nir_if *parent_if;
851    };
852 
853    struct list_head use_link;
854 
855    union {
856       nir_reg_src reg;
857       nir_ssa_def *ssa;
858    };
859 
860    bool is_ssa;
861 } nir_src;
862 
863 static inline nir_src
nir_src_init(void)864 nir_src_init(void)
865 {
866    nir_src src = { { NULL } };
867    return src;
868 }
869 
870 #define NIR_SRC_INIT nir_src_init()
871 
872 #define nir_foreach_use(src, reg_or_ssa_def) \
873    list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
874 
875 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
876    list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
877 
878 #define nir_foreach_if_use(src, reg_or_ssa_def) \
879    list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
880 
881 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
882    list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
883 
884 typedef struct {
885    union {
886       nir_reg_dest reg;
887       nir_ssa_def ssa;
888    };
889 
890    bool is_ssa;
891 } nir_dest;
892 
893 static inline nir_dest
nir_dest_init(void)894 nir_dest_init(void)
895 {
896    nir_dest dest = { { { NULL } } };
897    return dest;
898 }
899 
900 #define NIR_DEST_INIT nir_dest_init()
901 
902 #define nir_foreach_def(dest, reg) \
903    list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
904 
905 #define nir_foreach_def_safe(dest, reg) \
906    list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
907 
908 static inline nir_src
nir_src_for_ssa(nir_ssa_def * def)909 nir_src_for_ssa(nir_ssa_def *def)
910 {
911    nir_src src = NIR_SRC_INIT;
912 
913    src.is_ssa = true;
914    src.ssa = def;
915 
916    return src;
917 }
918 
919 static inline nir_src
nir_src_for_reg(nir_register * reg)920 nir_src_for_reg(nir_register *reg)
921 {
922    nir_src src = NIR_SRC_INIT;
923 
924    src.is_ssa = false;
925    src.reg.reg = reg;
926    src.reg.indirect = NULL;
927    src.reg.base_offset = 0;
928 
929    return src;
930 }
931 
932 static inline nir_dest
nir_dest_for_reg(nir_register * reg)933 nir_dest_for_reg(nir_register *reg)
934 {
935    nir_dest dest = NIR_DEST_INIT;
936 
937    dest.reg.reg = reg;
938 
939    return dest;
940 }
941 
942 static inline unsigned
nir_src_bit_size(nir_src src)943 nir_src_bit_size(nir_src src)
944 {
945    return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
946 }
947 
948 static inline unsigned
nir_src_num_components(nir_src src)949 nir_src_num_components(nir_src src)
950 {
951    return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
952 }
953 
954 static inline bool
nir_src_is_const(nir_src src)955 nir_src_is_const(nir_src src)
956 {
957    return src.is_ssa &&
958           src.ssa->parent_instr->type == nir_instr_type_load_const;
959 }
960 
961 static inline bool
nir_src_is_divergent(nir_src src)962 nir_src_is_divergent(nir_src src)
963 {
964    assert(src.is_ssa);
965    return src.ssa->divergent;
966 }
967 
968 static inline unsigned
nir_dest_bit_size(nir_dest dest)969 nir_dest_bit_size(nir_dest dest)
970 {
971    return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
972 }
973 
974 static inline unsigned
nir_dest_num_components(nir_dest dest)975 nir_dest_num_components(nir_dest dest)
976 {
977    return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
978 }
979 
980 static inline bool
nir_dest_is_divergent(nir_dest dest)981 nir_dest_is_divergent(nir_dest dest)
982 {
983    assert(dest.is_ssa);
984    return dest.ssa.divergent;
985 }
986 
987 /* Are all components the same, ie. .xxxx */
988 static inline bool
nir_is_same_comp_swizzle(uint8_t * swiz,unsigned nr_comp)989 nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
990 {
991    for (unsigned i = 1; i < nr_comp; i++)
992       if (swiz[i] != swiz[0])
993          return false;
994    return true;
995 }
996 
997 /* Are all components sequential, ie. .yzw */
998 static inline bool
nir_is_sequential_comp_swizzle(uint8_t * swiz,unsigned nr_comp)999 nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1000 {
1001    for (unsigned i = 1; i < nr_comp; i++)
1002       if (swiz[i] != (swiz[0] + i))
1003          return false;
1004    return true;
1005 }
1006 
1007 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
1008 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
1009 
1010 typedef struct {
1011    nir_src src;
1012 
1013    /**
1014     * \name input modifiers
1015     */
1016    /*@{*/
1017    /**
1018     * For inputs interpreted as floating point, flips the sign bit. For
1019     * inputs interpreted as integers, performs the two's complement negation.
1020     */
1021    bool negate;
1022 
1023    /**
1024     * Clears the sign bit for floating point values, and computes the integer
1025     * absolute value for integers. Note that the negate modifier acts after
1026     * the absolute value modifier, therefore if both are set then all inputs
1027     * will become negative.
1028     */
1029    bool abs;
1030    /*@}*/
1031 
1032    /**
1033     * For each input component, says which component of the register it is
1034     * chosen from. Note that which elements of the swizzle are used and which
1035     * are ignored are based on the write mask for most opcodes - for example,
1036     * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
1037     * a swizzle of {2, x, 1, 0} where x means "don't care."
1038     */
1039    uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
1040 } nir_alu_src;
1041 
1042 typedef struct {
1043    nir_dest dest;
1044 
1045    /**
1046     * \name saturate output modifier
1047     *
1048     * Only valid for opcodes that output floating-point numbers. Clamps the
1049     * output to between 0.0 and 1.0 inclusive.
1050     */
1051 
1052    bool saturate;
1053 
1054    unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
1055 } nir_alu_dest;
1056 
1057 /** NIR sized and unsized types
1058  *
1059  * The values in this enum are carefully chosen so that the sized type is
1060  * just the unsized type OR the number of bits.
1061  */
1062 typedef enum PACKED {
1063    nir_type_invalid = 0, /* Not a valid type */
1064    nir_type_int =       2,
1065    nir_type_uint =      4,
1066    nir_type_bool =      6,
1067    nir_type_float =     128,
1068    nir_type_bool1 =     1  | nir_type_bool,
1069    nir_type_bool8 =     8  | nir_type_bool,
1070    nir_type_bool16 =    16 | nir_type_bool,
1071    nir_type_bool32 =    32 | nir_type_bool,
1072    nir_type_int1 =      1  | nir_type_int,
1073    nir_type_int8 =      8  | nir_type_int,
1074    nir_type_int16 =     16 | nir_type_int,
1075    nir_type_int32 =     32 | nir_type_int,
1076    nir_type_int64 =     64 | nir_type_int,
1077    nir_type_uint1 =     1  | nir_type_uint,
1078    nir_type_uint8 =     8  | nir_type_uint,
1079    nir_type_uint16 =    16 | nir_type_uint,
1080    nir_type_uint32 =    32 | nir_type_uint,
1081    nir_type_uint64 =    64 | nir_type_uint,
1082    nir_type_float16 =   16 | nir_type_float,
1083    nir_type_float32 =   32 | nir_type_float,
1084    nir_type_float64 =   64 | nir_type_float,
1085 } nir_alu_type;
1086 
1087 #define NIR_ALU_TYPE_SIZE_MASK 0x79
1088 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
1089 
1090 static inline unsigned
nir_alu_type_get_type_size(nir_alu_type type)1091 nir_alu_type_get_type_size(nir_alu_type type)
1092 {
1093    return type & NIR_ALU_TYPE_SIZE_MASK;
1094 }
1095 
1096 static inline nir_alu_type
nir_alu_type_get_base_type(nir_alu_type type)1097 nir_alu_type_get_base_type(nir_alu_type type)
1098 {
1099    return (nir_alu_type)(type & NIR_ALU_TYPE_BASE_TYPE_MASK);
1100 }
1101 
1102 static inline nir_alu_type
nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)1103 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
1104 {
1105    switch (base_type) {
1106    case GLSL_TYPE_BOOL:
1107       return nir_type_bool1;
1108       break;
1109    case GLSL_TYPE_UINT:
1110       return nir_type_uint32;
1111       break;
1112    case GLSL_TYPE_INT:
1113       return nir_type_int32;
1114       break;
1115    case GLSL_TYPE_UINT16:
1116       return nir_type_uint16;
1117       break;
1118    case GLSL_TYPE_INT16:
1119       return nir_type_int16;
1120       break;
1121    case GLSL_TYPE_UINT8:
1122       return nir_type_uint8;
1123    case GLSL_TYPE_INT8:
1124       return nir_type_int8;
1125    case GLSL_TYPE_UINT64:
1126       return nir_type_uint64;
1127       break;
1128    case GLSL_TYPE_INT64:
1129       return nir_type_int64;
1130       break;
1131    case GLSL_TYPE_FLOAT:
1132       return nir_type_float32;
1133       break;
1134    case GLSL_TYPE_FLOAT16:
1135       return nir_type_float16;
1136       break;
1137    case GLSL_TYPE_DOUBLE:
1138       return nir_type_float64;
1139       break;
1140 
1141    case GLSL_TYPE_SAMPLER:
1142    case GLSL_TYPE_IMAGE:
1143    case GLSL_TYPE_ATOMIC_UINT:
1144    case GLSL_TYPE_STRUCT:
1145    case GLSL_TYPE_INTERFACE:
1146    case GLSL_TYPE_ARRAY:
1147    case GLSL_TYPE_VOID:
1148    case GLSL_TYPE_SUBROUTINE:
1149    case GLSL_TYPE_FUNCTION:
1150    case GLSL_TYPE_ERROR:
1151       return nir_type_invalid;
1152    }
1153 
1154    unreachable("unknown type");
1155 }
1156 
1157 static inline nir_alu_type
nir_get_nir_type_for_glsl_type(const struct glsl_type * type)1158 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1159 {
1160    return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1161 }
1162 
1163 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1164                               nir_rounding_mode rnd);
1165 
1166 static inline nir_op
nir_op_vec(unsigned components)1167 nir_op_vec(unsigned components)
1168 {
1169    switch (components) {
1170    case  1: return nir_op_mov;
1171    case  2: return nir_op_vec2;
1172    case  3: return nir_op_vec3;
1173    case  4: return nir_op_vec4;
1174    case  8: return nir_op_vec8;
1175    case 16: return nir_op_vec16;
1176    default: unreachable("bad component count");
1177    }
1178 }
1179 
1180 static inline bool
nir_op_is_vec(nir_op op)1181 nir_op_is_vec(nir_op op)
1182 {
1183    switch (op) {
1184    case nir_op_mov:
1185    case nir_op_vec2:
1186    case nir_op_vec3:
1187    case nir_op_vec4:
1188    case nir_op_vec8:
1189    case nir_op_vec16:
1190       return true;
1191    default:
1192       return false;
1193    }
1194 }
1195 
1196 static inline bool
nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode,unsigned bit_size)1197 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1198 {
1199     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1200         (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1201         (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1202 }
1203 
1204 static inline bool
nir_is_denorm_flush_to_zero(unsigned execution_mode,unsigned bit_size)1205 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1206 {
1207     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1208         (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1209         (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1210 }
1211 
1212 static inline bool
nir_is_denorm_preserve(unsigned execution_mode,unsigned bit_size)1213 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1214 {
1215     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1216         (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1217         (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1218 }
1219 
1220 static inline bool
nir_is_rounding_mode_rtne(unsigned execution_mode,unsigned bit_size)1221 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1222 {
1223     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1224         (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1225         (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1226 }
1227 
1228 static inline bool
nir_is_rounding_mode_rtz(unsigned execution_mode,unsigned bit_size)1229 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1230 {
1231     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1232         (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1233         (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1234 }
1235 
1236 static inline bool
nir_has_any_rounding_mode_rtz(unsigned execution_mode)1237 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1238 {
1239     return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1240         (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1241         (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1242 }
1243 
1244 static inline bool
nir_has_any_rounding_mode_rtne(unsigned execution_mode)1245 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1246 {
1247     return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1248         (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1249         (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1250 }
1251 
1252 static inline nir_rounding_mode
nir_get_rounding_mode_from_float_controls(unsigned execution_mode,nir_alu_type type)1253 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1254                                           nir_alu_type type)
1255 {
1256    if (nir_alu_type_get_base_type(type) != nir_type_float)
1257       return nir_rounding_mode_undef;
1258 
1259    unsigned bit_size = nir_alu_type_get_type_size(type);
1260 
1261    if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1262       return nir_rounding_mode_rtz;
1263    if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1264       return nir_rounding_mode_rtne;
1265    return nir_rounding_mode_undef;
1266 }
1267 
1268 static inline bool
nir_has_any_rounding_mode_enabled(unsigned execution_mode)1269 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1270 {
1271    bool result =
1272       nir_has_any_rounding_mode_rtne(execution_mode) ||
1273       nir_has_any_rounding_mode_rtz(execution_mode);
1274    return result;
1275 }
1276 
1277 typedef enum {
1278    /**
1279     * Operation where the first two sources are commutative.
1280     *
1281     * For 2-source operations, this just mathematical commutativity.  Some
1282     * 3-source operations, like ffma, are only commutative in the first two
1283     * sources.
1284     */
1285    NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1286    NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1287 } nir_op_algebraic_property;
1288 
1289 typedef struct {
1290    const char *name;
1291 
1292    uint8_t num_inputs;
1293 
1294    /**
1295     * The number of components in the output
1296     *
1297     * If non-zero, this is the size of the output and input sizes are
1298     * explicitly given; swizzle and writemask are still in effect, but if
1299     * the output component is masked out, then the input component may
1300     * still be in use.
1301     *
1302     * If zero, the opcode acts in the standard, per-component manner; the
1303     * operation is performed on each component (except the ones that are
1304     * masked out) with the input being taken from the input swizzle for
1305     * that component.
1306     *
1307     * The size of some of the inputs may be given (i.e. non-zero) even
1308     * though output_size is zero; in that case, the inputs with a zero
1309     * size act per-component, while the inputs with non-zero size don't.
1310     */
1311    uint8_t output_size;
1312 
1313    /**
1314     * The type of vector that the instruction outputs. Note that the
1315     * staurate modifier is only allowed on outputs with the float type.
1316     */
1317 
1318    nir_alu_type output_type;
1319 
1320    /**
1321     * The number of components in each input
1322     */
1323    uint8_t input_sizes[NIR_MAX_VEC_COMPONENTS];
1324 
1325    /**
1326     * The type of vector that each input takes. Note that negate and
1327     * absolute value are only allowed on inputs with int or float type and
1328     * behave differently on the two.
1329     */
1330    nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1331 
1332    nir_op_algebraic_property algebraic_properties;
1333 
1334    /* Whether this represents a numeric conversion opcode */
1335    bool is_conversion;
1336 } nir_op_info;
1337 
1338 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1339 
1340 typedef struct nir_alu_instr {
1341    nir_instr instr;
1342    nir_op op;
1343 
1344    /** Indicates that this ALU instruction generates an exact value
1345     *
1346     * This is kind of a mixture of GLSL "precise" and "invariant" and not
1347     * really equivalent to either.  This indicates that the value generated by
1348     * this operation is high-precision and any code transformations that touch
1349     * it must ensure that the resulting value is bit-for-bit identical to the
1350     * original.
1351     */
1352    bool exact:1;
1353 
1354    /**
1355     * Indicates that this instruction do not cause wrapping to occur, in the
1356     * form of overflow or underflow.
1357     */
1358    bool no_signed_wrap:1;
1359    bool no_unsigned_wrap:1;
1360 
1361    nir_alu_dest dest;
1362    nir_alu_src src[];
1363 } nir_alu_instr;
1364 
1365 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1366                       nir_alu_instr *instr);
1367 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1368                        nir_alu_instr *instr);
1369 
1370 /* is this source channel used? */
1371 static inline bool
nir_alu_instr_channel_used(const nir_alu_instr * instr,unsigned src,unsigned channel)1372 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1373                            unsigned channel)
1374 {
1375    if (nir_op_infos[instr->op].input_sizes[src] > 0)
1376       return channel < nir_op_infos[instr->op].input_sizes[src];
1377 
1378    return (instr->dest.write_mask >> channel) & 1;
1379 }
1380 
1381 static inline nir_component_mask_t
nir_alu_instr_src_read_mask(const nir_alu_instr * instr,unsigned src)1382 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1383 {
1384    nir_component_mask_t read_mask = 0;
1385    for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1386       if (!nir_alu_instr_channel_used(instr, src, c))
1387          continue;
1388 
1389       read_mask |= (1 << instr->src[src].swizzle[c]);
1390    }
1391    return read_mask;
1392 }
1393 
1394 /**
1395  * Get the number of channels used for a source
1396  */
1397 static inline unsigned
nir_ssa_alu_instr_src_components(const nir_alu_instr * instr,unsigned src)1398 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1399 {
1400    if (nir_op_infos[instr->op].input_sizes[src] > 0)
1401       return nir_op_infos[instr->op].input_sizes[src];
1402 
1403    return nir_dest_num_components(instr->dest.dest);
1404 }
1405 
1406 static inline bool
nir_alu_instr_is_comparison(const nir_alu_instr * instr)1407 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1408 {
1409    switch (instr->op) {
1410    case nir_op_flt:
1411    case nir_op_fge:
1412    case nir_op_feq:
1413    case nir_op_fneu:
1414    case nir_op_ilt:
1415    case nir_op_ult:
1416    case nir_op_ige:
1417    case nir_op_uge:
1418    case nir_op_ieq:
1419    case nir_op_ine:
1420    case nir_op_i2b1:
1421    case nir_op_f2b1:
1422    case nir_op_inot:
1423       return true;
1424    default:
1425       return false;
1426    }
1427 }
1428 
1429 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1430                                     nir_alu_type full_type);
1431 
1432 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1433                         unsigned src1, unsigned src2);
1434 
1435 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1436                                  const nir_alu_instr *alu2,
1437                                  unsigned src1, unsigned src2);
1438 
1439 bool nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn);
1440 
1441 typedef enum {
1442    nir_deref_type_var,
1443    nir_deref_type_array,
1444    nir_deref_type_array_wildcard,
1445    nir_deref_type_ptr_as_array,
1446    nir_deref_type_struct,
1447    nir_deref_type_cast,
1448 } nir_deref_type;
1449 
1450 typedef struct {
1451    nir_instr instr;
1452 
1453    /** The type of this deref instruction */
1454    nir_deref_type deref_type;
1455 
1456    /** Bitmask what modes the underlying variable might be
1457     *
1458     * For OpenCL-style generic pointers, we may not know exactly what mode it
1459     * is at any given point in time in the compile process.  This bitfield
1460     * contains the set of modes which it MAY be.
1461     *
1462     * Generally, this field should not be accessed directly.  Use one of the
1463     * nir_deref_mode_ helpers instead.
1464     */
1465    nir_variable_mode modes;
1466 
1467    /** The dereferenced type of the resulting pointer value */
1468    const struct glsl_type *type;
1469 
1470    union {
1471       /** Variable being dereferenced if deref_type is a deref_var */
1472       nir_variable *var;
1473 
1474       /** Parent deref if deref_type is not deref_var */
1475       nir_src parent;
1476    };
1477 
1478    /** Additional deref parameters */
1479    union {
1480       struct {
1481          nir_src index;
1482       } arr;
1483 
1484       struct {
1485          unsigned index;
1486       } strct;
1487 
1488       struct {
1489          unsigned ptr_stride;
1490          unsigned align_mul;
1491          unsigned align_offset;
1492       } cast;
1493    };
1494 
1495    /** Destination to store the resulting "pointer" */
1496    nir_dest dest;
1497 } nir_deref_instr;
1498 
1499 /** Returns true if deref might have one of the given modes
1500  *
1501  * For multi-mode derefs, this returns true if any of the possible modes for
1502  * the deref to have any of the specified modes.  This function returning true
1503  * does NOT mean that the deref definitely has one of those modes.  It simply
1504  * means that, with the best information we have at the time, it might.
1505  */
1506 static inline bool
nir_deref_mode_may_be(const nir_deref_instr * deref,nir_variable_mode modes)1507 nir_deref_mode_may_be(const nir_deref_instr *deref, nir_variable_mode modes)
1508 {
1509    assert(!(modes & ~nir_var_all));
1510    assert(deref->modes != 0);
1511    return deref->modes & modes;
1512 }
1513 
1514 /** Returns true if deref must have one of the given modes
1515  *
1516  * For multi-mode derefs, this returns true if NIR can prove that the given
1517  * deref has one of the specified modes.  This function returning false does
1518  * NOT mean that deref doesn't have one of the given mode.  It very well may
1519  * have one of those modes, we just don't have enough information to prove
1520  * that it does for sure.
1521  */
1522 static inline bool
nir_deref_mode_must_be(const nir_deref_instr * deref,nir_variable_mode modes)1523 nir_deref_mode_must_be(const nir_deref_instr *deref, nir_variable_mode modes)
1524 {
1525    assert(!(modes & ~nir_var_all));
1526    assert(deref->modes != 0);
1527    return !(deref->modes & ~modes);
1528 }
1529 
1530 /** Returns true if deref has the given mode
1531  *
1532  * This returns true if the deref has exactly the mode specified.  If the
1533  * deref may have that mode but may also have a different mode (i.e. modes has
1534  * multiple bits set), this will assert-fail.
1535  *
1536  * If you're confused about which nir_deref_mode_ helper to use, use this one
1537  * or nir_deref_mode_is_one_of below.
1538  */
1539 static inline bool
nir_deref_mode_is(const nir_deref_instr * deref,nir_variable_mode mode)1540 nir_deref_mode_is(const nir_deref_instr *deref, nir_variable_mode mode)
1541 {
1542    assert(util_bitcount(mode) == 1 && (mode & nir_var_all));
1543    assert(deref->modes != 0);
1544 
1545    /* This is only for "simple" cases so, if modes might interact with this
1546     * deref then the deref has to have a single mode.
1547     */
1548    if (nir_deref_mode_may_be(deref, mode)) {
1549       assert(util_bitcount(deref->modes) == 1);
1550       assert(deref->modes == mode);
1551    }
1552 
1553    return deref->modes == mode;
1554 }
1555 
1556 /** Returns true if deref has one of the given modes
1557  *
1558  * This returns true if the deref has exactly one possible mode and that mode
1559  * is one of the modes specified.  If the deref may have one of those modes
1560  * but may also have a different mode (i.e. modes has multiple bits set), this
1561  * will assert-fail.
1562  */
1563 static inline bool
nir_deref_mode_is_one_of(const nir_deref_instr * deref,nir_variable_mode modes)1564 nir_deref_mode_is_one_of(const nir_deref_instr *deref, nir_variable_mode modes)
1565 {
1566    /* This is only for "simple" cases so, if modes might interact with this
1567     * deref then the deref has to have a single mode.
1568     */
1569    if (nir_deref_mode_may_be(deref, modes)) {
1570       assert(util_bitcount(deref->modes) == 1);
1571       assert(nir_deref_mode_must_be(deref, modes));
1572    }
1573 
1574    return nir_deref_mode_may_be(deref, modes);
1575 }
1576 
1577 /** Returns true if deref's possible modes lie in the given set of modes
1578  *
1579  * This returns true if the deref's modes lie in the given set of modes.  If
1580  * the deref's modes overlap with the specified modes but aren't entirely
1581  * contained in the specified set of modes, this will assert-fail.  In
1582  * particular, if this is used in a generic pointers scenario, the specified
1583  * modes has to contain all or none of the possible generic pointer modes.
1584  *
1585  * This is intended mostly for mass-lowering of derefs which might have
1586  * generic pointers.
1587  */
1588 static inline bool
nir_deref_mode_is_in_set(const nir_deref_instr * deref,nir_variable_mode modes)1589 nir_deref_mode_is_in_set(const nir_deref_instr *deref, nir_variable_mode modes)
1590 {
1591    if (nir_deref_mode_may_be(deref, modes))
1592       assert(nir_deref_mode_must_be(deref, modes));
1593 
1594    return nir_deref_mode_may_be(deref, modes);
1595 }
1596 
1597 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1598 
1599 static inline nir_deref_instr *
nir_deref_instr_parent(const nir_deref_instr * instr)1600 nir_deref_instr_parent(const nir_deref_instr *instr)
1601 {
1602    if (instr->deref_type == nir_deref_type_var)
1603       return NULL;
1604    else
1605       return nir_src_as_deref(instr->parent);
1606 }
1607 
1608 static inline nir_variable *
nir_deref_instr_get_variable(const nir_deref_instr * instr)1609 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1610 {
1611    while (instr->deref_type != nir_deref_type_var) {
1612       if (instr->deref_type == nir_deref_type_cast)
1613          return NULL;
1614 
1615       instr = nir_deref_instr_parent(instr);
1616    }
1617 
1618    return instr->var;
1619 }
1620 
1621 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1622 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1623 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1624 
1625 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1626 
1627 unsigned nir_deref_instr_array_stride(nir_deref_instr *instr);
1628 
1629 typedef struct {
1630    nir_instr instr;
1631 
1632    struct nir_function *callee;
1633 
1634    unsigned num_params;
1635    nir_src params[];
1636 } nir_call_instr;
1637 
1638 #include "nir_intrinsics.h"
1639 
1640 #define NIR_INTRINSIC_MAX_CONST_INDEX 5
1641 
1642 /** Represents an intrinsic
1643  *
1644  * An intrinsic is an instruction type for handling things that are
1645  * more-or-less regular operations but don't just consume and produce SSA
1646  * values like ALU operations do.  Intrinsics are not for things that have
1647  * special semantic meaning such as phi nodes and parallel copies.
1648  * Examples of intrinsics include variable load/store operations, system
1649  * value loads, and the like.  Even though texturing more-or-less falls
1650  * under this category, texturing is its own instruction type because
1651  * trying to represent texturing with intrinsics would lead to a
1652  * combinatorial explosion of intrinsic opcodes.
1653  *
1654  * By having a single instruction type for handling a lot of different
1655  * cases, optimization passes can look for intrinsics and, for the most
1656  * part, completely ignore them.  Each intrinsic type also has a few
1657  * possible flags that govern whether or not they can be reordered or
1658  * eliminated.  That way passes like dead code elimination can still work
1659  * on intrisics without understanding the meaning of each.
1660  *
1661  * Each intrinsic has some number of constant indices, some number of
1662  * variables, and some number of sources.  What these sources, variables,
1663  * and indices mean depends on the intrinsic and is documented with the
1664  * intrinsic declaration in nir_intrinsics.h.  Intrinsics and texture
1665  * instructions are the only types of instruction that can operate on
1666  * variables.
1667  */
1668 typedef struct {
1669    nir_instr instr;
1670 
1671    nir_intrinsic_op intrinsic;
1672 
1673    nir_dest dest;
1674 
1675    /** number of components if this is a vectorized intrinsic
1676     *
1677     * Similarly to ALU operations, some intrinsics are vectorized.
1678     * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1679     * For vectorized intrinsics, the num_components field specifies the
1680     * number of destination components and the number of source components
1681     * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1682     */
1683    uint8_t num_components;
1684 
1685    int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1686 
1687    nir_src src[];
1688 } nir_intrinsic_instr;
1689 
1690 static inline nir_variable *
nir_intrinsic_get_var(nir_intrinsic_instr * intrin,unsigned i)1691 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1692 {
1693    return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1694 }
1695 
1696 typedef enum {
1697    /* Memory ordering. */
1698    NIR_MEMORY_ACQUIRE        = 1 << 0,
1699    NIR_MEMORY_RELEASE        = 1 << 1,
1700    NIR_MEMORY_ACQ_REL        = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1701 
1702    /* Memory visibility operations. */
1703    NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1704    NIR_MEMORY_MAKE_VISIBLE   = 1 << 3,
1705 } nir_memory_semantics;
1706 
1707 typedef enum {
1708    NIR_SCOPE_NONE,
1709    NIR_SCOPE_INVOCATION,
1710    NIR_SCOPE_SUBGROUP,
1711    NIR_SCOPE_SHADER_CALL,
1712    NIR_SCOPE_WORKGROUP,
1713    NIR_SCOPE_QUEUE_FAMILY,
1714    NIR_SCOPE_DEVICE,
1715 } nir_scope;
1716 
1717 /**
1718  * \name NIR intrinsics semantic flags
1719  *
1720  * information about what the compiler can do with the intrinsics.
1721  *
1722  * \sa nir_intrinsic_info::flags
1723  */
1724 typedef enum {
1725    /**
1726     * whether the intrinsic can be safely eliminated if none of its output
1727     * value is not being used.
1728     */
1729    NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1730 
1731    /**
1732     * Whether the intrinsic can be reordered with respect to any other
1733     * intrinsic, i.e. whether the only reordering dependencies of the
1734     * intrinsic are due to the register reads/writes.
1735     */
1736    NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1737 } nir_intrinsic_semantic_flag;
1738 
1739 /**
1740  * \name NIR intrinsics const-index flag
1741  *
1742  * Indicates the usage of a const_index slot.
1743  *
1744  * \sa nir_intrinsic_info::index_map
1745  */
1746 typedef enum {
1747    /**
1748     * Generally instructions that take a offset src argument, can encode
1749     * a constant 'base' value which is added to the offset.
1750     */
1751    NIR_INTRINSIC_BASE = 1,
1752 
1753    /**
1754     * For store instructions, a writemask for the store.
1755     */
1756    NIR_INTRINSIC_WRMASK,
1757 
1758    /**
1759     * The stream-id for GS emit_vertex/end_primitive intrinsics.
1760     */
1761    NIR_INTRINSIC_STREAM_ID,
1762 
1763    /**
1764     * The clip-plane id for load_user_clip_plane intrinsic.
1765     */
1766    NIR_INTRINSIC_UCP_ID,
1767 
1768    /**
1769     * The start of NIR_INTRINSIC_RANGE.  Only present on instructions that
1770     * don't have NIR_INTRINSIC_BASE.
1771     *
1772     * If the [range_base, range] is [0, ~0], then we don't know the possible
1773     * range of the access.
1774     */
1775    NIR_INTRINSIC_RANGE_BASE,
1776 
1777    /**
1778     * The amount of data, starting from BASE or RANGE_BASE, that this
1779     * instruction may access.  This is used to provide bounds if the offset is
1780     * not constant.
1781     */
1782    NIR_INTRINSIC_RANGE,
1783 
1784    /**
1785     * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1786     */
1787    NIR_INTRINSIC_DESC_SET,
1788 
1789    /**
1790     * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1791     */
1792    NIR_INTRINSIC_BINDING,
1793 
1794    /**
1795     * Component offset.
1796     */
1797    NIR_INTRINSIC_COMPONENT,
1798 
1799    /**
1800     * Column index for matrix intrinsics.
1801     */
1802    NIR_INTRINSIC_COLUMN,
1803 
1804    /**
1805     * Interpolation mode (only meaningful for FS inputs).
1806     */
1807    NIR_INTRINSIC_INTERP_MODE,
1808 
1809    /**
1810     * A binary nir_op to use when performing a reduction or scan operation
1811     */
1812    NIR_INTRINSIC_REDUCTION_OP,
1813 
1814    /**
1815     * Cluster size for reduction operations
1816     */
1817    NIR_INTRINSIC_CLUSTER_SIZE,
1818 
1819    /**
1820     * Parameter index for a load_param intrinsic
1821     */
1822    NIR_INTRINSIC_PARAM_IDX,
1823 
1824    /**
1825     * Image dimensionality for image intrinsics
1826     *
1827     * One of GLSL_SAMPLER_DIM_*
1828     */
1829    NIR_INTRINSIC_IMAGE_DIM,
1830 
1831    /**
1832     * Non-zero if we are accessing an array image
1833     */
1834    NIR_INTRINSIC_IMAGE_ARRAY,
1835 
1836    /**
1837     * Image format for image intrinsics
1838     */
1839    NIR_INTRINSIC_FORMAT,
1840 
1841    /**
1842     * Access qualifiers for image and memory access intrinsics
1843     */
1844    NIR_INTRINSIC_ACCESS,
1845 
1846    /**
1847     * Alignment for offsets and addresses
1848     *
1849     * These two parameters, specify an alignment in terms of a multiplier and
1850     * an offset.  The multiplier is always a power of two.  The offset or
1851     * address parameter X of the intrinsic is guaranteed to satisfy the
1852     * following:
1853     *
1854     *                (X - align_offset) % align_mul == 0
1855     *
1856     * For constant offset values, align_mul will be NIR_ALIGN_MUL_MAX and the
1857     * align_offset will be modulo that.
1858     */
1859    NIR_INTRINSIC_ALIGN_MUL,
1860    NIR_INTRINSIC_ALIGN_OFFSET,
1861 
1862    /**
1863     * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1864     */
1865    NIR_INTRINSIC_DESC_TYPE,
1866 
1867    /**
1868     * The nir_alu_type of input data to a store or conversion
1869     */
1870    NIR_INTRINSIC_SRC_TYPE,
1871 
1872    /**
1873     * The nir_alu_type of the data output from a load or conversion
1874     */
1875    NIR_INTRINSIC_DEST_TYPE,
1876 
1877    /**
1878     * The swizzle mask for the instructions
1879     * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1880     */
1881    NIR_INTRINSIC_SWIZZLE_MASK,
1882 
1883    /* Separate source/dest access flags for copies */
1884    NIR_INTRINSIC_SRC_ACCESS,
1885    NIR_INTRINSIC_DST_ACCESS,
1886 
1887    /* Driver location for nir_load_patch_location_ir3 */
1888    NIR_INTRINSIC_DRIVER_LOCATION,
1889 
1890    /**
1891     * Mask of nir_memory_semantics, includes ordering and visibility.
1892     */
1893    NIR_INTRINSIC_MEMORY_SEMANTICS,
1894 
1895    /**
1896     * Mask of nir_variable_modes affected by the memory operation.
1897     */
1898    NIR_INTRINSIC_MEMORY_MODES,
1899 
1900    /**
1901     * Value of nir_scope.
1902     */
1903    NIR_INTRINSIC_MEMORY_SCOPE,
1904 
1905    /**
1906     * Value of nir_scope.
1907     */
1908    NIR_INTRINSIC_EXECUTION_SCOPE,
1909 
1910    /**
1911     * Value of nir_io_semantics.
1912     */
1913    NIR_INTRINSIC_IO_SEMANTICS,
1914 
1915    /**
1916     * The rounding mode of a conversion
1917     */
1918    NIR_INTRINSIC_ROUNDING_MODE,
1919 
1920    /**
1921     * Whether or not to saturate in conversions
1922     */
1923    NIR_INTRINSIC_SATURATE,
1924 
1925    NIR_INTRINSIC_NUM_INDEX_FLAGS,
1926 
1927 } nir_intrinsic_index_flag;
1928 
1929 /**
1930  * Maximum valid value for a nir align_mul value (in intrinsics or derefs).
1931  *
1932  * Offsets can be signed, so this is the largest power of two in int32_t.
1933  */
1934 #define NIR_ALIGN_MUL_MAX 0x40000000
1935 
1936 typedef struct {
1937    unsigned location:7; /* gl_vert_attrib, gl_varying_slot, or gl_frag_result */
1938    unsigned num_slots:6;  /* max 32, may be pessimistic with const indexing */
1939    unsigned dual_source_blend_index:1;
1940    unsigned fb_fetch_output:1; /* for GL_KHR_blend_equation_advanced */
1941    unsigned gs_streams:8; /* xxyyzzww: 2-bit stream index for each component */
1942    unsigned medium_precision:1; /* GLSL mediump qualifier */
1943    unsigned per_view:1;
1944    unsigned _pad:7;
1945 } nir_io_semantics;
1946 
1947 #define NIR_INTRINSIC_MAX_INPUTS 11
1948 
1949 typedef struct {
1950    const char *name;
1951 
1952    uint8_t num_srcs; /** < number of register/SSA inputs */
1953 
1954    /** number of components of each input register
1955     *
1956     * If this value is 0, the number of components is given by the
1957     * num_components field of nir_intrinsic_instr.  If this value is -1, the
1958     * intrinsic consumes however many components are provided and it is not
1959     * validated at all.
1960     */
1961    int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
1962 
1963    bool has_dest;
1964 
1965    /** number of components of the output register
1966     *
1967     * If this value is 0, the number of components is given by the
1968     * num_components field of nir_intrinsic_instr.
1969     */
1970    uint8_t dest_components;
1971 
1972    /** bitfield of legal bit sizes */
1973    uint8_t dest_bit_sizes;
1974 
1975    /** the number of constant indices used by the intrinsic */
1976    uint8_t num_indices;
1977 
1978    /** indicates the usage of intr->const_index[n] */
1979    uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1980 
1981    /** semantic flags for calls to this intrinsic */
1982    nir_intrinsic_semantic_flag flags;
1983 } nir_intrinsic_info;
1984 
1985 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1986 
1987 static inline unsigned
nir_intrinsic_src_components(const nir_intrinsic_instr * intr,unsigned srcn)1988 nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn)
1989 {
1990    const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1991    assert(srcn < info->num_srcs);
1992    if (info->src_components[srcn] > 0)
1993       return info->src_components[srcn];
1994    else if (info->src_components[srcn] == 0)
1995       return intr->num_components;
1996    else
1997       return nir_src_num_components(intr->src[srcn]);
1998 }
1999 
2000 static inline unsigned
nir_intrinsic_dest_components(nir_intrinsic_instr * intr)2001 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
2002 {
2003    const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
2004    if (!info->has_dest)
2005       return 0;
2006    else if (info->dest_components)
2007       return info->dest_components;
2008    else
2009       return intr->num_components;
2010 }
2011 
2012 /**
2013  * Helper to copy const_index[] from src to dst, without assuming they
2014  * match in order.
2015  */
2016 static inline void
nir_intrinsic_copy_const_indices(nir_intrinsic_instr * dst,nir_intrinsic_instr * src)2017 nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src)
2018 {
2019    if (src->intrinsic == dst->intrinsic) {
2020       memcpy(dst->const_index, src->const_index, sizeof(dst->const_index));
2021       return;
2022    }
2023 
2024    const nir_intrinsic_info *src_info = &nir_intrinsic_infos[src->intrinsic];
2025    const nir_intrinsic_info *dst_info = &nir_intrinsic_infos[dst->intrinsic];
2026 
2027    for (unsigned i = 0; i < NIR_INTRINSIC_NUM_INDEX_FLAGS; i++) {
2028       if (src_info->index_map[i] == 0)
2029          continue;
2030 
2031       /* require that dst instruction also uses the same const_index[]: */
2032       assert(dst_info->index_map[i] > 0);
2033 
2034       dst->const_index[dst_info->index_map[i] - 1] =
2035             src->const_index[src_info->index_map[i] - 1];
2036    }
2037 }
2038 
2039 #define INTRINSIC_IDX_ACCESSORS(name, flag, type)                             \
2040 static inline type                                                            \
2041 nir_intrinsic_##name(const nir_intrinsic_instr *instr)                        \
2042 {                                                                             \
2043    const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];   \
2044    assert(info->index_map[NIR_INTRINSIC_##flag] > 0);                         \
2045    return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
2046 }                                                                             \
2047 static inline void                                                            \
2048 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val)                \
2049 {                                                                             \
2050    const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];   \
2051    assert(info->index_map[NIR_INTRINSIC_##flag] > 0);                         \
2052    instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val;       \
2053 }                                                                             \
2054 static inline bool                                                            \
2055 nir_intrinsic_has_##name(const nir_intrinsic_instr *instr)                    \
2056 {                                                                             \
2057    const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];   \
2058    return info->index_map[NIR_INTRINSIC_##flag] > 0;                          \
2059 }
2060 
INTRINSIC_IDX_ACCESSORS(write_mask,WRMASK,unsigned)2061 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
2062 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
2063 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
2064 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
2065 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
2066 INTRINSIC_IDX_ACCESSORS(range_base, RANGE_BASE, unsigned)
2067 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
2068 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
2069 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
2070 INTRINSIC_IDX_ACCESSORS(column, COLUMN, unsigned)
2071 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
2072 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
2073 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
2074 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
2075 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
2076 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
2077 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
2078 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
2079 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
2080 INTRINSIC_IDX_ACCESSORS(format, FORMAT, enum pipe_format)
2081 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
2082 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
2083 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
2084 INTRINSIC_IDX_ACCESSORS(src_type, SRC_TYPE, nir_alu_type)
2085 INTRINSIC_IDX_ACCESSORS(dest_type, DEST_TYPE, nir_alu_type)
2086 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
2087 INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
2088 INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
2089 INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
2090 INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
2091 INTRINSIC_IDX_ACCESSORS(execution_scope, EXECUTION_SCOPE, nir_scope)
2092 INTRINSIC_IDX_ACCESSORS(rounding_mode, ROUNDING_MODE, nir_rounding_mode)
2093 INTRINSIC_IDX_ACCESSORS(saturate, SATURATE, bool)
2094 
2095 static inline void
2096 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
2097                         unsigned align_mul, unsigned align_offset)
2098 {
2099    assert(util_is_power_of_two_nonzero(align_mul));
2100    assert(align_offset < align_mul);
2101    nir_intrinsic_set_align_mul(intrin, align_mul);
2102    nir_intrinsic_set_align_offset(intrin, align_offset);
2103 }
2104 
2105 /** Returns a simple alignment for a load/store intrinsic offset
2106  *
2107  * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
2108  * and ALIGN_OFFSET parameters, this helper takes both into account and
2109  * provides a single simple alignment parameter.  The offset X is guaranteed
2110  * to satisfy X % align == 0.
2111  */
2112 static inline unsigned
nir_intrinsic_align(const nir_intrinsic_instr * intrin)2113 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
2114 {
2115    const unsigned align_mul = nir_intrinsic_align_mul(intrin);
2116    const unsigned align_offset = nir_intrinsic_align_offset(intrin);
2117    assert(align_offset < align_mul);
2118    return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
2119 }
2120 
2121 static inline bool
nir_intrinsic_has_align(const nir_intrinsic_instr * intrin)2122 nir_intrinsic_has_align(const nir_intrinsic_instr *intrin)
2123 {
2124    return nir_intrinsic_has_align_mul(intrin) &&
2125           nir_intrinsic_has_align_offset(intrin);
2126 }
2127 
2128 static inline void
nir_intrinsic_set_io_semantics(nir_intrinsic_instr * intrin,nir_io_semantics semantics)2129 nir_intrinsic_set_io_semantics(nir_intrinsic_instr *intrin,
2130                                nir_io_semantics semantics)
2131 {
2132    const nir_intrinsic_info *info = &nir_intrinsic_infos[intrin->intrinsic];
2133    assert(info->index_map[NIR_INTRINSIC_IO_SEMANTICS] > 0);
2134    STATIC_ASSERT(sizeof(nir_io_semantics) == sizeof(intrin->const_index[0]));
2135    semantics._pad = 0; /* clear padding bits */
2136    memcpy(&intrin->const_index[info->index_map[NIR_INTRINSIC_IO_SEMANTICS] - 1],
2137           &semantics, sizeof(semantics));
2138 }
2139 
2140 static inline nir_io_semantics
nir_intrinsic_io_semantics(const nir_intrinsic_instr * intrin)2141 nir_intrinsic_io_semantics(const nir_intrinsic_instr *intrin)
2142 {
2143    const nir_intrinsic_info *info = &nir_intrinsic_infos[intrin->intrinsic];
2144    assert(info->index_map[NIR_INTRINSIC_IO_SEMANTICS] > 0);
2145    nir_io_semantics semantics;
2146    memcpy(&semantics,
2147           &intrin->const_index[info->index_map[NIR_INTRINSIC_IO_SEMANTICS] - 1],
2148           sizeof(semantics));
2149    return semantics;
2150 }
2151 
2152 unsigned
2153 nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
2154 
2155 /* Converts a image_deref_* intrinsic into a image_* one */
2156 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
2157                                  nir_ssa_def *handle, bool bindless);
2158 
2159 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
2160 static inline bool
nir_intrinsic_can_reorder(nir_intrinsic_instr * instr)2161 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
2162 {
2163    if (instr->intrinsic == nir_intrinsic_load_deref ||
2164        instr->intrinsic == nir_intrinsic_load_ssbo ||
2165        instr->intrinsic == nir_intrinsic_bindless_image_load ||
2166        instr->intrinsic == nir_intrinsic_image_deref_load ||
2167        instr->intrinsic == nir_intrinsic_image_load) {
2168       return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
2169    } else {
2170       const nir_intrinsic_info *info =
2171          &nir_intrinsic_infos[instr->intrinsic];
2172       return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
2173              (info->flags & NIR_INTRINSIC_CAN_REORDER);
2174    }
2175 }
2176 
2177 /**
2178  * \group texture information
2179  *
2180  * This gives semantic information about textures which is useful to the
2181  * frontend, the backend, and lowering passes, but not the optimizer.
2182  */
2183 
2184 typedef enum {
2185    nir_tex_src_coord,
2186    nir_tex_src_projector,
2187    nir_tex_src_comparator, /* shadow comparator */
2188    nir_tex_src_offset,
2189    nir_tex_src_bias,
2190    nir_tex_src_lod,
2191    nir_tex_src_min_lod,
2192    nir_tex_src_ms_index, /* MSAA sample index */
2193    nir_tex_src_ms_mcs, /* MSAA compression value */
2194    nir_tex_src_ddx,
2195    nir_tex_src_ddy,
2196    nir_tex_src_texture_deref, /* < deref pointing to the texture */
2197    nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
2198    nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
2199    nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
2200    nir_tex_src_texture_handle, /* < bindless texture handle */
2201    nir_tex_src_sampler_handle, /* < bindless sampler handle */
2202    nir_tex_src_plane,          /* < selects plane for planar textures */
2203    nir_num_tex_src_types
2204 } nir_tex_src_type;
2205 
2206 typedef struct {
2207    nir_src src;
2208    nir_tex_src_type src_type;
2209 } nir_tex_src;
2210 
2211 typedef enum {
2212    nir_texop_tex,                /**< Regular texture look-up */
2213    nir_texop_txb,                /**< Texture look-up with LOD bias */
2214    nir_texop_txl,                /**< Texture look-up with explicit LOD */
2215    nir_texop_txd,                /**< Texture look-up with partial derivatives */
2216    nir_texop_txf,                /**< Texel fetch with explicit LOD */
2217    nir_texop_txf_ms,             /**< Multisample texture fetch */
2218    nir_texop_txf_ms_fb,          /**< Multisample texture fetch from framebuffer */
2219    nir_texop_txf_ms_mcs,         /**< Multisample compression value fetch */
2220    nir_texop_txs,                /**< Texture size */
2221    nir_texop_lod,                /**< Texture lod query */
2222    nir_texop_tg4,                /**< Texture gather */
2223    nir_texop_query_levels,       /**< Texture levels query */
2224    nir_texop_texture_samples,    /**< Texture samples query */
2225    nir_texop_samples_identical,  /**< Query whether all samples are definitely
2226                                   * identical.
2227                                   */
2228    nir_texop_tex_prefetch,       /**< Regular texture look-up, eligible for pre-dispatch */
2229    nir_texop_fragment_fetch,     /**< Multisample fragment color texture fetch */
2230    nir_texop_fragment_mask_fetch,/**< Multisample fragment mask texture fetch */
2231 } nir_texop;
2232 
2233 typedef struct {
2234    nir_instr instr;
2235 
2236    enum glsl_sampler_dim sampler_dim;
2237    nir_alu_type dest_type;
2238 
2239    nir_texop op;
2240    nir_dest dest;
2241    nir_tex_src *src;
2242    unsigned num_srcs, coord_components;
2243    bool is_array, is_shadow;
2244 
2245    /**
2246     * If is_shadow is true, whether this is the old-style shadow that outputs 4
2247     * components or the new-style shadow that outputs 1 component.
2248     */
2249    bool is_new_style_shadow;
2250 
2251    /* gather component selector */
2252    unsigned component : 2;
2253 
2254    /* gather offsets */
2255    int8_t tg4_offsets[4][2];
2256 
2257    /* True if the texture index or handle is not dynamically uniform */
2258    bool texture_non_uniform;
2259 
2260    /* True if the sampler index or handle is not dynamically uniform */
2261    bool sampler_non_uniform;
2262 
2263    /** The texture index
2264     *
2265     * If this texture instruction has a nir_tex_src_texture_offset source,
2266     * then the texture index is given by texture_index + texture_offset.
2267     */
2268    unsigned texture_index;
2269 
2270    /** The sampler index
2271     *
2272     * The following operations do not require a sampler and, as such, this
2273     * field should be ignored:
2274     *    - nir_texop_txf
2275     *    - nir_texop_txf_ms
2276     *    - nir_texop_txs
2277     *    - nir_texop_query_levels
2278     *    - nir_texop_texture_samples
2279     *    - nir_texop_samples_identical
2280     *
2281     * If this texture instruction has a nir_tex_src_sampler_offset source,
2282     * then the sampler index is given by sampler_index + sampler_offset.
2283     */
2284    unsigned sampler_index;
2285 } nir_tex_instr;
2286 
2287 /*
2288  * Returns true if the texture operation requires a sampler as a general rule,
2289  * see the documentation of sampler_index.
2290  *
2291  * Note that the specific hw/driver backend could require to a sampler
2292  * object/configuration packet in any case, for some other reason.
2293  */
2294 static inline bool
nir_tex_instr_need_sampler(const nir_tex_instr * instr)2295 nir_tex_instr_need_sampler(const nir_tex_instr *instr)
2296 {
2297    switch (instr->op) {
2298    case nir_texop_txf:
2299    case nir_texop_txf_ms:
2300    case nir_texop_txs:
2301    case nir_texop_query_levels:
2302    case nir_texop_texture_samples:
2303    case nir_texop_samples_identical:
2304       return false;
2305    default:
2306       return true;
2307    }
2308 }
2309 
2310 static inline unsigned
nir_tex_instr_dest_size(const nir_tex_instr * instr)2311 nir_tex_instr_dest_size(const nir_tex_instr *instr)
2312 {
2313    switch (instr->op) {
2314    case nir_texop_txs: {
2315       unsigned ret;
2316       switch (instr->sampler_dim) {
2317          case GLSL_SAMPLER_DIM_1D:
2318          case GLSL_SAMPLER_DIM_BUF:
2319             ret = 1;
2320             break;
2321          case GLSL_SAMPLER_DIM_2D:
2322          case GLSL_SAMPLER_DIM_CUBE:
2323          case GLSL_SAMPLER_DIM_MS:
2324          case GLSL_SAMPLER_DIM_RECT:
2325          case GLSL_SAMPLER_DIM_EXTERNAL:
2326          case GLSL_SAMPLER_DIM_SUBPASS:
2327             ret = 2;
2328             break;
2329          case GLSL_SAMPLER_DIM_3D:
2330             ret = 3;
2331             break;
2332          default:
2333             unreachable("not reached");
2334       }
2335       if (instr->is_array)
2336          ret++;
2337       return ret;
2338    }
2339 
2340    case nir_texop_lod:
2341       return 2;
2342 
2343    case nir_texop_texture_samples:
2344    case nir_texop_query_levels:
2345    case nir_texop_samples_identical:
2346    case nir_texop_fragment_mask_fetch:
2347       return 1;
2348 
2349    default:
2350       if (instr->is_shadow && instr->is_new_style_shadow)
2351          return 1;
2352 
2353       return 4;
2354    }
2355 }
2356 
2357 /* Returns true if this texture operation queries something about the texture
2358  * rather than actually sampling it.
2359  */
2360 static inline bool
nir_tex_instr_is_query(const nir_tex_instr * instr)2361 nir_tex_instr_is_query(const nir_tex_instr *instr)
2362 {
2363    switch (instr->op) {
2364    case nir_texop_txs:
2365    case nir_texop_lod:
2366    case nir_texop_texture_samples:
2367    case nir_texop_query_levels:
2368    case nir_texop_txf_ms_mcs:
2369       return true;
2370    case nir_texop_tex:
2371    case nir_texop_txb:
2372    case nir_texop_txl:
2373    case nir_texop_txd:
2374    case nir_texop_txf:
2375    case nir_texop_txf_ms:
2376    case nir_texop_txf_ms_fb:
2377    case nir_texop_tg4:
2378       return false;
2379    default:
2380       unreachable("Invalid texture opcode");
2381    }
2382 }
2383 
2384 static inline bool
nir_tex_instr_has_implicit_derivative(const nir_tex_instr * instr)2385 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
2386 {
2387    switch (instr->op) {
2388    case nir_texop_tex:
2389    case nir_texop_txb:
2390    case nir_texop_lod:
2391       return true;
2392    default:
2393       return false;
2394    }
2395 }
2396 
2397 static inline nir_alu_type
nir_tex_instr_src_type(const nir_tex_instr * instr,unsigned src)2398 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
2399 {
2400    switch (instr->src[src].src_type) {
2401    case nir_tex_src_coord:
2402       switch (instr->op) {
2403       case nir_texop_txf:
2404       case nir_texop_txf_ms:
2405       case nir_texop_txf_ms_fb:
2406       case nir_texop_txf_ms_mcs:
2407       case nir_texop_samples_identical:
2408          return nir_type_int;
2409 
2410       default:
2411          return nir_type_float;
2412       }
2413 
2414    case nir_tex_src_lod:
2415       switch (instr->op) {
2416       case nir_texop_txs:
2417       case nir_texop_txf:
2418          return nir_type_int;
2419 
2420       default:
2421          return nir_type_float;
2422       }
2423 
2424    case nir_tex_src_projector:
2425    case nir_tex_src_comparator:
2426    case nir_tex_src_bias:
2427    case nir_tex_src_min_lod:
2428    case nir_tex_src_ddx:
2429    case nir_tex_src_ddy:
2430       return nir_type_float;
2431 
2432    case nir_tex_src_offset:
2433    case nir_tex_src_ms_index:
2434    case nir_tex_src_plane:
2435       return nir_type_int;
2436 
2437    case nir_tex_src_ms_mcs:
2438    case nir_tex_src_texture_deref:
2439    case nir_tex_src_sampler_deref:
2440    case nir_tex_src_texture_offset:
2441    case nir_tex_src_sampler_offset:
2442    case nir_tex_src_texture_handle:
2443    case nir_tex_src_sampler_handle:
2444       return nir_type_uint;
2445 
2446    case nir_num_tex_src_types:
2447       unreachable("nir_num_tex_src_types is not a valid source type");
2448    }
2449 
2450    unreachable("Invalid texture source type");
2451 }
2452 
2453 static inline unsigned
nir_tex_instr_src_size(const nir_tex_instr * instr,unsigned src)2454 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
2455 {
2456    if (instr->src[src].src_type == nir_tex_src_coord)
2457       return instr->coord_components;
2458 
2459    /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
2460    if (instr->src[src].src_type == nir_tex_src_ms_mcs)
2461       return 4;
2462 
2463    if (instr->src[src].src_type == nir_tex_src_ddx ||
2464        instr->src[src].src_type == nir_tex_src_ddy) {
2465       if (instr->is_array)
2466          return instr->coord_components - 1;
2467       else
2468          return instr->coord_components;
2469    }
2470 
2471    /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2472     * the offset, since a cube maps to a single face.
2473     */
2474    if (instr->src[src].src_type == nir_tex_src_offset) {
2475       if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2476          return 2;
2477       else if (instr->is_array)
2478          return instr->coord_components - 1;
2479       else
2480          return instr->coord_components;
2481    }
2482 
2483    return 1;
2484 }
2485 
2486 static inline int
nir_tex_instr_src_index(const nir_tex_instr * instr,nir_tex_src_type type)2487 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2488 {
2489    for (unsigned i = 0; i < instr->num_srcs; i++)
2490       if (instr->src[i].src_type == type)
2491          return (int) i;
2492 
2493    return -1;
2494 }
2495 
2496 void nir_tex_instr_add_src(nir_tex_instr *tex,
2497                            nir_tex_src_type src_type,
2498                            nir_src src);
2499 
2500 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2501 
2502 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2503 
2504 typedef struct {
2505    nir_instr instr;
2506 
2507    nir_ssa_def def;
2508 
2509    nir_const_value value[];
2510 } nir_load_const_instr;
2511 
2512 typedef enum {
2513    /** Return from a function
2514     *
2515     * This instruction is a classic function return.  It jumps to
2516     * nir_function_impl::end_block.  No return value is provided in this
2517     * instruction.  Instead, the function is expected to write any return
2518     * data to a deref passed in from the caller.
2519     */
2520    nir_jump_return,
2521 
2522    /** Break out of the inner-most loop
2523     *
2524     * This has the same semantics as C's "break" statement.
2525     */
2526    nir_jump_break,
2527 
2528    /** Jump back to the top of the inner-most loop
2529     *
2530     * This has the same semantics as C's "continue" statement assuming that a
2531     * NIR loop is implemented as "while (1) { body }".
2532     */
2533    nir_jump_continue,
2534 
2535    /** Jumps for unstructured CFG.
2536     *
2537     * As within an unstructured CFG we can't rely on block ordering we need to
2538     * place explicit jumps at the end of every block.
2539     */
2540    nir_jump_goto,
2541    nir_jump_goto_if,
2542 } nir_jump_type;
2543 
2544 typedef struct {
2545    nir_instr instr;
2546    nir_jump_type type;
2547    nir_src condition;
2548    struct nir_block *target;
2549    struct nir_block *else_target;
2550 } nir_jump_instr;
2551 
2552 /* creates a new SSA variable in an undefined state */
2553 
2554 typedef struct {
2555    nir_instr instr;
2556    nir_ssa_def def;
2557 } nir_ssa_undef_instr;
2558 
2559 typedef struct {
2560    struct exec_node node;
2561 
2562    /* The predecessor block corresponding to this source */
2563    struct nir_block *pred;
2564 
2565    nir_src src;
2566 } nir_phi_src;
2567 
2568 #define nir_foreach_phi_src(phi_src, phi) \
2569    foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2570 #define nir_foreach_phi_src_safe(phi_src, phi) \
2571    foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2572 
2573 typedef struct {
2574    nir_instr instr;
2575 
2576    struct exec_list srcs; /** < list of nir_phi_src */
2577 
2578    nir_dest dest;
2579 } nir_phi_instr;
2580 
2581 typedef struct {
2582    struct exec_node node;
2583    nir_src src;
2584    nir_dest dest;
2585 } nir_parallel_copy_entry;
2586 
2587 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2588    foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2589 
2590 typedef struct {
2591    nir_instr instr;
2592 
2593    /* A list of nir_parallel_copy_entrys.  The sources of all of the
2594     * entries are copied to the corresponding destinations "in parallel".
2595     * In other words, if we have two entries: a -> b and b -> a, the values
2596     * get swapped.
2597     */
2598    struct exec_list entries;
2599 } nir_parallel_copy_instr;
2600 
2601 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2602                 type, nir_instr_type_alu)
2603 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2604                 type, nir_instr_type_deref)
2605 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2606                 type, nir_instr_type_call)
2607 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2608                 type, nir_instr_type_jump)
2609 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2610                 type, nir_instr_type_tex)
2611 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2612                 type, nir_instr_type_intrinsic)
2613 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2614                 type, nir_instr_type_load_const)
2615 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2616                 type, nir_instr_type_ssa_undef)
2617 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2618                 type, nir_instr_type_phi)
2619 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2620                 nir_parallel_copy_instr, instr,
2621                 type, nir_instr_type_parallel_copy)
2622 
2623 
2624 #define NIR_DEFINE_SRC_AS_CONST(type, suffix)               \
2625 static inline type                                          \
2626 nir_src_comp_as_##suffix(nir_src src, unsigned comp)        \
2627 {                                                           \
2628    assert(nir_src_is_const(src));                           \
2629    nir_load_const_instr *load =                             \
2630       nir_instr_as_load_const(src.ssa->parent_instr);       \
2631    assert(comp < load->def.num_components);                 \
2632    return nir_const_value_as_##suffix(load->value[comp],    \
2633                                       load->def.bit_size);  \
2634 }                                                           \
2635                                                             \
2636 static inline type                                          \
2637 nir_src_as_##suffix(nir_src src)                            \
2638 {                                                           \
2639    assert(nir_src_num_components(src) == 1);                \
2640    return nir_src_comp_as_##suffix(src, 0);                 \
2641 }
2642 
2643 NIR_DEFINE_SRC_AS_CONST(int64_t,    int)
2644 NIR_DEFINE_SRC_AS_CONST(uint64_t,   uint)
2645 NIR_DEFINE_SRC_AS_CONST(bool,       bool)
2646 NIR_DEFINE_SRC_AS_CONST(double,     float)
2647 
2648 #undef NIR_DEFINE_SRC_AS_CONST
2649 
2650 
2651 typedef struct {
2652    nir_ssa_def *def;
2653    unsigned comp;
2654 } nir_ssa_scalar;
2655 
2656 static inline bool
nir_ssa_scalar_is_const(nir_ssa_scalar s)2657 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2658 {
2659    return s.def->parent_instr->type == nir_instr_type_load_const;
2660 }
2661 
2662 static inline nir_const_value
nir_ssa_scalar_as_const_value(nir_ssa_scalar s)2663 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2664 {
2665    assert(s.comp < s.def->num_components);
2666    nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2667    return load->value[s.comp];
2668 }
2669 
2670 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix)                     \
2671 static inline type                                                   \
2672 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s)                         \
2673 {                                                                    \
2674    return nir_const_value_as_##suffix(                               \
2675       nir_ssa_scalar_as_const_value(s), s.def->bit_size);            \
2676 }
2677 
NIR_DEFINE_SCALAR_AS_CONST(int64_t,int)2678 NIR_DEFINE_SCALAR_AS_CONST(int64_t,    int)
2679 NIR_DEFINE_SCALAR_AS_CONST(uint64_t,   uint)
2680 NIR_DEFINE_SCALAR_AS_CONST(bool,       bool)
2681 NIR_DEFINE_SCALAR_AS_CONST(double,     float)
2682 
2683 #undef NIR_DEFINE_SCALAR_AS_CONST
2684 
2685 static inline bool
2686 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2687 {
2688    return s.def->parent_instr->type == nir_instr_type_alu;
2689 }
2690 
2691 static inline nir_op
nir_ssa_scalar_alu_op(nir_ssa_scalar s)2692 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2693 {
2694    return nir_instr_as_alu(s.def->parent_instr)->op;
2695 }
2696 
2697 static inline nir_ssa_scalar
nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s,unsigned alu_src_idx)2698 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2699 {
2700    nir_ssa_scalar out = { NULL, 0 };
2701 
2702    nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2703    assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2704 
2705    /* Our component must be written */
2706    assert(s.comp < s.def->num_components);
2707    assert(alu->dest.write_mask & (1u << s.comp));
2708 
2709    assert(alu->src[alu_src_idx].src.is_ssa);
2710    out.def = alu->src[alu_src_idx].src.ssa;
2711 
2712    if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2713       /* The ALU src is unsized so the source component follows the
2714        * destination component.
2715        */
2716       out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2717    } else {
2718       /* This is a sized source so all source components work together to
2719        * produce all the destination components.  Since we need to return a
2720        * scalar, this only works if the source is a scalar.
2721        */
2722       assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2723       out.comp = alu->src[alu_src_idx].swizzle[0];
2724    }
2725    assert(out.comp < out.def->num_components);
2726 
2727    return out;
2728 }
2729 
2730 
2731 /*
2732  * Control flow
2733  *
2734  * Control flow consists of a tree of control flow nodes, which include
2735  * if-statements and loops. The leaves of the tree are basic blocks, lists of
2736  * instructions that always run start-to-finish. Each basic block also keeps
2737  * track of its successors (blocks which may run immediately after the current
2738  * block) and predecessors (blocks which could have run immediately before the
2739  * current block). Each function also has a start block and an end block which
2740  * all return statements point to (which is always empty). Together, all the
2741  * blocks with their predecessors and successors make up the control flow
2742  * graph (CFG) of the function. There are helpers that modify the tree of
2743  * control flow nodes while modifying the CFG appropriately; these should be
2744  * used instead of modifying the tree directly.
2745  */
2746 
2747 typedef enum {
2748    nir_cf_node_block,
2749    nir_cf_node_if,
2750    nir_cf_node_loop,
2751    nir_cf_node_function
2752 } nir_cf_node_type;
2753 
2754 typedef struct nir_cf_node {
2755    struct exec_node node;
2756    nir_cf_node_type type;
2757    struct nir_cf_node *parent;
2758 } nir_cf_node;
2759 
2760 typedef struct nir_block {
2761    nir_cf_node cf_node;
2762 
2763    struct exec_list instr_list; /** < list of nir_instr */
2764 
2765    /** generic block index; generated by nir_index_blocks */
2766    unsigned index;
2767 
2768    /*
2769     * Each block can only have up to 2 successors, so we put them in a simple
2770     * array - no need for anything more complicated.
2771     */
2772    struct nir_block *successors[2];
2773 
2774    /* Set of nir_block predecessors in the CFG */
2775    struct set *predecessors;
2776 
2777    /*
2778     * this node's immediate dominator in the dominance tree - set to NULL for
2779     * the start block.
2780     */
2781    struct nir_block *imm_dom;
2782 
2783    /* This node's children in the dominance tree */
2784    unsigned num_dom_children;
2785    struct nir_block **dom_children;
2786 
2787    /* Set of nir_blocks on the dominance frontier of this block */
2788    struct set *dom_frontier;
2789 
2790    /*
2791     * These two indices have the property that dom_{pre,post}_index for each
2792     * child of this block in the dominance tree will always be between
2793     * dom_pre_index and dom_post_index for this block, which makes testing if
2794     * a given block is dominated by another block an O(1) operation.
2795     */
2796    uint32_t dom_pre_index, dom_post_index;
2797 
2798    /**
2799     * Value just before the first nir_instr->index in the block, but after
2800     * end_ip that of any predecessor block.
2801     */
2802    uint32_t start_ip;
2803    /**
2804     * Value just after the last nir_instr->index in the block, but before the
2805     * start_ip of any successor block.
2806     */
2807    uint32_t end_ip;
2808 
2809    /* SSA def live in and out for this block; used for liveness analysis.
2810     * Indexed by ssa_def->index
2811     */
2812    BITSET_WORD *live_in;
2813    BITSET_WORD *live_out;
2814 } nir_block;
2815 
2816 static inline bool
nir_block_is_reachable(nir_block * b)2817 nir_block_is_reachable(nir_block *b)
2818 {
2819    /* See also nir_block_dominates */
2820    return b->dom_post_index != 0;
2821 }
2822 
2823 static inline nir_instr *
nir_block_first_instr(nir_block * block)2824 nir_block_first_instr(nir_block *block)
2825 {
2826    struct exec_node *head = exec_list_get_head(&block->instr_list);
2827    return exec_node_data(nir_instr, head, node);
2828 }
2829 
2830 static inline nir_instr *
nir_block_last_instr(nir_block * block)2831 nir_block_last_instr(nir_block *block)
2832 {
2833    struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2834    return exec_node_data(nir_instr, tail, node);
2835 }
2836 
2837 static inline bool
nir_block_ends_in_jump(nir_block * block)2838 nir_block_ends_in_jump(nir_block *block)
2839 {
2840    return !exec_list_is_empty(&block->instr_list) &&
2841           nir_block_last_instr(block)->type == nir_instr_type_jump;
2842 }
2843 
2844 #define nir_foreach_instr(instr, block) \
2845    foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2846 #define nir_foreach_instr_reverse(instr, block) \
2847    foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2848 #define nir_foreach_instr_safe(instr, block) \
2849    foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2850 #define nir_foreach_instr_reverse_safe(instr, block) \
2851    foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2852 
2853 typedef enum {
2854    nir_selection_control_none = 0x0,
2855    nir_selection_control_flatten = 0x1,
2856    nir_selection_control_dont_flatten = 0x2,
2857 } nir_selection_control;
2858 
2859 typedef struct nir_if {
2860    nir_cf_node cf_node;
2861    nir_src condition;
2862    nir_selection_control control;
2863 
2864    struct exec_list then_list; /** < list of nir_cf_node */
2865    struct exec_list else_list; /** < list of nir_cf_node */
2866 } nir_if;
2867 
2868 typedef struct {
2869    nir_if *nif;
2870 
2871    /** Instruction that generates nif::condition. */
2872    nir_instr *conditional_instr;
2873 
2874    /** Block within ::nif that has the break instruction. */
2875    nir_block *break_block;
2876 
2877    /** Last block for the then- or else-path that does not contain the break. */
2878    nir_block *continue_from_block;
2879 
2880    /** True when ::break_block is in the else-path of ::nif. */
2881    bool continue_from_then;
2882    bool induction_rhs;
2883 
2884    /* This is true if the terminators exact trip count is unknown. For
2885     * example:
2886     *
2887     *    for (int i = 0; i < imin(x, 4); i++)
2888     *       ...
2889     *
2890     * Here loop analysis would have set a max_trip_count of 4 however we dont
2891     * know for sure that this is the exact trip count.
2892     */
2893    bool exact_trip_count_unknown;
2894 
2895    struct list_head loop_terminator_link;
2896 } nir_loop_terminator;
2897 
2898 typedef struct {
2899    /* Estimated cost (in number of instructions) of the loop */
2900    unsigned instr_cost;
2901 
2902    /* Guessed trip count based on array indexing */
2903    unsigned guessed_trip_count;
2904 
2905    /* Maximum number of times the loop is run (if known) */
2906    unsigned max_trip_count;
2907 
2908    /* Do we know the exact number of times the loop will be run */
2909    bool exact_trip_count_known;
2910 
2911    /* Unroll the loop regardless of its size */
2912    bool force_unroll;
2913 
2914    /* Does the loop contain complex loop terminators, continues or other
2915     * complex behaviours? If this is true we can't rely on
2916     * loop_terminator_list to be complete or accurate.
2917     */
2918    bool complex_loop;
2919 
2920    nir_loop_terminator *limiting_terminator;
2921 
2922    /* A list of loop_terminators terminating this loop. */
2923    struct list_head loop_terminator_list;
2924 } nir_loop_info;
2925 
2926 typedef enum {
2927    nir_loop_control_none = 0x0,
2928    nir_loop_control_unroll = 0x1,
2929    nir_loop_control_dont_unroll = 0x2,
2930 } nir_loop_control;
2931 
2932 typedef struct {
2933    nir_cf_node cf_node;
2934 
2935    struct exec_list body; /** < list of nir_cf_node */
2936 
2937    nir_loop_info *info;
2938    nir_loop_control control;
2939    bool partially_unrolled;
2940 } nir_loop;
2941 
2942 /**
2943  * Various bits of metadata that can may be created or required by
2944  * optimization and analysis passes
2945  */
2946 typedef enum {
2947    nir_metadata_none = 0x0,
2948 
2949    /** Indicates that nir_block::index values are valid.
2950     *
2951     * The start block has index 0 and they increase through a natural walk of
2952     * the CFG.  nir_function_impl::num_blocks is the number of blocks and
2953     * every block index is in the range [0, nir_function_impl::num_blocks].
2954     *
2955     * A pass can preserve this metadata type if it doesn't touch the CFG.
2956     */
2957    nir_metadata_block_index = 0x1,
2958 
2959    /** Indicates that block dominance information is valid
2960     *
2961     * This includes:
2962     *
2963     *   - nir_block::num_dom_children
2964     *   - nir_block::dom_children
2965     *   - nir_block::dom_frontier
2966     *   - nir_block::dom_pre_index
2967     *   - nir_block::dom_post_index
2968     *
2969     * A pass can preserve this metadata type if it doesn't touch the CFG.
2970     */
2971    nir_metadata_dominance = 0x2,
2972 
2973    /** Indicates that SSA def data-flow liveness information is valid
2974     *
2975     * This includes:
2976     *
2977     *   - nir_block::live_in
2978     *   - nir_block::live_out
2979     *
2980     * A pass can preserve this metadata type if it never adds or removes any
2981     * SSA defs (most passes shouldn't preserve this metadata type).
2982     */
2983    nir_metadata_live_ssa_defs = 0x4,
2984 
2985    /** A dummy metadata value to track when a pass forgot to call
2986     * nir_metadata_preserve.
2987     *
2988     * A pass should always clear this value even if it doesn't make any
2989     * progress to indicate that it thought about preserving metadata.
2990     */
2991    nir_metadata_not_properly_reset = 0x8,
2992 
2993    /** Indicates that loop analysis information is valid.
2994     *
2995     * This includes everything pointed to by nir_loop::info.
2996     *
2997     * A pass can preserve this metadata type if it is guaranteed to not affect
2998     * any loop metadata.  However, since loop metadata includes things like
2999     * loop counts which depend on arithmetic in the loop, this is very hard to
3000     * determine.  Most passes shouldn't preserve this metadata type.
3001     */
3002    nir_metadata_loop_analysis = 0x10,
3003 
3004    /** Indicates that nir_instr::index values are valid.
3005     *
3006     * The start instruction has index 0 and they increase through a natural
3007     * walk of instructions in blocks in the CFG.  The indices my have holes
3008     * after passes such as DCE.
3009     *
3010     * A pass can preserve this metadata type if it never adds or moves any
3011     * instructions (most passes shouldn't preserve this metadata type), but
3012     * can preserve it if it only removes instructions.
3013     */
3014    nir_metadata_instr_index = 0x20,
3015 
3016    /** All metadata
3017     *
3018     * This includes all nir_metadata flags except not_properly_reset.  Passes
3019     * which do not change the shader in any way should call
3020     *
3021     *    nir_metadata_preserve(impl, nir_metadata_all);
3022     */
3023    nir_metadata_all = ~nir_metadata_not_properly_reset,
3024 } nir_metadata;
3025 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_metadata)
3026 
3027 typedef struct {
3028    nir_cf_node cf_node;
3029 
3030    /** pointer to the function of which this is an implementation */
3031    struct nir_function *function;
3032 
3033    struct exec_list body; /** < list of nir_cf_node */
3034 
3035    nir_block *end_block;
3036 
3037    /** list for all local variables in the function */
3038    struct exec_list locals;
3039 
3040    /** list of local registers in the function */
3041    struct exec_list registers;
3042 
3043    /** next available local register index */
3044    unsigned reg_alloc;
3045 
3046    /** next available SSA value index */
3047    unsigned ssa_alloc;
3048 
3049    /* total number of basic blocks, only valid when block_index_dirty = false */
3050    unsigned num_blocks;
3051 
3052    /** True if this nir_function_impl uses structured control-flow
3053     *
3054     * Structured nir_function_impls have different validation rules.
3055     */
3056    bool structured;
3057 
3058    nir_metadata valid_metadata;
3059 } nir_function_impl;
3060 
3061 #define nir_foreach_function_temp_variable(var, impl) \
3062    foreach_list_typed(nir_variable, var, node, &(impl)->locals)
3063 
3064 #define nir_foreach_function_temp_variable_safe(var, impl) \
3065    foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
3066 
3067 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_start_block(nir_function_impl * impl)3068 nir_start_block(nir_function_impl *impl)
3069 {
3070    return (nir_block *) impl->body.head_sentinel.next;
3071 }
3072 
3073 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_impl_last_block(nir_function_impl * impl)3074 nir_impl_last_block(nir_function_impl *impl)
3075 {
3076    return (nir_block *) impl->body.tail_sentinel.prev;
3077 }
3078 
3079 static inline nir_cf_node *
nir_cf_node_next(nir_cf_node * node)3080 nir_cf_node_next(nir_cf_node *node)
3081 {
3082    struct exec_node *next = exec_node_get_next(&node->node);
3083    if (exec_node_is_tail_sentinel(next))
3084       return NULL;
3085    else
3086       return exec_node_data(nir_cf_node, next, node);
3087 }
3088 
3089 static inline nir_cf_node *
nir_cf_node_prev(nir_cf_node * node)3090 nir_cf_node_prev(nir_cf_node *node)
3091 {
3092    struct exec_node *prev = exec_node_get_prev(&node->node);
3093    if (exec_node_is_head_sentinel(prev))
3094       return NULL;
3095    else
3096       return exec_node_data(nir_cf_node, prev, node);
3097 }
3098 
3099 static inline bool
nir_cf_node_is_first(const nir_cf_node * node)3100 nir_cf_node_is_first(const nir_cf_node *node)
3101 {
3102    return exec_node_is_head_sentinel(node->node.prev);
3103 }
3104 
3105 static inline bool
nir_cf_node_is_last(const nir_cf_node * node)3106 nir_cf_node_is_last(const nir_cf_node *node)
3107 {
3108    return exec_node_is_tail_sentinel(node->node.next);
3109 }
3110 
NIR_DEFINE_CAST(nir_cf_node_as_block,nir_cf_node,nir_block,cf_node,type,nir_cf_node_block)3111 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
3112                 type, nir_cf_node_block)
3113 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
3114                 type, nir_cf_node_if)
3115 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
3116                 type, nir_cf_node_loop)
3117 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
3118                 nir_function_impl, cf_node, type, nir_cf_node_function)
3119 
3120 static inline nir_block *
3121 nir_if_first_then_block(nir_if *if_stmt)
3122 {
3123    struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
3124    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3125 }
3126 
3127 static inline nir_block *
nir_if_last_then_block(nir_if * if_stmt)3128 nir_if_last_then_block(nir_if *if_stmt)
3129 {
3130    struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
3131    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3132 }
3133 
3134 static inline nir_block *
nir_if_first_else_block(nir_if * if_stmt)3135 nir_if_first_else_block(nir_if *if_stmt)
3136 {
3137    struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
3138    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3139 }
3140 
3141 static inline nir_block *
nir_if_last_else_block(nir_if * if_stmt)3142 nir_if_last_else_block(nir_if *if_stmt)
3143 {
3144    struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
3145    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3146 }
3147 
3148 static inline nir_block *
nir_loop_first_block(nir_loop * loop)3149 nir_loop_first_block(nir_loop *loop)
3150 {
3151    struct exec_node *head = exec_list_get_head(&loop->body);
3152    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3153 }
3154 
3155 static inline nir_block *
nir_loop_last_block(nir_loop * loop)3156 nir_loop_last_block(nir_loop *loop)
3157 {
3158    struct exec_node *tail = exec_list_get_tail(&loop->body);
3159    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3160 }
3161 
3162 /**
3163  * Return true if this list of cf_nodes contains a single empty block.
3164  */
3165 static inline bool
nir_cf_list_is_empty_block(struct exec_list * cf_list)3166 nir_cf_list_is_empty_block(struct exec_list *cf_list)
3167 {
3168    if (exec_list_is_singular(cf_list)) {
3169       struct exec_node *head = exec_list_get_head(cf_list);
3170       nir_block *block =
3171          nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3172       return exec_list_is_empty(&block->instr_list);
3173    }
3174    return false;
3175 }
3176 
3177 typedef struct {
3178    uint8_t num_components;
3179    uint8_t bit_size;
3180 } nir_parameter;
3181 
3182 typedef struct nir_function {
3183    struct exec_node node;
3184 
3185    const char *name;
3186    struct nir_shader *shader;
3187 
3188    unsigned num_params;
3189    nir_parameter *params;
3190 
3191    /** The implementation of this function.
3192     *
3193     * If the function is only declared and not implemented, this is NULL.
3194     */
3195    nir_function_impl *impl;
3196 
3197    bool is_entrypoint;
3198 } nir_function;
3199 
3200 typedef enum {
3201    nir_lower_imul64 = (1 << 0),
3202    nir_lower_isign64 = (1 << 1),
3203    /** Lower all int64 modulus and division opcodes */
3204    nir_lower_divmod64 = (1 << 2),
3205    /** Lower all 64-bit umul_high and imul_high opcodes */
3206    nir_lower_imul_high64 = (1 << 3),
3207    nir_lower_mov64 = (1 << 4),
3208    nir_lower_icmp64 = (1 << 5),
3209    nir_lower_iadd64 = (1 << 6),
3210    nir_lower_iabs64 = (1 << 7),
3211    nir_lower_ineg64 = (1 << 8),
3212    nir_lower_logic64 = (1 << 9),
3213    nir_lower_minmax64 = (1 << 10),
3214    nir_lower_shift64 = (1 << 11),
3215    nir_lower_imul_2x32_64 = (1 << 12),
3216    nir_lower_extract64 = (1 << 13),
3217    nir_lower_ufind_msb64 = (1 << 14),
3218    nir_lower_bit_count64 = (1 << 15),
3219 } nir_lower_int64_options;
3220 
3221 typedef enum {
3222    nir_lower_drcp = (1 << 0),
3223    nir_lower_dsqrt = (1 << 1),
3224    nir_lower_drsq = (1 << 2),
3225    nir_lower_dtrunc = (1 << 3),
3226    nir_lower_dfloor = (1 << 4),
3227    nir_lower_dceil = (1 << 5),
3228    nir_lower_dfract = (1 << 6),
3229    nir_lower_dround_even = (1 << 7),
3230    nir_lower_dmod = (1 << 8),
3231    nir_lower_dsub = (1 << 9),
3232    nir_lower_ddiv = (1 << 10),
3233    nir_lower_fp64_full_software = (1 << 11),
3234 } nir_lower_doubles_options;
3235 
3236 typedef enum {
3237    nir_divergence_single_prim_per_subgroup = (1 << 0),
3238    nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
3239    nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
3240    nir_divergence_view_index_uniform = (1 << 3),
3241 } nir_divergence_options;
3242 
3243 typedef struct nir_shader_compiler_options {
3244    bool lower_fdiv;
3245    bool lower_ffma16;
3246    bool lower_ffma32;
3247    bool lower_ffma64;
3248    bool fuse_ffma16;
3249    bool fuse_ffma32;
3250    bool fuse_ffma64;
3251    bool lower_flrp16;
3252    bool lower_flrp32;
3253    /** Lowers flrp when it does not support doubles */
3254    bool lower_flrp64;
3255    bool lower_fpow;
3256    bool lower_fsat;
3257    bool lower_fsqrt;
3258    bool lower_sincos;
3259    bool lower_fmod;
3260    /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
3261    bool lower_bitfield_extract;
3262    /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
3263    bool lower_bitfield_extract_to_shifts;
3264    /** Lowers bitfield_insert to bfi/bfm */
3265    bool lower_bitfield_insert;
3266    /** Lowers bitfield_insert to compares, and shifts. */
3267    bool lower_bitfield_insert_to_shifts;
3268    /** Lowers bitfield_insert to bfm/bitfield_select. */
3269    bool lower_bitfield_insert_to_bitfield_select;
3270    /** Lowers bitfield_reverse to shifts. */
3271    bool lower_bitfield_reverse;
3272    /** Lowers bit_count to shifts. */
3273    bool lower_bit_count;
3274    /** Lowers ifind_msb to compare and ufind_msb */
3275    bool lower_ifind_msb;
3276    /** Lowers find_lsb to ufind_msb and logic ops */
3277    bool lower_find_lsb;
3278    bool lower_uadd_carry;
3279    bool lower_usub_borrow;
3280    /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
3281    bool lower_mul_high;
3282    /** lowers fneg and ineg to fsub and isub. */
3283    bool lower_negate;
3284    /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
3285    bool lower_sub;
3286 
3287    /* lower {slt,sge,seq,sne} to {flt,fge,feq,fneu} + b2f: */
3288    bool lower_scmp;
3289 
3290    /* lower b/fall_equalN/b/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
3291    bool lower_vector_cmp;
3292 
3293    /** enable rules to avoid bit ops */
3294    bool lower_bitops;
3295 
3296    /** enables rules to lower isign to imin+imax */
3297    bool lower_isign;
3298 
3299    /** enables rules to lower fsign to fsub and flt */
3300    bool lower_fsign;
3301 
3302    /** enables rules to lower iabs to ineg+imax */
3303    bool lower_iabs;
3304 
3305    /** enable rules that avoid generating umax from signed integer ops */
3306    bool lower_umax;
3307 
3308    /** enable rules that avoid generating umin from signed integer ops */
3309    bool lower_umin;
3310 
3311    /* lower fdph to fdot4 */
3312    bool lower_fdph;
3313 
3314    /** lower fdot to fmul and fsum/fadd. */
3315    bool lower_fdot;
3316 
3317    /* Does the native fdot instruction replicate its result for four
3318     * components?  If so, then opt_algebraic_late will turn all fdotN
3319     * instructions into fdotN_replicated instructions.
3320     */
3321    bool fdot_replicates;
3322 
3323    /** lowers ffloor to fsub+ffract: */
3324    bool lower_ffloor;
3325 
3326    /** lowers ffract to fsub+ffloor: */
3327    bool lower_ffract;
3328 
3329    /** lowers fceil to fneg+ffloor+fneg: */
3330    bool lower_fceil;
3331 
3332    bool lower_ftrunc;
3333 
3334    bool lower_ldexp;
3335 
3336    bool lower_pack_half_2x16;
3337    bool lower_pack_unorm_2x16;
3338    bool lower_pack_snorm_2x16;
3339    bool lower_pack_unorm_4x8;
3340    bool lower_pack_snorm_4x8;
3341    bool lower_pack_64_2x32;
3342    bool lower_pack_64_4x16;
3343    bool lower_pack_32_2x16;
3344    bool lower_pack_64_2x32_split;
3345    bool lower_pack_32_2x16_split;
3346    bool lower_unpack_half_2x16;
3347    bool lower_unpack_unorm_2x16;
3348    bool lower_unpack_snorm_2x16;
3349    bool lower_unpack_unorm_4x8;
3350    bool lower_unpack_snorm_4x8;
3351    bool lower_unpack_64_2x32_split;
3352    bool lower_unpack_32_2x16_split;
3353 
3354    bool lower_pack_split;
3355 
3356    bool lower_extract_byte;
3357    bool lower_extract_word;
3358 
3359    bool lower_all_io_to_temps;
3360    bool lower_all_io_to_elements;
3361 
3362    /* Indicates that the driver only has zero-based vertex id */
3363    bool vertex_id_zero_based;
3364 
3365    /**
3366     * If enabled, gl_BaseVertex will be lowered as:
3367     * is_indexed_draw (~0/0) & firstvertex
3368     */
3369    bool lower_base_vertex;
3370 
3371    /**
3372     * If enabled, gl_HelperInvocation will be lowered as:
3373     *
3374     *   !((1 << sample_id) & sample_mask_in))
3375     *
3376     * This depends on some possibly hw implementation details, which may
3377     * not be true for all hw.  In particular that the FS is only executed
3378     * for covered samples or for helper invocations.  So, do not blindly
3379     * enable this option.
3380     *
3381     * Note: See also issue #22 in ARB_shader_image_load_store
3382     */
3383    bool lower_helper_invocation;
3384 
3385    /**
3386     * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
3387     *
3388     *   gl_SampleMaskIn == 0 ---> gl_HelperInvocation
3389     *   gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
3390     */
3391    bool optimize_sample_mask_in;
3392 
3393    bool lower_cs_local_index_from_id;
3394    bool lower_cs_local_id_from_index;
3395 
3396    /* Prevents lowering global_invocation_id to be in terms of work_group_id */
3397    bool has_cs_global_id;
3398 
3399    bool lower_device_index_to_zero;
3400 
3401    /* Set if nir_lower_pntc_ytransform() should invert gl_PointCoord.
3402     * Either when frame buffer is flipped or GL_POINT_SPRITE_COORD_ORIGIN
3403     * is GL_LOWER_LEFT.
3404     */
3405    bool lower_wpos_pntc;
3406 
3407    /**
3408     * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
3409     * lowered to simple arithmetic.
3410     *
3411     * If this flag is set, the lowering will be applied to all bit-sizes of
3412     * these instructions.
3413     *
3414     * \sa ::lower_hadd64
3415     */
3416    bool lower_hadd;
3417 
3418    /**
3419     * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
3420     * should be lowered to simple arithmetic.
3421     *
3422     * If this flag is set, the lowering will be applied to only 64-bit
3423     * versions of these instructions.
3424     *
3425     * \sa ::lower_hadd
3426     */
3427    bool lower_hadd64;
3428 
3429    /**
3430     * Set if nir_op_add_sat and nir_op_usub_sat should be lowered to simple
3431     * arithmetic.
3432     *
3433     * If this flag is set, the lowering will be applied to all bit-sizes of
3434     * these instructions.
3435     *
3436     * \sa ::lower_usub_sat64
3437     */
3438    bool lower_add_sat;
3439 
3440    /**
3441     * Set if only 64-bit nir_op_usub_sat should be lowered to simple
3442     * arithmetic.
3443     *
3444     * \sa ::lower_add_sat
3445     */
3446    bool lower_usub_sat64;
3447 
3448    /**
3449     * Should IO be re-vectorized?  Some scalar ISAs still operate on vec4's
3450     * for IO purposes and would prefer loads/stores be vectorized.
3451     */
3452    bool vectorize_io;
3453    bool lower_to_scalar;
3454 
3455    /**
3456     * Whether nir_opt_vectorize should only create 16-bit 2D vectors.
3457     */
3458    bool vectorize_vec2_16bit;
3459 
3460    /**
3461     * Should the linker unify inputs_read/outputs_written between adjacent
3462     * shader stages which are linked into a single program?
3463     */
3464    bool unify_interfaces;
3465 
3466    /**
3467     * Should nir_lower_io() create load_interpolated_input intrinsics?
3468     *
3469     * If not, it generates regular load_input intrinsics and interpolation
3470     * information must be inferred from the list of input nir_variables.
3471     */
3472    bool use_interpolated_input_intrinsics;
3473 
3474 
3475    /**
3476     * Whether nir_lower_io() will lower interpolateAt functions to
3477     * load_interpolated_input intrinsics.
3478     *
3479     * Unlike use_interpolated_input_intrinsics this will only lower these
3480     * functions and leave input load intrinsics untouched.
3481     */
3482    bool lower_interpolate_at;
3483 
3484    /* Lowers when 32x32->64 bit multiplication is not supported */
3485    bool lower_mul_2x32_64;
3486 
3487    /* Lowers when rotate instruction is not supported */
3488    bool lower_rotate;
3489 
3490    /**
3491     * Backend supports imul24, and would like to use it (when possible)
3492     * for address/offset calculation.  If true, driver should call
3493     * nir_lower_amul().  (If not set, amul will automatically be lowered
3494     * to imul.)
3495     */
3496    bool has_imul24;
3497 
3498    /** Backend supports umul24, if not set  umul24 will automatically be lowered
3499     * to imul with masked inputs */
3500    bool has_umul24;
3501 
3502    /** Backend supports umad24, if not set  umad24 will automatically be lowered
3503     * to imul with masked inputs and iadd */
3504    bool has_umad24;
3505 
3506    /* Whether to generate only scoped_barrier intrinsics instead of the set of
3507     * memory and control barrier intrinsics based on GLSL.
3508     */
3509    bool use_scoped_barrier;
3510 
3511    /**
3512     * Is this the Intel vec4 backend?
3513     *
3514     * Used to inhibit algebraic optimizations that are known to be harmful on
3515     * the Intel vec4 backend.  This is generally applicable to any
3516     * optimization that might cause more immediate values to be used in
3517     * 3-source (e.g., ffma and flrp) instructions.
3518     */
3519    bool intel_vec4;
3520 
3521    /** Lower nir_op_ibfe and nir_op_ubfe that have two constant sources. */
3522    bool lower_bfe_with_two_constants;
3523 
3524    /** Whether 8-bit ALU is supported. */
3525    bool support_8bit_alu;
3526 
3527    /** Whether 16-bit ALU is supported. */
3528    bool support_16bit_alu;
3529 
3530    unsigned max_unroll_iterations;
3531 
3532    /* For the non-zero value of the enum corresponds multiplier when
3533     * calling lower_uniforms_to_ubo */
3534    bool lower_uniforms_to_ubo;
3535 
3536    nir_lower_int64_options lower_int64_options;
3537    nir_lower_doubles_options lower_doubles_options;
3538    nir_divergence_options divergence_analysis_options;
3539 } nir_shader_compiler_options;
3540 
3541 typedef struct nir_shader {
3542    /** list of uniforms (nir_variable) */
3543    struct exec_list variables;
3544 
3545    /** Set of driver-specific options for the shader.
3546     *
3547     * The memory for the options is expected to be kept in a single static
3548     * copy by the driver.
3549     */
3550    const struct nir_shader_compiler_options *options;
3551 
3552    /** Various bits of compile-time information about a given shader */
3553    struct shader_info info;
3554 
3555    struct exec_list functions; /** < list of nir_function */
3556 
3557    /**
3558     * The size of the variable space for load_input_*, load_uniform_*, etc.
3559     * intrinsics.  This is in back-end specific units which is likely one of
3560     * bytes, dwords, or vec4s depending on context and back-end.
3561     */
3562    unsigned num_inputs, num_uniforms, num_outputs;
3563 
3564    /** Size in bytes of required shared memory */
3565    unsigned shared_size;
3566 
3567    /** Size in bytes of required scratch space */
3568    unsigned scratch_size;
3569 
3570    /** Constant data associated with this shader.
3571     *
3572     * Constant data is loaded through load_constant intrinsics (as compared to
3573     * the NIR load_const instructions which have the constant value inlined
3574     * into them).  This is usually generated by nir_opt_large_constants (so
3575     * shaders don't have to load_const into a temporary array when they want
3576     * to indirect on a const array).
3577     */
3578    void *constant_data;
3579    /** Size of the constant data associated with the shader, in bytes */
3580    unsigned constant_data_size;
3581 } nir_shader;
3582 
3583 #define nir_foreach_function(func, shader) \
3584    foreach_list_typed(nir_function, func, node, &(shader)->functions)
3585 
3586 static inline nir_function_impl *
nir_shader_get_entrypoint(nir_shader * shader)3587 nir_shader_get_entrypoint(nir_shader *shader)
3588 {
3589    nir_function *func = NULL;
3590 
3591    nir_foreach_function(function, shader) {
3592       assert(func == NULL);
3593       if (function->is_entrypoint) {
3594          func = function;
3595 #ifndef NDEBUG
3596          break;
3597 #endif
3598       }
3599    }
3600 
3601    if (!func)
3602       return NULL;
3603 
3604    assert(func->num_params == 0);
3605    assert(func->impl);
3606    return func->impl;
3607 }
3608 
3609 typedef struct nir_liveness_bounds {
3610    uint32_t start;
3611    uint32_t end;
3612 } nir_liveness_bounds;
3613 
3614 typedef struct nir_instr_liveness {
3615    /**
3616     * nir_instr->index for the start and end of a single live interval for SSA
3617     * defs.  ssa values last used by a nir_if condition will have an interval
3618     * ending at the first instruction after the last one before the if
3619     * condition.
3620     *
3621     * Indexed by def->index (impl->ssa_alloc elements).
3622     */
3623    struct nir_liveness_bounds *defs;
3624 } nir_instr_liveness;
3625 
3626 nir_instr_liveness *
3627 nir_live_ssa_defs_per_instr(nir_function_impl *impl);
3628 
3629 nir_shader *nir_shader_create(void *mem_ctx,
3630                               gl_shader_stage stage,
3631                               const nir_shader_compiler_options *options,
3632                               shader_info *si);
3633 
3634 nir_register *nir_local_reg_create(nir_function_impl *impl);
3635 
3636 void nir_reg_remove(nir_register *reg);
3637 
3638 /** Adds a variable to the appropriate list in nir_shader */
3639 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
3640 
3641 static inline void
nir_function_impl_add_variable(nir_function_impl * impl,nir_variable * var)3642 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
3643 {
3644    assert(var->data.mode == nir_var_function_temp);
3645    exec_list_push_tail(&impl->locals, &var->node);
3646 }
3647 
3648 /** creates a variable, sets a few defaults, and adds it to the list */
3649 nir_variable *nir_variable_create(nir_shader *shader,
3650                                   nir_variable_mode mode,
3651                                   const struct glsl_type *type,
3652                                   const char *name);
3653 /** creates a local variable and adds it to the list */
3654 nir_variable *nir_local_variable_create(nir_function_impl *impl,
3655                                         const struct glsl_type *type,
3656                                         const char *name);
3657 
3658 nir_variable *nir_find_variable_with_location(nir_shader *shader,
3659                                               nir_variable_mode mode,
3660                                               unsigned location);
3661 
3662 nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
3663                                                      nir_variable_mode mode,
3664                                                      unsigned location);
3665 
3666 /** creates a function and adds it to the shader's list of functions */
3667 nir_function *nir_function_create(nir_shader *shader, const char *name);
3668 
3669 nir_function_impl *nir_function_impl_create(nir_function *func);
3670 /** creates a function_impl that isn't tied to any particular function */
3671 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
3672 
3673 nir_block *nir_block_create(nir_shader *shader);
3674 nir_if *nir_if_create(nir_shader *shader);
3675 nir_loop *nir_loop_create(nir_shader *shader);
3676 
3677 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
3678 
3679 /** requests that the given pieces of metadata be generated */
3680 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
3681 /** dirties all but the preserved metadata */
3682 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
3683 /** Preserves all metadata for the given shader */
3684 void nir_shader_preserve_all_metadata(nir_shader *shader);
3685 
3686 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
3687 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
3688 
3689 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
3690                                         nir_deref_type deref_type);
3691 
3692 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
3693 
3694 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
3695                                                   unsigned num_components,
3696                                                   unsigned bit_size);
3697 
3698 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
3699                                                 nir_intrinsic_op op);
3700 
3701 nir_call_instr *nir_call_instr_create(nir_shader *shader,
3702                                       nir_function *callee);
3703 
3704 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
3705 
3706 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
3707 
3708 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
3709 
3710 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
3711                                                 unsigned num_components,
3712                                                 unsigned bit_size);
3713 
3714 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
3715 
3716 /**
3717  * NIR Cursors and Instruction Insertion API
3718  * @{
3719  *
3720  * A tiny struct representing a point to insert/extract instructions or
3721  * control flow nodes.  Helps reduce the combinatorial explosion of possible
3722  * points to insert/extract.
3723  *
3724  * \sa nir_control_flow.h
3725  */
3726 typedef enum {
3727    nir_cursor_before_block,
3728    nir_cursor_after_block,
3729    nir_cursor_before_instr,
3730    nir_cursor_after_instr,
3731 } nir_cursor_option;
3732 
3733 typedef struct {
3734    nir_cursor_option option;
3735    union {
3736       nir_block *block;
3737       nir_instr *instr;
3738    };
3739 } nir_cursor;
3740 
3741 static inline nir_block *
nir_cursor_current_block(nir_cursor cursor)3742 nir_cursor_current_block(nir_cursor cursor)
3743 {
3744    if (cursor.option == nir_cursor_before_instr ||
3745        cursor.option == nir_cursor_after_instr) {
3746       return cursor.instr->block;
3747    } else {
3748       return cursor.block;
3749    }
3750 }
3751 
3752 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3753 
3754 static inline nir_cursor
nir_before_block(nir_block * block)3755 nir_before_block(nir_block *block)
3756 {
3757    nir_cursor cursor;
3758    cursor.option = nir_cursor_before_block;
3759    cursor.block = block;
3760    return cursor;
3761 }
3762 
3763 static inline nir_cursor
nir_after_block(nir_block * block)3764 nir_after_block(nir_block *block)
3765 {
3766    nir_cursor cursor;
3767    cursor.option = nir_cursor_after_block;
3768    cursor.block = block;
3769    return cursor;
3770 }
3771 
3772 static inline nir_cursor
nir_before_instr(nir_instr * instr)3773 nir_before_instr(nir_instr *instr)
3774 {
3775    nir_cursor cursor;
3776    cursor.option = nir_cursor_before_instr;
3777    cursor.instr = instr;
3778    return cursor;
3779 }
3780 
3781 static inline nir_cursor
nir_after_instr(nir_instr * instr)3782 nir_after_instr(nir_instr *instr)
3783 {
3784    nir_cursor cursor;
3785    cursor.option = nir_cursor_after_instr;
3786    cursor.instr = instr;
3787    return cursor;
3788 }
3789 
3790 static inline nir_cursor
nir_after_block_before_jump(nir_block * block)3791 nir_after_block_before_jump(nir_block *block)
3792 {
3793    nir_instr *last_instr = nir_block_last_instr(block);
3794    if (last_instr && last_instr->type == nir_instr_type_jump) {
3795       return nir_before_instr(last_instr);
3796    } else {
3797       return nir_after_block(block);
3798    }
3799 }
3800 
3801 static inline nir_cursor
nir_before_src(nir_src * src,bool is_if_condition)3802 nir_before_src(nir_src *src, bool is_if_condition)
3803 {
3804    if (is_if_condition) {
3805       nir_block *prev_block =
3806          nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3807       assert(!nir_block_ends_in_jump(prev_block));
3808       return nir_after_block(prev_block);
3809    } else if (src->parent_instr->type == nir_instr_type_phi) {
3810 #ifndef NDEBUG
3811       nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3812       bool found = false;
3813       nir_foreach_phi_src(phi_src, cond_phi) {
3814          if (phi_src->src.ssa == src->ssa) {
3815             found = true;
3816             break;
3817          }
3818       }
3819       assert(found);
3820 #endif
3821       /* The LIST_ENTRY macro is a generic container-of macro, it just happens
3822        * to have a more specific name.
3823        */
3824       nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
3825       return nir_after_block_before_jump(phi_src->pred);
3826    } else {
3827       return nir_before_instr(src->parent_instr);
3828    }
3829 }
3830 
3831 static inline nir_cursor
nir_before_cf_node(nir_cf_node * node)3832 nir_before_cf_node(nir_cf_node *node)
3833 {
3834    if (node->type == nir_cf_node_block)
3835       return nir_before_block(nir_cf_node_as_block(node));
3836 
3837    return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3838 }
3839 
3840 static inline nir_cursor
nir_after_cf_node(nir_cf_node * node)3841 nir_after_cf_node(nir_cf_node *node)
3842 {
3843    if (node->type == nir_cf_node_block)
3844       return nir_after_block(nir_cf_node_as_block(node));
3845 
3846    return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
3847 }
3848 
3849 static inline nir_cursor
nir_after_phis(nir_block * block)3850 nir_after_phis(nir_block *block)
3851 {
3852    nir_foreach_instr(instr, block) {
3853       if (instr->type != nir_instr_type_phi)
3854          return nir_before_instr(instr);
3855    }
3856    return nir_after_block(block);
3857 }
3858 
3859 static inline nir_cursor
nir_after_cf_node_and_phis(nir_cf_node * node)3860 nir_after_cf_node_and_phis(nir_cf_node *node)
3861 {
3862    if (node->type == nir_cf_node_block)
3863       return nir_after_block(nir_cf_node_as_block(node));
3864 
3865    nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
3866 
3867    return nir_after_phis(block);
3868 }
3869 
3870 static inline nir_cursor
nir_before_cf_list(struct exec_list * cf_list)3871 nir_before_cf_list(struct exec_list *cf_list)
3872 {
3873    nir_cf_node *first_node = exec_node_data(nir_cf_node,
3874                                             exec_list_get_head(cf_list), node);
3875    return nir_before_cf_node(first_node);
3876 }
3877 
3878 static inline nir_cursor
nir_after_cf_list(struct exec_list * cf_list)3879 nir_after_cf_list(struct exec_list *cf_list)
3880 {
3881    nir_cf_node *last_node = exec_node_data(nir_cf_node,
3882                                            exec_list_get_tail(cf_list), node);
3883    return nir_after_cf_node(last_node);
3884 }
3885 
3886 /**
3887  * Insert a NIR instruction at the given cursor.
3888  *
3889  * Note: This does not update the cursor.
3890  */
3891 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3892 
3893 static inline void
nir_instr_insert_before(nir_instr * instr,nir_instr * before)3894 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3895 {
3896    nir_instr_insert(nir_before_instr(instr), before);
3897 }
3898 
3899 static inline void
nir_instr_insert_after(nir_instr * instr,nir_instr * after)3900 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3901 {
3902    nir_instr_insert(nir_after_instr(instr), after);
3903 }
3904 
3905 static inline void
nir_instr_insert_before_block(nir_block * block,nir_instr * before)3906 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3907 {
3908    nir_instr_insert(nir_before_block(block), before);
3909 }
3910 
3911 static inline void
nir_instr_insert_after_block(nir_block * block,nir_instr * after)3912 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3913 {
3914    nir_instr_insert(nir_after_block(block), after);
3915 }
3916 
3917 static inline void
nir_instr_insert_before_cf(nir_cf_node * node,nir_instr * before)3918 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3919 {
3920    nir_instr_insert(nir_before_cf_node(node), before);
3921 }
3922 
3923 static inline void
nir_instr_insert_after_cf(nir_cf_node * node,nir_instr * after)3924 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3925 {
3926    nir_instr_insert(nir_after_cf_node(node), after);
3927 }
3928 
3929 static inline void
nir_instr_insert_before_cf_list(struct exec_list * list,nir_instr * before)3930 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3931 {
3932    nir_instr_insert(nir_before_cf_list(list), before);
3933 }
3934 
3935 static inline void
nir_instr_insert_after_cf_list(struct exec_list * list,nir_instr * after)3936 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3937 {
3938    nir_instr_insert(nir_after_cf_list(list), after);
3939 }
3940 
3941 void nir_instr_remove_v(nir_instr *instr);
3942 
3943 static inline nir_cursor
nir_instr_remove(nir_instr * instr)3944 nir_instr_remove(nir_instr *instr)
3945 {
3946    nir_cursor cursor;
3947    nir_instr *prev = nir_instr_prev(instr);
3948    if (prev) {
3949       cursor = nir_after_instr(prev);
3950    } else {
3951       cursor = nir_before_block(instr->block);
3952    }
3953    nir_instr_remove_v(instr);
3954    return cursor;
3955 }
3956 
3957 /** @} */
3958 
3959 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3960 
3961 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3962 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3963 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3964 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3965                          void *state);
3966 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3967 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3968 bool nir_foreach_phi_src_leaving_block(nir_block *instr,
3969                                        nir_foreach_src_cb cb,
3970                                        void *state);
3971 
3972 nir_const_value *nir_src_as_const_value(nir_src src);
3973 
3974 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro)                \
3975 static inline c_type *                                                  \
3976 nir_src_as_ ## name (nir_src src)                                       \
3977 {                                                                       \
3978     return src.is_ssa && src.ssa->parent_instr->type == type_enum       \
3979            ? cast_macro(src.ssa->parent_instr) : NULL;                  \
3980 }
3981 
3982 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3983 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3984             nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3985 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3986 
3987 bool nir_src_is_dynamically_uniform(nir_src src);
3988 bool nir_srcs_equal(nir_src src1, nir_src src2);
3989 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3990 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3991 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3992 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3993 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3994                             nir_dest new_dest);
3995 
3996 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3997                        unsigned num_components, unsigned bit_size,
3998                        const char *name);
3999 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
4000                       unsigned num_components, unsigned bit_size,
4001                       const char *name);
4002 static inline void
nir_ssa_dest_init_for_type(nir_instr * instr,nir_dest * dest,const struct glsl_type * type,const char * name)4003 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
4004                            const struct glsl_type *type,
4005                            const char *name)
4006 {
4007    assert(glsl_type_is_vector_or_scalar(type));
4008    nir_ssa_dest_init(instr, dest, glsl_get_components(type),
4009                      glsl_get_bit_size(type), name);
4010 }
4011 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
4012 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
4013                                     nir_instr *after_me);
4014 
4015 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
4016 
4017 
4018 /** Returns the next block, disregarding structure
4019  *
4020  * The ordering is deterministic but has no guarantees beyond that.  In
4021  * particular, it is not guaranteed to be dominance-preserving.
4022  */
4023 nir_block *nir_block_unstructured_next(nir_block *block);
4024 nir_block *nir_unstructured_start_block(nir_function_impl *impl);
4025 
4026 #define nir_foreach_block_unstructured(block, impl) \
4027    for (nir_block *block = nir_unstructured_start_block(impl); block != NULL; \
4028         block = nir_block_unstructured_next(block))
4029 
4030 #define nir_foreach_block_unstructured_safe(block, impl) \
4031    for (nir_block *block = nir_unstructured_start_block(impl), \
4032         *next = nir_block_unstructured_next(block); \
4033         block != NULL; \
4034         block = next, next = nir_block_unstructured_next(block))
4035 
4036 /*
4037  * finds the next basic block in source-code order, returns NULL if there is
4038  * none
4039  */
4040 
4041 nir_block *nir_block_cf_tree_next(nir_block *block);
4042 
4043 /* Performs the opposite of nir_block_cf_tree_next() */
4044 
4045 nir_block *nir_block_cf_tree_prev(nir_block *block);
4046 
4047 /* Gets the first block in a CF node in source-code order */
4048 
4049 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
4050 
4051 /* Gets the last block in a CF node in source-code order */
4052 
4053 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
4054 
4055 /* Gets the next block after a CF node in source-code order */
4056 
4057 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
4058 
4059 /* Macros for loops that visit blocks in source-code order */
4060 
4061 #define nir_foreach_block(block, impl) \
4062    for (nir_block *block = nir_start_block(impl); block != NULL; \
4063         block = nir_block_cf_tree_next(block))
4064 
4065 #define nir_foreach_block_safe(block, impl) \
4066    for (nir_block *block = nir_start_block(impl), \
4067         *next = nir_block_cf_tree_next(block); \
4068         block != NULL; \
4069         block = next, next = nir_block_cf_tree_next(block))
4070 
4071 #define nir_foreach_block_reverse(block, impl) \
4072    for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
4073         block = nir_block_cf_tree_prev(block))
4074 
4075 #define nir_foreach_block_reverse_safe(block, impl) \
4076    for (nir_block *block = nir_impl_last_block(impl), \
4077         *prev = nir_block_cf_tree_prev(block); \
4078         block != NULL; \
4079         block = prev, prev = nir_block_cf_tree_prev(block))
4080 
4081 #define nir_foreach_block_in_cf_node(block, node) \
4082    for (nir_block *block = nir_cf_node_cf_tree_first(node); \
4083         block != nir_cf_node_cf_tree_next(node); \
4084         block = nir_block_cf_tree_next(block))
4085 
4086 /* If the following CF node is an if, this function returns that if.
4087  * Otherwise, it returns NULL.
4088  */
4089 nir_if *nir_block_get_following_if(nir_block *block);
4090 
4091 nir_loop *nir_block_get_following_loop(nir_block *block);
4092 
4093 void nir_index_local_regs(nir_function_impl *impl);
4094 void nir_index_ssa_defs(nir_function_impl *impl);
4095 unsigned nir_index_instrs(nir_function_impl *impl);
4096 
4097 void nir_index_blocks(nir_function_impl *impl);
4098 
4099 unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
4100 unsigned nir_function_impl_index_vars(nir_function_impl *impl);
4101 
4102 void nir_print_shader(nir_shader *shader, FILE *fp);
4103 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
4104 void nir_print_instr(const nir_instr *instr, FILE *fp);
4105 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
4106 
4107 /** Shallow clone of a single instruction. */
4108 nir_instr *nir_instr_clone(nir_shader *s, const nir_instr *orig);
4109 
4110 /** Shallow clone of a single ALU instruction. */
4111 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
4112 
4113 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
4114 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
4115                                            const nir_function_impl *fi);
4116 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
4117 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
4118 
4119 void nir_shader_replace(nir_shader *dest, nir_shader *src);
4120 
4121 void nir_shader_serialize_deserialize(nir_shader *s);
4122 
4123 #ifndef NDEBUG
4124 void nir_validate_shader(nir_shader *shader, const char *when);
4125 void nir_validate_ssa_dominance(nir_shader *shader, const char *when);
4126 void nir_metadata_set_validation_flag(nir_shader *shader);
4127 void nir_metadata_check_validation_flag(nir_shader *shader);
4128 
4129 static inline bool
should_skip_nir(const char * name)4130 should_skip_nir(const char *name)
4131 {
4132    static const char *list = NULL;
4133    if (!list) {
4134       /* Comma separated list of names to skip. */
4135       list = getenv("NIR_SKIP");
4136       if (!list)
4137          list = "";
4138    }
4139 
4140    if (!list[0])
4141       return false;
4142 
4143    return comma_separated_list_contains(list, name);
4144 }
4145 
4146 static inline bool
should_clone_nir(void)4147 should_clone_nir(void)
4148 {
4149    static int should_clone = -1;
4150    if (should_clone < 0)
4151       should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
4152 
4153    return should_clone;
4154 }
4155 
4156 static inline bool
should_serialize_deserialize_nir(void)4157 should_serialize_deserialize_nir(void)
4158 {
4159    static int test_serialize = -1;
4160    if (test_serialize < 0)
4161       test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
4162 
4163    return test_serialize;
4164 }
4165 
4166 static inline bool
should_print_nir(nir_shader * shader)4167 should_print_nir(nir_shader *shader)
4168 {
4169    static int should_print = -1;
4170    if (should_print < 0)
4171       should_print = env_var_as_unsigned("NIR_PRINT", 0);
4172 
4173    if (should_print == 1)
4174       return !shader->info.internal;
4175 
4176    return should_print;
4177 }
4178 #else
nir_validate_shader(nir_shader * shader,const char * when)4179 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
nir_validate_ssa_dominance(nir_shader * shader,const char * when)4180 static inline void nir_validate_ssa_dominance(nir_shader *shader, const char *when) { (void) shader; (void)when; }
nir_metadata_set_validation_flag(nir_shader * shader)4181 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
nir_metadata_check_validation_flag(nir_shader * shader)4182 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
should_skip_nir(UNUSED const char * pass_name)4183 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
should_clone_nir(void)4184 static inline bool should_clone_nir(void) { return false; }
should_serialize_deserialize_nir(void)4185 static inline bool should_serialize_deserialize_nir(void) { return false; }
should_print_nir(nir_shader * shader)4186 static inline bool should_print_nir(nir_shader *shader) { return false; }
4187 #endif /* NDEBUG */
4188 
4189 #define _PASS(pass, nir, do_pass) do {                               \
4190    if (should_skip_nir(#pass)) {                                     \
4191       printf("skipping %s\n", #pass);                                \
4192       break;                                                         \
4193    }                                                                 \
4194    do_pass                                                           \
4195    if (should_clone_nir()) {                                         \
4196       nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
4197       nir_shader_replace(nir, clone);                                \
4198    }                                                                 \
4199    if (should_serialize_deserialize_nir()) {                         \
4200       nir_shader_serialize_deserialize(nir);                         \
4201    }                                                                 \
4202 } while (0)
4203 
4204 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir,          \
4205    nir_metadata_set_validation_flag(nir);                            \
4206    if (should_print_nir(nir))                                           \
4207       printf("%s\n", #pass);                                         \
4208    if (pass(nir, ##__VA_ARGS__)) {                                   \
4209       nir_validate_shader(nir, "after " #pass);                      \
4210       progress = true;                                               \
4211       if (should_print_nir(nir))                                        \
4212          nir_print_shader(nir, stdout);                              \
4213       nir_metadata_check_validation_flag(nir);                       \
4214    }                                                                 \
4215 )
4216 
4217 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir,                  \
4218    if (should_print_nir(nir))                                           \
4219       printf("%s\n", #pass);                                         \
4220    pass(nir, ##__VA_ARGS__);                                         \
4221    nir_validate_shader(nir, "after " #pass);                         \
4222    if (should_print_nir(nir))                                           \
4223       nir_print_shader(nir, stdout);                                 \
4224 )
4225 
4226 #define NIR_SKIP(name) should_skip_nir(#name)
4227 
4228 /** An instruction filtering callback
4229  *
4230  * Returns true if the instruction should be processed and false otherwise.
4231  */
4232 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
4233 
4234 /** A simple instruction lowering callback
4235  *
4236  * Many instruction lowering passes can be written as a simple function which
4237  * takes an instruction as its input and returns a sequence of instructions
4238  * that implement the consumed instruction.  This function type represents
4239  * such a lowering function.  When called, a function with this prototype
4240  * should either return NULL indicating that no lowering needs to be done or
4241  * emit a sequence of instructions using the provided builder (whose cursor
4242  * will already be placed after the instruction to be lowered) and return the
4243  * resulting nir_ssa_def.
4244  */
4245 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
4246                                            nir_instr *, void *);
4247 
4248 /**
4249  * Special return value for nir_lower_instr_cb when some progress occurred
4250  * (like changing an input to the instr) that didn't result in a replacement
4251  * SSA def being generated.
4252  */
4253 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
4254 
4255 /** Iterate over all the instructions in a nir_function_impl and lower them
4256  *  using the provided callbacks
4257  *
4258  * This function implements the guts of a standard lowering pass for you.  It
4259  * iterates over all of the instructions in a nir_function_impl and calls the
4260  * filter callback on each one.  If the filter callback returns true, it then
4261  * calls the lowering call back on the instruction.  (Splitting it this way
4262  * allows us to avoid some save/restore work for instructions we know won't be
4263  * lowered.)  If the instruction is dead after the lowering is complete, it
4264  * will be removed.  If new instructions are added, the lowering callback will
4265  * also be called on them in case multiple lowerings are required.
4266  *
4267  * The metadata for the nir_function_impl will also be updated.  If any blocks
4268  * are added (they cannot be removed), dominance and block indices will be
4269  * invalidated.
4270  */
4271 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
4272                                           nir_instr_filter_cb filter,
4273                                           nir_lower_instr_cb lower,
4274                                           void *cb_data);
4275 bool nir_shader_lower_instructions(nir_shader *shader,
4276                                    nir_instr_filter_cb filter,
4277                                    nir_lower_instr_cb lower,
4278                                    void *cb_data);
4279 
4280 void nir_calc_dominance_impl(nir_function_impl *impl);
4281 void nir_calc_dominance(nir_shader *shader);
4282 
4283 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
4284 bool nir_block_dominates(nir_block *parent, nir_block *child);
4285 bool nir_block_is_unreachable(nir_block *block);
4286 
4287 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
4288 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
4289 
4290 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
4291 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
4292 
4293 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
4294 void nir_dump_cfg(nir_shader *shader, FILE *fp);
4295 
4296 void nir_gs_count_vertices_and_primitives(const nir_shader *shader,
4297                                           int *out_vtxcnt,
4298                                           int *out_prmcnt,
4299                                           unsigned num_streams);
4300 
4301 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
4302 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
4303 bool nir_split_var_copies(nir_shader *shader);
4304 bool nir_split_per_member_structs(nir_shader *shader);
4305 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
4306 
4307 bool nir_lower_returns_impl(nir_function_impl *impl);
4308 bool nir_lower_returns(nir_shader *shader);
4309 
4310 void nir_inline_function_impl(struct nir_builder *b,
4311                               const nir_function_impl *impl,
4312                               nir_ssa_def **params,
4313                               struct hash_table *shader_var_remap);
4314 bool nir_inline_functions(nir_shader *shader);
4315 
4316 void nir_find_inlinable_uniforms(nir_shader *shader);
4317 void nir_inline_uniforms(nir_shader *shader, unsigned num_uniforms,
4318                          const uint32_t *uniform_values,
4319                          const uint16_t *uniform_dw_offsets);
4320 
4321 bool nir_propagate_invariant(nir_shader *shader);
4322 
4323 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
4324 void nir_lower_deref_copy_instr(struct nir_builder *b,
4325                                 nir_intrinsic_instr *copy);
4326 bool nir_lower_var_copies(nir_shader *shader);
4327 
4328 bool nir_opt_memcpy(nir_shader *shader);
4329 bool nir_lower_memcpy(nir_shader *shader);
4330 
4331 void nir_fixup_deref_modes(nir_shader *shader);
4332 
4333 bool nir_lower_global_vars_to_local(nir_shader *shader);
4334 
4335 typedef enum {
4336    nir_lower_direct_array_deref_of_vec_load     = (1 << 0),
4337    nir_lower_indirect_array_deref_of_vec_load   = (1 << 1),
4338    nir_lower_direct_array_deref_of_vec_store    = (1 << 2),
4339    nir_lower_indirect_array_deref_of_vec_store  = (1 << 3),
4340 } nir_lower_array_deref_of_vec_options;
4341 
4342 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
4343                                   nir_lower_array_deref_of_vec_options options);
4344 
4345 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes,
4346                                uint32_t max_lower_array_len);
4347 
4348 bool nir_lower_locals_to_regs(nir_shader *shader);
4349 
4350 void nir_lower_io_to_temporaries(nir_shader *shader,
4351                                  nir_function_impl *entrypoint,
4352                                  bool outputs, bool inputs);
4353 
4354 bool nir_lower_vars_to_scratch(nir_shader *shader,
4355                                nir_variable_mode modes,
4356                                int size_threshold,
4357                                glsl_type_size_align_func size_align);
4358 
4359 void nir_lower_clip_halfz(nir_shader *shader);
4360 
4361 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
4362 
4363 void nir_gather_ssa_types(nir_function_impl *impl,
4364                           BITSET_WORD *float_types,
4365                           BITSET_WORD *int_types);
4366 
4367 void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
4368                               unsigned *size,
4369                               int (*type_size)(const struct glsl_type *, bool));
4370 
4371 /* Some helpers to do very simple linking */
4372 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
4373 bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
4374                                uint64_t *used_by_other_stage,
4375                                uint64_t *used_by_other_stage_patches);
4376 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
4377                           bool default_to_smooth_interp);
4378 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
4379 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
4380 
4381 bool nir_lower_amul(nir_shader *shader,
4382                     int (*type_size)(const struct glsl_type *, bool));
4383 
4384 bool nir_lower_ubo_vec4(nir_shader *shader);
4385 
4386 void nir_assign_io_var_locations(nir_shader *shader,
4387                                  nir_variable_mode mode,
4388                                  unsigned *size,
4389                                  gl_shader_stage stage);
4390 
4391 typedef struct {
4392    uint8_t num_linked_io_vars;
4393    uint8_t num_linked_patch_io_vars;
4394 } nir_linked_io_var_info;
4395 
4396 nir_linked_io_var_info
4397 nir_assign_linked_io_var_locations(nir_shader *producer,
4398                                    nir_shader *consumer);
4399 
4400 typedef enum {
4401    /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
4402     * to 32-bit operations.  This is only valid for nir_var_shader_in/out
4403     * modes.
4404     */
4405    nir_lower_io_lower_64bit_to_32 = (1 << 0),
4406 
4407    /* If set, this forces all non-flat fragment shader inputs to be
4408     * interpolated as if with the "sample" qualifier.  This requires
4409     * nir_shader_compiler_options::use_interpolated_input_intrinsics.
4410     */
4411    nir_lower_io_force_sample_interpolation = (1 << 1),
4412 } nir_lower_io_options;
4413 bool nir_lower_io(nir_shader *shader,
4414                   nir_variable_mode modes,
4415                   int (*type_size)(const struct glsl_type *, bool),
4416                   nir_lower_io_options);
4417 
4418 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode modes);
4419 
4420 bool
4421 nir_lower_vars_to_explicit_types(nir_shader *shader,
4422                                  nir_variable_mode modes,
4423                                  glsl_type_size_align_func type_info);
4424 
4425 bool nir_lower_mem_constant_vars(nir_shader *shader,
4426                                  glsl_type_size_align_func type_info);
4427 
4428 bool nir_lower_vec3_to_vec4(nir_shader *shader, nir_variable_mode modes);
4429 
4430 typedef enum {
4431    /**
4432     * An address format which is a simple 32-bit global GPU address.
4433     */
4434    nir_address_format_32bit_global,
4435 
4436    /**
4437     * An address format which is a simple 64-bit global GPU address.
4438     */
4439    nir_address_format_64bit_global,
4440 
4441    /**
4442     * An address format which is a bounds-checked 64-bit global GPU address.
4443     *
4444     * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
4445     * address stored with the low bits in .x and high bits in .y, .z is a
4446     * size, and .w is an offset.  When the final I/O operation is lowered, .w
4447     * is checked against .z and the operation is predicated on the result.
4448     */
4449    nir_address_format_64bit_bounded_global,
4450 
4451    /**
4452     * An address format which is comprised of a vec2 where the first
4453     * component is a buffer index and the second is an offset.
4454     */
4455    nir_address_format_32bit_index_offset,
4456 
4457    /**
4458     * An address format which is a 64-bit value, where the high 32 bits
4459     * are a buffer index, and the low 32 bits are an offset.
4460     */
4461     nir_address_format_32bit_index_offset_pack64,
4462 
4463    /**
4464     * An address format which is comprised of a vec3 where the first two
4465     * components specify the buffer and the third is an offset.
4466     */
4467    nir_address_format_vec2_index_32bit_offset,
4468 
4469    /**
4470     * An address format which represents generic pointers with a 62-bit
4471     * pointer and a 2-bit enum in the top two bits.  The top two bits have
4472     * the following meanings:
4473     *
4474     *  - 0x0: Global memory
4475     *  - 0x1: Shared memory
4476     *  - 0x2: Scratch memory
4477     *  - 0x3: Global memory
4478     *
4479     * The redundancy between 0x0 and 0x3 is because of Intel sign-extension of
4480     * addresses.  Valid global memory addresses may naturally have either 0 or
4481     * ~0 as their high bits.
4482     *
4483     * Shared and scratch pointers are represented as 32-bit offsets with the
4484     * top 32 bits only being used for the enum.  This allows us to avoid
4485     * 64-bit address calculations in a bunch of cases.
4486     */
4487    nir_address_format_62bit_generic,
4488 
4489    /**
4490     * An address format which is a simple 32-bit offset.
4491     */
4492    nir_address_format_32bit_offset,
4493 
4494    /**
4495     * An address format which is a simple 32-bit offset cast to 64-bit.
4496     */
4497     nir_address_format_32bit_offset_as_64bit,
4498 
4499    /**
4500     * An address format representing a purely logical addressing model.  In
4501     * this model, all deref chains must be complete from the dereference
4502     * operation to the variable.  Cast derefs are not allowed.  These
4503     * addresses will be 32-bit scalars but the format is immaterial because
4504     * you can always chase the chain.
4505     */
4506    nir_address_format_logical,
4507 } nir_address_format;
4508 
4509 static inline unsigned
nir_address_format_bit_size(nir_address_format addr_format)4510 nir_address_format_bit_size(nir_address_format addr_format)
4511 {
4512    switch (addr_format) {
4513    case nir_address_format_32bit_global:              return 32;
4514    case nir_address_format_64bit_global:              return 64;
4515    case nir_address_format_64bit_bounded_global:      return 32;
4516    case nir_address_format_32bit_index_offset:        return 32;
4517    case nir_address_format_32bit_index_offset_pack64: return 64;
4518    case nir_address_format_vec2_index_32bit_offset:   return 32;
4519    case nir_address_format_62bit_generic:             return 64;
4520    case nir_address_format_32bit_offset:              return 32;
4521    case nir_address_format_32bit_offset_as_64bit:     return 64;
4522    case nir_address_format_logical:                   return 32;
4523    }
4524    unreachable("Invalid address format");
4525 }
4526 
4527 static inline unsigned
nir_address_format_num_components(nir_address_format addr_format)4528 nir_address_format_num_components(nir_address_format addr_format)
4529 {
4530    switch (addr_format) {
4531    case nir_address_format_32bit_global:              return 1;
4532    case nir_address_format_64bit_global:              return 1;
4533    case nir_address_format_64bit_bounded_global:      return 4;
4534    case nir_address_format_32bit_index_offset:        return 2;
4535    case nir_address_format_32bit_index_offset_pack64: return 1;
4536    case nir_address_format_vec2_index_32bit_offset:   return 3;
4537    case nir_address_format_62bit_generic:             return 1;
4538    case nir_address_format_32bit_offset:              return 1;
4539    case nir_address_format_32bit_offset_as_64bit:     return 1;
4540    case nir_address_format_logical:                   return 1;
4541    }
4542    unreachable("Invalid address format");
4543 }
4544 
4545 static inline const struct glsl_type *
nir_address_format_to_glsl_type(nir_address_format addr_format)4546 nir_address_format_to_glsl_type(nir_address_format addr_format)
4547 {
4548    unsigned bit_size = nir_address_format_bit_size(addr_format);
4549    assert(bit_size == 32 || bit_size == 64);
4550    return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
4551                            nir_address_format_num_components(addr_format));
4552 }
4553 
4554 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
4555 
4556 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4557                                 nir_address_format addr_format);
4558 
4559 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4560                                  nir_address_format addr_format);
4561 
4562 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
4563                                                  nir_deref_instr *deref,
4564                                                  nir_ssa_def *base_addr,
4565                                                  nir_address_format addr_format);
4566 
4567 bool nir_get_explicit_deref_align(nir_deref_instr *deref,
4568                                   bool default_to_type_align,
4569                                   uint32_t *align_mul,
4570                                   uint32_t *align_offset);
4571 
4572 void nir_lower_explicit_io_instr(struct nir_builder *b,
4573                                  nir_intrinsic_instr *io_instr,
4574                                  nir_ssa_def *addr,
4575                                  nir_address_format addr_format);
4576 
4577 bool nir_lower_explicit_io(nir_shader *shader,
4578                            nir_variable_mode modes,
4579                            nir_address_format);
4580 
4581 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
4582 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
4583 nir_src *nir_get_shader_call_payload_src(nir_intrinsic_instr *call);
4584 
4585 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
4586 
4587 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
4588 bool nir_lower_regs_to_ssa(nir_shader *shader);
4589 bool nir_lower_vars_to_ssa(nir_shader *shader);
4590 
4591 bool nir_remove_dead_derefs(nir_shader *shader);
4592 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
4593 
4594 typedef struct nir_remove_dead_variables_options {
4595    bool (*can_remove_var)(nir_variable *var, void *data);
4596    void *can_remove_var_data;
4597 } nir_remove_dead_variables_options;
4598 
4599 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
4600                                const nir_remove_dead_variables_options *options);
4601 
4602 bool nir_lower_variable_initializers(nir_shader *shader,
4603                                      nir_variable_mode modes);
4604 
4605 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
4606 bool nir_lower_vec_to_movs(nir_shader *shader);
4607 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
4608                           bool alpha_to_one,
4609                           const gl_state_index16 *alpha_ref_state_tokens);
4610 bool nir_lower_alu(nir_shader *shader);
4611 
4612 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
4613                     bool always_precise);
4614 
4615 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4616 bool nir_lower_bool_to_bitsize(nir_shader *shader);
4617 bool nir_lower_bool_to_float(nir_shader *shader);
4618 bool nir_lower_bool_to_int32(nir_shader *shader);
4619 bool nir_opt_simplify_convert_alu_types(nir_shader *shader);
4620 bool nir_lower_convert_alu_types(nir_shader *shader,
4621                                  bool (*should_lower)(nir_intrinsic_instr *));
4622 bool nir_lower_constant_convert_alu_types(nir_shader *shader);
4623 bool nir_lower_alu_conversion_to_intrinsic(nir_shader *shader);
4624 bool nir_lower_int_to_float(nir_shader *shader);
4625 bool nir_lower_load_const_to_scalar(nir_shader *shader);
4626 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
4627 bool nir_lower_phis_to_scalar(nir_shader *shader);
4628 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
4629 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
4630                                                   bool outputs_only);
4631 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
4632 bool nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
4633 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
4634 
4635 bool nir_lower_fragcolor(nir_shader *shader);
4636 bool nir_lower_fragcoord_wtrans(nir_shader *shader);
4637 void nir_lower_viewport_transform(nir_shader *shader);
4638 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
4639 
4640 typedef struct nir_lower_subgroups_options {
4641    uint8_t subgroup_size;
4642    uint8_t ballot_bit_size;
4643    bool lower_to_scalar:1;
4644    bool lower_vote_trivial:1;
4645    bool lower_vote_eq_to_ballot:1;
4646    bool lower_subgroup_masks:1;
4647    bool lower_shuffle:1;
4648    bool lower_shuffle_to_32bit:1;
4649    bool lower_shuffle_to_swizzle_amd:1;
4650    bool lower_quad:1;
4651    bool lower_quad_broadcast_dynamic:1;
4652    bool lower_quad_broadcast_dynamic_to_const:1;
4653    bool lower_elect:1;
4654 } nir_lower_subgroups_options;
4655 
4656 bool nir_lower_subgroups(nir_shader *shader,
4657                          const nir_lower_subgroups_options *options);
4658 
4659 bool nir_lower_system_values(nir_shader *shader);
4660 
4661 typedef struct nir_lower_compute_system_values_options {
4662    bool has_base_global_invocation_id:1;
4663    bool has_base_work_group_id:1;
4664 } nir_lower_compute_system_values_options;
4665 
4666 bool nir_lower_compute_system_values(nir_shader *shader,
4667                                      const nir_lower_compute_system_values_options *options);
4668 
4669 enum PACKED nir_lower_tex_packing {
4670    nir_lower_tex_packing_none = 0,
4671    /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
4672     * or unsigned ints based on the sampler type
4673     */
4674    nir_lower_tex_packing_16,
4675    /* The sampler returns 1 32-bit word of 4x8 unorm */
4676    nir_lower_tex_packing_8,
4677 };
4678 
4679 typedef struct nir_lower_tex_options {
4680    /**
4681     * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
4682     * sampler types a texture projector is lowered.
4683     */
4684    unsigned lower_txp;
4685 
4686    /**
4687     * If true, lower away nir_tex_src_offset for all texelfetch instructions.
4688     */
4689    bool lower_txf_offset;
4690 
4691    /**
4692     * If true, lower away nir_tex_src_offset for all rect textures.
4693     */
4694    bool lower_rect_offset;
4695 
4696    /**
4697     * If true, lower rect textures to 2D, using txs to fetch the
4698     * texture dimensions and dividing the texture coords by the
4699     * texture dims to normalize.
4700     */
4701    bool lower_rect;
4702 
4703    /**
4704     * If true, convert yuv to rgb.
4705     */
4706    unsigned lower_y_uv_external;
4707    unsigned lower_y_u_v_external;
4708    unsigned lower_yx_xuxv_external;
4709    unsigned lower_xy_uxvx_external;
4710    unsigned lower_ayuv_external;
4711    unsigned lower_xyuv_external;
4712    unsigned lower_yuv_external;
4713    unsigned bt709_external;
4714    unsigned bt2020_external;
4715 
4716    /**
4717     * To emulate certain texture wrap modes, this can be used
4718     * to saturate the specified tex coord to [0.0, 1.0].  The
4719     * bits are according to sampler #, ie. if, for example:
4720     *
4721     *   (conf->saturate_s & (1 << n))
4722     *
4723     * is true, then the s coord for sampler n is saturated.
4724     *
4725     * Note that clamping must happen *after* projector lowering
4726     * so any projected texture sample instruction with a clamped
4727     * coordinate gets automatically lowered, regardless of the
4728     * 'lower_txp' setting.
4729     */
4730    unsigned saturate_s;
4731    unsigned saturate_t;
4732    unsigned saturate_r;
4733 
4734    /* Bitmask of textures that need swizzling.
4735     *
4736     * If (swizzle_result & (1 << texture_index)), then the swizzle in
4737     * swizzles[texture_index] is applied to the result of the texturing
4738     * operation.
4739     */
4740    unsigned swizzle_result;
4741 
4742    /* A swizzle for each texture.  Values 0-3 represent x, y, z, or w swizzles
4743     * while 4 and 5 represent 0 and 1 respectively.
4744     */
4745    uint8_t swizzles[32][4];
4746 
4747    /* Can be used to scale sampled values in range required by the format. */
4748    float scale_factors[32];
4749 
4750    /**
4751     * Bitmap of textures that need srgb to linear conversion.  If
4752     * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
4753     * of the texture are lowered to linear.
4754     */
4755    unsigned lower_srgb;
4756 
4757    /**
4758     * If true, lower nir_texop_tex on shaders that doesn't support implicit
4759     * LODs to nir_texop_txl.
4760     */
4761    bool lower_tex_without_implicit_lod;
4762 
4763    /**
4764     * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
4765     */
4766    bool lower_txd_cube_map;
4767 
4768    /**
4769     * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
4770     */
4771    bool lower_txd_3d;
4772 
4773    /**
4774     * If true, lower nir_texop_txd on shadow samplers (except cube maps)
4775     * with nir_texop_txl. Notice that cube map shadow samplers are lowered
4776     * with lower_txd_cube_map.
4777     */
4778    bool lower_txd_shadow;
4779 
4780    /**
4781     * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
4782     * Implies lower_txd_cube_map and lower_txd_shadow.
4783     */
4784    bool lower_txd;
4785 
4786    /**
4787     * If true, lower nir_texop_txb that try to use shadow compare and min_lod
4788     * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
4789     */
4790    bool lower_txb_shadow_clamp;
4791 
4792    /**
4793     * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
4794     * with nir_texop_txl.  This includes cube maps.
4795     */
4796    bool lower_txd_shadow_clamp;
4797 
4798    /**
4799     * If true, lower nir_texop_txd on when it uses both offset and min_lod
4800     * with nir_texop_txl.  This includes cube maps.
4801     */
4802    bool lower_txd_offset_clamp;
4803 
4804    /**
4805     * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4806     * sampler is bindless.
4807     */
4808    bool lower_txd_clamp_bindless_sampler;
4809 
4810    /**
4811     * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4812     * sampler index is not statically determinable to be less than 16.
4813     */
4814    bool lower_txd_clamp_if_sampler_index_not_lt_16;
4815 
4816    /**
4817     * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
4818     * 0-lod followed by a nir_ishr.
4819     */
4820    bool lower_txs_lod;
4821 
4822    /**
4823     * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
4824     * mixed-up tg4 locations.
4825     */
4826    bool lower_tg4_broadcom_swizzle;
4827 
4828    /**
4829     * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
4830     */
4831    bool lower_tg4_offsets;
4832 
4833    enum nir_lower_tex_packing lower_tex_packing[32];
4834 } nir_lower_tex_options;
4835 
4836 bool nir_lower_tex(nir_shader *shader,
4837                    const nir_lower_tex_options *options);
4838 
4839 bool nir_lower_cl_images_to_tex(nir_shader *shader);
4840 
4841 enum nir_lower_non_uniform_access_type {
4842    nir_lower_non_uniform_ubo_access     = (1 << 0),
4843    nir_lower_non_uniform_ssbo_access    = (1 << 1),
4844    nir_lower_non_uniform_texture_access = (1 << 2),
4845    nir_lower_non_uniform_image_access   = (1 << 3),
4846 };
4847 
4848 bool nir_lower_non_uniform_access(nir_shader *shader,
4849                                   enum nir_lower_non_uniform_access_type);
4850 
4851 enum nir_lower_idiv_path {
4852    /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
4853     * the two but it is not exact in some cases (for example, 1091317713u /
4854     * 1034u gives 5209173 instead of 1055432) */
4855    nir_lower_idiv_fast,
4856    /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
4857     * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
4858     * the nv50 path and many of them are integer multiplications, so it is
4859     * probably slower. It should always return the correct result, though. */
4860    nir_lower_idiv_precise,
4861 };
4862 
4863 bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
4864 
4865 typedef struct nir_input_attachment_options {
4866    bool use_fragcoord_sysval;
4867    bool use_layer_id_sysval;
4868    bool use_view_id_for_layer;
4869 } nir_input_attachment_options;
4870 
4871 bool nir_lower_input_attachments(nir_shader *shader,
4872                                  const nir_input_attachment_options *options);
4873 
4874 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
4875                        bool use_vars,
4876                        bool use_clipdist_array,
4877                        const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4878 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
4879                        bool use_clipdist_array,
4880                        const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4881 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
4882                        bool use_clipdist_array);
4883 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
4884 bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
4885 
4886 void nir_lower_point_size_mov(nir_shader *shader,
4887                               const gl_state_index16 *pointsize_state_tokens);
4888 
4889 bool nir_lower_frexp(nir_shader *nir);
4890 
4891 void nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
4892 
4893 bool nir_lower_clamp_color_outputs(nir_shader *shader);
4894 
4895 bool nir_lower_flatshade(nir_shader *shader);
4896 
4897 void nir_lower_passthrough_edgeflags(nir_shader *shader);
4898 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
4899                               const gl_state_index16 *uniform_state_tokens);
4900 
4901 typedef struct nir_lower_wpos_ytransform_options {
4902    gl_state_index16 state_tokens[STATE_LENGTH];
4903    bool fs_coord_origin_upper_left :1;
4904    bool fs_coord_origin_lower_left :1;
4905    bool fs_coord_pixel_center_integer :1;
4906    bool fs_coord_pixel_center_half_integer :1;
4907 } nir_lower_wpos_ytransform_options;
4908 
4909 bool nir_lower_wpos_ytransform(nir_shader *shader,
4910                                const nir_lower_wpos_ytransform_options *options);
4911 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
4912 
4913 bool nir_lower_pntc_ytransform(nir_shader *shader,
4914                                const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4915 
4916 bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4917 
4918 bool nir_lower_fb_read(nir_shader *shader);
4919 
4920 typedef struct nir_lower_drawpixels_options {
4921    gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
4922    gl_state_index16 scale_state_tokens[STATE_LENGTH];
4923    gl_state_index16 bias_state_tokens[STATE_LENGTH];
4924    unsigned drawpix_sampler;
4925    unsigned pixelmap_sampler;
4926    bool pixel_maps :1;
4927    bool scale_and_bias :1;
4928 } nir_lower_drawpixels_options;
4929 
4930 void nir_lower_drawpixels(nir_shader *shader,
4931                           const nir_lower_drawpixels_options *options);
4932 
4933 typedef struct nir_lower_bitmap_options {
4934    unsigned sampler;
4935    bool swizzle_xxxx;
4936 } nir_lower_bitmap_options;
4937 
4938 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
4939 
4940 bool nir_lower_atomics_to_ssbo(nir_shader *shader);
4941 
4942 typedef enum  {
4943    nir_lower_int_source_mods = 1 << 0,
4944    nir_lower_float_source_mods = 1 << 1,
4945    nir_lower_64bit_source_mods = 1 << 2,
4946    nir_lower_triop_abs = 1 << 3,
4947    nir_lower_all_source_mods = (1 << 4) - 1
4948 } nir_lower_to_source_mods_flags;
4949 
4950 
4951 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
4952 
4953 typedef enum {
4954    nir_lower_gs_intrinsics_per_stream = 1 << 0,
4955    nir_lower_gs_intrinsics_count_primitives = 1 << 1,
4956    nir_lower_gs_intrinsics_count_vertices_per_primitive = 1 << 2,
4957    nir_lower_gs_intrinsics_overwrite_incomplete = 1 << 3,
4958 } nir_lower_gs_intrinsics_flags;
4959 
4960 bool nir_lower_gs_intrinsics(nir_shader *shader, nir_lower_gs_intrinsics_flags options);
4961 
4962 typedef unsigned (*nir_lower_bit_size_callback)(const nir_instr *, void *);
4963 
4964 bool nir_lower_bit_size(nir_shader *shader,
4965                         nir_lower_bit_size_callback callback,
4966                         void *callback_data);
4967 bool nir_lower_64bit_phis(nir_shader *shader);
4968 
4969 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
4970 bool nir_lower_int64(nir_shader *shader);
4971 
4972 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
4973 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
4974                        nir_lower_doubles_options options);
4975 bool nir_lower_pack(nir_shader *shader);
4976 
4977 void nir_lower_mediump_outputs(nir_shader *nir);
4978 
4979 bool nir_lower_point_size(nir_shader *shader, float min, float max);
4980 
4981 typedef enum {
4982    nir_lower_interpolation_at_sample = (1 << 1),
4983    nir_lower_interpolation_at_offset = (1 << 2),
4984    nir_lower_interpolation_centroid  = (1 << 3),
4985    nir_lower_interpolation_pixel     = (1 << 4),
4986    nir_lower_interpolation_sample    = (1 << 5),
4987 } nir_lower_interpolation_options;
4988 
4989 bool nir_lower_interpolation(nir_shader *shader,
4990                              nir_lower_interpolation_options options);
4991 
4992 bool nir_lower_discard_to_demote(nir_shader *shader);
4993 
4994 bool nir_lower_memory_model(nir_shader *shader);
4995 
4996 bool nir_lower_goto_ifs(nir_shader *shader);
4997 
4998 bool nir_shader_uses_view_index(nir_shader *shader);
4999 bool nir_can_lower_multiview(nir_shader *shader);
5000 bool nir_lower_multiview(nir_shader *shader, uint32_t view_mask);
5001 
5002 bool nir_normalize_cubemap_coords(nir_shader *shader);
5003 
5004 void nir_live_ssa_defs_impl(nir_function_impl *impl);
5005 
5006 void nir_loop_analyze_impl(nir_function_impl *impl,
5007                            nir_variable_mode indirect_mask);
5008 
5009 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
5010 
5011 bool nir_repair_ssa_impl(nir_function_impl *impl);
5012 bool nir_repair_ssa(nir_shader *shader);
5013 
5014 void nir_convert_loop_to_lcssa(nir_loop *loop);
5015 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
5016 void nir_divergence_analysis(nir_shader *shader);
5017 bool nir_update_instr_divergence(nir_shader *shader, nir_instr *instr);
5018 
5019 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
5020  * registers.  If false, convert all values (even those not involved in a phi
5021  * node) to registers.
5022  */
5023 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
5024 
5025 bool nir_lower_phis_to_regs_block(nir_block *block);
5026 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
5027 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
5028 
5029 bool nir_lower_samplers(nir_shader *shader);
5030 bool nir_lower_ssbo(nir_shader *shader);
5031 
5032 /* This is here for unit tests. */
5033 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
5034 
5035 bool nir_opt_comparison_pre(nir_shader *shader);
5036 
5037 bool nir_opt_access(nir_shader *shader);
5038 bool nir_opt_algebraic(nir_shader *shader);
5039 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
5040 bool nir_opt_algebraic_late(nir_shader *shader);
5041 bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
5042 bool nir_opt_constant_folding(nir_shader *shader);
5043 
5044 /* Try to combine a and b into a.  Return true if combination was possible,
5045  * which will result in b being removed by the pass.  Return false if
5046  * combination wasn't possible.
5047  */
5048 typedef bool (*nir_combine_memory_barrier_cb)(
5049    nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
5050 
5051 bool nir_opt_combine_memory_barriers(nir_shader *shader,
5052                                      nir_combine_memory_barrier_cb combine_cb,
5053                                      void *data);
5054 
5055 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
5056 
5057 bool nir_copy_prop(nir_shader *shader);
5058 
5059 bool nir_opt_copy_prop_vars(nir_shader *shader);
5060 
5061 bool nir_opt_cse(nir_shader *shader);
5062 
5063 bool nir_opt_dce(nir_shader *shader);
5064 
5065 bool nir_opt_dead_cf(nir_shader *shader);
5066 
5067 bool nir_opt_dead_write_vars(nir_shader *shader);
5068 
5069 bool nir_opt_deref_impl(nir_function_impl *impl);
5070 bool nir_opt_deref(nir_shader *shader);
5071 
5072 bool nir_opt_find_array_copies(nir_shader *shader);
5073 
5074 bool nir_opt_gcm(nir_shader *shader, bool value_number);
5075 
5076 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
5077 
5078 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
5079 
5080 bool nir_opt_intrinsics(nir_shader *shader);
5081 
5082 bool nir_opt_large_constants(nir_shader *shader,
5083                              glsl_type_size_align_func size_align,
5084                              unsigned threshold);
5085 
5086 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
5087 
5088 typedef enum {
5089     nir_move_const_undef = (1 << 0),
5090     nir_move_load_ubo    = (1 << 1),
5091     nir_move_load_input  = (1 << 2),
5092     nir_move_comparisons = (1 << 3),
5093     nir_move_copies      = (1 << 4),
5094 } nir_move_options;
5095 
5096 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
5097 
5098 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
5099 
5100 bool nir_opt_move(nir_shader *shader, nir_move_options options);
5101 
5102 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
5103                              bool indirect_load_ok, bool expensive_alu_ok);
5104 
5105 bool nir_opt_rematerialize_compares(nir_shader *shader);
5106 
5107 bool nir_opt_remove_phis(nir_shader *shader);
5108 bool nir_opt_remove_phis_block(nir_block *block);
5109 
5110 bool nir_opt_shrink_vectors(nir_shader *shader);
5111 
5112 bool nir_opt_trivial_continues(nir_shader *shader);
5113 
5114 bool nir_opt_undef(nir_shader *shader);
5115 
5116 bool nir_opt_uniform_atomics(nir_shader *shader);
5117 
5118 typedef bool (*nir_opt_vectorize_cb)(const nir_instr *a, const nir_instr *b,
5119                                      void *data);
5120 bool nir_opt_vectorize(nir_shader *shader, nir_opt_vectorize_cb filter,
5121                        void *data);
5122 
5123 bool nir_opt_conditional_discard(nir_shader *shader);
5124 
5125 typedef bool (*nir_should_vectorize_mem_func)(unsigned align_mul,
5126                                               unsigned align_offset,
5127                                               unsigned bit_size,
5128                                               unsigned num_components,
5129                                               nir_intrinsic_instr *low, nir_intrinsic_instr *high);
5130 
5131 bool nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes,
5132                                   nir_should_vectorize_mem_func callback,
5133                                   nir_variable_mode robust_modes);
5134 
5135 void nir_sweep(nir_shader *shader);
5136 
5137 void nir_remap_dual_slot_attributes(nir_shader *shader,
5138                                     uint64_t *dual_slot_inputs);
5139 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
5140 
5141 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
5142 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
5143 
5144 static inline bool
nir_variable_is_in_ubo(const nir_variable * var)5145 nir_variable_is_in_ubo(const nir_variable *var)
5146 {
5147    return (var->data.mode == nir_var_mem_ubo &&
5148            var->interface_type != NULL);
5149 }
5150 
5151 static inline bool
nir_variable_is_in_ssbo(const nir_variable * var)5152 nir_variable_is_in_ssbo(const nir_variable *var)
5153 {
5154    return (var->data.mode == nir_var_mem_ssbo &&
5155            var->interface_type != NULL);
5156 }
5157 
5158 static inline bool
nir_variable_is_in_block(const nir_variable * var)5159 nir_variable_is_in_block(const nir_variable *var)
5160 {
5161    return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
5162 }
5163 
5164 typedef struct nir_unsigned_upper_bound_config {
5165    unsigned min_subgroup_size;
5166    unsigned max_subgroup_size;
5167    unsigned max_work_group_invocations;
5168    unsigned max_work_group_count[3];
5169    unsigned max_work_group_size[3];
5170 
5171    uint32_t vertex_attrib_max[32];
5172 } nir_unsigned_upper_bound_config;
5173 
5174 uint32_t
5175 nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
5176                          nir_ssa_scalar scalar,
5177                          const nir_unsigned_upper_bound_config *config);
5178 
5179 bool
5180 nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
5181                             nir_ssa_scalar ssa, unsigned const_val,
5182                             const nir_unsigned_upper_bound_config *config);
5183 
5184 #ifdef __cplusplus
5185 } /* extern "C" */
5186 #endif
5187 
5188 #endif /* NIR_H */
5189