1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class Module; 50 class SwitchInst; 51 class Twine; 52 class Value; 53 } 54 55 namespace clang { 56 class ASTContext; 57 class BlockDecl; 58 class CXXDestructorDecl; 59 class CXXForRangeStmt; 60 class CXXTryStmt; 61 class Decl; 62 class LabelDecl; 63 class EnumConstantDecl; 64 class FunctionDecl; 65 class FunctionProtoType; 66 class LabelStmt; 67 class ObjCContainerDecl; 68 class ObjCInterfaceDecl; 69 class ObjCIvarDecl; 70 class ObjCMethodDecl; 71 class ObjCImplementationDecl; 72 class ObjCPropertyImplDecl; 73 class TargetInfo; 74 class VarDecl; 75 class ObjCForCollectionStmt; 76 class ObjCAtTryStmt; 77 class ObjCAtThrowStmt; 78 class ObjCAtSynchronizedStmt; 79 class ObjCAutoreleasePoolStmt; 80 class OMPUseDevicePtrClause; 81 class OMPUseDeviceAddrClause; 82 class ReturnsNonNullAttr; 83 class SVETypeFlags; 84 class OMPExecutableDirective; 85 86 namespace analyze_os_log { 87 class OSLogBufferLayout; 88 } 89 90 namespace CodeGen { 91 class CodeGenTypes; 92 class CGCallee; 93 class CGFunctionInfo; 94 class CGRecordLayout; 95 class CGBlockInfo; 96 class CGCXXABI; 97 class BlockByrefHelpers; 98 class BlockByrefInfo; 99 class BlockFlags; 100 class BlockFieldFlags; 101 class RegionCodeGenTy; 102 class TargetCodeGenInfo; 103 struct OMPTaskDataTy; 104 struct CGCoroData; 105 106 /// The kind of evaluation to perform on values of a particular 107 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 108 /// CGExprAgg? 109 /// 110 /// TODO: should vectors maybe be split out into their own thing? 111 enum TypeEvaluationKind { 112 TEK_Scalar, 113 TEK_Complex, 114 TEK_Aggregate 115 }; 116 117 #define LIST_SANITIZER_CHECKS \ 118 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 119 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 120 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 121 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 122 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 123 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 124 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 125 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 126 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 127 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 128 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 129 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 130 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 131 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 132 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 133 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 134 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 135 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 136 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 137 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 138 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 139 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 140 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 141 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 142 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 143 144 enum SanitizerHandler { 145 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 146 LIST_SANITIZER_CHECKS 147 #undef SANITIZER_CHECK 148 }; 149 150 /// Helper class with most of the code for saving a value for a 151 /// conditional expression cleanup. 152 struct DominatingLLVMValue { 153 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 154 155 /// Answer whether the given value needs extra work to be saved. needsSavingDominatingLLVMValue156 static bool needsSaving(llvm::Value *value) { 157 // If it's not an instruction, we don't need to save. 158 if (!isa<llvm::Instruction>(value)) return false; 159 160 // If it's an instruction in the entry block, we don't need to save. 161 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 162 return (block != &block->getParent()->getEntryBlock()); 163 } 164 165 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 166 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 167 }; 168 169 /// A partial specialization of DominatingValue for llvm::Values that 170 /// might be llvm::Instructions. 171 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 172 typedef T *type; 173 static type restore(CodeGenFunction &CGF, saved_type value) { 174 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 175 } 176 }; 177 178 /// A specialization of DominatingValue for Address. 179 template <> struct DominatingValue<Address> { 180 typedef Address type; 181 182 struct saved_type { 183 DominatingLLVMValue::saved_type SavedValue; 184 CharUnits Alignment; 185 }; 186 187 static bool needsSaving(type value) { 188 return DominatingLLVMValue::needsSaving(value.getPointer()); 189 } 190 static saved_type save(CodeGenFunction &CGF, type value) { 191 return { DominatingLLVMValue::save(CGF, value.getPointer()), 192 value.getAlignment() }; 193 } 194 static type restore(CodeGenFunction &CGF, saved_type value) { 195 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 196 value.Alignment); 197 } 198 }; 199 200 /// A specialization of DominatingValue for RValue. 201 template <> struct DominatingValue<RValue> { 202 typedef RValue type; 203 class saved_type { 204 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 205 AggregateAddress, ComplexAddress }; 206 207 llvm::Value *Value; 208 unsigned K : 3; 209 unsigned Align : 29; 210 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 211 : Value(v), K(k), Align(a) {} 212 213 public: 214 static bool needsSaving(RValue value); 215 static saved_type save(CodeGenFunction &CGF, RValue value); 216 RValue restore(CodeGenFunction &CGF); 217 218 // implementations in CGCleanup.cpp 219 }; 220 221 static bool needsSaving(type value) { 222 return saved_type::needsSaving(value); 223 } 224 static saved_type save(CodeGenFunction &CGF, type value) { 225 return saved_type::save(CGF, value); 226 } 227 static type restore(CodeGenFunction &CGF, saved_type value) { 228 return value.restore(CGF); 229 } 230 }; 231 232 /// CodeGenFunction - This class organizes the per-function state that is used 233 /// while generating LLVM code. 234 class CodeGenFunction : public CodeGenTypeCache { 235 CodeGenFunction(const CodeGenFunction &) = delete; 236 void operator=(const CodeGenFunction &) = delete; 237 238 friend class CGCXXABI; 239 public: 240 /// A jump destination is an abstract label, branching to which may 241 /// require a jump out through normal cleanups. 242 struct JumpDest { 243 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 244 JumpDest(llvm::BasicBlock *Block, 245 EHScopeStack::stable_iterator Depth, 246 unsigned Index) 247 : Block(Block), ScopeDepth(Depth), Index(Index) {} 248 249 bool isValid() const { return Block != nullptr; } 250 llvm::BasicBlock *getBlock() const { return Block; } 251 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 252 unsigned getDestIndex() const { return Index; } 253 254 // This should be used cautiously. 255 void setScopeDepth(EHScopeStack::stable_iterator depth) { 256 ScopeDepth = depth; 257 } 258 259 private: 260 llvm::BasicBlock *Block; 261 EHScopeStack::stable_iterator ScopeDepth; 262 unsigned Index; 263 }; 264 265 CodeGenModule &CGM; // Per-module state. 266 const TargetInfo &Target; 267 268 // For EH/SEH outlined funclets, this field points to parent's CGF 269 CodeGenFunction *ParentCGF = nullptr; 270 271 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 272 LoopInfoStack LoopStack; 273 CGBuilderTy Builder; 274 275 // Stores variables for which we can't generate correct lifetime markers 276 // because of jumps. 277 VarBypassDetector Bypasses; 278 279 // CodeGen lambda for loops and support for ordered clause 280 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 281 JumpDest)> 282 CodeGenLoopTy; 283 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 284 const unsigned, const bool)> 285 CodeGenOrderedTy; 286 287 // Codegen lambda for loop bounds in worksharing loop constructs 288 typedef llvm::function_ref<std::pair<LValue, LValue>( 289 CodeGenFunction &, const OMPExecutableDirective &S)> 290 CodeGenLoopBoundsTy; 291 292 // Codegen lambda for loop bounds in dispatch-based loop implementation 293 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 294 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 295 Address UB)> 296 CodeGenDispatchBoundsTy; 297 298 /// CGBuilder insert helper. This function is called after an 299 /// instruction is created using Builder. 300 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 301 llvm::BasicBlock *BB, 302 llvm::BasicBlock::iterator InsertPt) const; 303 304 /// CurFuncDecl - Holds the Decl for the current outermost 305 /// non-closure context. 306 const Decl *CurFuncDecl; 307 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 308 const Decl *CurCodeDecl; 309 const CGFunctionInfo *CurFnInfo; 310 QualType FnRetTy; 311 llvm::Function *CurFn = nullptr; 312 313 // Holds coroutine data if the current function is a coroutine. We use a 314 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 315 // in this header. 316 struct CGCoroInfo { 317 std::unique_ptr<CGCoroData> Data; 318 CGCoroInfo(); 319 ~CGCoroInfo(); 320 }; 321 CGCoroInfo CurCoro; 322 323 bool isCoroutine() const { 324 return CurCoro.Data != nullptr; 325 } 326 327 /// CurGD - The GlobalDecl for the current function being compiled. 328 GlobalDecl CurGD; 329 330 /// PrologueCleanupDepth - The cleanup depth enclosing all the 331 /// cleanups associated with the parameters. 332 EHScopeStack::stable_iterator PrologueCleanupDepth; 333 334 /// ReturnBlock - Unified return block. 335 JumpDest ReturnBlock; 336 337 /// ReturnValue - The temporary alloca to hold the return 338 /// value. This is invalid iff the function has no return value. 339 Address ReturnValue = Address::invalid(); 340 341 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 342 /// This is invalid if sret is not in use. 343 Address ReturnValuePointer = Address::invalid(); 344 345 /// If a return statement is being visited, this holds the return statment's 346 /// result expression. 347 const Expr *RetExpr = nullptr; 348 349 /// Return true if a label was seen in the current scope. 350 bool hasLabelBeenSeenInCurrentScope() const { 351 if (CurLexicalScope) 352 return CurLexicalScope->hasLabels(); 353 return !LabelMap.empty(); 354 } 355 356 /// AllocaInsertPoint - This is an instruction in the entry block before which 357 /// we prefer to insert allocas. 358 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 359 360 /// API for captured statement code generation. 361 class CGCapturedStmtInfo { 362 public: 363 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 364 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 365 explicit CGCapturedStmtInfo(const CapturedStmt &S, 366 CapturedRegionKind K = CR_Default) 367 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 368 369 RecordDecl::field_iterator Field = 370 S.getCapturedRecordDecl()->field_begin(); 371 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 372 E = S.capture_end(); 373 I != E; ++I, ++Field) { 374 if (I->capturesThis()) 375 CXXThisFieldDecl = *Field; 376 else if (I->capturesVariable()) 377 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 378 else if (I->capturesVariableByCopy()) 379 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 380 } 381 } 382 383 virtual ~CGCapturedStmtInfo(); 384 385 CapturedRegionKind getKind() const { return Kind; } 386 387 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 388 // Retrieve the value of the context parameter. 389 virtual llvm::Value *getContextValue() const { return ThisValue; } 390 391 /// Lookup the captured field decl for a variable. 392 virtual const FieldDecl *lookup(const VarDecl *VD) const { 393 return CaptureFields.lookup(VD->getCanonicalDecl()); 394 } 395 396 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 397 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 398 399 static bool classof(const CGCapturedStmtInfo *) { 400 return true; 401 } 402 403 /// Emit the captured statement body. 404 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 405 CGF.incrementProfileCounter(S); 406 CGF.EmitStmt(S); 407 } 408 409 /// Get the name of the capture helper. 410 virtual StringRef getHelperName() const { return "__captured_stmt"; } 411 412 private: 413 /// The kind of captured statement being generated. 414 CapturedRegionKind Kind; 415 416 /// Keep the map between VarDecl and FieldDecl. 417 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 418 419 /// The base address of the captured record, passed in as the first 420 /// argument of the parallel region function. 421 llvm::Value *ThisValue; 422 423 /// Captured 'this' type. 424 FieldDecl *CXXThisFieldDecl; 425 }; 426 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 427 428 /// RAII for correct setting/restoring of CapturedStmtInfo. 429 class CGCapturedStmtRAII { 430 private: 431 CodeGenFunction &CGF; 432 CGCapturedStmtInfo *PrevCapturedStmtInfo; 433 public: 434 CGCapturedStmtRAII(CodeGenFunction &CGF, 435 CGCapturedStmtInfo *NewCapturedStmtInfo) 436 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 437 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 438 } 439 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 440 }; 441 442 /// An abstract representation of regular/ObjC call/message targets. 443 class AbstractCallee { 444 /// The function declaration of the callee. 445 const Decl *CalleeDecl; 446 447 public: 448 AbstractCallee() : CalleeDecl(nullptr) {} 449 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 450 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 451 bool hasFunctionDecl() const { 452 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 453 } 454 const Decl *getDecl() const { return CalleeDecl; } 455 unsigned getNumParams() const { 456 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 457 return FD->getNumParams(); 458 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 459 } 460 const ParmVarDecl *getParamDecl(unsigned I) const { 461 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 462 return FD->getParamDecl(I); 463 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 464 } 465 }; 466 467 /// Sanitizers enabled for this function. 468 SanitizerSet SanOpts; 469 470 /// True if CodeGen currently emits code implementing sanitizer checks. 471 bool IsSanitizerScope = false; 472 473 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 474 class SanitizerScope { 475 CodeGenFunction *CGF; 476 public: 477 SanitizerScope(CodeGenFunction *CGF); 478 ~SanitizerScope(); 479 }; 480 481 /// In C++, whether we are code generating a thunk. This controls whether we 482 /// should emit cleanups. 483 bool CurFuncIsThunk = false; 484 485 /// In ARC, whether we should autorelease the return value. 486 bool AutoreleaseResult = false; 487 488 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 489 /// potentially set the return value. 490 bool SawAsmBlock = false; 491 492 const NamedDecl *CurSEHParent = nullptr; 493 494 /// True if the current function is an outlined SEH helper. This can be a 495 /// finally block or filter expression. 496 bool IsOutlinedSEHHelper = false; 497 498 /// True if CodeGen currently emits code inside presereved access index 499 /// region. 500 bool IsInPreservedAIRegion = false; 501 502 /// True if the current statement has nomerge attribute. 503 bool InNoMergeAttributedStmt = false; 504 505 /// True if the current function should be marked mustprogress. 506 bool FnIsMustProgress = false; 507 508 /// True if the C++ Standard Requires Progress. 509 bool CPlusPlusWithProgress() { 510 return getLangOpts().CPlusPlus11 || getLangOpts().CPlusPlus14 || 511 getLangOpts().CPlusPlus17 || getLangOpts().CPlusPlus20; 512 } 513 514 /// True if the C Standard Requires Progress. 515 bool CWithProgress() { 516 return getLangOpts().C11 || getLangOpts().C17 || getLangOpts().C2x; 517 } 518 519 /// True if the language standard requires progress in functions or 520 /// in infinite loops with non-constant conditionals. 521 bool LanguageRequiresProgress() { 522 return CWithProgress() || CPlusPlusWithProgress(); 523 } 524 525 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 526 llvm::Value *BlockPointer = nullptr; 527 528 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 529 FieldDecl *LambdaThisCaptureField = nullptr; 530 531 /// A mapping from NRVO variables to the flags used to indicate 532 /// when the NRVO has been applied to this variable. 533 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 534 535 EHScopeStack EHStack; 536 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 537 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 538 539 llvm::Instruction *CurrentFuncletPad = nullptr; 540 541 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 542 llvm::Value *Addr; 543 llvm::Value *Size; 544 545 public: 546 CallLifetimeEnd(Address addr, llvm::Value *size) 547 : Addr(addr.getPointer()), Size(size) {} 548 549 void Emit(CodeGenFunction &CGF, Flags flags) override { 550 CGF.EmitLifetimeEnd(Size, Addr); 551 } 552 }; 553 554 /// Header for data within LifetimeExtendedCleanupStack. 555 struct LifetimeExtendedCleanupHeader { 556 /// The size of the following cleanup object. 557 unsigned Size; 558 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 559 unsigned Kind : 31; 560 /// Whether this is a conditional cleanup. 561 unsigned IsConditional : 1; 562 563 size_t getSize() const { return Size; } 564 CleanupKind getKind() const { return (CleanupKind)Kind; } 565 bool isConditional() const { return IsConditional; } 566 }; 567 568 /// i32s containing the indexes of the cleanup destinations. 569 Address NormalCleanupDest = Address::invalid(); 570 571 unsigned NextCleanupDestIndex = 1; 572 573 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 574 llvm::BasicBlock *EHResumeBlock = nullptr; 575 576 /// The exception slot. All landing pads write the current exception pointer 577 /// into this alloca. 578 llvm::Value *ExceptionSlot = nullptr; 579 580 /// The selector slot. Under the MandatoryCleanup model, all landing pads 581 /// write the current selector value into this alloca. 582 llvm::AllocaInst *EHSelectorSlot = nullptr; 583 584 /// A stack of exception code slots. Entering an __except block pushes a slot 585 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 586 /// a value from the top of the stack. 587 SmallVector<Address, 1> SEHCodeSlotStack; 588 589 /// Value returned by __exception_info intrinsic. 590 llvm::Value *SEHInfo = nullptr; 591 592 /// Emits a landing pad for the current EH stack. 593 llvm::BasicBlock *EmitLandingPad(); 594 595 llvm::BasicBlock *getInvokeDestImpl(); 596 597 /// Parent loop-based directive for scan directive. 598 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 599 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 600 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 601 llvm::BasicBlock *OMPScanExitBlock = nullptr; 602 llvm::BasicBlock *OMPScanDispatch = nullptr; 603 bool OMPFirstScanLoop = false; 604 605 /// Manages parent directive for scan directives. 606 class ParentLoopDirectiveForScanRegion { 607 CodeGenFunction &CGF; 608 const OMPExecutableDirective *ParentLoopDirectiveForScan; 609 610 public: 611 ParentLoopDirectiveForScanRegion( 612 CodeGenFunction &CGF, 613 const OMPExecutableDirective &ParentLoopDirectiveForScan) 614 : CGF(CGF), 615 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 616 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 617 } 618 ~ParentLoopDirectiveForScanRegion() { 619 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 620 } 621 }; 622 623 template <class T> 624 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 625 return DominatingValue<T>::save(*this, value); 626 } 627 628 class CGFPOptionsRAII { 629 public: 630 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 631 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 632 ~CGFPOptionsRAII(); 633 634 private: 635 void ConstructorHelper(FPOptions FPFeatures); 636 CodeGenFunction &CGF; 637 FPOptions OldFPFeatures; 638 llvm::fp::ExceptionBehavior OldExcept; 639 llvm::RoundingMode OldRounding; 640 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 641 }; 642 FPOptions CurFPFeatures; 643 644 public: 645 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 646 /// rethrows. 647 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 648 649 /// A class controlling the emission of a finally block. 650 class FinallyInfo { 651 /// Where the catchall's edge through the cleanup should go. 652 JumpDest RethrowDest; 653 654 /// A function to call to enter the catch. 655 llvm::FunctionCallee BeginCatchFn; 656 657 /// An i1 variable indicating whether or not the @finally is 658 /// running for an exception. 659 llvm::AllocaInst *ForEHVar; 660 661 /// An i8* variable into which the exception pointer to rethrow 662 /// has been saved. 663 llvm::AllocaInst *SavedExnVar; 664 665 public: 666 void enter(CodeGenFunction &CGF, const Stmt *Finally, 667 llvm::FunctionCallee beginCatchFn, 668 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 669 void exit(CodeGenFunction &CGF); 670 }; 671 672 /// Returns true inside SEH __try blocks. 673 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 674 675 /// Returns true while emitting a cleanuppad. 676 bool isCleanupPadScope() const { 677 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 678 } 679 680 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 681 /// current full-expression. Safe against the possibility that 682 /// we're currently inside a conditionally-evaluated expression. 683 template <class T, class... As> 684 void pushFullExprCleanup(CleanupKind kind, As... A) { 685 // If we're not in a conditional branch, or if none of the 686 // arguments requires saving, then use the unconditional cleanup. 687 if (!isInConditionalBranch()) 688 return EHStack.pushCleanup<T>(kind, A...); 689 690 // Stash values in a tuple so we can guarantee the order of saves. 691 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 692 SavedTuple Saved{saveValueInCond(A)...}; 693 694 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 695 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 696 initFullExprCleanup(); 697 } 698 699 /// Queue a cleanup to be pushed after finishing the current full-expression, 700 /// potentially with an active flag. 701 template <class T, class... As> 702 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 703 if (!isInConditionalBranch()) 704 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 705 A...); 706 707 Address ActiveFlag = createCleanupActiveFlag(); 708 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 709 "cleanup active flag should never need saving"); 710 711 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 712 SavedTuple Saved{saveValueInCond(A)...}; 713 714 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 715 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 716 } 717 718 template <class T, class... As> 719 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 720 Address ActiveFlag, As... A) { 721 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 722 ActiveFlag.isValid()}; 723 724 size_t OldSize = LifetimeExtendedCleanupStack.size(); 725 LifetimeExtendedCleanupStack.resize( 726 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 727 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 728 729 static_assert(sizeof(Header) % alignof(T) == 0, 730 "Cleanup will be allocated on misaligned address"); 731 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 732 new (Buffer) LifetimeExtendedCleanupHeader(Header); 733 new (Buffer + sizeof(Header)) T(A...); 734 if (Header.IsConditional) 735 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 736 } 737 738 /// Set up the last cleanup that was pushed as a conditional 739 /// full-expression cleanup. 740 void initFullExprCleanup() { 741 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 742 } 743 744 void initFullExprCleanupWithFlag(Address ActiveFlag); 745 Address createCleanupActiveFlag(); 746 747 /// PushDestructorCleanup - Push a cleanup to call the 748 /// complete-object destructor of an object of the given type at the 749 /// given address. Does nothing if T is not a C++ class type with a 750 /// non-trivial destructor. 751 void PushDestructorCleanup(QualType T, Address Addr); 752 753 /// PushDestructorCleanup - Push a cleanup to call the 754 /// complete-object variant of the given destructor on the object at 755 /// the given address. 756 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 757 Address Addr); 758 759 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 760 /// process all branch fixups. 761 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 762 763 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 764 /// The block cannot be reactivated. Pops it if it's the top of the 765 /// stack. 766 /// 767 /// \param DominatingIP - An instruction which is known to 768 /// dominate the current IP (if set) and which lies along 769 /// all paths of execution between the current IP and the 770 /// the point at which the cleanup comes into scope. 771 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 772 llvm::Instruction *DominatingIP); 773 774 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 775 /// Cannot be used to resurrect a deactivated cleanup. 776 /// 777 /// \param DominatingIP - An instruction which is known to 778 /// dominate the current IP (if set) and which lies along 779 /// all paths of execution between the current IP and the 780 /// the point at which the cleanup comes into scope. 781 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 782 llvm::Instruction *DominatingIP); 783 784 /// Enters a new scope for capturing cleanups, all of which 785 /// will be executed once the scope is exited. 786 class RunCleanupsScope { 787 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 788 size_t LifetimeExtendedCleanupStackSize; 789 bool OldDidCallStackSave; 790 protected: 791 bool PerformCleanup; 792 private: 793 794 RunCleanupsScope(const RunCleanupsScope &) = delete; 795 void operator=(const RunCleanupsScope &) = delete; 796 797 protected: 798 CodeGenFunction& CGF; 799 800 public: 801 /// Enter a new cleanup scope. 802 explicit RunCleanupsScope(CodeGenFunction &CGF) 803 : PerformCleanup(true), CGF(CGF) 804 { 805 CleanupStackDepth = CGF.EHStack.stable_begin(); 806 LifetimeExtendedCleanupStackSize = 807 CGF.LifetimeExtendedCleanupStack.size(); 808 OldDidCallStackSave = CGF.DidCallStackSave; 809 CGF.DidCallStackSave = false; 810 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 811 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 812 } 813 814 /// Exit this cleanup scope, emitting any accumulated cleanups. 815 ~RunCleanupsScope() { 816 if (PerformCleanup) 817 ForceCleanup(); 818 } 819 820 /// Determine whether this scope requires any cleanups. 821 bool requiresCleanups() const { 822 return CGF.EHStack.stable_begin() != CleanupStackDepth; 823 } 824 825 /// Force the emission of cleanups now, instead of waiting 826 /// until this object is destroyed. 827 /// \param ValuesToReload - A list of values that need to be available at 828 /// the insertion point after cleanup emission. If cleanup emission created 829 /// a shared cleanup block, these value pointers will be rewritten. 830 /// Otherwise, they not will be modified. 831 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 832 assert(PerformCleanup && "Already forced cleanup"); 833 CGF.DidCallStackSave = OldDidCallStackSave; 834 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 835 ValuesToReload); 836 PerformCleanup = false; 837 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 838 } 839 }; 840 841 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 842 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 843 EHScopeStack::stable_end(); 844 845 class LexicalScope : public RunCleanupsScope { 846 SourceRange Range; 847 SmallVector<const LabelDecl*, 4> Labels; 848 LexicalScope *ParentScope; 849 850 LexicalScope(const LexicalScope &) = delete; 851 void operator=(const LexicalScope &) = delete; 852 853 public: 854 /// Enter a new cleanup scope. 855 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 856 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 857 CGF.CurLexicalScope = this; 858 if (CGDebugInfo *DI = CGF.getDebugInfo()) 859 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 860 } 861 862 void addLabel(const LabelDecl *label) { 863 assert(PerformCleanup && "adding label to dead scope?"); 864 Labels.push_back(label); 865 } 866 867 /// Exit this cleanup scope, emitting any accumulated 868 /// cleanups. 869 ~LexicalScope() { 870 if (CGDebugInfo *DI = CGF.getDebugInfo()) 871 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 872 873 // If we should perform a cleanup, force them now. Note that 874 // this ends the cleanup scope before rescoping any labels. 875 if (PerformCleanup) { 876 ApplyDebugLocation DL(CGF, Range.getEnd()); 877 ForceCleanup(); 878 } 879 } 880 881 /// Force the emission of cleanups now, instead of waiting 882 /// until this object is destroyed. 883 void ForceCleanup() { 884 CGF.CurLexicalScope = ParentScope; 885 RunCleanupsScope::ForceCleanup(); 886 887 if (!Labels.empty()) 888 rescopeLabels(); 889 } 890 891 bool hasLabels() const { 892 return !Labels.empty(); 893 } 894 895 void rescopeLabels(); 896 }; 897 898 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 899 900 /// The class used to assign some variables some temporarily addresses. 901 class OMPMapVars { 902 DeclMapTy SavedLocals; 903 DeclMapTy SavedTempAddresses; 904 OMPMapVars(const OMPMapVars &) = delete; 905 void operator=(const OMPMapVars &) = delete; 906 907 public: 908 explicit OMPMapVars() = default; 909 ~OMPMapVars() { 910 assert(SavedLocals.empty() && "Did not restored original addresses."); 911 }; 912 913 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 914 /// function \p CGF. 915 /// \return true if at least one variable was set already, false otherwise. 916 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 917 Address TempAddr) { 918 LocalVD = LocalVD->getCanonicalDecl(); 919 // Only save it once. 920 if (SavedLocals.count(LocalVD)) return false; 921 922 // Copy the existing local entry to SavedLocals. 923 auto it = CGF.LocalDeclMap.find(LocalVD); 924 if (it != CGF.LocalDeclMap.end()) 925 SavedLocals.try_emplace(LocalVD, it->second); 926 else 927 SavedLocals.try_emplace(LocalVD, Address::invalid()); 928 929 // Generate the private entry. 930 QualType VarTy = LocalVD->getType(); 931 if (VarTy->isReferenceType()) { 932 Address Temp = CGF.CreateMemTemp(VarTy); 933 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 934 TempAddr = Temp; 935 } 936 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 937 938 return true; 939 } 940 941 /// Applies new addresses to the list of the variables. 942 /// \return true if at least one variable is using new address, false 943 /// otherwise. 944 bool apply(CodeGenFunction &CGF) { 945 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 946 SavedTempAddresses.clear(); 947 return !SavedLocals.empty(); 948 } 949 950 /// Restores original addresses of the variables. 951 void restore(CodeGenFunction &CGF) { 952 if (!SavedLocals.empty()) { 953 copyInto(SavedLocals, CGF.LocalDeclMap); 954 SavedLocals.clear(); 955 } 956 } 957 958 private: 959 /// Copy all the entries in the source map over the corresponding 960 /// entries in the destination, which must exist. 961 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 962 for (auto &Pair : Src) { 963 if (!Pair.second.isValid()) { 964 Dest.erase(Pair.first); 965 continue; 966 } 967 968 auto I = Dest.find(Pair.first); 969 if (I != Dest.end()) 970 I->second = Pair.second; 971 else 972 Dest.insert(Pair); 973 } 974 } 975 }; 976 977 /// The scope used to remap some variables as private in the OpenMP loop body 978 /// (or other captured region emitted without outlining), and to restore old 979 /// vars back on exit. 980 class OMPPrivateScope : public RunCleanupsScope { 981 OMPMapVars MappedVars; 982 OMPPrivateScope(const OMPPrivateScope &) = delete; 983 void operator=(const OMPPrivateScope &) = delete; 984 985 public: 986 /// Enter a new OpenMP private scope. 987 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 988 989 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 990 /// function for it to generate corresponding private variable. \p 991 /// PrivateGen returns an address of the generated private variable. 992 /// \return true if the variable is registered as private, false if it has 993 /// been privatized already. 994 bool addPrivate(const VarDecl *LocalVD, 995 const llvm::function_ref<Address()> PrivateGen) { 996 assert(PerformCleanup && "adding private to dead scope"); 997 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 998 } 999 1000 /// Privatizes local variables previously registered as private. 1001 /// Registration is separate from the actual privatization to allow 1002 /// initializers use values of the original variables, not the private one. 1003 /// This is important, for example, if the private variable is a class 1004 /// variable initialized by a constructor that references other private 1005 /// variables. But at initialization original variables must be used, not 1006 /// private copies. 1007 /// \return true if at least one variable was privatized, false otherwise. 1008 bool Privatize() { return MappedVars.apply(CGF); } 1009 1010 void ForceCleanup() { 1011 RunCleanupsScope::ForceCleanup(); 1012 MappedVars.restore(CGF); 1013 } 1014 1015 /// Exit scope - all the mapped variables are restored. 1016 ~OMPPrivateScope() { 1017 if (PerformCleanup) 1018 ForceCleanup(); 1019 } 1020 1021 /// Checks if the global variable is captured in current function. 1022 bool isGlobalVarCaptured(const VarDecl *VD) const { 1023 VD = VD->getCanonicalDecl(); 1024 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1025 } 1026 }; 1027 1028 /// Save/restore original map of previously emitted local vars in case when we 1029 /// need to duplicate emission of the same code several times in the same 1030 /// function for OpenMP code. 1031 class OMPLocalDeclMapRAII { 1032 CodeGenFunction &CGF; 1033 DeclMapTy SavedMap; 1034 1035 public: 1036 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1037 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1038 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1039 }; 1040 1041 /// Takes the old cleanup stack size and emits the cleanup blocks 1042 /// that have been added. 1043 void 1044 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1045 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1046 1047 /// Takes the old cleanup stack size and emits the cleanup blocks 1048 /// that have been added, then adds all lifetime-extended cleanups from 1049 /// the given position to the stack. 1050 void 1051 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1052 size_t OldLifetimeExtendedStackSize, 1053 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1054 1055 void ResolveBranchFixups(llvm::BasicBlock *Target); 1056 1057 /// The given basic block lies in the current EH scope, but may be a 1058 /// target of a potentially scope-crossing jump; get a stable handle 1059 /// to which we can perform this jump later. 1060 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1061 return JumpDest(Target, 1062 EHStack.getInnermostNormalCleanup(), 1063 NextCleanupDestIndex++); 1064 } 1065 1066 /// The given basic block lies in the current EH scope, but may be a 1067 /// target of a potentially scope-crossing jump; get a stable handle 1068 /// to which we can perform this jump later. 1069 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1070 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1071 } 1072 1073 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1074 /// block through the normal cleanup handling code (if any) and then 1075 /// on to \arg Dest. 1076 void EmitBranchThroughCleanup(JumpDest Dest); 1077 1078 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1079 /// specified destination obviously has no cleanups to run. 'false' is always 1080 /// a conservatively correct answer for this method. 1081 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1082 1083 /// popCatchScope - Pops the catch scope at the top of the EHScope 1084 /// stack, emitting any required code (other than the catch handlers 1085 /// themselves). 1086 void popCatchScope(); 1087 1088 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1089 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1090 llvm::BasicBlock * 1091 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1092 1093 /// An object to manage conditionally-evaluated expressions. 1094 class ConditionalEvaluation { 1095 llvm::BasicBlock *StartBB; 1096 1097 public: 1098 ConditionalEvaluation(CodeGenFunction &CGF) 1099 : StartBB(CGF.Builder.GetInsertBlock()) {} 1100 1101 void begin(CodeGenFunction &CGF) { 1102 assert(CGF.OutermostConditional != this); 1103 if (!CGF.OutermostConditional) 1104 CGF.OutermostConditional = this; 1105 } 1106 1107 void end(CodeGenFunction &CGF) { 1108 assert(CGF.OutermostConditional != nullptr); 1109 if (CGF.OutermostConditional == this) 1110 CGF.OutermostConditional = nullptr; 1111 } 1112 1113 /// Returns a block which will be executed prior to each 1114 /// evaluation of the conditional code. 1115 llvm::BasicBlock *getStartingBlock() const { 1116 return StartBB; 1117 } 1118 }; 1119 1120 /// isInConditionalBranch - Return true if we're currently emitting 1121 /// one branch or the other of a conditional expression. 1122 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1123 1124 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1125 assert(isInConditionalBranch()); 1126 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1127 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1128 store->setAlignment(addr.getAlignment().getAsAlign()); 1129 } 1130 1131 /// An RAII object to record that we're evaluating a statement 1132 /// expression. 1133 class StmtExprEvaluation { 1134 CodeGenFunction &CGF; 1135 1136 /// We have to save the outermost conditional: cleanups in a 1137 /// statement expression aren't conditional just because the 1138 /// StmtExpr is. 1139 ConditionalEvaluation *SavedOutermostConditional; 1140 1141 public: 1142 StmtExprEvaluation(CodeGenFunction &CGF) 1143 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1144 CGF.OutermostConditional = nullptr; 1145 } 1146 1147 ~StmtExprEvaluation() { 1148 CGF.OutermostConditional = SavedOutermostConditional; 1149 CGF.EnsureInsertPoint(); 1150 } 1151 }; 1152 1153 /// An object which temporarily prevents a value from being 1154 /// destroyed by aggressive peephole optimizations that assume that 1155 /// all uses of a value have been realized in the IR. 1156 class PeepholeProtection { 1157 llvm::Instruction *Inst; 1158 friend class CodeGenFunction; 1159 1160 public: 1161 PeepholeProtection() : Inst(nullptr) {} 1162 }; 1163 1164 /// A non-RAII class containing all the information about a bound 1165 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1166 /// this which makes individual mappings very simple; using this 1167 /// class directly is useful when you have a variable number of 1168 /// opaque values or don't want the RAII functionality for some 1169 /// reason. 1170 class OpaqueValueMappingData { 1171 const OpaqueValueExpr *OpaqueValue; 1172 bool BoundLValue; 1173 CodeGenFunction::PeepholeProtection Protection; 1174 1175 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1176 bool boundLValue) 1177 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1178 public: 1179 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1180 1181 static bool shouldBindAsLValue(const Expr *expr) { 1182 // gl-values should be bound as l-values for obvious reasons. 1183 // Records should be bound as l-values because IR generation 1184 // always keeps them in memory. Expressions of function type 1185 // act exactly like l-values but are formally required to be 1186 // r-values in C. 1187 return expr->isGLValue() || 1188 expr->getType()->isFunctionType() || 1189 hasAggregateEvaluationKind(expr->getType()); 1190 } 1191 1192 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1193 const OpaqueValueExpr *ov, 1194 const Expr *e) { 1195 if (shouldBindAsLValue(ov)) 1196 return bind(CGF, ov, CGF.EmitLValue(e)); 1197 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1198 } 1199 1200 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1201 const OpaqueValueExpr *ov, 1202 const LValue &lv) { 1203 assert(shouldBindAsLValue(ov)); 1204 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1205 return OpaqueValueMappingData(ov, true); 1206 } 1207 1208 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1209 const OpaqueValueExpr *ov, 1210 const RValue &rv) { 1211 assert(!shouldBindAsLValue(ov)); 1212 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1213 1214 OpaqueValueMappingData data(ov, false); 1215 1216 // Work around an extremely aggressive peephole optimization in 1217 // EmitScalarConversion which assumes that all other uses of a 1218 // value are extant. 1219 data.Protection = CGF.protectFromPeepholes(rv); 1220 1221 return data; 1222 } 1223 1224 bool isValid() const { return OpaqueValue != nullptr; } 1225 void clear() { OpaqueValue = nullptr; } 1226 1227 void unbind(CodeGenFunction &CGF) { 1228 assert(OpaqueValue && "no data to unbind!"); 1229 1230 if (BoundLValue) { 1231 CGF.OpaqueLValues.erase(OpaqueValue); 1232 } else { 1233 CGF.OpaqueRValues.erase(OpaqueValue); 1234 CGF.unprotectFromPeepholes(Protection); 1235 } 1236 } 1237 }; 1238 1239 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1240 class OpaqueValueMapping { 1241 CodeGenFunction &CGF; 1242 OpaqueValueMappingData Data; 1243 1244 public: 1245 static bool shouldBindAsLValue(const Expr *expr) { 1246 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1247 } 1248 1249 /// Build the opaque value mapping for the given conditional 1250 /// operator if it's the GNU ?: extension. This is a common 1251 /// enough pattern that the convenience operator is really 1252 /// helpful. 1253 /// 1254 OpaqueValueMapping(CodeGenFunction &CGF, 1255 const AbstractConditionalOperator *op) : CGF(CGF) { 1256 if (isa<ConditionalOperator>(op)) 1257 // Leave Data empty. 1258 return; 1259 1260 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1261 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1262 e->getCommon()); 1263 } 1264 1265 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1266 /// expression is set to the expression the OVE represents. 1267 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1268 : CGF(CGF) { 1269 if (OV) { 1270 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1271 "for OVE with no source expression"); 1272 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1273 } 1274 } 1275 1276 OpaqueValueMapping(CodeGenFunction &CGF, 1277 const OpaqueValueExpr *opaqueValue, 1278 LValue lvalue) 1279 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1280 } 1281 1282 OpaqueValueMapping(CodeGenFunction &CGF, 1283 const OpaqueValueExpr *opaqueValue, 1284 RValue rvalue) 1285 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1286 } 1287 1288 void pop() { 1289 Data.unbind(CGF); 1290 Data.clear(); 1291 } 1292 1293 ~OpaqueValueMapping() { 1294 if (Data.isValid()) Data.unbind(CGF); 1295 } 1296 }; 1297 1298 private: 1299 CGDebugInfo *DebugInfo; 1300 /// Used to create unique names for artificial VLA size debug info variables. 1301 unsigned VLAExprCounter = 0; 1302 bool DisableDebugInfo = false; 1303 1304 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1305 /// calling llvm.stacksave for multiple VLAs in the same scope. 1306 bool DidCallStackSave = false; 1307 1308 /// IndirectBranch - The first time an indirect goto is seen we create a block 1309 /// with an indirect branch. Every time we see the address of a label taken, 1310 /// we add the label to the indirect goto. Every subsequent indirect goto is 1311 /// codegen'd as a jump to the IndirectBranch's basic block. 1312 llvm::IndirectBrInst *IndirectBranch = nullptr; 1313 1314 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1315 /// decls. 1316 DeclMapTy LocalDeclMap; 1317 1318 // Keep track of the cleanups for callee-destructed parameters pushed to the 1319 // cleanup stack so that they can be deactivated later. 1320 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1321 CalleeDestructedParamCleanups; 1322 1323 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1324 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1325 /// parameter. 1326 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1327 SizeArguments; 1328 1329 /// Track escaped local variables with auto storage. Used during SEH 1330 /// outlining to produce a call to llvm.localescape. 1331 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1332 1333 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1334 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1335 1336 // BreakContinueStack - This keeps track of where break and continue 1337 // statements should jump to. 1338 struct BreakContinue { 1339 BreakContinue(JumpDest Break, JumpDest Continue) 1340 : BreakBlock(Break), ContinueBlock(Continue) {} 1341 1342 JumpDest BreakBlock; 1343 JumpDest ContinueBlock; 1344 }; 1345 SmallVector<BreakContinue, 8> BreakContinueStack; 1346 1347 /// Handles cancellation exit points in OpenMP-related constructs. 1348 class OpenMPCancelExitStack { 1349 /// Tracks cancellation exit point and join point for cancel-related exit 1350 /// and normal exit. 1351 struct CancelExit { 1352 CancelExit() = default; 1353 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1354 JumpDest ContBlock) 1355 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1356 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1357 /// true if the exit block has been emitted already by the special 1358 /// emitExit() call, false if the default codegen is used. 1359 bool HasBeenEmitted = false; 1360 JumpDest ExitBlock; 1361 JumpDest ContBlock; 1362 }; 1363 1364 SmallVector<CancelExit, 8> Stack; 1365 1366 public: 1367 OpenMPCancelExitStack() : Stack(1) {} 1368 ~OpenMPCancelExitStack() = default; 1369 /// Fetches the exit block for the current OpenMP construct. 1370 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1371 /// Emits exit block with special codegen procedure specific for the related 1372 /// OpenMP construct + emits code for normal construct cleanup. 1373 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1374 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1375 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1376 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1377 assert(CGF.HaveInsertPoint()); 1378 assert(!Stack.back().HasBeenEmitted); 1379 auto IP = CGF.Builder.saveAndClearIP(); 1380 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1381 CodeGen(CGF); 1382 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1383 CGF.Builder.restoreIP(IP); 1384 Stack.back().HasBeenEmitted = true; 1385 } 1386 CodeGen(CGF); 1387 } 1388 /// Enter the cancel supporting \a Kind construct. 1389 /// \param Kind OpenMP directive that supports cancel constructs. 1390 /// \param HasCancel true, if the construct has inner cancel directive, 1391 /// false otherwise. 1392 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1393 Stack.push_back({Kind, 1394 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1395 : JumpDest(), 1396 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1397 : JumpDest()}); 1398 } 1399 /// Emits default exit point for the cancel construct (if the special one 1400 /// has not be used) + join point for cancel/normal exits. 1401 void exit(CodeGenFunction &CGF) { 1402 if (getExitBlock().isValid()) { 1403 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1404 bool HaveIP = CGF.HaveInsertPoint(); 1405 if (!Stack.back().HasBeenEmitted) { 1406 if (HaveIP) 1407 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1408 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1409 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1410 } 1411 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1412 if (!HaveIP) { 1413 CGF.Builder.CreateUnreachable(); 1414 CGF.Builder.ClearInsertionPoint(); 1415 } 1416 } 1417 Stack.pop_back(); 1418 } 1419 }; 1420 OpenMPCancelExitStack OMPCancelStack; 1421 1422 /// Calculate branch weights for the likelihood attribute 1423 llvm::MDNode *createBranchWeights(Stmt::Likelihood LH) const; 1424 1425 CodeGenPGO PGO; 1426 1427 /// Calculate branch weights appropriate for PGO data 1428 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1429 uint64_t FalseCount) const; 1430 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1431 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1432 uint64_t LoopCount) const; 1433 1434 /// Calculate the branch weight for PGO data or the likelihood attribute. 1435 /// The function tries to get the weight of \ref createProfileWeightsForLoop. 1436 /// If that fails it gets the weight of \ref createBranchWeights. 1437 llvm::MDNode *createProfileOrBranchWeightsForLoop(const Stmt *Cond, 1438 uint64_t LoopCount, 1439 const Stmt *Body) const; 1440 1441 public: 1442 /// Increment the profiler's counter for the given statement by \p StepV. 1443 /// If \p StepV is null, the default increment is 1. 1444 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1445 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1446 PGO.emitCounterIncrement(Builder, S, StepV); 1447 PGO.setCurrentStmt(S); 1448 } 1449 1450 /// Get the profiler's count for the given statement. 1451 uint64_t getProfileCount(const Stmt *S) { 1452 Optional<uint64_t> Count = PGO.getStmtCount(S); 1453 if (!Count.hasValue()) 1454 return 0; 1455 return *Count; 1456 } 1457 1458 /// Set the profiler's current count. 1459 void setCurrentProfileCount(uint64_t Count) { 1460 PGO.setCurrentRegionCount(Count); 1461 } 1462 1463 /// Get the profiler's current count. This is generally the count for the most 1464 /// recently incremented counter. 1465 uint64_t getCurrentProfileCount() { 1466 return PGO.getCurrentRegionCount(); 1467 } 1468 1469 private: 1470 1471 /// SwitchInsn - This is nearest current switch instruction. It is null if 1472 /// current context is not in a switch. 1473 llvm::SwitchInst *SwitchInsn = nullptr; 1474 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1475 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1476 1477 /// The likelihood attributes of the SwitchCase. 1478 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1479 1480 /// CaseRangeBlock - This block holds if condition check for last case 1481 /// statement range in current switch instruction. 1482 llvm::BasicBlock *CaseRangeBlock = nullptr; 1483 1484 /// OpaqueLValues - Keeps track of the current set of opaque value 1485 /// expressions. 1486 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1487 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1488 1489 // VLASizeMap - This keeps track of the associated size for each VLA type. 1490 // We track this by the size expression rather than the type itself because 1491 // in certain situations, like a const qualifier applied to an VLA typedef, 1492 // multiple VLA types can share the same size expression. 1493 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1494 // enter/leave scopes. 1495 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1496 1497 /// A block containing a single 'unreachable' instruction. Created 1498 /// lazily by getUnreachableBlock(). 1499 llvm::BasicBlock *UnreachableBlock = nullptr; 1500 1501 /// Counts of the number return expressions in the function. 1502 unsigned NumReturnExprs = 0; 1503 1504 /// Count the number of simple (constant) return expressions in the function. 1505 unsigned NumSimpleReturnExprs = 0; 1506 1507 /// The last regular (non-return) debug location (breakpoint) in the function. 1508 SourceLocation LastStopPoint; 1509 1510 public: 1511 /// Source location information about the default argument or member 1512 /// initializer expression we're evaluating, if any. 1513 CurrentSourceLocExprScope CurSourceLocExprScope; 1514 using SourceLocExprScopeGuard = 1515 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1516 1517 /// A scope within which we are constructing the fields of an object which 1518 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1519 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1520 class FieldConstructionScope { 1521 public: 1522 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1523 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1524 CGF.CXXDefaultInitExprThis = This; 1525 } 1526 ~FieldConstructionScope() { 1527 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1528 } 1529 1530 private: 1531 CodeGenFunction &CGF; 1532 Address OldCXXDefaultInitExprThis; 1533 }; 1534 1535 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1536 /// is overridden to be the object under construction. 1537 class CXXDefaultInitExprScope { 1538 public: 1539 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1540 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1541 OldCXXThisAlignment(CGF.CXXThisAlignment), 1542 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1543 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1544 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1545 } 1546 ~CXXDefaultInitExprScope() { 1547 CGF.CXXThisValue = OldCXXThisValue; 1548 CGF.CXXThisAlignment = OldCXXThisAlignment; 1549 } 1550 1551 public: 1552 CodeGenFunction &CGF; 1553 llvm::Value *OldCXXThisValue; 1554 CharUnits OldCXXThisAlignment; 1555 SourceLocExprScopeGuard SourceLocScope; 1556 }; 1557 1558 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1559 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1560 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1561 }; 1562 1563 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1564 /// current loop index is overridden. 1565 class ArrayInitLoopExprScope { 1566 public: 1567 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1568 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1569 CGF.ArrayInitIndex = Index; 1570 } 1571 ~ArrayInitLoopExprScope() { 1572 CGF.ArrayInitIndex = OldArrayInitIndex; 1573 } 1574 1575 private: 1576 CodeGenFunction &CGF; 1577 llvm::Value *OldArrayInitIndex; 1578 }; 1579 1580 class InlinedInheritingConstructorScope { 1581 public: 1582 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1583 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1584 OldCurCodeDecl(CGF.CurCodeDecl), 1585 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1586 OldCXXABIThisValue(CGF.CXXABIThisValue), 1587 OldCXXThisValue(CGF.CXXThisValue), 1588 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1589 OldCXXThisAlignment(CGF.CXXThisAlignment), 1590 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1591 OldCXXInheritedCtorInitExprArgs( 1592 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1593 CGF.CurGD = GD; 1594 CGF.CurFuncDecl = CGF.CurCodeDecl = 1595 cast<CXXConstructorDecl>(GD.getDecl()); 1596 CGF.CXXABIThisDecl = nullptr; 1597 CGF.CXXABIThisValue = nullptr; 1598 CGF.CXXThisValue = nullptr; 1599 CGF.CXXABIThisAlignment = CharUnits(); 1600 CGF.CXXThisAlignment = CharUnits(); 1601 CGF.ReturnValue = Address::invalid(); 1602 CGF.FnRetTy = QualType(); 1603 CGF.CXXInheritedCtorInitExprArgs.clear(); 1604 } 1605 ~InlinedInheritingConstructorScope() { 1606 CGF.CurGD = OldCurGD; 1607 CGF.CurFuncDecl = OldCurFuncDecl; 1608 CGF.CurCodeDecl = OldCurCodeDecl; 1609 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1610 CGF.CXXABIThisValue = OldCXXABIThisValue; 1611 CGF.CXXThisValue = OldCXXThisValue; 1612 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1613 CGF.CXXThisAlignment = OldCXXThisAlignment; 1614 CGF.ReturnValue = OldReturnValue; 1615 CGF.FnRetTy = OldFnRetTy; 1616 CGF.CXXInheritedCtorInitExprArgs = 1617 std::move(OldCXXInheritedCtorInitExprArgs); 1618 } 1619 1620 private: 1621 CodeGenFunction &CGF; 1622 GlobalDecl OldCurGD; 1623 const Decl *OldCurFuncDecl; 1624 const Decl *OldCurCodeDecl; 1625 ImplicitParamDecl *OldCXXABIThisDecl; 1626 llvm::Value *OldCXXABIThisValue; 1627 llvm::Value *OldCXXThisValue; 1628 CharUnits OldCXXABIThisAlignment; 1629 CharUnits OldCXXThisAlignment; 1630 Address OldReturnValue; 1631 QualType OldFnRetTy; 1632 CallArgList OldCXXInheritedCtorInitExprArgs; 1633 }; 1634 1635 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1636 // region body, and finalization codegen callbacks. This will class will also 1637 // contain privatization functions used by the privatization call backs 1638 // 1639 // TODO: this is temporary class for things that are being moved out of 1640 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1641 // utility function for use with the OMPBuilder. Once that move to use the 1642 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1643 // directly, or a new helper class that will contain functions used by both 1644 // this and the OMPBuilder 1645 1646 struct OMPBuilderCBHelpers { 1647 1648 OMPBuilderCBHelpers() = delete; 1649 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1650 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1651 1652 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1653 1654 /// Cleanup action for allocate support. 1655 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1656 1657 private: 1658 llvm::CallInst *RTLFnCI; 1659 1660 public: 1661 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1662 RLFnCI->removeFromParent(); 1663 } 1664 1665 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1666 if (!CGF.HaveInsertPoint()) 1667 return; 1668 CGF.Builder.Insert(RTLFnCI); 1669 } 1670 }; 1671 1672 /// Returns address of the threadprivate variable for the current 1673 /// thread. This Also create any necessary OMP runtime calls. 1674 /// 1675 /// \param VD VarDecl for Threadprivate variable. 1676 /// \param VDAddr Address of the Vardecl 1677 /// \param Loc The location where the barrier directive was encountered 1678 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1679 const VarDecl *VD, Address VDAddr, 1680 SourceLocation Loc); 1681 1682 /// Gets the OpenMP-specific address of the local variable /p VD. 1683 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1684 const VarDecl *VD); 1685 /// Get the platform-specific name separator. 1686 /// \param Parts different parts of the final name that needs separation 1687 /// \param FirstSeparator First separator used between the initial two 1688 /// parts of the name. 1689 /// \param Separator separator used between all of the rest consecutinve 1690 /// parts of the name 1691 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1692 StringRef FirstSeparator = ".", 1693 StringRef Separator = "."); 1694 /// Emit the Finalization for an OMP region 1695 /// \param CGF The Codegen function this belongs to 1696 /// \param IP Insertion point for generating the finalization code. 1697 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1698 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1699 assert(IP.getBlock()->end() != IP.getPoint() && 1700 "OpenMP IR Builder should cause terminated block!"); 1701 1702 llvm::BasicBlock *IPBB = IP.getBlock(); 1703 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1704 assert(DestBB && "Finalization block should have one successor!"); 1705 1706 // erase and replace with cleanup branch. 1707 IPBB->getTerminator()->eraseFromParent(); 1708 CGF.Builder.SetInsertPoint(IPBB); 1709 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1710 CGF.EmitBranchThroughCleanup(Dest); 1711 } 1712 1713 /// Emit the body of an OMP region 1714 /// \param CGF The Codegen function this belongs to 1715 /// \param RegionBodyStmt The body statement for the OpenMP region being 1716 /// generated 1717 /// \param CodeGenIP Insertion point for generating the body code. 1718 /// \param FiniBB The finalization basic block 1719 static void EmitOMPRegionBody(CodeGenFunction &CGF, 1720 const Stmt *RegionBodyStmt, 1721 InsertPointTy CodeGenIP, 1722 llvm::BasicBlock &FiniBB) { 1723 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1724 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1725 CodeGenIPBBTI->eraseFromParent(); 1726 1727 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1728 1729 CGF.EmitStmt(RegionBodyStmt); 1730 1731 if (CGF.Builder.saveIP().isSet()) 1732 CGF.Builder.CreateBr(&FiniBB); 1733 } 1734 1735 /// RAII for preserving necessary info during Outlined region body codegen. 1736 class OutlinedRegionBodyRAII { 1737 1738 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1739 CodeGenFunction::JumpDest OldReturnBlock; 1740 CGBuilderTy::InsertPoint IP; 1741 CodeGenFunction &CGF; 1742 1743 public: 1744 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1745 llvm::BasicBlock &RetBB) 1746 : CGF(cgf) { 1747 assert(AllocaIP.isSet() && 1748 "Must specify Insertion point for allocas of outlined function"); 1749 OldAllocaIP = CGF.AllocaInsertPt; 1750 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1751 IP = CGF.Builder.saveIP(); 1752 1753 OldReturnBlock = CGF.ReturnBlock; 1754 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1755 } 1756 1757 ~OutlinedRegionBodyRAII() { 1758 CGF.AllocaInsertPt = OldAllocaIP; 1759 CGF.ReturnBlock = OldReturnBlock; 1760 CGF.Builder.restoreIP(IP); 1761 } 1762 }; 1763 1764 /// RAII for preserving necessary info during inlined region body codegen. 1765 class InlinedRegionBodyRAII { 1766 1767 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1768 CodeGenFunction &CGF; 1769 1770 public: 1771 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1772 llvm::BasicBlock &FiniBB) 1773 : CGF(cgf) { 1774 // Alloca insertion block should be in the entry block of the containing 1775 // function so it expects an empty AllocaIP in which case will reuse the 1776 // old alloca insertion point, or a new AllocaIP in the same block as 1777 // the old one 1778 assert((!AllocaIP.isSet() || 1779 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1780 "Insertion point should be in the entry block of containing " 1781 "function!"); 1782 OldAllocaIP = CGF.AllocaInsertPt; 1783 if (AllocaIP.isSet()) 1784 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1785 1786 // TODO: Remove the call, after making sure the counter is not used by 1787 // the EHStack. 1788 // Since this is an inlined region, it should not modify the 1789 // ReturnBlock, and should reuse the one for the enclosing outlined 1790 // region. So, the JumpDest being return by the function is discarded 1791 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1792 } 1793 1794 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1795 }; 1796 }; 1797 1798 private: 1799 /// CXXThisDecl - When generating code for a C++ member function, 1800 /// this will hold the implicit 'this' declaration. 1801 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1802 llvm::Value *CXXABIThisValue = nullptr; 1803 llvm::Value *CXXThisValue = nullptr; 1804 CharUnits CXXABIThisAlignment; 1805 CharUnits CXXThisAlignment; 1806 1807 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1808 /// this expression. 1809 Address CXXDefaultInitExprThis = Address::invalid(); 1810 1811 /// The current array initialization index when evaluating an 1812 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1813 llvm::Value *ArrayInitIndex = nullptr; 1814 1815 /// The values of function arguments to use when evaluating 1816 /// CXXInheritedCtorInitExprs within this context. 1817 CallArgList CXXInheritedCtorInitExprArgs; 1818 1819 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1820 /// destructor, this will hold the implicit argument (e.g. VTT). 1821 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1822 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1823 1824 /// OutermostConditional - Points to the outermost active 1825 /// conditional control. This is used so that we know if a 1826 /// temporary should be destroyed conditionally. 1827 ConditionalEvaluation *OutermostConditional = nullptr; 1828 1829 /// The current lexical scope. 1830 LexicalScope *CurLexicalScope = nullptr; 1831 1832 /// The current source location that should be used for exception 1833 /// handling code. 1834 SourceLocation CurEHLocation; 1835 1836 /// BlockByrefInfos - For each __block variable, contains 1837 /// information about the layout of the variable. 1838 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1839 1840 /// Used by -fsanitize=nullability-return to determine whether the return 1841 /// value can be checked. 1842 llvm::Value *RetValNullabilityPrecondition = nullptr; 1843 1844 /// Check if -fsanitize=nullability-return instrumentation is required for 1845 /// this function. 1846 bool requiresReturnValueNullabilityCheck() const { 1847 return RetValNullabilityPrecondition; 1848 } 1849 1850 /// Used to store precise source locations for return statements by the 1851 /// runtime return value checks. 1852 Address ReturnLocation = Address::invalid(); 1853 1854 /// Check if the return value of this function requires sanitization. 1855 bool requiresReturnValueCheck() const; 1856 1857 llvm::BasicBlock *TerminateLandingPad = nullptr; 1858 llvm::BasicBlock *TerminateHandler = nullptr; 1859 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1860 1861 /// Terminate funclets keyed by parent funclet pad. 1862 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1863 1864 /// Largest vector width used in ths function. Will be used to create a 1865 /// function attribute. 1866 unsigned LargestVectorWidth = 0; 1867 1868 /// True if we need emit the life-time markers. 1869 const bool ShouldEmitLifetimeMarkers; 1870 1871 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1872 /// the function metadata. 1873 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1874 llvm::Function *Fn); 1875 1876 public: 1877 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1878 ~CodeGenFunction(); 1879 1880 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1881 ASTContext &getContext() const { return CGM.getContext(); } 1882 CGDebugInfo *getDebugInfo() { 1883 if (DisableDebugInfo) 1884 return nullptr; 1885 return DebugInfo; 1886 } 1887 void disableDebugInfo() { DisableDebugInfo = true; } 1888 void enableDebugInfo() { DisableDebugInfo = false; } 1889 1890 bool shouldUseFusedARCCalls() { 1891 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1892 } 1893 1894 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1895 1896 /// Returns a pointer to the function's exception object and selector slot, 1897 /// which is assigned in every landing pad. 1898 Address getExceptionSlot(); 1899 Address getEHSelectorSlot(); 1900 1901 /// Returns the contents of the function's exception object and selector 1902 /// slots. 1903 llvm::Value *getExceptionFromSlot(); 1904 llvm::Value *getSelectorFromSlot(); 1905 1906 Address getNormalCleanupDestSlot(); 1907 1908 llvm::BasicBlock *getUnreachableBlock() { 1909 if (!UnreachableBlock) { 1910 UnreachableBlock = createBasicBlock("unreachable"); 1911 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1912 } 1913 return UnreachableBlock; 1914 } 1915 1916 llvm::BasicBlock *getInvokeDest() { 1917 if (!EHStack.requiresLandingPad()) return nullptr; 1918 return getInvokeDestImpl(); 1919 } 1920 1921 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1922 1923 const TargetInfo &getTarget() const { return Target; } 1924 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1925 const TargetCodeGenInfo &getTargetHooks() const { 1926 return CGM.getTargetCodeGenInfo(); 1927 } 1928 1929 //===--------------------------------------------------------------------===// 1930 // Cleanups 1931 //===--------------------------------------------------------------------===// 1932 1933 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1934 1935 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1936 Address arrayEndPointer, 1937 QualType elementType, 1938 CharUnits elementAlignment, 1939 Destroyer *destroyer); 1940 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1941 llvm::Value *arrayEnd, 1942 QualType elementType, 1943 CharUnits elementAlignment, 1944 Destroyer *destroyer); 1945 1946 void pushDestroy(QualType::DestructionKind dtorKind, 1947 Address addr, QualType type); 1948 void pushEHDestroy(QualType::DestructionKind dtorKind, 1949 Address addr, QualType type); 1950 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1951 Destroyer *destroyer, bool useEHCleanupForArray); 1952 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1953 QualType type, Destroyer *destroyer, 1954 bool useEHCleanupForArray); 1955 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1956 llvm::Value *CompletePtr, 1957 QualType ElementType); 1958 void pushStackRestore(CleanupKind kind, Address SPMem); 1959 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1960 bool useEHCleanupForArray); 1961 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1962 Destroyer *destroyer, 1963 bool useEHCleanupForArray, 1964 const VarDecl *VD); 1965 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1966 QualType elementType, CharUnits elementAlign, 1967 Destroyer *destroyer, 1968 bool checkZeroLength, bool useEHCleanup); 1969 1970 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1971 1972 /// Determines whether an EH cleanup is required to destroy a type 1973 /// with the given destruction kind. 1974 bool needsEHCleanup(QualType::DestructionKind kind) { 1975 switch (kind) { 1976 case QualType::DK_none: 1977 return false; 1978 case QualType::DK_cxx_destructor: 1979 case QualType::DK_objc_weak_lifetime: 1980 case QualType::DK_nontrivial_c_struct: 1981 return getLangOpts().Exceptions; 1982 case QualType::DK_objc_strong_lifetime: 1983 return getLangOpts().Exceptions && 1984 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1985 } 1986 llvm_unreachable("bad destruction kind"); 1987 } 1988 1989 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1990 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1991 } 1992 1993 //===--------------------------------------------------------------------===// 1994 // Objective-C 1995 //===--------------------------------------------------------------------===// 1996 1997 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1998 1999 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2000 2001 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2002 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2003 const ObjCPropertyImplDecl *PID); 2004 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2005 const ObjCPropertyImplDecl *propImpl, 2006 const ObjCMethodDecl *GetterMothodDecl, 2007 llvm::Constant *AtomicHelperFn); 2008 2009 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2010 ObjCMethodDecl *MD, bool ctor); 2011 2012 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2013 /// for the given property. 2014 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2015 const ObjCPropertyImplDecl *PID); 2016 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2017 const ObjCPropertyImplDecl *propImpl, 2018 llvm::Constant *AtomicHelperFn); 2019 2020 //===--------------------------------------------------------------------===// 2021 // Block Bits 2022 //===--------------------------------------------------------------------===// 2023 2024 /// Emit block literal. 2025 /// \return an LLVM value which is a pointer to a struct which contains 2026 /// information about the block, including the block invoke function, the 2027 /// captured variables, etc. 2028 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2029 2030 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2031 const CGBlockInfo &Info, 2032 const DeclMapTy &ldm, 2033 bool IsLambdaConversionToBlock, 2034 bool BuildGlobalBlock); 2035 2036 /// Check if \p T is a C++ class that has a destructor that can throw. 2037 static bool cxxDestructorCanThrow(QualType T); 2038 2039 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2040 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2041 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2042 const ObjCPropertyImplDecl *PID); 2043 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2044 const ObjCPropertyImplDecl *PID); 2045 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2046 2047 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2048 bool CanThrow); 2049 2050 class AutoVarEmission; 2051 2052 void emitByrefStructureInit(const AutoVarEmission &emission); 2053 2054 /// Enter a cleanup to destroy a __block variable. Note that this 2055 /// cleanup should be a no-op if the variable hasn't left the stack 2056 /// yet; if a cleanup is required for the variable itself, that needs 2057 /// to be done externally. 2058 /// 2059 /// \param Kind Cleanup kind. 2060 /// 2061 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2062 /// structure that will be passed to _Block_object_dispose. When 2063 /// \p LoadBlockVarAddr is true, the address of the field of the block 2064 /// structure that holds the address of the __block structure. 2065 /// 2066 /// \param Flags The flag that will be passed to _Block_object_dispose. 2067 /// 2068 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2069 /// \p Addr to get the address of the __block structure. 2070 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2071 bool LoadBlockVarAddr, bool CanThrow); 2072 2073 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2074 llvm::Value *ptr); 2075 2076 Address LoadBlockStruct(); 2077 Address GetAddrOfBlockDecl(const VarDecl *var); 2078 2079 /// BuildBlockByrefAddress - Computes the location of the 2080 /// data in a variable which is declared as __block. 2081 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2082 bool followForward = true); 2083 Address emitBlockByrefAddress(Address baseAddr, 2084 const BlockByrefInfo &info, 2085 bool followForward, 2086 const llvm::Twine &name); 2087 2088 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2089 2090 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2091 2092 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2093 const CGFunctionInfo &FnInfo); 2094 2095 /// Annotate the function with an attribute that disables TSan checking at 2096 /// runtime. 2097 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2098 2099 /// Emit code for the start of a function. 2100 /// \param Loc The location to be associated with the function. 2101 /// \param StartLoc The location of the function body. 2102 void StartFunction(GlobalDecl GD, 2103 QualType RetTy, 2104 llvm::Function *Fn, 2105 const CGFunctionInfo &FnInfo, 2106 const FunctionArgList &Args, 2107 SourceLocation Loc = SourceLocation(), 2108 SourceLocation StartLoc = SourceLocation()); 2109 2110 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2111 2112 void EmitConstructorBody(FunctionArgList &Args); 2113 void EmitDestructorBody(FunctionArgList &Args); 2114 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2115 void EmitFunctionBody(const Stmt *Body); 2116 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2117 2118 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2119 CallArgList &CallArgs); 2120 void EmitLambdaBlockInvokeBody(); 2121 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2122 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2123 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2124 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2125 } 2126 void EmitAsanPrologueOrEpilogue(bool Prologue); 2127 2128 /// Emit the unified return block, trying to avoid its emission when 2129 /// possible. 2130 /// \return The debug location of the user written return statement if the 2131 /// return block is is avoided. 2132 llvm::DebugLoc EmitReturnBlock(); 2133 2134 /// FinishFunction - Complete IR generation of the current function. It is 2135 /// legal to call this function even if there is no current insertion point. 2136 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2137 2138 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2139 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2140 2141 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2142 const ThunkInfo *Thunk, bool IsUnprototyped); 2143 2144 void FinishThunk(); 2145 2146 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2147 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2148 llvm::FunctionCallee Callee); 2149 2150 /// Generate a thunk for the given method. 2151 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2152 GlobalDecl GD, const ThunkInfo &Thunk, 2153 bool IsUnprototyped); 2154 2155 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2156 const CGFunctionInfo &FnInfo, 2157 GlobalDecl GD, const ThunkInfo &Thunk); 2158 2159 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2160 FunctionArgList &Args); 2161 2162 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2163 2164 /// Struct with all information about dynamic [sub]class needed to set vptr. 2165 struct VPtr { 2166 BaseSubobject Base; 2167 const CXXRecordDecl *NearestVBase; 2168 CharUnits OffsetFromNearestVBase; 2169 const CXXRecordDecl *VTableClass; 2170 }; 2171 2172 /// Initialize the vtable pointer of the given subobject. 2173 void InitializeVTablePointer(const VPtr &vptr); 2174 2175 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2176 2177 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2178 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2179 2180 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2181 CharUnits OffsetFromNearestVBase, 2182 bool BaseIsNonVirtualPrimaryBase, 2183 const CXXRecordDecl *VTableClass, 2184 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2185 2186 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2187 2188 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2189 /// to by This. 2190 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2191 const CXXRecordDecl *VTableClass); 2192 2193 enum CFITypeCheckKind { 2194 CFITCK_VCall, 2195 CFITCK_NVCall, 2196 CFITCK_DerivedCast, 2197 CFITCK_UnrelatedCast, 2198 CFITCK_ICall, 2199 CFITCK_NVMFCall, 2200 CFITCK_VMFCall, 2201 }; 2202 2203 /// Derived is the presumed address of an object of type T after a 2204 /// cast. If T is a polymorphic class type, emit a check that the virtual 2205 /// table for Derived belongs to a class derived from T. 2206 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 2207 bool MayBeNull, CFITypeCheckKind TCK, 2208 SourceLocation Loc); 2209 2210 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2211 /// If vptr CFI is enabled, emit a check that VTable is valid. 2212 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2213 CFITypeCheckKind TCK, SourceLocation Loc); 2214 2215 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2216 /// RD using llvm.type.test. 2217 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2218 CFITypeCheckKind TCK, SourceLocation Loc); 2219 2220 /// If whole-program virtual table optimization is enabled, emit an assumption 2221 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2222 /// enabled, emit a check that VTable is a member of RD's type identifier. 2223 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2224 llvm::Value *VTable, SourceLocation Loc); 2225 2226 /// Returns whether we should perform a type checked load when loading a 2227 /// virtual function for virtual calls to members of RD. This is generally 2228 /// true when both vcall CFI and whole-program-vtables are enabled. 2229 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2230 2231 /// Emit a type checked load from the given vtable. 2232 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 2233 uint64_t VTableByteOffset); 2234 2235 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2236 /// given phase of destruction for a destructor. The end result 2237 /// should call destructors on members and base classes in reverse 2238 /// order of their construction. 2239 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2240 2241 /// ShouldInstrumentFunction - Return true if the current function should be 2242 /// instrumented with __cyg_profile_func_* calls 2243 bool ShouldInstrumentFunction(); 2244 2245 /// ShouldXRayInstrument - Return true if the current function should be 2246 /// instrumented with XRay nop sleds. 2247 bool ShouldXRayInstrumentFunction() const; 2248 2249 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2250 /// XRay custom event handling calls. 2251 bool AlwaysEmitXRayCustomEvents() const; 2252 2253 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2254 /// XRay typed event handling calls. 2255 bool AlwaysEmitXRayTypedEvents() const; 2256 2257 /// Encode an address into a form suitable for use in a function prologue. 2258 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2259 llvm::Constant *Addr); 2260 2261 /// Decode an address used in a function prologue, encoded by \c 2262 /// EncodeAddrForUseInPrologue. 2263 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2264 llvm::Value *EncodedAddr); 2265 2266 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2267 /// arguments for the given function. This is also responsible for naming the 2268 /// LLVM function arguments. 2269 void EmitFunctionProlog(const CGFunctionInfo &FI, 2270 llvm::Function *Fn, 2271 const FunctionArgList &Args); 2272 2273 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2274 /// given temporary. 2275 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2276 SourceLocation EndLoc); 2277 2278 /// Emit a test that checks if the return value \p RV is nonnull. 2279 void EmitReturnValueCheck(llvm::Value *RV); 2280 2281 /// EmitStartEHSpec - Emit the start of the exception spec. 2282 void EmitStartEHSpec(const Decl *D); 2283 2284 /// EmitEndEHSpec - Emit the end of the exception spec. 2285 void EmitEndEHSpec(const Decl *D); 2286 2287 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2288 llvm::BasicBlock *getTerminateLandingPad(); 2289 2290 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2291 /// terminate. 2292 llvm::BasicBlock *getTerminateFunclet(); 2293 2294 /// getTerminateHandler - Return a handler (not a landing pad, just 2295 /// a catch handler) that just calls terminate. This is used when 2296 /// a terminate scope encloses a try. 2297 llvm::BasicBlock *getTerminateHandler(); 2298 2299 llvm::Type *ConvertTypeForMem(QualType T); 2300 llvm::Type *ConvertType(QualType T); 2301 llvm::Type *ConvertType(const TypeDecl *T) { 2302 return ConvertType(getContext().getTypeDeclType(T)); 2303 } 2304 2305 /// LoadObjCSelf - Load the value of self. This function is only valid while 2306 /// generating code for an Objective-C method. 2307 llvm::Value *LoadObjCSelf(); 2308 2309 /// TypeOfSelfObject - Return type of object that this self represents. 2310 QualType TypeOfSelfObject(); 2311 2312 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2313 static TypeEvaluationKind getEvaluationKind(QualType T); 2314 2315 static bool hasScalarEvaluationKind(QualType T) { 2316 return getEvaluationKind(T) == TEK_Scalar; 2317 } 2318 2319 static bool hasAggregateEvaluationKind(QualType T) { 2320 return getEvaluationKind(T) == TEK_Aggregate; 2321 } 2322 2323 /// createBasicBlock - Create an LLVM basic block. 2324 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2325 llvm::Function *parent = nullptr, 2326 llvm::BasicBlock *before = nullptr) { 2327 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2328 } 2329 2330 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2331 /// label maps to. 2332 JumpDest getJumpDestForLabel(const LabelDecl *S); 2333 2334 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2335 /// another basic block, simplify it. This assumes that no other code could 2336 /// potentially reference the basic block. 2337 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2338 2339 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2340 /// adding a fall-through branch from the current insert block if 2341 /// necessary. It is legal to call this function even if there is no current 2342 /// insertion point. 2343 /// 2344 /// IsFinished - If true, indicates that the caller has finished emitting 2345 /// branches to the given block and does not expect to emit code into it. This 2346 /// means the block can be ignored if it is unreachable. 2347 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2348 2349 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2350 /// near its uses, and leave the insertion point in it. 2351 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2352 2353 /// EmitBranch - Emit a branch to the specified basic block from the current 2354 /// insert block, taking care to avoid creation of branches from dummy 2355 /// blocks. It is legal to call this function even if there is no current 2356 /// insertion point. 2357 /// 2358 /// This function clears the current insertion point. The caller should follow 2359 /// calls to this function with calls to Emit*Block prior to generation new 2360 /// code. 2361 void EmitBranch(llvm::BasicBlock *Block); 2362 2363 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2364 /// indicates that the current code being emitted is unreachable. 2365 bool HaveInsertPoint() const { 2366 return Builder.GetInsertBlock() != nullptr; 2367 } 2368 2369 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2370 /// emitted IR has a place to go. Note that by definition, if this function 2371 /// creates a block then that block is unreachable; callers may do better to 2372 /// detect when no insertion point is defined and simply skip IR generation. 2373 void EnsureInsertPoint() { 2374 if (!HaveInsertPoint()) 2375 EmitBlock(createBasicBlock()); 2376 } 2377 2378 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2379 /// specified stmt yet. 2380 void ErrorUnsupported(const Stmt *S, const char *Type); 2381 2382 //===--------------------------------------------------------------------===// 2383 // Helpers 2384 //===--------------------------------------------------------------------===// 2385 2386 LValue MakeAddrLValue(Address Addr, QualType T, 2387 AlignmentSource Source = AlignmentSource::Type) { 2388 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2389 CGM.getTBAAAccessInfo(T)); 2390 } 2391 2392 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2393 TBAAAccessInfo TBAAInfo) { 2394 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2395 } 2396 2397 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2398 AlignmentSource Source = AlignmentSource::Type) { 2399 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2400 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2401 } 2402 2403 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2404 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2405 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2406 BaseInfo, TBAAInfo); 2407 } 2408 2409 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2410 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2411 2412 Address EmitLoadOfReference(LValue RefLVal, 2413 LValueBaseInfo *PointeeBaseInfo = nullptr, 2414 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2415 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2416 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2417 AlignmentSource Source = 2418 AlignmentSource::Type) { 2419 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2420 CGM.getTBAAAccessInfo(RefTy)); 2421 return EmitLoadOfReferenceLValue(RefLVal); 2422 } 2423 2424 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2425 LValueBaseInfo *BaseInfo = nullptr, 2426 TBAAAccessInfo *TBAAInfo = nullptr); 2427 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2428 2429 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2430 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2431 /// insertion point of the builder. The caller is responsible for setting an 2432 /// appropriate alignment on 2433 /// the alloca. 2434 /// 2435 /// \p ArraySize is the number of array elements to be allocated if it 2436 /// is not nullptr. 2437 /// 2438 /// LangAS::Default is the address space of pointers to local variables and 2439 /// temporaries, as exposed in the source language. In certain 2440 /// configurations, this is not the same as the alloca address space, and a 2441 /// cast is needed to lift the pointer from the alloca AS into 2442 /// LangAS::Default. This can happen when the target uses a restricted 2443 /// address space for the stack but the source language requires 2444 /// LangAS::Default to be a generic address space. The latter condition is 2445 /// common for most programming languages; OpenCL is an exception in that 2446 /// LangAS::Default is the private address space, which naturally maps 2447 /// to the stack. 2448 /// 2449 /// Because the address of a temporary is often exposed to the program in 2450 /// various ways, this function will perform the cast. The original alloca 2451 /// instruction is returned through \p Alloca if it is not nullptr. 2452 /// 2453 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2454 /// more efficient if the caller knows that the address will not be exposed. 2455 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2456 llvm::Value *ArraySize = nullptr); 2457 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2458 const Twine &Name = "tmp", 2459 llvm::Value *ArraySize = nullptr, 2460 Address *Alloca = nullptr); 2461 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2462 const Twine &Name = "tmp", 2463 llvm::Value *ArraySize = nullptr); 2464 2465 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2466 /// default ABI alignment of the given LLVM type. 2467 /// 2468 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2469 /// any given AST type that happens to have been lowered to the 2470 /// given IR type. This should only ever be used for function-local, 2471 /// IR-driven manipulations like saving and restoring a value. Do 2472 /// not hand this address off to arbitrary IRGen routines, and especially 2473 /// do not pass it as an argument to a function that might expect a 2474 /// properly ABI-aligned value. 2475 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2476 const Twine &Name = "tmp"); 2477 2478 /// InitTempAlloca - Provide an initial value for the given alloca which 2479 /// will be observable at all locations in the function. 2480 /// 2481 /// The address should be something that was returned from one of 2482 /// the CreateTempAlloca or CreateMemTemp routines, and the 2483 /// initializer must be valid in the entry block (i.e. it must 2484 /// either be a constant or an argument value). 2485 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2486 2487 /// CreateIRTemp - Create a temporary IR object of the given type, with 2488 /// appropriate alignment. This routine should only be used when an temporary 2489 /// value needs to be stored into an alloca (for example, to avoid explicit 2490 /// PHI construction), but the type is the IR type, not the type appropriate 2491 /// for storing in memory. 2492 /// 2493 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2494 /// ConvertType instead of ConvertTypeForMem. 2495 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2496 2497 /// CreateMemTemp - Create a temporary memory object of the given type, with 2498 /// appropriate alignmen and cast it to the default address space. Returns 2499 /// the original alloca instruction by \p Alloca if it is not nullptr. 2500 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2501 Address *Alloca = nullptr); 2502 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2503 Address *Alloca = nullptr); 2504 2505 /// CreateMemTemp - Create a temporary memory object of the given type, with 2506 /// appropriate alignmen without casting it to the default address space. 2507 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2508 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2509 const Twine &Name = "tmp"); 2510 2511 /// CreateAggTemp - Create a temporary memory object for the given 2512 /// aggregate type. 2513 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2514 Address *Alloca = nullptr) { 2515 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2516 T.getQualifiers(), 2517 AggValueSlot::IsNotDestructed, 2518 AggValueSlot::DoesNotNeedGCBarriers, 2519 AggValueSlot::IsNotAliased, 2520 AggValueSlot::DoesNotOverlap); 2521 } 2522 2523 /// Emit a cast to void* in the appropriate address space. 2524 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2525 2526 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2527 /// expression and compare the result against zero, returning an Int1Ty value. 2528 llvm::Value *EvaluateExprAsBool(const Expr *E); 2529 2530 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2531 void EmitIgnoredExpr(const Expr *E); 2532 2533 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2534 /// any type. The result is returned as an RValue struct. If this is an 2535 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2536 /// the result should be returned. 2537 /// 2538 /// \param ignoreResult True if the resulting value isn't used. 2539 RValue EmitAnyExpr(const Expr *E, 2540 AggValueSlot aggSlot = AggValueSlot::ignored(), 2541 bool ignoreResult = false); 2542 2543 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2544 // or the value of the expression, depending on how va_list is defined. 2545 Address EmitVAListRef(const Expr *E); 2546 2547 /// Emit a "reference" to a __builtin_ms_va_list; this is 2548 /// always the value of the expression, because a __builtin_ms_va_list is a 2549 /// pointer to a char. 2550 Address EmitMSVAListRef(const Expr *E); 2551 2552 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2553 /// always be accessible even if no aggregate location is provided. 2554 RValue EmitAnyExprToTemp(const Expr *E); 2555 2556 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2557 /// arbitrary expression into the given memory location. 2558 void EmitAnyExprToMem(const Expr *E, Address Location, 2559 Qualifiers Quals, bool IsInitializer); 2560 2561 void EmitAnyExprToExn(const Expr *E, Address Addr); 2562 2563 /// EmitExprAsInit - Emits the code necessary to initialize a 2564 /// location in memory with the given initializer. 2565 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2566 bool capturedByInit); 2567 2568 /// hasVolatileMember - returns true if aggregate type has a volatile 2569 /// member. 2570 bool hasVolatileMember(QualType T) { 2571 if (const RecordType *RT = T->getAs<RecordType>()) { 2572 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2573 return RD->hasVolatileMember(); 2574 } 2575 return false; 2576 } 2577 2578 /// Determine whether a return value slot may overlap some other object. 2579 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2580 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2581 // class subobjects. These cases may need to be revisited depending on the 2582 // resolution of the relevant core issue. 2583 return AggValueSlot::DoesNotOverlap; 2584 } 2585 2586 /// Determine whether a field initialization may overlap some other object. 2587 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2588 2589 /// Determine whether a base class initialization may overlap some other 2590 /// object. 2591 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2592 const CXXRecordDecl *BaseRD, 2593 bool IsVirtual); 2594 2595 /// Emit an aggregate assignment. 2596 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2597 bool IsVolatile = hasVolatileMember(EltTy); 2598 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2599 } 2600 2601 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2602 AggValueSlot::Overlap_t MayOverlap) { 2603 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2604 } 2605 2606 /// EmitAggregateCopy - Emit an aggregate copy. 2607 /// 2608 /// \param isVolatile \c true iff either the source or the destination is 2609 /// volatile. 2610 /// \param MayOverlap Whether the tail padding of the destination might be 2611 /// occupied by some other object. More efficient code can often be 2612 /// generated if not. 2613 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2614 AggValueSlot::Overlap_t MayOverlap, 2615 bool isVolatile = false); 2616 2617 /// GetAddrOfLocalVar - Return the address of a local variable. 2618 Address GetAddrOfLocalVar(const VarDecl *VD) { 2619 auto it = LocalDeclMap.find(VD); 2620 assert(it != LocalDeclMap.end() && 2621 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2622 return it->second; 2623 } 2624 2625 /// Given an opaque value expression, return its LValue mapping if it exists, 2626 /// otherwise create one. 2627 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2628 2629 /// Given an opaque value expression, return its RValue mapping if it exists, 2630 /// otherwise create one. 2631 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2632 2633 /// Get the index of the current ArrayInitLoopExpr, if any. 2634 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2635 2636 /// getAccessedFieldNo - Given an encoded value and a result number, return 2637 /// the input field number being accessed. 2638 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2639 2640 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2641 llvm::BasicBlock *GetIndirectGotoBlock(); 2642 2643 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2644 static bool IsWrappedCXXThis(const Expr *E); 2645 2646 /// EmitNullInitialization - Generate code to set a value of the given type to 2647 /// null, If the type contains data member pointers, they will be initialized 2648 /// to -1 in accordance with the Itanium C++ ABI. 2649 void EmitNullInitialization(Address DestPtr, QualType Ty); 2650 2651 /// Emits a call to an LLVM variable-argument intrinsic, either 2652 /// \c llvm.va_start or \c llvm.va_end. 2653 /// \param ArgValue A reference to the \c va_list as emitted by either 2654 /// \c EmitVAListRef or \c EmitMSVAListRef. 2655 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2656 /// calls \c llvm.va_end. 2657 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2658 2659 /// Generate code to get an argument from the passed in pointer 2660 /// and update it accordingly. 2661 /// \param VE The \c VAArgExpr for which to generate code. 2662 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2663 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2664 /// \returns A pointer to the argument. 2665 // FIXME: We should be able to get rid of this method and use the va_arg 2666 // instruction in LLVM instead once it works well enough. 2667 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2668 2669 /// emitArrayLength - Compute the length of an array, even if it's a 2670 /// VLA, and drill down to the base element type. 2671 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2672 QualType &baseType, 2673 Address &addr); 2674 2675 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2676 /// the given variably-modified type and store them in the VLASizeMap. 2677 /// 2678 /// This function can be called with a null (unreachable) insert point. 2679 void EmitVariablyModifiedType(QualType Ty); 2680 2681 struct VlaSizePair { 2682 llvm::Value *NumElts; 2683 QualType Type; 2684 2685 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2686 }; 2687 2688 /// Return the number of elements for a single dimension 2689 /// for the given array type. 2690 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2691 VlaSizePair getVLAElements1D(QualType vla); 2692 2693 /// Returns an LLVM value that corresponds to the size, 2694 /// in non-variably-sized elements, of a variable length array type, 2695 /// plus that largest non-variably-sized element type. Assumes that 2696 /// the type has already been emitted with EmitVariablyModifiedType. 2697 VlaSizePair getVLASize(const VariableArrayType *vla); 2698 VlaSizePair getVLASize(QualType vla); 2699 2700 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2701 /// generating code for an C++ member function. 2702 llvm::Value *LoadCXXThis() { 2703 assert(CXXThisValue && "no 'this' value for this function"); 2704 return CXXThisValue; 2705 } 2706 Address LoadCXXThisAddress(); 2707 2708 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2709 /// virtual bases. 2710 // FIXME: Every place that calls LoadCXXVTT is something 2711 // that needs to be abstracted properly. 2712 llvm::Value *LoadCXXVTT() { 2713 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2714 return CXXStructorImplicitParamValue; 2715 } 2716 2717 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2718 /// complete class to the given direct base. 2719 Address 2720 GetAddressOfDirectBaseInCompleteClass(Address Value, 2721 const CXXRecordDecl *Derived, 2722 const CXXRecordDecl *Base, 2723 bool BaseIsVirtual); 2724 2725 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2726 2727 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2728 /// load of 'this' and returns address of the base class. 2729 Address GetAddressOfBaseClass(Address Value, 2730 const CXXRecordDecl *Derived, 2731 CastExpr::path_const_iterator PathBegin, 2732 CastExpr::path_const_iterator PathEnd, 2733 bool NullCheckValue, SourceLocation Loc); 2734 2735 Address GetAddressOfDerivedClass(Address Value, 2736 const CXXRecordDecl *Derived, 2737 CastExpr::path_const_iterator PathBegin, 2738 CastExpr::path_const_iterator PathEnd, 2739 bool NullCheckValue); 2740 2741 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2742 /// base constructor/destructor with virtual bases. 2743 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2744 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2745 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2746 bool Delegating); 2747 2748 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2749 CXXCtorType CtorType, 2750 const FunctionArgList &Args, 2751 SourceLocation Loc); 2752 // It's important not to confuse this and the previous function. Delegating 2753 // constructors are the C++0x feature. The constructor delegate optimization 2754 // is used to reduce duplication in the base and complete consturctors where 2755 // they are substantially the same. 2756 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2757 const FunctionArgList &Args); 2758 2759 /// Emit a call to an inheriting constructor (that is, one that invokes a 2760 /// constructor inherited from a base class) by inlining its definition. This 2761 /// is necessary if the ABI does not support forwarding the arguments to the 2762 /// base class constructor (because they're variadic or similar). 2763 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2764 CXXCtorType CtorType, 2765 bool ForVirtualBase, 2766 bool Delegating, 2767 CallArgList &Args); 2768 2769 /// Emit a call to a constructor inherited from a base class, passing the 2770 /// current constructor's arguments along unmodified (without even making 2771 /// a copy). 2772 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2773 bool ForVirtualBase, Address This, 2774 bool InheritedFromVBase, 2775 const CXXInheritedCtorInitExpr *E); 2776 2777 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2778 bool ForVirtualBase, bool Delegating, 2779 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2780 2781 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2782 bool ForVirtualBase, bool Delegating, 2783 Address This, CallArgList &Args, 2784 AggValueSlot::Overlap_t Overlap, 2785 SourceLocation Loc, bool NewPointerIsChecked); 2786 2787 /// Emit assumption load for all bases. Requires to be be called only on 2788 /// most-derived class and not under construction of the object. 2789 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2790 2791 /// Emit assumption that vptr load == global vtable. 2792 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2793 2794 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2795 Address This, Address Src, 2796 const CXXConstructExpr *E); 2797 2798 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2799 const ArrayType *ArrayTy, 2800 Address ArrayPtr, 2801 const CXXConstructExpr *E, 2802 bool NewPointerIsChecked, 2803 bool ZeroInitialization = false); 2804 2805 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2806 llvm::Value *NumElements, 2807 Address ArrayPtr, 2808 const CXXConstructExpr *E, 2809 bool NewPointerIsChecked, 2810 bool ZeroInitialization = false); 2811 2812 static Destroyer destroyCXXObject; 2813 2814 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2815 bool ForVirtualBase, bool Delegating, Address This, 2816 QualType ThisTy); 2817 2818 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2819 llvm::Type *ElementTy, Address NewPtr, 2820 llvm::Value *NumElements, 2821 llvm::Value *AllocSizeWithoutCookie); 2822 2823 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2824 Address Ptr); 2825 2826 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2827 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2828 2829 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2830 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2831 2832 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2833 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2834 CharUnits CookieSize = CharUnits()); 2835 2836 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2837 const CallExpr *TheCallExpr, bool IsDelete); 2838 2839 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2840 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2841 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2842 2843 /// Situations in which we might emit a check for the suitability of a 2844 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2845 /// compiler-rt. 2846 enum TypeCheckKind { 2847 /// Checking the operand of a load. Must be suitably sized and aligned. 2848 TCK_Load, 2849 /// Checking the destination of a store. Must be suitably sized and aligned. 2850 TCK_Store, 2851 /// Checking the bound value in a reference binding. Must be suitably sized 2852 /// and aligned, but is not required to refer to an object (until the 2853 /// reference is used), per core issue 453. 2854 TCK_ReferenceBinding, 2855 /// Checking the object expression in a non-static data member access. Must 2856 /// be an object within its lifetime. 2857 TCK_MemberAccess, 2858 /// Checking the 'this' pointer for a call to a non-static member function. 2859 /// Must be an object within its lifetime. 2860 TCK_MemberCall, 2861 /// Checking the 'this' pointer for a constructor call. 2862 TCK_ConstructorCall, 2863 /// Checking the operand of a static_cast to a derived pointer type. Must be 2864 /// null or an object within its lifetime. 2865 TCK_DowncastPointer, 2866 /// Checking the operand of a static_cast to a derived reference type. Must 2867 /// be an object within its lifetime. 2868 TCK_DowncastReference, 2869 /// Checking the operand of a cast to a base object. Must be suitably sized 2870 /// and aligned. 2871 TCK_Upcast, 2872 /// Checking the operand of a cast to a virtual base object. Must be an 2873 /// object within its lifetime. 2874 TCK_UpcastToVirtualBase, 2875 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2876 TCK_NonnullAssign, 2877 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2878 /// null or an object within its lifetime. 2879 TCK_DynamicOperation 2880 }; 2881 2882 /// Determine whether the pointer type check \p TCK permits null pointers. 2883 static bool isNullPointerAllowed(TypeCheckKind TCK); 2884 2885 /// Determine whether the pointer type check \p TCK requires a vptr check. 2886 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2887 2888 /// Whether any type-checking sanitizers are enabled. If \c false, 2889 /// calls to EmitTypeCheck can be skipped. 2890 bool sanitizePerformTypeCheck() const; 2891 2892 /// Emit a check that \p V is the address of storage of the 2893 /// appropriate size and alignment for an object of type \p Type 2894 /// (or if ArraySize is provided, for an array of that bound). 2895 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2896 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2897 SanitizerSet SkippedChecks = SanitizerSet(), 2898 llvm::Value *ArraySize = nullptr); 2899 2900 /// Emit a check that \p Base points into an array object, which 2901 /// we can access at index \p Index. \p Accessed should be \c false if we 2902 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2903 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2904 QualType IndexType, bool Accessed); 2905 2906 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2907 bool isInc, bool isPre); 2908 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2909 bool isInc, bool isPre); 2910 2911 /// Converts Location to a DebugLoc, if debug information is enabled. 2912 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2913 2914 /// Get the record field index as represented in debug info. 2915 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 2916 2917 2918 //===--------------------------------------------------------------------===// 2919 // Declaration Emission 2920 //===--------------------------------------------------------------------===// 2921 2922 /// EmitDecl - Emit a declaration. 2923 /// 2924 /// This function can be called with a null (unreachable) insert point. 2925 void EmitDecl(const Decl &D); 2926 2927 /// EmitVarDecl - Emit a local variable declaration. 2928 /// 2929 /// This function can be called with a null (unreachable) insert point. 2930 void EmitVarDecl(const VarDecl &D); 2931 2932 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2933 bool capturedByInit); 2934 2935 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2936 llvm::Value *Address); 2937 2938 /// Determine whether the given initializer is trivial in the sense 2939 /// that it requires no code to be generated. 2940 bool isTrivialInitializer(const Expr *Init); 2941 2942 /// EmitAutoVarDecl - Emit an auto variable declaration. 2943 /// 2944 /// This function can be called with a null (unreachable) insert point. 2945 void EmitAutoVarDecl(const VarDecl &D); 2946 2947 class AutoVarEmission { 2948 friend class CodeGenFunction; 2949 2950 const VarDecl *Variable; 2951 2952 /// The address of the alloca for languages with explicit address space 2953 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2954 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2955 /// as a global constant. 2956 Address Addr; 2957 2958 llvm::Value *NRVOFlag; 2959 2960 /// True if the variable is a __block variable that is captured by an 2961 /// escaping block. 2962 bool IsEscapingByRef; 2963 2964 /// True if the variable is of aggregate type and has a constant 2965 /// initializer. 2966 bool IsConstantAggregate; 2967 2968 /// Non-null if we should use lifetime annotations. 2969 llvm::Value *SizeForLifetimeMarkers; 2970 2971 /// Address with original alloca instruction. Invalid if the variable was 2972 /// emitted as a global constant. 2973 Address AllocaAddr; 2974 2975 struct Invalid {}; 2976 AutoVarEmission(Invalid) 2977 : Variable(nullptr), Addr(Address::invalid()), 2978 AllocaAddr(Address::invalid()) {} 2979 2980 AutoVarEmission(const VarDecl &variable) 2981 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2982 IsEscapingByRef(false), IsConstantAggregate(false), 2983 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2984 2985 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2986 2987 public: 2988 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2989 2990 bool useLifetimeMarkers() const { 2991 return SizeForLifetimeMarkers != nullptr; 2992 } 2993 llvm::Value *getSizeForLifetimeMarkers() const { 2994 assert(useLifetimeMarkers()); 2995 return SizeForLifetimeMarkers; 2996 } 2997 2998 /// Returns the raw, allocated address, which is not necessarily 2999 /// the address of the object itself. It is casted to default 3000 /// address space for address space agnostic languages. 3001 Address getAllocatedAddress() const { 3002 return Addr; 3003 } 3004 3005 /// Returns the address for the original alloca instruction. 3006 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3007 3008 /// Returns the address of the object within this declaration. 3009 /// Note that this does not chase the forwarding pointer for 3010 /// __block decls. 3011 Address getObjectAddress(CodeGenFunction &CGF) const { 3012 if (!IsEscapingByRef) return Addr; 3013 3014 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3015 } 3016 }; 3017 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3018 void EmitAutoVarInit(const AutoVarEmission &emission); 3019 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3020 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3021 QualType::DestructionKind dtorKind); 3022 3023 /// Emits the alloca and debug information for the size expressions for each 3024 /// dimension of an array. It registers the association of its (1-dimensional) 3025 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3026 /// reference this node when creating the DISubrange object to describe the 3027 /// array types. 3028 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3029 const VarDecl &D, 3030 bool EmitDebugInfo); 3031 3032 void EmitStaticVarDecl(const VarDecl &D, 3033 llvm::GlobalValue::LinkageTypes Linkage); 3034 3035 class ParamValue { 3036 llvm::Value *Value; 3037 unsigned Alignment; 3038 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 3039 public: 3040 static ParamValue forDirect(llvm::Value *value) { 3041 return ParamValue(value, 0); 3042 } 3043 static ParamValue forIndirect(Address addr) { 3044 assert(!addr.getAlignment().isZero()); 3045 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 3046 } 3047 3048 bool isIndirect() const { return Alignment != 0; } 3049 llvm::Value *getAnyValue() const { return Value; } 3050 3051 llvm::Value *getDirectValue() const { 3052 assert(!isIndirect()); 3053 return Value; 3054 } 3055 3056 Address getIndirectAddress() const { 3057 assert(isIndirect()); 3058 return Address(Value, CharUnits::fromQuantity(Alignment)); 3059 } 3060 }; 3061 3062 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3063 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3064 3065 /// protectFromPeepholes - Protect a value that we're intending to 3066 /// store to the side, but which will probably be used later, from 3067 /// aggressive peepholing optimizations that might delete it. 3068 /// 3069 /// Pass the result to unprotectFromPeepholes to declare that 3070 /// protection is no longer required. 3071 /// 3072 /// There's no particular reason why this shouldn't apply to 3073 /// l-values, it's just that no existing peepholes work on pointers. 3074 PeepholeProtection protectFromPeepholes(RValue rvalue); 3075 void unprotectFromPeepholes(PeepholeProtection protection); 3076 3077 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3078 SourceLocation Loc, 3079 SourceLocation AssumptionLoc, 3080 llvm::Value *Alignment, 3081 llvm::Value *OffsetValue, 3082 llvm::Value *TheCheck, 3083 llvm::Instruction *Assumption); 3084 3085 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3086 SourceLocation Loc, SourceLocation AssumptionLoc, 3087 llvm::Value *Alignment, 3088 llvm::Value *OffsetValue = nullptr); 3089 3090 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3091 SourceLocation AssumptionLoc, 3092 llvm::Value *Alignment, 3093 llvm::Value *OffsetValue = nullptr); 3094 3095 //===--------------------------------------------------------------------===// 3096 // Statement Emission 3097 //===--------------------------------------------------------------------===// 3098 3099 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3100 void EmitStopPoint(const Stmt *S); 3101 3102 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3103 /// this function even if there is no current insertion point. 3104 /// 3105 /// This function may clear the current insertion point; callers should use 3106 /// EnsureInsertPoint if they wish to subsequently generate code without first 3107 /// calling EmitBlock, EmitBranch, or EmitStmt. 3108 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3109 3110 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3111 /// necessarily require an insertion point or debug information; typically 3112 /// because the statement amounts to a jump or a container of other 3113 /// statements. 3114 /// 3115 /// \return True if the statement was handled. 3116 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3117 3118 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3119 AggValueSlot AVS = AggValueSlot::ignored()); 3120 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3121 bool GetLast = false, 3122 AggValueSlot AVS = 3123 AggValueSlot::ignored()); 3124 3125 /// EmitLabel - Emit the block for the given label. It is legal to call this 3126 /// function even if there is no current insertion point. 3127 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3128 3129 void EmitLabelStmt(const LabelStmt &S); 3130 void EmitAttributedStmt(const AttributedStmt &S); 3131 void EmitGotoStmt(const GotoStmt &S); 3132 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3133 void EmitIfStmt(const IfStmt &S); 3134 3135 void EmitWhileStmt(const WhileStmt &S, 3136 ArrayRef<const Attr *> Attrs = None); 3137 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3138 void EmitForStmt(const ForStmt &S, 3139 ArrayRef<const Attr *> Attrs = None); 3140 void EmitReturnStmt(const ReturnStmt &S); 3141 void EmitDeclStmt(const DeclStmt &S); 3142 void EmitBreakStmt(const BreakStmt &S); 3143 void EmitContinueStmt(const ContinueStmt &S); 3144 void EmitSwitchStmt(const SwitchStmt &S); 3145 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3146 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3147 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3148 void EmitAsmStmt(const AsmStmt &S); 3149 3150 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3151 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3152 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3153 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3154 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3155 3156 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3157 void EmitCoreturnStmt(const CoreturnStmt &S); 3158 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3159 AggValueSlot aggSlot = AggValueSlot::ignored(), 3160 bool ignoreResult = false); 3161 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3162 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3163 AggValueSlot aggSlot = AggValueSlot::ignored(), 3164 bool ignoreResult = false); 3165 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3166 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3167 3168 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3169 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3170 3171 void EmitCXXTryStmt(const CXXTryStmt &S); 3172 void EmitSEHTryStmt(const SEHTryStmt &S); 3173 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3174 void EnterSEHTryStmt(const SEHTryStmt &S); 3175 void ExitSEHTryStmt(const SEHTryStmt &S); 3176 3177 void pushSEHCleanup(CleanupKind kind, 3178 llvm::Function *FinallyFunc); 3179 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3180 const Stmt *OutlinedStmt); 3181 3182 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3183 const SEHExceptStmt &Except); 3184 3185 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3186 const SEHFinallyStmt &Finally); 3187 3188 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3189 llvm::Value *ParentFP, 3190 llvm::Value *EntryEBP); 3191 llvm::Value *EmitSEHExceptionCode(); 3192 llvm::Value *EmitSEHExceptionInfo(); 3193 llvm::Value *EmitSEHAbnormalTermination(); 3194 3195 /// Emit simple code for OpenMP directives in Simd-only mode. 3196 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3197 3198 /// Scan the outlined statement for captures from the parent function. For 3199 /// each capture, mark the capture as escaped and emit a call to 3200 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3201 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3202 bool IsFilter); 3203 3204 /// Recovers the address of a local in a parent function. ParentVar is the 3205 /// address of the variable used in the immediate parent function. It can 3206 /// either be an alloca or a call to llvm.localrecover if there are nested 3207 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3208 /// frame. 3209 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3210 Address ParentVar, 3211 llvm::Value *ParentFP); 3212 3213 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3214 ArrayRef<const Attr *> Attrs = None); 3215 3216 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3217 class OMPCancelStackRAII { 3218 CodeGenFunction &CGF; 3219 3220 public: 3221 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3222 bool HasCancel) 3223 : CGF(CGF) { 3224 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3225 } 3226 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3227 }; 3228 3229 /// Returns calculated size of the specified type. 3230 llvm::Value *getTypeSize(QualType Ty); 3231 LValue InitCapturedStruct(const CapturedStmt &S); 3232 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3233 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3234 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3235 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3236 SourceLocation Loc); 3237 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3238 SmallVectorImpl<llvm::Value *> &CapturedVars); 3239 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3240 SourceLocation Loc); 3241 /// Perform element by element copying of arrays with type \a 3242 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3243 /// generated by \a CopyGen. 3244 /// 3245 /// \param DestAddr Address of the destination array. 3246 /// \param SrcAddr Address of the source array. 3247 /// \param OriginalType Type of destination and source arrays. 3248 /// \param CopyGen Copying procedure that copies value of single array element 3249 /// to another single array element. 3250 void EmitOMPAggregateAssign( 3251 Address DestAddr, Address SrcAddr, QualType OriginalType, 3252 const llvm::function_ref<void(Address, Address)> CopyGen); 3253 /// Emit proper copying of data from one variable to another. 3254 /// 3255 /// \param OriginalType Original type of the copied variables. 3256 /// \param DestAddr Destination address. 3257 /// \param SrcAddr Source address. 3258 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3259 /// type of the base array element). 3260 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3261 /// the base array element). 3262 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3263 /// DestVD. 3264 void EmitOMPCopy(QualType OriginalType, 3265 Address DestAddr, Address SrcAddr, 3266 const VarDecl *DestVD, const VarDecl *SrcVD, 3267 const Expr *Copy); 3268 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3269 /// \a X = \a E \a BO \a E. 3270 /// 3271 /// \param X Value to be updated. 3272 /// \param E Update value. 3273 /// \param BO Binary operation for update operation. 3274 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3275 /// expression, false otherwise. 3276 /// \param AO Atomic ordering of the generated atomic instructions. 3277 /// \param CommonGen Code generator for complex expressions that cannot be 3278 /// expressed through atomicrmw instruction. 3279 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3280 /// generated, <false, RValue::get(nullptr)> otherwise. 3281 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3282 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3283 llvm::AtomicOrdering AO, SourceLocation Loc, 3284 const llvm::function_ref<RValue(RValue)> CommonGen); 3285 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3286 OMPPrivateScope &PrivateScope); 3287 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3288 OMPPrivateScope &PrivateScope); 3289 void EmitOMPUseDevicePtrClause( 3290 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3291 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3292 void EmitOMPUseDeviceAddrClause( 3293 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3294 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3295 /// Emit code for copyin clause in \a D directive. The next code is 3296 /// generated at the start of outlined functions for directives: 3297 /// \code 3298 /// threadprivate_var1 = master_threadprivate_var1; 3299 /// operator=(threadprivate_var2, master_threadprivate_var2); 3300 /// ... 3301 /// __kmpc_barrier(&loc, global_tid); 3302 /// \endcode 3303 /// 3304 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3305 /// \returns true if at least one copyin variable is found, false otherwise. 3306 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3307 /// Emit initial code for lastprivate variables. If some variable is 3308 /// not also firstprivate, then the default initialization is used. Otherwise 3309 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3310 /// method. 3311 /// 3312 /// \param D Directive that may have 'lastprivate' directives. 3313 /// \param PrivateScope Private scope for capturing lastprivate variables for 3314 /// proper codegen in internal captured statement. 3315 /// 3316 /// \returns true if there is at least one lastprivate variable, false 3317 /// otherwise. 3318 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3319 OMPPrivateScope &PrivateScope); 3320 /// Emit final copying of lastprivate values to original variables at 3321 /// the end of the worksharing or simd directive. 3322 /// 3323 /// \param D Directive that has at least one 'lastprivate' directives. 3324 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3325 /// it is the last iteration of the loop code in associated directive, or to 3326 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3327 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3328 bool NoFinals, 3329 llvm::Value *IsLastIterCond = nullptr); 3330 /// Emit initial code for linear clauses. 3331 void EmitOMPLinearClause(const OMPLoopDirective &D, 3332 CodeGenFunction::OMPPrivateScope &PrivateScope); 3333 /// Emit final code for linear clauses. 3334 /// \param CondGen Optional conditional code for final part of codegen for 3335 /// linear clause. 3336 void EmitOMPLinearClauseFinal( 3337 const OMPLoopDirective &D, 3338 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3339 /// Emit initial code for reduction variables. Creates reduction copies 3340 /// and initializes them with the values according to OpenMP standard. 3341 /// 3342 /// \param D Directive (possibly) with the 'reduction' clause. 3343 /// \param PrivateScope Private scope for capturing reduction variables for 3344 /// proper codegen in internal captured statement. 3345 /// 3346 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3347 OMPPrivateScope &PrivateScope, 3348 bool ForInscan = false); 3349 /// Emit final update of reduction values to original variables at 3350 /// the end of the directive. 3351 /// 3352 /// \param D Directive that has at least one 'reduction' directives. 3353 /// \param ReductionKind The kind of reduction to perform. 3354 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3355 const OpenMPDirectiveKind ReductionKind); 3356 /// Emit initial code for linear variables. Creates private copies 3357 /// and initializes them with the values according to OpenMP standard. 3358 /// 3359 /// \param D Directive (possibly) with the 'linear' clause. 3360 /// \return true if at least one linear variable is found that should be 3361 /// initialized with the value of the original variable, false otherwise. 3362 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3363 3364 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3365 llvm::Function * /*OutlinedFn*/, 3366 const OMPTaskDataTy & /*Data*/)> 3367 TaskGenTy; 3368 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3369 const OpenMPDirectiveKind CapturedRegion, 3370 const RegionCodeGenTy &BodyGen, 3371 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3372 struct OMPTargetDataInfo { 3373 Address BasePointersArray = Address::invalid(); 3374 Address PointersArray = Address::invalid(); 3375 Address SizesArray = Address::invalid(); 3376 Address MappersArray = Address::invalid(); 3377 unsigned NumberOfTargetItems = 0; 3378 explicit OMPTargetDataInfo() = default; 3379 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3380 Address SizesArray, Address MappersArray, 3381 unsigned NumberOfTargetItems) 3382 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3383 SizesArray(SizesArray), MappersArray(MappersArray), 3384 NumberOfTargetItems(NumberOfTargetItems) {} 3385 }; 3386 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3387 const RegionCodeGenTy &BodyGen, 3388 OMPTargetDataInfo &InputInfo); 3389 3390 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3391 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3392 void EmitOMPForDirective(const OMPForDirective &S); 3393 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3394 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3395 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3396 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3397 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3398 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3399 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3400 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3401 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3402 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3403 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3404 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3405 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3406 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3407 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3408 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3409 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3410 void EmitOMPScanDirective(const OMPScanDirective &S); 3411 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3412 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3413 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3414 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3415 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3416 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3417 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3418 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3419 void 3420 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3421 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3422 void 3423 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3424 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3425 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3426 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3427 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3428 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3429 void 3430 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3431 void EmitOMPParallelMasterTaskLoopDirective( 3432 const OMPParallelMasterTaskLoopDirective &S); 3433 void EmitOMPParallelMasterTaskLoopSimdDirective( 3434 const OMPParallelMasterTaskLoopSimdDirective &S); 3435 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3436 void EmitOMPDistributeParallelForDirective( 3437 const OMPDistributeParallelForDirective &S); 3438 void EmitOMPDistributeParallelForSimdDirective( 3439 const OMPDistributeParallelForSimdDirective &S); 3440 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3441 void EmitOMPTargetParallelForSimdDirective( 3442 const OMPTargetParallelForSimdDirective &S); 3443 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3444 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3445 void 3446 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3447 void EmitOMPTeamsDistributeParallelForSimdDirective( 3448 const OMPTeamsDistributeParallelForSimdDirective &S); 3449 void EmitOMPTeamsDistributeParallelForDirective( 3450 const OMPTeamsDistributeParallelForDirective &S); 3451 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3452 void EmitOMPTargetTeamsDistributeDirective( 3453 const OMPTargetTeamsDistributeDirective &S); 3454 void EmitOMPTargetTeamsDistributeParallelForDirective( 3455 const OMPTargetTeamsDistributeParallelForDirective &S); 3456 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3457 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3458 void EmitOMPTargetTeamsDistributeSimdDirective( 3459 const OMPTargetTeamsDistributeSimdDirective &S); 3460 3461 /// Emit device code for the target directive. 3462 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3463 StringRef ParentName, 3464 const OMPTargetDirective &S); 3465 static void 3466 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3467 const OMPTargetParallelDirective &S); 3468 /// Emit device code for the target parallel for directive. 3469 static void EmitOMPTargetParallelForDeviceFunction( 3470 CodeGenModule &CGM, StringRef ParentName, 3471 const OMPTargetParallelForDirective &S); 3472 /// Emit device code for the target parallel for simd directive. 3473 static void EmitOMPTargetParallelForSimdDeviceFunction( 3474 CodeGenModule &CGM, StringRef ParentName, 3475 const OMPTargetParallelForSimdDirective &S); 3476 /// Emit device code for the target teams directive. 3477 static void 3478 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3479 const OMPTargetTeamsDirective &S); 3480 /// Emit device code for the target teams distribute directive. 3481 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3482 CodeGenModule &CGM, StringRef ParentName, 3483 const OMPTargetTeamsDistributeDirective &S); 3484 /// Emit device code for the target teams distribute simd directive. 3485 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3486 CodeGenModule &CGM, StringRef ParentName, 3487 const OMPTargetTeamsDistributeSimdDirective &S); 3488 /// Emit device code for the target simd directive. 3489 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3490 StringRef ParentName, 3491 const OMPTargetSimdDirective &S); 3492 /// Emit device code for the target teams distribute parallel for simd 3493 /// directive. 3494 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3495 CodeGenModule &CGM, StringRef ParentName, 3496 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3497 3498 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3499 CodeGenModule &CGM, StringRef ParentName, 3500 const OMPTargetTeamsDistributeParallelForDirective &S); 3501 /// Emit inner loop of the worksharing/simd construct. 3502 /// 3503 /// \param S Directive, for which the inner loop must be emitted. 3504 /// \param RequiresCleanup true, if directive has some associated private 3505 /// variables. 3506 /// \param LoopCond Bollean condition for loop continuation. 3507 /// \param IncExpr Increment expression for loop control variable. 3508 /// \param BodyGen Generator for the inner body of the inner loop. 3509 /// \param PostIncGen Genrator for post-increment code (required for ordered 3510 /// loop directvies). 3511 void EmitOMPInnerLoop( 3512 const OMPExecutableDirective &S, bool RequiresCleanup, 3513 const Expr *LoopCond, const Expr *IncExpr, 3514 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3515 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3516 3517 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3518 /// Emit initial code for loop counters of loop-based directives. 3519 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3520 OMPPrivateScope &LoopScope); 3521 3522 /// Helper for the OpenMP loop directives. 3523 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3524 3525 /// Emit code for the worksharing loop-based directive. 3526 /// \return true, if this construct has any lastprivate clause, false - 3527 /// otherwise. 3528 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3529 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3530 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3531 3532 /// Emit code for the distribute loop-based directive. 3533 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3534 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3535 3536 /// Helpers for the OpenMP loop directives. 3537 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3538 void EmitOMPSimdFinal( 3539 const OMPLoopDirective &D, 3540 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3541 3542 /// Emits the lvalue for the expression with possibly captured variable. 3543 LValue EmitOMPSharedLValue(const Expr *E); 3544 3545 private: 3546 /// Helpers for blocks. 3547 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3548 3549 /// struct with the values to be passed to the OpenMP loop-related functions 3550 struct OMPLoopArguments { 3551 /// loop lower bound 3552 Address LB = Address::invalid(); 3553 /// loop upper bound 3554 Address UB = Address::invalid(); 3555 /// loop stride 3556 Address ST = Address::invalid(); 3557 /// isLastIteration argument for runtime functions 3558 Address IL = Address::invalid(); 3559 /// Chunk value generated by sema 3560 llvm::Value *Chunk = nullptr; 3561 /// EnsureUpperBound 3562 Expr *EUB = nullptr; 3563 /// IncrementExpression 3564 Expr *IncExpr = nullptr; 3565 /// Loop initialization 3566 Expr *Init = nullptr; 3567 /// Loop exit condition 3568 Expr *Cond = nullptr; 3569 /// Update of LB after a whole chunk has been executed 3570 Expr *NextLB = nullptr; 3571 /// Update of UB after a whole chunk has been executed 3572 Expr *NextUB = nullptr; 3573 OMPLoopArguments() = default; 3574 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3575 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3576 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3577 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3578 Expr *NextUB = nullptr) 3579 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3580 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3581 NextUB(NextUB) {} 3582 }; 3583 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3584 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3585 const OMPLoopArguments &LoopArgs, 3586 const CodeGenLoopTy &CodeGenLoop, 3587 const CodeGenOrderedTy &CodeGenOrdered); 3588 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3589 bool IsMonotonic, const OMPLoopDirective &S, 3590 OMPPrivateScope &LoopScope, bool Ordered, 3591 const OMPLoopArguments &LoopArgs, 3592 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3593 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3594 const OMPLoopDirective &S, 3595 OMPPrivateScope &LoopScope, 3596 const OMPLoopArguments &LoopArgs, 3597 const CodeGenLoopTy &CodeGenLoopContent); 3598 /// Emit code for sections directive. 3599 void EmitSections(const OMPExecutableDirective &S); 3600 3601 public: 3602 3603 //===--------------------------------------------------------------------===// 3604 // LValue Expression Emission 3605 //===--------------------------------------------------------------------===// 3606 3607 /// Create a check that a scalar RValue is non-null. 3608 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3609 3610 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3611 RValue GetUndefRValue(QualType Ty); 3612 3613 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3614 /// and issue an ErrorUnsupported style diagnostic (using the 3615 /// provided Name). 3616 RValue EmitUnsupportedRValue(const Expr *E, 3617 const char *Name); 3618 3619 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3620 /// an ErrorUnsupported style diagnostic (using the provided Name). 3621 LValue EmitUnsupportedLValue(const Expr *E, 3622 const char *Name); 3623 3624 /// EmitLValue - Emit code to compute a designator that specifies the location 3625 /// of the expression. 3626 /// 3627 /// This can return one of two things: a simple address or a bitfield 3628 /// reference. In either case, the LLVM Value* in the LValue structure is 3629 /// guaranteed to be an LLVM pointer type. 3630 /// 3631 /// If this returns a bitfield reference, nothing about the pointee type of 3632 /// the LLVM value is known: For example, it may not be a pointer to an 3633 /// integer. 3634 /// 3635 /// If this returns a normal address, and if the lvalue's C type is fixed 3636 /// size, this method guarantees that the returned pointer type will point to 3637 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3638 /// variable length type, this is not possible. 3639 /// 3640 LValue EmitLValue(const Expr *E); 3641 3642 /// Same as EmitLValue but additionally we generate checking code to 3643 /// guard against undefined behavior. This is only suitable when we know 3644 /// that the address will be used to access the object. 3645 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3646 3647 RValue convertTempToRValue(Address addr, QualType type, 3648 SourceLocation Loc); 3649 3650 void EmitAtomicInit(Expr *E, LValue lvalue); 3651 3652 bool LValueIsSuitableForInlineAtomic(LValue Src); 3653 3654 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3655 AggValueSlot Slot = AggValueSlot::ignored()); 3656 3657 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3658 llvm::AtomicOrdering AO, bool IsVolatile = false, 3659 AggValueSlot slot = AggValueSlot::ignored()); 3660 3661 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3662 3663 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3664 bool IsVolatile, bool isInit); 3665 3666 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3667 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3668 llvm::AtomicOrdering Success = 3669 llvm::AtomicOrdering::SequentiallyConsistent, 3670 llvm::AtomicOrdering Failure = 3671 llvm::AtomicOrdering::SequentiallyConsistent, 3672 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3673 3674 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3675 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3676 bool IsVolatile); 3677 3678 /// EmitToMemory - Change a scalar value from its value 3679 /// representation to its in-memory representation. 3680 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3681 3682 /// EmitFromMemory - Change a scalar value from its memory 3683 /// representation to its value representation. 3684 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3685 3686 /// Check if the scalar \p Value is within the valid range for the given 3687 /// type \p Ty. 3688 /// 3689 /// Returns true if a check is needed (even if the range is unknown). 3690 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3691 SourceLocation Loc); 3692 3693 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3694 /// care to appropriately convert from the memory representation to 3695 /// the LLVM value representation. 3696 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3697 SourceLocation Loc, 3698 AlignmentSource Source = AlignmentSource::Type, 3699 bool isNontemporal = false) { 3700 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3701 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3702 } 3703 3704 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3705 SourceLocation Loc, LValueBaseInfo BaseInfo, 3706 TBAAAccessInfo TBAAInfo, 3707 bool isNontemporal = false); 3708 3709 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3710 /// care to appropriately convert from the memory representation to 3711 /// the LLVM value representation. The l-value must be a simple 3712 /// l-value. 3713 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3714 3715 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3716 /// care to appropriately convert from the memory representation to 3717 /// the LLVM value representation. 3718 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3719 bool Volatile, QualType Ty, 3720 AlignmentSource Source = AlignmentSource::Type, 3721 bool isInit = false, bool isNontemporal = false) { 3722 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3723 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3724 } 3725 3726 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3727 bool Volatile, QualType Ty, 3728 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3729 bool isInit = false, bool isNontemporal = false); 3730 3731 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3732 /// care to appropriately convert from the memory representation to 3733 /// the LLVM value representation. The l-value must be a simple 3734 /// l-value. The isInit flag indicates whether this is an initialization. 3735 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3736 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3737 3738 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3739 /// this method emits the address of the lvalue, then loads the result as an 3740 /// rvalue, returning the rvalue. 3741 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3742 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3743 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3744 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3745 3746 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3747 /// lvalue, where both are guaranteed to the have the same type, and that type 3748 /// is 'Ty'. 3749 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3750 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3751 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3752 3753 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3754 /// as EmitStoreThroughLValue. 3755 /// 3756 /// \param Result [out] - If non-null, this will be set to a Value* for the 3757 /// bit-field contents after the store, appropriate for use as the result of 3758 /// an assignment to the bit-field. 3759 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3760 llvm::Value **Result=nullptr); 3761 3762 /// Emit an l-value for an assignment (simple or compound) of complex type. 3763 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3764 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3765 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3766 llvm::Value *&Result); 3767 3768 // Note: only available for agg return types 3769 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3770 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3771 // Note: only available for agg return types 3772 LValue EmitCallExprLValue(const CallExpr *E); 3773 // Note: only available for agg return types 3774 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3775 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3776 LValue EmitStringLiteralLValue(const StringLiteral *E); 3777 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3778 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3779 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3780 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3781 bool Accessed = false); 3782 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3783 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3784 bool IsLowerBound = true); 3785 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3786 LValue EmitMemberExpr(const MemberExpr *E); 3787 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3788 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3789 LValue EmitInitListLValue(const InitListExpr *E); 3790 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3791 LValue EmitCastLValue(const CastExpr *E); 3792 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3793 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3794 3795 Address EmitExtVectorElementLValue(LValue V); 3796 3797 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3798 3799 Address EmitArrayToPointerDecay(const Expr *Array, 3800 LValueBaseInfo *BaseInfo = nullptr, 3801 TBAAAccessInfo *TBAAInfo = nullptr); 3802 3803 class ConstantEmission { 3804 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3805 ConstantEmission(llvm::Constant *C, bool isReference) 3806 : ValueAndIsReference(C, isReference) {} 3807 public: 3808 ConstantEmission() {} 3809 static ConstantEmission forReference(llvm::Constant *C) { 3810 return ConstantEmission(C, true); 3811 } 3812 static ConstantEmission forValue(llvm::Constant *C) { 3813 return ConstantEmission(C, false); 3814 } 3815 3816 explicit operator bool() const { 3817 return ValueAndIsReference.getOpaqueValue() != nullptr; 3818 } 3819 3820 bool isReference() const { return ValueAndIsReference.getInt(); } 3821 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3822 assert(isReference()); 3823 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3824 refExpr->getType()); 3825 } 3826 3827 llvm::Constant *getValue() const { 3828 assert(!isReference()); 3829 return ValueAndIsReference.getPointer(); 3830 } 3831 }; 3832 3833 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3834 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3835 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3836 3837 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3838 AggValueSlot slot = AggValueSlot::ignored()); 3839 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3840 3841 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3842 const ObjCIvarDecl *Ivar); 3843 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3844 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3845 3846 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3847 /// if the Field is a reference, this will return the address of the reference 3848 /// and not the address of the value stored in the reference. 3849 LValue EmitLValueForFieldInitialization(LValue Base, 3850 const FieldDecl* Field); 3851 3852 LValue EmitLValueForIvar(QualType ObjectTy, 3853 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3854 unsigned CVRQualifiers); 3855 3856 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3857 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3858 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3859 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3860 3861 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3862 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3863 LValue EmitStmtExprLValue(const StmtExpr *E); 3864 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3865 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3866 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3867 3868 //===--------------------------------------------------------------------===// 3869 // Scalar Expression Emission 3870 //===--------------------------------------------------------------------===// 3871 3872 /// EmitCall - Generate a call of the given function, expecting the given 3873 /// result type, and using the given argument list which specifies both the 3874 /// LLVM arguments and the types they were derived from. 3875 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3876 ReturnValueSlot ReturnValue, const CallArgList &Args, 3877 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3878 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3879 ReturnValueSlot ReturnValue, const CallArgList &Args, 3880 llvm::CallBase **callOrInvoke = nullptr) { 3881 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3882 SourceLocation()); 3883 } 3884 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3885 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3886 RValue EmitCallExpr(const CallExpr *E, 3887 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3888 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3889 CGCallee EmitCallee(const Expr *E); 3890 3891 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3892 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3893 3894 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3895 const Twine &name = ""); 3896 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3897 ArrayRef<llvm::Value *> args, 3898 const Twine &name = ""); 3899 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3900 const Twine &name = ""); 3901 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3902 ArrayRef<llvm::Value *> args, 3903 const Twine &name = ""); 3904 3905 SmallVector<llvm::OperandBundleDef, 1> 3906 getBundlesForFunclet(llvm::Value *Callee); 3907 3908 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3909 ArrayRef<llvm::Value *> Args, 3910 const Twine &Name = ""); 3911 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3912 ArrayRef<llvm::Value *> args, 3913 const Twine &name = ""); 3914 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3915 const Twine &name = ""); 3916 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3917 ArrayRef<llvm::Value *> args); 3918 3919 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3920 NestedNameSpecifier *Qual, 3921 llvm::Type *Ty); 3922 3923 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3924 CXXDtorType Type, 3925 const CXXRecordDecl *RD); 3926 3927 // Return the copy constructor name with the prefix "__copy_constructor_" 3928 // removed. 3929 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3930 CharUnits Alignment, 3931 bool IsVolatile, 3932 ASTContext &Ctx); 3933 3934 // Return the destructor name with the prefix "__destructor_" removed. 3935 static std::string getNonTrivialDestructorStr(QualType QT, 3936 CharUnits Alignment, 3937 bool IsVolatile, 3938 ASTContext &Ctx); 3939 3940 // These functions emit calls to the special functions of non-trivial C 3941 // structs. 3942 void defaultInitNonTrivialCStructVar(LValue Dst); 3943 void callCStructDefaultConstructor(LValue Dst); 3944 void callCStructDestructor(LValue Dst); 3945 void callCStructCopyConstructor(LValue Dst, LValue Src); 3946 void callCStructMoveConstructor(LValue Dst, LValue Src); 3947 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3948 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3949 3950 RValue 3951 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3952 const CGCallee &Callee, 3953 ReturnValueSlot ReturnValue, llvm::Value *This, 3954 llvm::Value *ImplicitParam, 3955 QualType ImplicitParamTy, const CallExpr *E, 3956 CallArgList *RtlArgs); 3957 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 3958 llvm::Value *This, QualType ThisTy, 3959 llvm::Value *ImplicitParam, 3960 QualType ImplicitParamTy, const CallExpr *E); 3961 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3962 ReturnValueSlot ReturnValue); 3963 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3964 const CXXMethodDecl *MD, 3965 ReturnValueSlot ReturnValue, 3966 bool HasQualifier, 3967 NestedNameSpecifier *Qualifier, 3968 bool IsArrow, const Expr *Base); 3969 // Compute the object pointer. 3970 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3971 llvm::Value *memberPtr, 3972 const MemberPointerType *memberPtrType, 3973 LValueBaseInfo *BaseInfo = nullptr, 3974 TBAAAccessInfo *TBAAInfo = nullptr); 3975 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3976 ReturnValueSlot ReturnValue); 3977 3978 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3979 const CXXMethodDecl *MD, 3980 ReturnValueSlot ReturnValue); 3981 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3982 3983 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3984 ReturnValueSlot ReturnValue); 3985 3986 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3987 ReturnValueSlot ReturnValue); 3988 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E, 3989 ReturnValueSlot ReturnValue); 3990 3991 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3992 const CallExpr *E, ReturnValueSlot ReturnValue); 3993 3994 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3995 3996 /// Emit IR for __builtin_os_log_format. 3997 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3998 3999 /// Emit IR for __builtin_is_aligned. 4000 RValue EmitBuiltinIsAligned(const CallExpr *E); 4001 /// Emit IR for __builtin_align_up/__builtin_align_down. 4002 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4003 4004 llvm::Function *generateBuiltinOSLogHelperFunction( 4005 const analyze_os_log::OSLogBufferLayout &Layout, 4006 CharUnits BufferAlignment); 4007 4008 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4009 4010 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4011 /// is unhandled by the current target. 4012 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4013 ReturnValueSlot ReturnValue); 4014 4015 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4016 const llvm::CmpInst::Predicate Fp, 4017 const llvm::CmpInst::Predicate Ip, 4018 const llvm::Twine &Name = ""); 4019 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4020 ReturnValueSlot ReturnValue, 4021 llvm::Triple::ArchType Arch); 4022 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4023 ReturnValueSlot ReturnValue, 4024 llvm::Triple::ArchType Arch); 4025 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4026 ReturnValueSlot ReturnValue, 4027 llvm::Triple::ArchType Arch); 4028 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4029 QualType RTy); 4030 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4031 QualType RTy); 4032 4033 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4034 unsigned LLVMIntrinsic, 4035 unsigned AltLLVMIntrinsic, 4036 const char *NameHint, 4037 unsigned Modifier, 4038 const CallExpr *E, 4039 SmallVectorImpl<llvm::Value *> &Ops, 4040 Address PtrOp0, Address PtrOp1, 4041 llvm::Triple::ArchType Arch); 4042 4043 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4044 unsigned Modifier, llvm::Type *ArgTy, 4045 const CallExpr *E); 4046 llvm::Value *EmitNeonCall(llvm::Function *F, 4047 SmallVectorImpl<llvm::Value*> &O, 4048 const char *name, 4049 unsigned shift = 0, bool rightshift = false); 4050 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4051 const llvm::ElementCount &Count); 4052 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4053 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4054 bool negateForRightShift); 4055 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4056 llvm::Type *Ty, bool usgn, const char *name); 4057 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4058 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4059 /// access builtin. Only required if it can't be inferred from the base 4060 /// pointer operand. 4061 llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags); 4062 4063 SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags, 4064 llvm::Type *ReturnType, 4065 ArrayRef<llvm::Value *> Ops); 4066 llvm::Type *getEltType(SVETypeFlags TypeFlags); 4067 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4068 llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags); 4069 llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags); 4070 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4071 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4072 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4073 llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags, 4074 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4075 unsigned BuiltinID); 4076 llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags, 4077 llvm::ArrayRef<llvm::Value *> Ops, 4078 unsigned BuiltinID); 4079 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4080 llvm::ScalableVectorType *VTy); 4081 llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags, 4082 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4083 unsigned IntID); 4084 llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags, 4085 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4086 unsigned IntID); 4087 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4088 SmallVectorImpl<llvm::Value *> &Ops, 4089 unsigned BuiltinID, bool IsZExtReturn); 4090 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4091 SmallVectorImpl<llvm::Value *> &Ops, 4092 unsigned BuiltinID); 4093 llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags, 4094 SmallVectorImpl<llvm::Value *> &Ops, 4095 unsigned BuiltinID); 4096 llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags, 4097 SmallVectorImpl<llvm::Value *> &Ops, 4098 unsigned IntID); 4099 llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags, 4100 SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID); 4101 llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags, 4102 SmallVectorImpl<llvm::Value *> &Ops, 4103 unsigned IntID); 4104 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4105 4106 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4107 llvm::Triple::ArchType Arch); 4108 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4109 4110 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4111 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4112 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4113 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4114 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4115 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4116 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4117 const CallExpr *E); 4118 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4119 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4120 llvm::AtomicOrdering &AO, 4121 llvm::SyncScope::ID &SSID); 4122 4123 enum class MSVCIntrin; 4124 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4125 4126 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4127 4128 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4129 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4130 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4131 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4132 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4133 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4134 const ObjCMethodDecl *MethodWithObjects); 4135 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4136 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4137 ReturnValueSlot Return = ReturnValueSlot()); 4138 4139 /// Retrieves the default cleanup kind for an ARC cleanup. 4140 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4141 CleanupKind getARCCleanupKind() { 4142 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4143 ? NormalAndEHCleanup : NormalCleanup; 4144 } 4145 4146 // ARC primitives. 4147 void EmitARCInitWeak(Address addr, llvm::Value *value); 4148 void EmitARCDestroyWeak(Address addr); 4149 llvm::Value *EmitARCLoadWeak(Address addr); 4150 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4151 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4152 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4153 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4154 void EmitARCCopyWeak(Address dst, Address src); 4155 void EmitARCMoveWeak(Address dst, Address src); 4156 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4157 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4158 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4159 bool resultIgnored); 4160 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4161 bool resultIgnored); 4162 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4163 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4164 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4165 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4166 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4167 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4168 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4169 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4170 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4171 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4172 4173 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4174 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4175 llvm::Type *returnType); 4176 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4177 4178 std::pair<LValue,llvm::Value*> 4179 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4180 std::pair<LValue,llvm::Value*> 4181 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4182 std::pair<LValue,llvm::Value*> 4183 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4184 4185 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4186 llvm::Type *returnType); 4187 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4188 llvm::Type *returnType); 4189 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4190 4191 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4192 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4193 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4194 4195 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4196 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4197 bool allowUnsafeClaim); 4198 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4199 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4200 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4201 4202 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4203 4204 static Destroyer destroyARCStrongImprecise; 4205 static Destroyer destroyARCStrongPrecise; 4206 static Destroyer destroyARCWeak; 4207 static Destroyer emitARCIntrinsicUse; 4208 static Destroyer destroyNonTrivialCStruct; 4209 4210 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4211 llvm::Value *EmitObjCAutoreleasePoolPush(); 4212 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4213 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4214 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4215 4216 /// Emits a reference binding to the passed in expression. 4217 RValue EmitReferenceBindingToExpr(const Expr *E); 4218 4219 //===--------------------------------------------------------------------===// 4220 // Expression Emission 4221 //===--------------------------------------------------------------------===// 4222 4223 // Expressions are broken into three classes: scalar, complex, aggregate. 4224 4225 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4226 /// scalar type, returning the result. 4227 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4228 4229 /// Emit a conversion from the specified type to the specified destination 4230 /// type, both of which are LLVM scalar types. 4231 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4232 QualType DstTy, SourceLocation Loc); 4233 4234 /// Emit a conversion from the specified complex type to the specified 4235 /// destination type, where the destination type is an LLVM scalar type. 4236 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4237 QualType DstTy, 4238 SourceLocation Loc); 4239 4240 /// EmitAggExpr - Emit the computation of the specified expression 4241 /// of aggregate type. The result is computed into the given slot, 4242 /// which may be null to indicate that the value is not needed. 4243 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4244 4245 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4246 /// aggregate type into a temporary LValue. 4247 LValue EmitAggExprToLValue(const Expr *E); 4248 4249 /// Build all the stores needed to initialize an aggregate at Dest with the 4250 /// value Val. 4251 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4252 4253 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4254 /// make sure it survives garbage collection until this point. 4255 void EmitExtendGCLifetime(llvm::Value *object); 4256 4257 /// EmitComplexExpr - Emit the computation of the specified expression of 4258 /// complex type, returning the result. 4259 ComplexPairTy EmitComplexExpr(const Expr *E, 4260 bool IgnoreReal = false, 4261 bool IgnoreImag = false); 4262 4263 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4264 /// type and place its result into the specified l-value. 4265 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4266 4267 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4268 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4269 4270 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4271 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4272 4273 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4274 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4275 4276 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4277 /// global variable that has already been created for it. If the initializer 4278 /// has a different type than GV does, this may free GV and return a different 4279 /// one. Otherwise it just returns GV. 4280 llvm::GlobalVariable * 4281 AddInitializerToStaticVarDecl(const VarDecl &D, 4282 llvm::GlobalVariable *GV); 4283 4284 // Emit an @llvm.invariant.start call for the given memory region. 4285 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4286 4287 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4288 /// variable with global storage. 4289 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 4290 bool PerformInit); 4291 4292 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4293 llvm::Constant *Addr); 4294 4295 /// Call atexit() with a function that passes the given argument to 4296 /// the given function. 4297 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4298 llvm::Constant *addr); 4299 4300 /// Call atexit() with function dtorStub. 4301 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4302 4303 /// Call unatexit() with function dtorStub. 4304 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4305 4306 /// Emit code in this function to perform a guarded variable 4307 /// initialization. Guarded initializations are used when it's not 4308 /// possible to prove that an initialization will be done exactly 4309 /// once, e.g. with a static local variable or a static data member 4310 /// of a class template. 4311 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4312 bool PerformInit); 4313 4314 enum class GuardKind { VariableGuard, TlsGuard }; 4315 4316 /// Emit a branch to select whether or not to perform guarded initialization. 4317 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4318 llvm::BasicBlock *InitBlock, 4319 llvm::BasicBlock *NoInitBlock, 4320 GuardKind Kind, const VarDecl *D); 4321 4322 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4323 /// variables. 4324 void 4325 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4326 ArrayRef<llvm::Function *> CXXThreadLocals, 4327 ConstantAddress Guard = ConstantAddress::invalid()); 4328 4329 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4330 /// variables. 4331 void GenerateCXXGlobalCleanUpFunc( 4332 llvm::Function *Fn, 4333 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4334 llvm::Constant *>> &DtorsOrStermFinalizers); 4335 4336 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4337 const VarDecl *D, 4338 llvm::GlobalVariable *Addr, 4339 bool PerformInit); 4340 4341 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4342 4343 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4344 4345 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4346 4347 RValue EmitAtomicExpr(AtomicExpr *E); 4348 4349 //===--------------------------------------------------------------------===// 4350 // Annotations Emission 4351 //===--------------------------------------------------------------------===// 4352 4353 /// Emit an annotation call (intrinsic). 4354 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4355 llvm::Value *AnnotatedVal, 4356 StringRef AnnotationStr, 4357 SourceLocation Location, 4358 const AnnotateAttr *Attr); 4359 4360 /// Emit local annotations for the local variable V, declared by D. 4361 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4362 4363 /// Emit field annotations for the given field & value. Returns the 4364 /// annotation result. 4365 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4366 4367 //===--------------------------------------------------------------------===// 4368 // Internal Helpers 4369 //===--------------------------------------------------------------------===// 4370 4371 /// ContainsLabel - Return true if the statement contains a label in it. If 4372 /// this statement is not executed normally, it not containing a label means 4373 /// that we can just remove the code. 4374 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4375 4376 /// containsBreak - Return true if the statement contains a break out of it. 4377 /// If the statement (recursively) contains a switch or loop with a break 4378 /// inside of it, this is fine. 4379 static bool containsBreak(const Stmt *S); 4380 4381 /// Determine if the given statement might introduce a declaration into the 4382 /// current scope, by being a (possibly-labelled) DeclStmt. 4383 static bool mightAddDeclToScope(const Stmt *S); 4384 4385 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4386 /// to a constant, or if it does but contains a label, return false. If it 4387 /// constant folds return true and set the boolean result in Result. 4388 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4389 bool AllowLabels = false); 4390 4391 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4392 /// to a constant, or if it does but contains a label, return false. If it 4393 /// constant folds return true and set the folded value. 4394 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4395 bool AllowLabels = false); 4396 4397 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4398 /// if statement) to the specified blocks. Based on the condition, this might 4399 /// try to simplify the codegen of the conditional based on the branch. 4400 /// TrueCount should be the number of times we expect the condition to 4401 /// evaluate to true based on PGO data. 4402 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4403 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4404 Stmt::Likelihood LH = Stmt::LH_None); 4405 4406 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4407 /// nonnull, if \p LHS is marked _Nonnull. 4408 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4409 4410 /// An enumeration which makes it easier to specify whether or not an 4411 /// operation is a subtraction. 4412 enum { NotSubtraction = false, IsSubtraction = true }; 4413 4414 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4415 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4416 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4417 /// \p IsSubtraction indicates whether the expression used to form the GEP 4418 /// is a subtraction. 4419 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4420 ArrayRef<llvm::Value *> IdxList, 4421 bool SignedIndices, 4422 bool IsSubtraction, 4423 SourceLocation Loc, 4424 const Twine &Name = ""); 4425 4426 /// Specifies which type of sanitizer check to apply when handling a 4427 /// particular builtin. 4428 enum BuiltinCheckKind { 4429 BCK_CTZPassedZero, 4430 BCK_CLZPassedZero, 4431 }; 4432 4433 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4434 /// enabled, a runtime check specified by \p Kind is also emitted. 4435 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4436 4437 /// Emit a description of a type in a format suitable for passing to 4438 /// a runtime sanitizer handler. 4439 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4440 4441 /// Convert a value into a format suitable for passing to a runtime 4442 /// sanitizer handler. 4443 llvm::Value *EmitCheckValue(llvm::Value *V); 4444 4445 /// Emit a description of a source location in a format suitable for 4446 /// passing to a runtime sanitizer handler. 4447 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4448 4449 /// Create a basic block that will either trap or call a handler function in 4450 /// the UBSan runtime with the provided arguments, and create a conditional 4451 /// branch to it. 4452 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4453 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4454 ArrayRef<llvm::Value *> DynamicArgs); 4455 4456 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4457 /// if Cond if false. 4458 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4459 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4460 ArrayRef<llvm::Constant *> StaticArgs); 4461 4462 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4463 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4464 void EmitUnreachable(SourceLocation Loc); 4465 4466 /// Create a basic block that will call the trap intrinsic, and emit a 4467 /// conditional branch to it, for the -ftrapv checks. 4468 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4469 4470 /// Emit a call to trap or debugtrap and attach function attribute 4471 /// "trap-func-name" if specified. 4472 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4473 4474 /// Emit a stub for the cross-DSO CFI check function. 4475 void EmitCfiCheckStub(); 4476 4477 /// Emit a cross-DSO CFI failure handling function. 4478 void EmitCfiCheckFail(); 4479 4480 /// Create a check for a function parameter that may potentially be 4481 /// declared as non-null. 4482 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4483 AbstractCallee AC, unsigned ParmNum); 4484 4485 /// EmitCallArg - Emit a single call argument. 4486 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4487 4488 /// EmitDelegateCallArg - We are performing a delegate call; that 4489 /// is, the current function is delegating to another one. Produce 4490 /// a r-value suitable for passing the given parameter. 4491 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4492 SourceLocation loc); 4493 4494 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4495 /// point operation, expressed as the maximum relative error in ulp. 4496 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4497 4498 /// SetFPModel - Control floating point behavior via fp-model settings. 4499 void SetFPModel(); 4500 4501 /// Set the codegen fast-math flags. 4502 void SetFastMathFlags(FPOptions FPFeatures); 4503 4504 private: 4505 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4506 void EmitReturnOfRValue(RValue RV, QualType Ty); 4507 4508 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4509 4510 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4511 DeferredReplacements; 4512 4513 /// Set the address of a local variable. 4514 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4515 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4516 LocalDeclMap.insert({VD, Addr}); 4517 } 4518 4519 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4520 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4521 /// 4522 /// \param AI - The first function argument of the expansion. 4523 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4524 llvm::Function::arg_iterator &AI); 4525 4526 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4527 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4528 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4529 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4530 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4531 unsigned &IRCallArgPos); 4532 4533 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4534 const Expr *InputExpr, std::string &ConstraintStr); 4535 4536 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4537 LValue InputValue, QualType InputType, 4538 std::string &ConstraintStr, 4539 SourceLocation Loc); 4540 4541 /// Attempts to statically evaluate the object size of E. If that 4542 /// fails, emits code to figure the size of E out for us. This is 4543 /// pass_object_size aware. 4544 /// 4545 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4546 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4547 llvm::IntegerType *ResType, 4548 llvm::Value *EmittedE, 4549 bool IsDynamic); 4550 4551 /// Emits the size of E, as required by __builtin_object_size. This 4552 /// function is aware of pass_object_size parameters, and will act accordingly 4553 /// if E is a parameter with the pass_object_size attribute. 4554 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4555 llvm::IntegerType *ResType, 4556 llvm::Value *EmittedE, 4557 bool IsDynamic); 4558 4559 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4560 Address Loc); 4561 4562 public: 4563 #ifndef NDEBUG 4564 // Determine whether the given argument is an Objective-C method 4565 // that may have type parameters in its signature. 4566 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4567 const DeclContext *dc = method->getDeclContext(); 4568 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4569 return classDecl->getTypeParamListAsWritten(); 4570 } 4571 4572 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4573 return catDecl->getTypeParamList(); 4574 } 4575 4576 return false; 4577 } 4578 4579 template<typename T> 4580 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4581 #endif 4582 4583 enum class EvaluationOrder { 4584 ///! No language constraints on evaluation order. 4585 Default, 4586 ///! Language semantics require left-to-right evaluation. 4587 ForceLeftToRight, 4588 ///! Language semantics require right-to-left evaluation. 4589 ForceRightToLeft 4590 }; 4591 4592 /// EmitCallArgs - Emit call arguments for a function. 4593 template <typename T> 4594 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4595 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4596 AbstractCallee AC = AbstractCallee(), 4597 unsigned ParamsToSkip = 0, 4598 EvaluationOrder Order = EvaluationOrder::Default) { 4599 SmallVector<QualType, 16> ArgTypes; 4600 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4601 4602 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4603 "Can't skip parameters if type info is not provided"); 4604 if (CallArgTypeInfo) { 4605 #ifndef NDEBUG 4606 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4607 #endif 4608 4609 // First, use the argument types that the type info knows about 4610 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4611 E = CallArgTypeInfo->param_type_end(); 4612 I != E; ++I, ++Arg) { 4613 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4614 assert((isGenericMethod || 4615 ((*I)->isVariablyModifiedType() || 4616 (*I).getNonReferenceType()->isObjCRetainableType() || 4617 getContext() 4618 .getCanonicalType((*I).getNonReferenceType()) 4619 .getTypePtr() == 4620 getContext() 4621 .getCanonicalType((*Arg)->getType()) 4622 .getTypePtr())) && 4623 "type mismatch in call argument!"); 4624 ArgTypes.push_back(*I); 4625 } 4626 } 4627 4628 // Either we've emitted all the call args, or we have a call to variadic 4629 // function. 4630 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4631 CallArgTypeInfo->isVariadic()) && 4632 "Extra arguments in non-variadic function!"); 4633 4634 // If we still have any arguments, emit them using the type of the argument. 4635 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4636 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4637 4638 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4639 } 4640 4641 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4642 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4643 AbstractCallee AC = AbstractCallee(), 4644 unsigned ParamsToSkip = 0, 4645 EvaluationOrder Order = EvaluationOrder::Default); 4646 4647 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4648 /// emit the value and compute our best estimate of the alignment of the 4649 /// pointee. 4650 /// 4651 /// \param BaseInfo - If non-null, this will be initialized with 4652 /// information about the source of the alignment and the may-alias 4653 /// attribute. Note that this function will conservatively fall back on 4654 /// the type when it doesn't recognize the expression and may-alias will 4655 /// be set to false. 4656 /// 4657 /// One reasonable way to use this information is when there's a language 4658 /// guarantee that the pointer must be aligned to some stricter value, and 4659 /// we're simply trying to ensure that sufficiently obvious uses of under- 4660 /// aligned objects don't get miscompiled; for example, a placement new 4661 /// into the address of a local variable. In such a case, it's quite 4662 /// reasonable to just ignore the returned alignment when it isn't from an 4663 /// explicit source. 4664 Address EmitPointerWithAlignment(const Expr *Addr, 4665 LValueBaseInfo *BaseInfo = nullptr, 4666 TBAAAccessInfo *TBAAInfo = nullptr); 4667 4668 /// If \p E references a parameter with pass_object_size info or a constant 4669 /// array size modifier, emit the object size divided by the size of \p EltTy. 4670 /// Otherwise return null. 4671 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4672 4673 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4674 4675 struct MultiVersionResolverOption { 4676 llvm::Function *Function; 4677 FunctionDecl *FD; 4678 struct Conds { 4679 StringRef Architecture; 4680 llvm::SmallVector<StringRef, 8> Features; 4681 4682 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4683 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4684 } Conditions; 4685 4686 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4687 ArrayRef<StringRef> Feats) 4688 : Function(F), Conditions(Arch, Feats) {} 4689 }; 4690 4691 // Emits the body of a multiversion function's resolver. Assumes that the 4692 // options are already sorted in the proper order, with the 'default' option 4693 // last (if it exists). 4694 void EmitMultiVersionResolver(llvm::Function *Resolver, 4695 ArrayRef<MultiVersionResolverOption> Options); 4696 4697 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4698 4699 private: 4700 QualType getVarArgType(const Expr *Arg); 4701 4702 void EmitDeclMetadata(); 4703 4704 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4705 const AutoVarEmission &emission); 4706 4707 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4708 4709 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4710 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4711 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4712 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4713 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4714 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4715 llvm::Value *EmitX86CpuInit(); 4716 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4717 }; 4718 4719 /// TargetFeatures - This class is used to check whether the builtin function 4720 /// has the required tagert specific features. It is able to support the 4721 /// combination of ','(and), '|'(or), and '()'. By default, the priority of 4722 /// ',' is higher than that of '|' . 4723 /// E.g: 4724 /// A,B|C means the builtin function requires both A and B, or C. 4725 /// If we want the builtin function requires both A and B, or both A and C, 4726 /// there are two ways: A,B|A,C or A,(B|C). 4727 /// The FeaturesList should not contain spaces, and brackets must appear in 4728 /// pairs. 4729 class TargetFeatures { 4730 struct FeatureListStatus { 4731 bool HasFeatures; 4732 StringRef CurFeaturesList; 4733 }; 4734 4735 const llvm::StringMap<bool> &CallerFeatureMap; 4736 4737 FeatureListStatus getAndFeatures(StringRef FeatureList) { 4738 int InParentheses = 0; 4739 bool HasFeatures = true; 4740 size_t SubexpressionStart = 0; 4741 for (size_t i = 0, e = FeatureList.size(); i < e; ++i) { 4742 char CurrentToken = FeatureList[i]; 4743 switch (CurrentToken) { 4744 default: 4745 break; 4746 case '(': 4747 if (InParentheses == 0) 4748 SubexpressionStart = i + 1; 4749 ++InParentheses; 4750 break; 4751 case ')': 4752 --InParentheses; 4753 assert(InParentheses >= 0 && "Parentheses are not in pair"); 4754 LLVM_FALLTHROUGH; 4755 case '|': 4756 case ',': 4757 if (InParentheses == 0) { 4758 if (HasFeatures && i != SubexpressionStart) { 4759 StringRef F = FeatureList.slice(SubexpressionStart, i); 4760 HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F) 4761 : CallerFeatureMap.lookup(F); 4762 } 4763 SubexpressionStart = i + 1; 4764 if (CurrentToken == '|') { 4765 return {HasFeatures, FeatureList.substr(SubexpressionStart)}; 4766 } 4767 } 4768 break; 4769 } 4770 } 4771 assert(InParentheses == 0 && "Parentheses are not in pair"); 4772 if (HasFeatures && SubexpressionStart != FeatureList.size()) 4773 HasFeatures = 4774 CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart)); 4775 return {HasFeatures, StringRef()}; 4776 } 4777 4778 public: 4779 bool hasRequiredFeatures(StringRef FeatureList) { 4780 FeatureListStatus FS = {false, FeatureList}; 4781 while (!FS.HasFeatures && !FS.CurFeaturesList.empty()) 4782 FS = getAndFeatures(FS.CurFeaturesList); 4783 return FS.HasFeatures; 4784 } 4785 4786 TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap) 4787 : CallerFeatureMap(CallerFeatureMap) {} 4788 }; 4789 4790 inline DominatingLLVMValue::saved_type 4791 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4792 if (!needsSaving(value)) return saved_type(value, false); 4793 4794 // Otherwise, we need an alloca. 4795 auto align = CharUnits::fromQuantity( 4796 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4797 Address alloca = 4798 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4799 CGF.Builder.CreateStore(value, alloca); 4800 4801 return saved_type(alloca.getPointer(), true); 4802 } 4803 4804 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4805 saved_type value) { 4806 // If the value says it wasn't saved, trust that it's still dominating. 4807 if (!value.getInt()) return value.getPointer(); 4808 4809 // Otherwise, it should be an alloca instruction, as set up in save(). 4810 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4811 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign()); 4812 } 4813 4814 } // end namespace CodeGen 4815 4816 // Map the LangOption for floating point exception behavior into 4817 // the corresponding enum in the IR. 4818 llvm::fp::ExceptionBehavior 4819 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4820 } // end namespace clang 4821 4822 #endif 4823