1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * Performance events:
4  *
5  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8  *
9  * Data type definitions, declarations, prototypes.
10  *
11  *    Started by: Thomas Gleixner and Ingo Molnar
12  *
13  * For licencing details see kernel-base/COPYING
14  */
15 #ifndef _UAPI_LINUX_PERF_EVENT_H
16 #define _UAPI_LINUX_PERF_EVENT_H
17 
18 #include <linux/types.h>
19 #include <linux/ioctl.h>
20 #include <asm/byteorder.h>
21 
22 /*
23  * User-space ABI bits:
24  */
25 
26 /*
27  * attr.type
28  */
29 enum perf_type_id {
30 	PERF_TYPE_HARDWARE			= 0,
31 	PERF_TYPE_SOFTWARE			= 1,
32 	PERF_TYPE_TRACEPOINT			= 2,
33 	PERF_TYPE_HW_CACHE			= 3,
34 	PERF_TYPE_RAW				= 4,
35 	PERF_TYPE_BREAKPOINT			= 5,
36 
37 	PERF_TYPE_MAX,				/* non-ABI */
38 };
39 
40 /*
41  * Generalized performance event event_id types, used by the
42  * attr.event_id parameter of the sys_perf_event_open()
43  * syscall:
44  */
45 enum perf_hw_id {
46 	/*
47 	 * Common hardware events, generalized by the kernel:
48 	 */
49 	PERF_COUNT_HW_CPU_CYCLES		= 0,
50 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
51 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
52 	PERF_COUNT_HW_CACHE_MISSES		= 3,
53 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
54 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
55 	PERF_COUNT_HW_BUS_CYCLES		= 6,
56 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
57 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
58 	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
59 
60 	PERF_COUNT_HW_MAX,			/* non-ABI */
61 };
62 
63 /*
64  * Generalized hardware cache events:
65  *
66  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
67  *       { read, write, prefetch } x
68  *       { accesses, misses }
69  */
70 enum perf_hw_cache_id {
71 	PERF_COUNT_HW_CACHE_L1D			= 0,
72 	PERF_COUNT_HW_CACHE_L1I			= 1,
73 	PERF_COUNT_HW_CACHE_LL			= 2,
74 	PERF_COUNT_HW_CACHE_DTLB		= 3,
75 	PERF_COUNT_HW_CACHE_ITLB		= 4,
76 	PERF_COUNT_HW_CACHE_BPU			= 5,
77 	PERF_COUNT_HW_CACHE_NODE		= 6,
78 
79 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
80 };
81 
82 enum perf_hw_cache_op_id {
83 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
84 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
85 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
86 
87 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
88 };
89 
90 enum perf_hw_cache_op_result_id {
91 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
92 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
93 
94 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
95 };
96 
97 /*
98  * Special "software" events provided by the kernel, even if the hardware
99  * does not support performance events. These events measure various
100  * physical and sw events of the kernel (and allow the profiling of them as
101  * well):
102  */
103 enum perf_sw_ids {
104 	PERF_COUNT_SW_CPU_CLOCK			= 0,
105 	PERF_COUNT_SW_TASK_CLOCK		= 1,
106 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
107 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
108 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
109 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
110 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
111 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
112 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
113 	PERF_COUNT_SW_DUMMY			= 9,
114 	PERF_COUNT_SW_BPF_OUTPUT		= 10,
115 
116 	PERF_COUNT_SW_MAX,			/* non-ABI */
117 };
118 
119 /*
120  * Bits that can be set in attr.sample_type to request information
121  * in the overflow packets.
122  */
123 enum perf_event_sample_format {
124 	PERF_SAMPLE_IP				= 1U << 0,
125 	PERF_SAMPLE_TID				= 1U << 1,
126 	PERF_SAMPLE_TIME			= 1U << 2,
127 	PERF_SAMPLE_ADDR			= 1U << 3,
128 	PERF_SAMPLE_READ			= 1U << 4,
129 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
130 	PERF_SAMPLE_ID				= 1U << 6,
131 	PERF_SAMPLE_CPU				= 1U << 7,
132 	PERF_SAMPLE_PERIOD			= 1U << 8,
133 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
134 	PERF_SAMPLE_RAW				= 1U << 10,
135 	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
136 	PERF_SAMPLE_REGS_USER			= 1U << 12,
137 	PERF_SAMPLE_STACK_USER			= 1U << 13,
138 	PERF_SAMPLE_WEIGHT			= 1U << 14,
139 	PERF_SAMPLE_DATA_SRC			= 1U << 15,
140 	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
141 	PERF_SAMPLE_TRANSACTION			= 1U << 17,
142 	PERF_SAMPLE_REGS_INTR			= 1U << 18,
143 	PERF_SAMPLE_PHYS_ADDR			= 1U << 19,
144 	PERF_SAMPLE_AUX				= 1U << 20,
145 	PERF_SAMPLE_CGROUP			= 1U << 21,
146 	PERF_SAMPLE_DATA_PAGE_SIZE		= 1U << 22,
147 	PERF_SAMPLE_CODE_PAGE_SIZE		= 1U << 23,
148 	PERF_SAMPLE_WEIGHT_STRUCT		= 1U << 24,
149 
150 	PERF_SAMPLE_MAX = 1U << 25,		/* non-ABI */
151 
152 	__PERF_SAMPLE_CALLCHAIN_EARLY		= 1ULL << 63, /* non-ABI; internal use */
153 };
154 
155 #define PERF_SAMPLE_WEIGHT_TYPE	(PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
156 /*
157  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
158  *
159  * If the user does not pass priv level information via branch_sample_type,
160  * the kernel uses the event's priv level. Branch and event priv levels do
161  * not have to match. Branch priv level is checked for permissions.
162  *
163  * The branch types can be combined, however BRANCH_ANY covers all types
164  * of branches and therefore it supersedes all the other types.
165  */
166 enum perf_branch_sample_type_shift {
167 	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
168 	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
169 	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
170 
171 	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
172 	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
173 	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
174 	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
175 	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
176 	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
177 	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
178 	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
179 
180 	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
181 	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
182 	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
183 
184 	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
185 	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
186 
187 	PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT	= 16, /* save branch type */
188 
189 	PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT	= 17, /* save low level index of raw branch records */
190 
191 	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
192 };
193 
194 enum perf_branch_sample_type {
195 	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
196 	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
197 	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
198 
199 	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
200 	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
201 	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
202 	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
203 	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
204 	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
205 	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
206 	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
207 
208 	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
209 	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
210 	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
211 
212 	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
213 	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
214 
215 	PERF_SAMPLE_BRANCH_TYPE_SAVE	=
216 		1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
217 
218 	PERF_SAMPLE_BRANCH_HW_INDEX	= 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
219 
220 	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
221 };
222 
223 /*
224  * Common flow change classification
225  */
226 enum {
227 	PERF_BR_UNKNOWN		= 0,	/* unknown */
228 	PERF_BR_COND		= 1,	/* conditional */
229 	PERF_BR_UNCOND		= 2,	/* unconditional  */
230 	PERF_BR_IND		= 3,	/* indirect */
231 	PERF_BR_CALL		= 4,	/* function call */
232 	PERF_BR_IND_CALL	= 5,	/* indirect function call */
233 	PERF_BR_RET		= 6,	/* function return */
234 	PERF_BR_SYSCALL		= 7,	/* syscall */
235 	PERF_BR_SYSRET		= 8,	/* syscall return */
236 	PERF_BR_COND_CALL	= 9,	/* conditional function call */
237 	PERF_BR_COND_RET	= 10,	/* conditional function return */
238 	PERF_BR_MAX,
239 };
240 
241 #define PERF_SAMPLE_BRANCH_PLM_ALL \
242 	(PERF_SAMPLE_BRANCH_USER|\
243 	 PERF_SAMPLE_BRANCH_KERNEL|\
244 	 PERF_SAMPLE_BRANCH_HV)
245 
246 /*
247  * Values to determine ABI of the registers dump.
248  */
249 enum perf_sample_regs_abi {
250 	PERF_SAMPLE_REGS_ABI_NONE	= 0,
251 	PERF_SAMPLE_REGS_ABI_32		= 1,
252 	PERF_SAMPLE_REGS_ABI_64		= 2,
253 };
254 
255 /*
256  * Values for the memory transaction event qualifier, mostly for
257  * abort events. Multiple bits can be set.
258  */
259 enum {
260 	PERF_TXN_ELISION        = (1 << 0), /* From elision */
261 	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
262 	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
263 	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
264 	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
265 	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
266 	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
267 	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
268 
269 	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
270 
271 	/* bits 32..63 are reserved for the abort code */
272 
273 	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
274 	PERF_TXN_ABORT_SHIFT = 32,
275 };
276 
277 /*
278  * The format of the data returned by read() on a perf event fd,
279  * as specified by attr.read_format:
280  *
281  * struct read_format {
282  *	{ u64		value;
283  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
284  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
285  *	  { u64		id;           } && PERF_FORMAT_ID
286  *	} && !PERF_FORMAT_GROUP
287  *
288  *	{ u64		nr;
289  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
290  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
291  *	  { u64		value;
292  *	    { u64	id;           } && PERF_FORMAT_ID
293  *	  }		cntr[nr];
294  *	} && PERF_FORMAT_GROUP
295  * };
296  */
297 enum perf_event_read_format {
298 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
299 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
300 	PERF_FORMAT_ID				= 1U << 2,
301 	PERF_FORMAT_GROUP			= 1U << 3,
302 
303 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
304 };
305 
306 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
307 #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
308 #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
309 #define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
310 					/* add: sample_stack_user */
311 #define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
312 #define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
313 #define PERF_ATTR_SIZE_VER6	120	/* add: aux_sample_size */
314 
315 /*
316  * Hardware event_id to monitor via a performance monitoring event:
317  *
318  * @sample_max_stack: Max number of frame pointers in a callchain,
319  *		      should be < /proc/sys/kernel/perf_event_max_stack
320  */
321 struct perf_event_attr {
322 
323 	/*
324 	 * Major type: hardware/software/tracepoint/etc.
325 	 */
326 	__u32			type;
327 
328 	/*
329 	 * Size of the attr structure, for fwd/bwd compat.
330 	 */
331 	__u32			size;
332 
333 	/*
334 	 * Type specific configuration information.
335 	 */
336 	__u64			config;
337 
338 	union {
339 		__u64		sample_period;
340 		__u64		sample_freq;
341 	};
342 
343 	__u64			sample_type;
344 	__u64			read_format;
345 
346 	__u64			disabled       :  1, /* off by default        */
347 				inherit	       :  1, /* children inherit it   */
348 				pinned	       :  1, /* must always be on PMU */
349 				exclusive      :  1, /* only group on PMU     */
350 				exclude_user   :  1, /* don't count user      */
351 				exclude_kernel :  1, /* ditto kernel          */
352 				exclude_hv     :  1, /* ditto hypervisor      */
353 				exclude_idle   :  1, /* don't count when idle */
354 				mmap           :  1, /* include mmap data     */
355 				comm	       :  1, /* include comm data     */
356 				freq           :  1, /* use freq, not period  */
357 				inherit_stat   :  1, /* per task counts       */
358 				enable_on_exec :  1, /* next exec enables     */
359 				task           :  1, /* trace fork/exit       */
360 				watermark      :  1, /* wakeup_watermark      */
361 				/*
362 				 * precise_ip:
363 				 *
364 				 *  0 - SAMPLE_IP can have arbitrary skid
365 				 *  1 - SAMPLE_IP must have constant skid
366 				 *  2 - SAMPLE_IP requested to have 0 skid
367 				 *  3 - SAMPLE_IP must have 0 skid
368 				 *
369 				 *  See also PERF_RECORD_MISC_EXACT_IP
370 				 */
371 				precise_ip     :  2, /* skid constraint       */
372 				mmap_data      :  1, /* non-exec mmap data    */
373 				sample_id_all  :  1, /* sample_type all events */
374 
375 				exclude_host   :  1, /* don't count in host   */
376 				exclude_guest  :  1, /* don't count in guest  */
377 
378 				exclude_callchain_kernel : 1, /* exclude kernel callchains */
379 				exclude_callchain_user   : 1, /* exclude user callchains */
380 				mmap2          :  1, /* include mmap with inode data     */
381 				comm_exec      :  1, /* flag comm events that are due to an exec */
382 				use_clockid    :  1, /* use @clockid for time fields */
383 				context_switch :  1, /* context switch data */
384 				write_backward :  1, /* Write ring buffer from end to beginning */
385 				namespaces     :  1, /* include namespaces data */
386 				ksymbol        :  1, /* include ksymbol events */
387 				bpf_event      :  1, /* include bpf events */
388 				aux_output     :  1, /* generate AUX records instead of events */
389 				cgroup         :  1, /* include cgroup events */
390 				text_poke      :  1, /* include text poke events */
391 				build_id       :  1, /* use build id in mmap2 events */
392 				__reserved_1   : 29;
393 
394 	union {
395 		__u32		wakeup_events;	  /* wakeup every n events */
396 		__u32		wakeup_watermark; /* bytes before wakeup   */
397 	};
398 
399 	__u32			bp_type;
400 	union {
401 		__u64		bp_addr;
402 		__u64		kprobe_func; /* for perf_kprobe */
403 		__u64		uprobe_path; /* for perf_uprobe */
404 		__u64		config1; /* extension of config */
405 	};
406 	union {
407 		__u64		bp_len;
408 		__u64		kprobe_addr; /* when kprobe_func == NULL */
409 		__u64		probe_offset; /* for perf_[k,u]probe */
410 		__u64		config2; /* extension of config1 */
411 	};
412 	__u64	branch_sample_type; /* enum perf_branch_sample_type */
413 
414 	/*
415 	 * Defines set of user regs to dump on samples.
416 	 * See asm/perf_regs.h for details.
417 	 */
418 	__u64	sample_regs_user;
419 
420 	/*
421 	 * Defines size of the user stack to dump on samples.
422 	 */
423 	__u32	sample_stack_user;
424 
425 	__s32	clockid;
426 	/*
427 	 * Defines set of regs to dump for each sample
428 	 * state captured on:
429 	 *  - precise = 0: PMU interrupt
430 	 *  - precise > 0: sampled instruction
431 	 *
432 	 * See asm/perf_regs.h for details.
433 	 */
434 	__u64	sample_regs_intr;
435 
436 	/*
437 	 * Wakeup watermark for AUX area
438 	 */
439 	__u32	aux_watermark;
440 	__u16	sample_max_stack;
441 	__u16	__reserved_2;
442 	__u32	aux_sample_size;
443 	__u32	__reserved_3;
444 };
445 
446 /*
447  * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
448  * to query bpf programs attached to the same perf tracepoint
449  * as the given perf event.
450  */
451 struct perf_event_query_bpf {
452 	/*
453 	 * The below ids array length
454 	 */
455 	__u32	ids_len;
456 	/*
457 	 * Set by the kernel to indicate the number of
458 	 * available programs
459 	 */
460 	__u32	prog_cnt;
461 	/*
462 	 * User provided buffer to store program ids
463 	 */
464 	__u32	ids[0];
465 };
466 
467 /*
468  * Ioctls that can be done on a perf event fd:
469  */
470 #define PERF_EVENT_IOC_ENABLE			_IO ('$', 0)
471 #define PERF_EVENT_IOC_DISABLE			_IO ('$', 1)
472 #define PERF_EVENT_IOC_REFRESH			_IO ('$', 2)
473 #define PERF_EVENT_IOC_RESET			_IO ('$', 3)
474 #define PERF_EVENT_IOC_PERIOD			_IOW('$', 4, __u64)
475 #define PERF_EVENT_IOC_SET_OUTPUT		_IO ('$', 5)
476 #define PERF_EVENT_IOC_SET_FILTER		_IOW('$', 6, char *)
477 #define PERF_EVENT_IOC_ID			_IOR('$', 7, __u64 *)
478 #define PERF_EVENT_IOC_SET_BPF			_IOW('$', 8, __u32)
479 #define PERF_EVENT_IOC_PAUSE_OUTPUT		_IOW('$', 9, __u32)
480 #define PERF_EVENT_IOC_QUERY_BPF		_IOWR('$', 10, struct perf_event_query_bpf *)
481 #define PERF_EVENT_IOC_MODIFY_ATTRIBUTES	_IOW('$', 11, struct perf_event_attr *)
482 
483 enum perf_event_ioc_flags {
484 	PERF_IOC_FLAG_GROUP		= 1U << 0,
485 };
486 
487 /*
488  * Structure of the page that can be mapped via mmap
489  */
490 struct perf_event_mmap_page {
491 	__u32	version;		/* version number of this structure */
492 	__u32	compat_version;		/* lowest version this is compat with */
493 
494 	/*
495 	 * Bits needed to read the hw events in user-space.
496 	 *
497 	 *   u32 seq, time_mult, time_shift, index, width;
498 	 *   u64 count, enabled, running;
499 	 *   u64 cyc, time_offset;
500 	 *   s64 pmc = 0;
501 	 *
502 	 *   do {
503 	 *     seq = pc->lock;
504 	 *     barrier()
505 	 *
506 	 *     enabled = pc->time_enabled;
507 	 *     running = pc->time_running;
508 	 *
509 	 *     if (pc->cap_usr_time && enabled != running) {
510 	 *       cyc = rdtsc();
511 	 *       time_offset = pc->time_offset;
512 	 *       time_mult   = pc->time_mult;
513 	 *       time_shift  = pc->time_shift;
514 	 *     }
515 	 *
516 	 *     index = pc->index;
517 	 *     count = pc->offset;
518 	 *     if (pc->cap_user_rdpmc && index) {
519 	 *       width = pc->pmc_width;
520 	 *       pmc = rdpmc(index - 1);
521 	 *     }
522 	 *
523 	 *     barrier();
524 	 *   } while (pc->lock != seq);
525 	 *
526 	 * NOTE: for obvious reason this only works on self-monitoring
527 	 *       processes.
528 	 */
529 	__u32	lock;			/* seqlock for synchronization */
530 	__u32	index;			/* hardware event identifier */
531 	__s64	offset;			/* add to hardware event value */
532 	__u64	time_enabled;		/* time event active */
533 	__u64	time_running;		/* time event on cpu */
534 	union {
535 		__u64	capabilities;
536 		struct {
537 			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
538 				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
539 
540 				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
541 				cap_user_time		: 1, /* The time_{shift,mult,offset} fields are used */
542 				cap_user_time_zero	: 1, /* The time_zero field is used */
543 				cap_user_time_short	: 1, /* the time_{cycle,mask} fields are used */
544 				cap_____res		: 58;
545 		};
546 	};
547 
548 	/*
549 	 * If cap_user_rdpmc this field provides the bit-width of the value
550 	 * read using the rdpmc() or equivalent instruction. This can be used
551 	 * to sign extend the result like:
552 	 *
553 	 *   pmc <<= 64 - width;
554 	 *   pmc >>= 64 - width; // signed shift right
555 	 *   count += pmc;
556 	 */
557 	__u16	pmc_width;
558 
559 	/*
560 	 * If cap_usr_time the below fields can be used to compute the time
561 	 * delta since time_enabled (in ns) using rdtsc or similar.
562 	 *
563 	 *   u64 quot, rem;
564 	 *   u64 delta;
565 	 *
566 	 *   quot = (cyc >> time_shift);
567 	 *   rem = cyc & (((u64)1 << time_shift) - 1);
568 	 *   delta = time_offset + quot * time_mult +
569 	 *              ((rem * time_mult) >> time_shift);
570 	 *
571 	 * Where time_offset,time_mult,time_shift and cyc are read in the
572 	 * seqcount loop described above. This delta can then be added to
573 	 * enabled and possible running (if index), improving the scaling:
574 	 *
575 	 *   enabled += delta;
576 	 *   if (index)
577 	 *     running += delta;
578 	 *
579 	 *   quot = count / running;
580 	 *   rem  = count % running;
581 	 *   count = quot * enabled + (rem * enabled) / running;
582 	 */
583 	__u16	time_shift;
584 	__u32	time_mult;
585 	__u64	time_offset;
586 	/*
587 	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
588 	 * from sample timestamps.
589 	 *
590 	 *   time = timestamp - time_zero;
591 	 *   quot = time / time_mult;
592 	 *   rem  = time % time_mult;
593 	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
594 	 *
595 	 * And vice versa:
596 	 *
597 	 *   quot = cyc >> time_shift;
598 	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
599 	 *   timestamp = time_zero + quot * time_mult +
600 	 *               ((rem * time_mult) >> time_shift);
601 	 */
602 	__u64	time_zero;
603 
604 	__u32	size;			/* Header size up to __reserved[] fields. */
605 	__u32	__reserved_1;
606 
607 	/*
608 	 * If cap_usr_time_short, the hardware clock is less than 64bit wide
609 	 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
610 	 *
611 	 *   cyc = time_cycles + ((cyc - time_cycles) & time_mask)
612 	 *
613 	 * NOTE: this form is explicitly chosen such that cap_usr_time_short
614 	 *       is a correction on top of cap_usr_time, and code that doesn't
615 	 *       know about cap_usr_time_short still works under the assumption
616 	 *       the counter doesn't wrap.
617 	 */
618 	__u64	time_cycles;
619 	__u64	time_mask;
620 
621 		/*
622 		 * Hole for extension of the self monitor capabilities
623 		 */
624 
625 	__u8	__reserved[116*8];	/* align to 1k. */
626 
627 	/*
628 	 * Control data for the mmap() data buffer.
629 	 *
630 	 * User-space reading the @data_head value should issue an smp_rmb(),
631 	 * after reading this value.
632 	 *
633 	 * When the mapping is PROT_WRITE the @data_tail value should be
634 	 * written by userspace to reflect the last read data, after issueing
635 	 * an smp_mb() to separate the data read from the ->data_tail store.
636 	 * In this case the kernel will not over-write unread data.
637 	 *
638 	 * See perf_output_put_handle() for the data ordering.
639 	 *
640 	 * data_{offset,size} indicate the location and size of the perf record
641 	 * buffer within the mmapped area.
642 	 */
643 	__u64   data_head;		/* head in the data section */
644 	__u64	data_tail;		/* user-space written tail */
645 	__u64	data_offset;		/* where the buffer starts */
646 	__u64	data_size;		/* data buffer size */
647 
648 	/*
649 	 * AUX area is defined by aux_{offset,size} fields that should be set
650 	 * by the userspace, so that
651 	 *
652 	 *   aux_offset >= data_offset + data_size
653 	 *
654 	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
655 	 *
656 	 * Ring buffer pointers aux_{head,tail} have the same semantics as
657 	 * data_{head,tail} and same ordering rules apply.
658 	 */
659 	__u64	aux_head;
660 	__u64	aux_tail;
661 	__u64	aux_offset;
662 	__u64	aux_size;
663 };
664 
665 /*
666  * The current state of perf_event_header::misc bits usage:
667  * ('|' used bit, '-' unused bit)
668  *
669  *  012         CDEF
670  *  |||---------||||
671  *
672  *  Where:
673  *    0-2     CPUMODE_MASK
674  *
675  *    C       PROC_MAP_PARSE_TIMEOUT
676  *    D       MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
677  *    E       MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
678  *    F       (reserved)
679  */
680 
681 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
682 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
683 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
684 #define PERF_RECORD_MISC_USER			(2 << 0)
685 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
686 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
687 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
688 
689 /*
690  * Indicates that /proc/PID/maps parsing are truncated by time out.
691  */
692 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
693 /*
694  * Following PERF_RECORD_MISC_* are used on different
695  * events, so can reuse the same bit position:
696  *
697  *   PERF_RECORD_MISC_MMAP_DATA  - PERF_RECORD_MMAP* events
698  *   PERF_RECORD_MISC_COMM_EXEC  - PERF_RECORD_COMM event
699  *   PERF_RECORD_MISC_FORK_EXEC  - PERF_RECORD_FORK event (perf internal)
700  *   PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
701  */
702 #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
703 #define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
704 #define PERF_RECORD_MISC_FORK_EXEC		(1 << 13)
705 #define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
706 /*
707  * These PERF_RECORD_MISC_* flags below are safely reused
708  * for the following events:
709  *
710  *   PERF_RECORD_MISC_EXACT_IP           - PERF_RECORD_SAMPLE of precise events
711  *   PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
712  *   PERF_RECORD_MISC_MMAP_BUILD_ID      - PERF_RECORD_MMAP2 event
713  *
714  *
715  * PERF_RECORD_MISC_EXACT_IP:
716  *   Indicates that the content of PERF_SAMPLE_IP points to
717  *   the actual instruction that triggered the event. See also
718  *   perf_event_attr::precise_ip.
719  *
720  * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
721  *   Indicates that thread was preempted in TASK_RUNNING state.
722  *
723  * PERF_RECORD_MISC_MMAP_BUILD_ID:
724  *   Indicates that mmap2 event carries build id data.
725  */
726 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
727 #define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT	(1 << 14)
728 #define PERF_RECORD_MISC_MMAP_BUILD_ID		(1 << 14)
729 /*
730  * Reserve the last bit to indicate some extended misc field
731  */
732 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
733 
734 struct perf_event_header {
735 	__u32	type;
736 	__u16	misc;
737 	__u16	size;
738 };
739 
740 struct perf_ns_link_info {
741 	__u64	dev;
742 	__u64	ino;
743 };
744 
745 enum {
746 	NET_NS_INDEX		= 0,
747 	UTS_NS_INDEX		= 1,
748 	IPC_NS_INDEX		= 2,
749 	PID_NS_INDEX		= 3,
750 	USER_NS_INDEX		= 4,
751 	MNT_NS_INDEX		= 5,
752 	CGROUP_NS_INDEX		= 6,
753 
754 	NR_NAMESPACES,		/* number of available namespaces */
755 };
756 
757 enum perf_event_type {
758 
759 	/*
760 	 * If perf_event_attr.sample_id_all is set then all event types will
761 	 * have the sample_type selected fields related to where/when
762 	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
763 	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
764 	 * just after the perf_event_header and the fields already present for
765 	 * the existing fields, i.e. at the end of the payload. That way a newer
766 	 * perf.data file will be supported by older perf tools, with these new
767 	 * optional fields being ignored.
768 	 *
769 	 * struct sample_id {
770 	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
771 	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
772 	 * 	{ u64			id;       } && PERF_SAMPLE_ID
773 	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
774 	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
775 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
776 	 * } && perf_event_attr::sample_id_all
777 	 *
778 	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
779 	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
780 	 * relative to header.size.
781 	 */
782 
783 	/*
784 	 * The MMAP events record the PROT_EXEC mappings so that we can
785 	 * correlate userspace IPs to code. They have the following structure:
786 	 *
787 	 * struct {
788 	 *	struct perf_event_header	header;
789 	 *
790 	 *	u32				pid, tid;
791 	 *	u64				addr;
792 	 *	u64				len;
793 	 *	u64				pgoff;
794 	 *	char				filename[];
795 	 * 	struct sample_id		sample_id;
796 	 * };
797 	 */
798 	PERF_RECORD_MMAP			= 1,
799 
800 	/*
801 	 * struct {
802 	 *	struct perf_event_header	header;
803 	 *	u64				id;
804 	 *	u64				lost;
805 	 * 	struct sample_id		sample_id;
806 	 * };
807 	 */
808 	PERF_RECORD_LOST			= 2,
809 
810 	/*
811 	 * struct {
812 	 *	struct perf_event_header	header;
813 	 *
814 	 *	u32				pid, tid;
815 	 *	char				comm[];
816 	 * 	struct sample_id		sample_id;
817 	 * };
818 	 */
819 	PERF_RECORD_COMM			= 3,
820 
821 	/*
822 	 * struct {
823 	 *	struct perf_event_header	header;
824 	 *	u32				pid, ppid;
825 	 *	u32				tid, ptid;
826 	 *	u64				time;
827 	 * 	struct sample_id		sample_id;
828 	 * };
829 	 */
830 	PERF_RECORD_EXIT			= 4,
831 
832 	/*
833 	 * struct {
834 	 *	struct perf_event_header	header;
835 	 *	u64				time;
836 	 *	u64				id;
837 	 *	u64				stream_id;
838 	 * 	struct sample_id		sample_id;
839 	 * };
840 	 */
841 	PERF_RECORD_THROTTLE			= 5,
842 	PERF_RECORD_UNTHROTTLE			= 6,
843 
844 	/*
845 	 * struct {
846 	 *	struct perf_event_header	header;
847 	 *	u32				pid, ppid;
848 	 *	u32				tid, ptid;
849 	 *	u64				time;
850 	 * 	struct sample_id		sample_id;
851 	 * };
852 	 */
853 	PERF_RECORD_FORK			= 7,
854 
855 	/*
856 	 * struct {
857 	 *	struct perf_event_header	header;
858 	 *	u32				pid, tid;
859 	 *
860 	 *	struct read_format		values;
861 	 * 	struct sample_id		sample_id;
862 	 * };
863 	 */
864 	PERF_RECORD_READ			= 8,
865 
866 	/*
867 	 * struct {
868 	 *	struct perf_event_header	header;
869 	 *
870 	 *	#
871 	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
872 	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
873 	 *	# is fixed relative to header.
874 	 *	#
875 	 *
876 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
877 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
878 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
879 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
880 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
881 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
882 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
883 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
884 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
885 	 *
886 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
887 	 *
888 	 *	{ u64			nr,
889 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
890 	 *
891 	 *	#
892 	 *	# The RAW record below is opaque data wrt the ABI
893 	 *	#
894 	 *	# That is, the ABI doesn't make any promises wrt to
895 	 *	# the stability of its content, it may vary depending
896 	 *	# on event, hardware, kernel version and phase of
897 	 *	# the moon.
898 	 *	#
899 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
900 	 *	#
901 	 *
902 	 *	{ u32			size;
903 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
904 	 *
905 	 *	{ u64                   nr;
906 	 *	  { u64	hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
907 	 *        { u64 from, to, flags } lbr[nr];
908 	 *      } && PERF_SAMPLE_BRANCH_STACK
909 	 *
910 	 * 	{ u64			abi; # enum perf_sample_regs_abi
911 	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
912 	 *
913 	 * 	{ u64			size;
914 	 * 	  char			data[size];
915 	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
916 	 *
917 	 *	{ union perf_sample_weight
918 	 *	 {
919 	 *		u64		full; && PERF_SAMPLE_WEIGHT
920 	 *	#if defined(__LITTLE_ENDIAN_BITFIELD)
921 	 *		struct {
922 	 *			u32	var1_dw;
923 	 *			u16	var2_w;
924 	 *			u16	var3_w;
925 	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
926 	 *	#elif defined(__BIG_ENDIAN_BITFIELD)
927 	 *		struct {
928 	 *			u16	var3_w;
929 	 *			u16	var2_w;
930 	 *			u32	var1_dw;
931 	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
932 	 *	#endif
933 	 *	 }
934 	 *	}
935 	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
936 	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
937 	 *	{ u64			abi; # enum perf_sample_regs_abi
938 	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
939 	 *	{ u64			phys_addr;} && PERF_SAMPLE_PHYS_ADDR
940 	 *	{ u64			size;
941 	 *	  char			data[size]; } && PERF_SAMPLE_AUX
942 	 *	{ u64			data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
943 	 *	{ u64			code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
944 	 * };
945 	 */
946 	PERF_RECORD_SAMPLE			= 9,
947 
948 	/*
949 	 * The MMAP2 records are an augmented version of MMAP, they add
950 	 * maj, min, ino numbers to be used to uniquely identify each mapping
951 	 *
952 	 * struct {
953 	 *	struct perf_event_header	header;
954 	 *
955 	 *	u32				pid, tid;
956 	 *	u64				addr;
957 	 *	u64				len;
958 	 *	u64				pgoff;
959 	 *	union {
960 	 *		struct {
961 	 *			u32		maj;
962 	 *			u32		min;
963 	 *			u64		ino;
964 	 *			u64		ino_generation;
965 	 *		};
966 	 *		struct {
967 	 *			u8		build_id_size;
968 	 *			u8		__reserved_1;
969 	 *			u16		__reserved_2;
970 	 *			u8		build_id[20];
971 	 *		};
972 	 *	};
973 	 *	u32				prot, flags;
974 	 *	char				filename[];
975 	 * 	struct sample_id		sample_id;
976 	 * };
977 	 */
978 	PERF_RECORD_MMAP2			= 10,
979 
980 	/*
981 	 * Records that new data landed in the AUX buffer part.
982 	 *
983 	 * struct {
984 	 * 	struct perf_event_header	header;
985 	 *
986 	 * 	u64				aux_offset;
987 	 * 	u64				aux_size;
988 	 *	u64				flags;
989 	 * 	struct sample_id		sample_id;
990 	 * };
991 	 */
992 	PERF_RECORD_AUX				= 11,
993 
994 	/*
995 	 * Indicates that instruction trace has started
996 	 *
997 	 * struct {
998 	 *	struct perf_event_header	header;
999 	 *	u32				pid;
1000 	 *	u32				tid;
1001 	 *	struct sample_id		sample_id;
1002 	 * };
1003 	 */
1004 	PERF_RECORD_ITRACE_START		= 12,
1005 
1006 	/*
1007 	 * Records the dropped/lost sample number.
1008 	 *
1009 	 * struct {
1010 	 *	struct perf_event_header	header;
1011 	 *
1012 	 *	u64				lost;
1013 	 *	struct sample_id		sample_id;
1014 	 * };
1015 	 */
1016 	PERF_RECORD_LOST_SAMPLES		= 13,
1017 
1018 	/*
1019 	 * Records a context switch in or out (flagged by
1020 	 * PERF_RECORD_MISC_SWITCH_OUT). See also
1021 	 * PERF_RECORD_SWITCH_CPU_WIDE.
1022 	 *
1023 	 * struct {
1024 	 *	struct perf_event_header	header;
1025 	 *	struct sample_id		sample_id;
1026 	 * };
1027 	 */
1028 	PERF_RECORD_SWITCH			= 14,
1029 
1030 	/*
1031 	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1032 	 * next_prev_tid that are the next (switching out) or previous
1033 	 * (switching in) pid/tid.
1034 	 *
1035 	 * struct {
1036 	 *	struct perf_event_header	header;
1037 	 *	u32				next_prev_pid;
1038 	 *	u32				next_prev_tid;
1039 	 *	struct sample_id		sample_id;
1040 	 * };
1041 	 */
1042 	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
1043 
1044 	/*
1045 	 * struct {
1046 	 *	struct perf_event_header	header;
1047 	 *	u32				pid;
1048 	 *	u32				tid;
1049 	 *	u64				nr_namespaces;
1050 	 *	{ u64				dev, inode; } [nr_namespaces];
1051 	 *	struct sample_id		sample_id;
1052 	 * };
1053 	 */
1054 	PERF_RECORD_NAMESPACES			= 16,
1055 
1056 	/*
1057 	 * Record ksymbol register/unregister events:
1058 	 *
1059 	 * struct {
1060 	 *	struct perf_event_header	header;
1061 	 *	u64				addr;
1062 	 *	u32				len;
1063 	 *	u16				ksym_type;
1064 	 *	u16				flags;
1065 	 *	char				name[];
1066 	 *	struct sample_id		sample_id;
1067 	 * };
1068 	 */
1069 	PERF_RECORD_KSYMBOL			= 17,
1070 
1071 	/*
1072 	 * Record bpf events:
1073 	 *  enum perf_bpf_event_type {
1074 	 *	PERF_BPF_EVENT_UNKNOWN		= 0,
1075 	 *	PERF_BPF_EVENT_PROG_LOAD	= 1,
1076 	 *	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
1077 	 *  };
1078 	 *
1079 	 * struct {
1080 	 *	struct perf_event_header	header;
1081 	 *	u16				type;
1082 	 *	u16				flags;
1083 	 *	u32				id;
1084 	 *	u8				tag[BPF_TAG_SIZE];
1085 	 *	struct sample_id		sample_id;
1086 	 * };
1087 	 */
1088 	PERF_RECORD_BPF_EVENT			= 18,
1089 
1090 	/*
1091 	 * struct {
1092 	 *	struct perf_event_header	header;
1093 	 *	u64				id;
1094 	 *	char				path[];
1095 	 *	struct sample_id		sample_id;
1096 	 * };
1097 	 */
1098 	PERF_RECORD_CGROUP			= 19,
1099 
1100 	/*
1101 	 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1102 	 * the number of old bytes, 'new_len' is the number of new bytes. Either
1103 	 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1104 	 * addition or removal of a trampoline. 'bytes' contains the old bytes
1105 	 * followed immediately by the new bytes.
1106 	 *
1107 	 * struct {
1108 	 *	struct perf_event_header	header;
1109 	 *	u64				addr;
1110 	 *	u16				old_len;
1111 	 *	u16				new_len;
1112 	 *	u8				bytes[];
1113 	 *	struct sample_id		sample_id;
1114 	 * };
1115 	 */
1116 	PERF_RECORD_TEXT_POKE			= 20,
1117 
1118 	PERF_RECORD_MAX,			/* non-ABI */
1119 };
1120 
1121 enum perf_record_ksymbol_type {
1122 	PERF_RECORD_KSYMBOL_TYPE_UNKNOWN	= 0,
1123 	PERF_RECORD_KSYMBOL_TYPE_BPF		= 1,
1124 	/*
1125 	 * Out of line code such as kprobe-replaced instructions or optimized
1126 	 * kprobes or ftrace trampolines.
1127 	 */
1128 	PERF_RECORD_KSYMBOL_TYPE_OOL		= 2,
1129 	PERF_RECORD_KSYMBOL_TYPE_MAX		/* non-ABI */
1130 };
1131 
1132 #define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER	(1 << 0)
1133 
1134 enum perf_bpf_event_type {
1135 	PERF_BPF_EVENT_UNKNOWN		= 0,
1136 	PERF_BPF_EVENT_PROG_LOAD	= 1,
1137 	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
1138 	PERF_BPF_EVENT_MAX,		/* non-ABI */
1139 };
1140 
1141 #define PERF_MAX_STACK_DEPTH		127
1142 #define PERF_MAX_CONTEXTS_PER_STACK	  8
1143 
1144 enum perf_callchain_context {
1145 	PERF_CONTEXT_HV			= (__u64)-32,
1146 	PERF_CONTEXT_KERNEL		= (__u64)-128,
1147 	PERF_CONTEXT_USER		= (__u64)-512,
1148 
1149 	PERF_CONTEXT_GUEST		= (__u64)-2048,
1150 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
1151 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
1152 
1153 	PERF_CONTEXT_MAX		= (__u64)-4095,
1154 };
1155 
1156 /**
1157  * PERF_RECORD_AUX::flags bits
1158  */
1159 #define PERF_AUX_FLAG_TRUNCATED		0x01	/* record was truncated to fit */
1160 #define PERF_AUX_FLAG_OVERWRITE		0x02	/* snapshot from overwrite mode */
1161 #define PERF_AUX_FLAG_PARTIAL		0x04	/* record contains gaps */
1162 #define PERF_AUX_FLAG_COLLISION		0x08	/* sample collided with another */
1163 
1164 #define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
1165 #define PERF_FLAG_FD_OUTPUT		(1UL << 1)
1166 #define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
1167 #define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
1168 
1169 #if defined(__LITTLE_ENDIAN_BITFIELD)
1170 union perf_mem_data_src {
1171 	__u64 val;
1172 	struct {
1173 		__u64   mem_op:5,	/* type of opcode */
1174 			mem_lvl:14,	/* memory hierarchy level */
1175 			mem_snoop:5,	/* snoop mode */
1176 			mem_lock:2,	/* lock instr */
1177 			mem_dtlb:7,	/* tlb access */
1178 			mem_lvl_num:4,	/* memory hierarchy level number */
1179 			mem_remote:1,   /* remote */
1180 			mem_snoopx:2,	/* snoop mode, ext */
1181 			mem_blk:3,	/* access blocked */
1182 			mem_rsvd:21;
1183 	};
1184 };
1185 #elif defined(__BIG_ENDIAN_BITFIELD)
1186 union perf_mem_data_src {
1187 	__u64 val;
1188 	struct {
1189 		__u64	mem_rsvd:21,
1190 			mem_blk:3,	/* access blocked */
1191 			mem_snoopx:2,	/* snoop mode, ext */
1192 			mem_remote:1,   /* remote */
1193 			mem_lvl_num:4,	/* memory hierarchy level number */
1194 			mem_dtlb:7,	/* tlb access */
1195 			mem_lock:2,	/* lock instr */
1196 			mem_snoop:5,	/* snoop mode */
1197 			mem_lvl:14,	/* memory hierarchy level */
1198 			mem_op:5;	/* type of opcode */
1199 	};
1200 };
1201 #else
1202 #error "Unknown endianness"
1203 #endif
1204 
1205 /* type of opcode (load/store/prefetch,code) */
1206 #define PERF_MEM_OP_NA		0x01 /* not available */
1207 #define PERF_MEM_OP_LOAD	0x02 /* load instruction */
1208 #define PERF_MEM_OP_STORE	0x04 /* store instruction */
1209 #define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
1210 #define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
1211 #define PERF_MEM_OP_SHIFT	0
1212 
1213 /* memory hierarchy (memory level, hit or miss) */
1214 #define PERF_MEM_LVL_NA		0x01  /* not available */
1215 #define PERF_MEM_LVL_HIT	0x02  /* hit level */
1216 #define PERF_MEM_LVL_MISS	0x04  /* miss level  */
1217 #define PERF_MEM_LVL_L1		0x08  /* L1 */
1218 #define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
1219 #define PERF_MEM_LVL_L2		0x20  /* L2 */
1220 #define PERF_MEM_LVL_L3		0x40  /* L3 */
1221 #define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
1222 #define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
1223 #define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
1224 #define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
1225 #define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
1226 #define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
1227 #define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
1228 #define PERF_MEM_LVL_SHIFT	5
1229 
1230 #define PERF_MEM_REMOTE_REMOTE	0x01  /* Remote */
1231 #define PERF_MEM_REMOTE_SHIFT	37
1232 
1233 #define PERF_MEM_LVLNUM_L1	0x01 /* L1 */
1234 #define PERF_MEM_LVLNUM_L2	0x02 /* L2 */
1235 #define PERF_MEM_LVLNUM_L3	0x03 /* L3 */
1236 #define PERF_MEM_LVLNUM_L4	0x04 /* L4 */
1237 /* 5-0xa available */
1238 #define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1239 #define PERF_MEM_LVLNUM_LFB	0x0c /* LFB */
1240 #define PERF_MEM_LVLNUM_RAM	0x0d /* RAM */
1241 #define PERF_MEM_LVLNUM_PMEM	0x0e /* PMEM */
1242 #define PERF_MEM_LVLNUM_NA	0x0f /* N/A */
1243 
1244 #define PERF_MEM_LVLNUM_SHIFT	33
1245 
1246 /* snoop mode */
1247 #define PERF_MEM_SNOOP_NA	0x01 /* not available */
1248 #define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
1249 #define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
1250 #define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
1251 #define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
1252 #define PERF_MEM_SNOOP_SHIFT	19
1253 
1254 #define PERF_MEM_SNOOPX_FWD	0x01 /* forward */
1255 /* 1 free */
1256 #define PERF_MEM_SNOOPX_SHIFT  38
1257 
1258 /* locked instruction */
1259 #define PERF_MEM_LOCK_NA	0x01 /* not available */
1260 #define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
1261 #define PERF_MEM_LOCK_SHIFT	24
1262 
1263 /* TLB access */
1264 #define PERF_MEM_TLB_NA		0x01 /* not available */
1265 #define PERF_MEM_TLB_HIT	0x02 /* hit level */
1266 #define PERF_MEM_TLB_MISS	0x04 /* miss level */
1267 #define PERF_MEM_TLB_L1		0x08 /* L1 */
1268 #define PERF_MEM_TLB_L2		0x10 /* L2 */
1269 #define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
1270 #define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
1271 #define PERF_MEM_TLB_SHIFT	26
1272 
1273 /* Access blocked */
1274 #define PERF_MEM_BLK_NA		0x01 /* not available */
1275 #define PERF_MEM_BLK_DATA	0x02 /* data could not be forwarded */
1276 #define PERF_MEM_BLK_ADDR	0x04 /* address conflict */
1277 #define PERF_MEM_BLK_SHIFT	40
1278 
1279 #define PERF_MEM_S(a, s) \
1280 	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1281 
1282 /*
1283  * single taken branch record layout:
1284  *
1285  *      from: source instruction (may not always be a branch insn)
1286  *        to: branch target
1287  *   mispred: branch target was mispredicted
1288  * predicted: branch target was predicted
1289  *
1290  * support for mispred, predicted is optional. In case it
1291  * is not supported mispred = predicted = 0.
1292  *
1293  *     in_tx: running in a hardware transaction
1294  *     abort: aborting a hardware transaction
1295  *    cycles: cycles from last branch (or 0 if not supported)
1296  *      type: branch type
1297  */
1298 struct perf_branch_entry {
1299 	__u64	from;
1300 	__u64	to;
1301 	__u64	mispred:1,  /* target mispredicted */
1302 		predicted:1,/* target predicted */
1303 		in_tx:1,    /* in transaction */
1304 		abort:1,    /* transaction abort */
1305 		cycles:16,  /* cycle count to last branch */
1306 		type:4,     /* branch type */
1307 		reserved:40;
1308 };
1309 
1310 union perf_sample_weight {
1311 	__u64		full;
1312 #if defined(__LITTLE_ENDIAN_BITFIELD)
1313 	struct {
1314 		__u32	var1_dw;
1315 		__u16	var2_w;
1316 		__u16	var3_w;
1317 	};
1318 #elif defined(__BIG_ENDIAN_BITFIELD)
1319 	struct {
1320 		__u16	var3_w;
1321 		__u16	var2_w;
1322 		__u32	var1_dw;
1323 	};
1324 #else
1325 #error "Unknown endianness"
1326 #endif
1327 };
1328 
1329 #endif /* _UAPI_LINUX_PERF_EVENT_H */
1330