1 // Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // multi_thread_gemm.h: Multi-threaded GEMM entry point.
16 // Readers note: To understand this file, it is useful to first
17 // read and understand the much simpler single_thread_gemm.h.
18 
19 #ifndef GEMMLOWP_INTERNAL_MULTI_THREAD_GEMM_H_
20 #define GEMMLOWP_INTERNAL_MULTI_THREAD_GEMM_H_
21 
22 #include <atomic>  // NOLINT
23 #include <chrono>  // NOLINT
24 #include <thread>  // NOLINT
25 #include <vector>
26 
27 #include "single_thread_gemm.h"
28 
29 namespace gemmlowp {
30 
31 // This value was empirically derived on an end-to-end application benchmark.
32 // That this number of cycles means that we may be sleeping substantially longer
33 // than a scheduler timeslice's duration is not necessarily surprising. The
34 // idea is to pick up quickly new work after having finished the previous
35 // workload. When it's new work within the same GEMM as the previous work, the
36 // time interval that we might be busy-waiting is very small, so for that
37 // purpose it would be more than enough to sleep for 1 million cycles.
38 // That is all what we would observe on a GEMM benchmark. However, in a real
39 // application, after having finished a GEMM, we might do unrelated work for
40 // a little while, then start on a new GEMM. Think of a neural network
41 // application performing inference, where many but not all layers are
42 // implemented by a GEMM. In such cases, our worker threads might be idle for
43 // longer periods of time before having work again. If we let them passively
44 // wait, on a mobile device, the CPU scheduler might aggressively clock down
45 // or even turn off the CPU cores that they were running on. That would result
46 // in a long delay the next time these need to be turned back on for the next
47 // GEMM. So we need to strike a balance that reflects typical time intervals
48 // between consecutive GEMM invokations, not just intra-GEMM considerations.
49 // Of course, we need to balance keeping CPUs spinning longer to resume work
50 // faster, versus passively waiting to conserve power.
51 const int kMaxBusyWaitNOPs = 4 * 1000 * 1000;
52 
53 // On X86 and ARM platforms we may use NOP instructions to know how long we
54 // are busy-waiting.
55 
56 #if defined(GEMMLOWP_ALLOW_INLINE_ASM) && !defined(GEMMLOWP_NO_BUSYWAIT) && \
57     (defined(GEMMLOWP_ARM) || defined(GEMMLOWP_X86))
58 
59 #define GEMMLOWP_NOP "nop\n"
60 
61 #define GEMMLOWP_STRING_CONCAT_4(X) X X X X
62 #define GEMMLOWP_NOP4 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP)
63 #define GEMMLOWP_NOP16 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP4)
64 #define GEMMLOWP_NOP64 GEMMLOWP_STRING_CONCAT_4(GEMMLOWP_NOP16)
65 
DoSomeNOPs()66 inline int DoSomeNOPs() {
67   asm volatile(GEMMLOWP_NOP64);
68   return 64;
69 }
70 
71 #undef GEMMLOWP_STRING_CONCAT_4
72 #undef GEMMLOWP_NOP64
73 #undef GEMMLOWP_NOP16
74 #undef GEMMLOWP_NOP4
75 #undef GEMMLOWP_NOP
76 
77 #else  // May not use asm NOP.
78 
79 // If we can't use NOPs, let's use a non-inline function call as a basic
80 // thing that has some vaguely known, nonzero cost.
81 GEMMLOWP_NOINLINE
DoSomeNOPs()82 inline int DoSomeNOPs() {
83   // Pretend that calling an empty function takes as long as 16 NOPs...
84   return 16;
85 }
86 #endif
87 
88 // Waits until *var != initial_value.
89 //
90 // Returns the new value of *var. The guarantee here is that
91 // the return value is different from initial_value, and that that
92 // new value has been taken by *var at some point during the
93 // execution of this function. There is no guarantee that this is
94 // still the value of *var when this function returns, since *var is
95 // not assumed to be guarded by any lock.
96 //
97 // First does some busy-waiting for a fixed number of no-op cycles,
98 // then falls back to passive waiting for the given condvar, guarded
99 // by the given mutex.
100 //
101 // The idea of doing some initial busy-waiting is to help get
102 // better and more consistent multithreading benefits for small GEMM sizes.
103 // Busy-waiting help ensuring that if we need to wake up soon after having
104 // started waiting, then we can wake up quickly (as opposed to, say,
105 // having to wait to be scheduled again by the OS). On the other hand,
106 // we must still eventually revert to passive waiting for longer waits
107 // (e.g. worker threads having finished a GEMM and waiting until the next GEMM)
108 // so as to avoid permanently spinning.
109 //
110 template <typename T>
WaitForVariableChange(std::atomic<T> * var,T initial_value,pthread_cond_t * cond,pthread_mutex_t * mutex)111 T WaitForVariableChange(std::atomic<T>* var, T initial_value,
112                         pthread_cond_t* cond, pthread_mutex_t* mutex) {
113   // First, trivial case where the variable already changed value.
114   T new_value = var->load(std::memory_order_acquire);
115   if (new_value != initial_value) {
116     return new_value;
117   }
118   // Then try busy-waiting.
119   int nops = 0;
120   while (nops < kMaxBusyWaitNOPs) {
121     nops += DoSomeNOPs();
122     new_value = var->load(std::memory_order_acquire);
123     if (new_value != initial_value) {
124       return new_value;
125     }
126   }
127 
128   // Finally, do real passive waiting.
129   pthread_mutex_lock(mutex);
130   new_value = var->load(std::memory_order_acquire);
131   while (new_value == initial_value) {
132     pthread_cond_wait(cond, mutex);
133     new_value = var->load(std::memory_order_acquire);
134   }
135   pthread_mutex_unlock(mutex);
136   return new_value;
137 }
138 
139 // A BlockingCounter lets one thread to wait for N events to occur.
140 // This is how the master thread waits for all the worker threads
141 // to have finished working.
142 // The waiting is done using a naive spinlock waiting for the atomic
143 // count_ to hit the value 0. This is acceptable because in our usage
144 // pattern, BlockingCounter is used only to synchronize threads after
145 // short-lived tasks (performing parts of the same GEMM). It is not used
146 // for synchronizing longer waits (resuming work on the next GEMM).
147 class BlockingCounter {
148  public:
BlockingCounter()149   BlockingCounter() : count_(0) {}
150 
151   // Sets/resets the counter; initial_count is the number of
152   // decrementing events that the Wait() call will be waiting for.
Reset(std::size_t initial_count)153   void Reset(std::size_t initial_count) {
154     std::size_t old_count_value = count_.load(std::memory_order_relaxed);
155     assert(old_count_value == 0);
156     (void)old_count_value;
157     count_.store(initial_count, std::memory_order_release);
158   }
159 
160   // Decrements the counter; if the counter hits zero, signals
161   // the threads that were waiting for that, and returns true.
162   // Otherwise (if the decremented count is still nonzero),
163   // returns false.
DecrementCount()164   bool DecrementCount() {
165     std::size_t old_count_value =
166         count_.fetch_sub(1, std::memory_order_acq_rel);
167     assert(old_count_value > 0);
168     std::size_t count_value = old_count_value - 1;
169     return count_value == 0;
170   }
171 
172   // Waits for the N other threads (N having been set by Reset())
173   // to hit the BlockingCounter.
Wait()174   void Wait() {
175     ScopedProfilingLabel label("BlockingCounter::Wait");
176     // Busy-wait until the count value is 0.
177     int nops = 0;
178     while (count_.load(std::memory_order_acquire)) {
179       nops += DoSomeNOPs();
180       if (nops > kMaxBusyWaitNOPs) {
181         nops = 0;
182         // If we are unlucky, the blocking thread (that calls DecrementCount)
183         // and the blocked thread (here, calling Wait) may be scheduled on
184         // the same CPU, so the busy-waiting of the present thread may prevent
185         // the blocking thread from resuming and unblocking.
186         // If we are even unluckier, the priorities of the present thread
187         // might be higher than that of the blocking thread, so just yielding
188         // wouldn't allow the blocking thread to resume. So we sleep for
189         // a substantial amount of time in that case. Notice that we only
190         // do so after having busy-waited for kMaxBusyWaitNOPs, which is
191         // typically several milliseconds, so sleeping 1 more millisecond
192         // isn't terrible at that point.
193         //
194         // How this is mitigated in practice:
195         // In practice, it is well known that the application should be
196         // conservative in choosing how many threads to tell gemmlowp to use,
197         // as it's hard to know how many CPU cores it will get to run on,
198         // on typical mobile devices.
199         // It seems impossible for gemmlowp to make this choice automatically,
200         // which is why gemmlowp's default is to use only 1 thread, and
201         // applications may override that if they know that they can count on
202         // using more than that.
203         std::this_thread::sleep_for(std::chrono::milliseconds(1));
204       }
205     }
206   }
207 
208  private:
209   std::atomic<std::size_t> count_;
210 };
211 
212 // A workload for a worker.
213 struct Task {
TaskTask214   Task() : local_allocator(nullptr) {}
~TaskTask215   virtual ~Task() {}
216   virtual void Run() = 0;
217   Allocator* local_allocator;
218 };
219 
220 // A worker thread.
221 class Worker {
222  public:
223   enum class State {
224     ThreadStartup,  // The initial state before the thread main loop runs.
225     Ready,          // Is not working, has not yet received new work to do.
226     HasWork,        // Has work to do.
227     ExitAsSoonAsPossible  // Should exit at earliest convenience.
228   };
229 
Worker(BlockingCounter * counter_to_decrement_when_ready)230   explicit Worker(BlockingCounter* counter_to_decrement_when_ready)
231       : task_(nullptr),
232         state_(State::ThreadStartup),
233         counter_to_decrement_when_ready_(counter_to_decrement_when_ready) {
234     pthread_cond_init(&state_cond_, nullptr);
235     pthread_mutex_init(&state_mutex_, nullptr);
236     pthread_create(&thread_, nullptr, ThreadFunc, this);
237   }
238 
~Worker()239   ~Worker() {
240     ChangeState(State::ExitAsSoonAsPossible);
241     pthread_join(thread_, nullptr);
242     pthread_cond_destroy(&state_cond_);
243     pthread_mutex_destroy(&state_mutex_);
244   }
245 
246   // Changes State; may be called from either the worker thread
247   // or the master thread; however, not all state transitions are legal,
248   // which is guarded by assertions.
249   //
250   // The Task argument is to be used only with new_state==HasWork.
251   // It specifies the Task being handed to this Worker.
252   void ChangeState(State new_state, Task* task = nullptr) {
253     ScopedProfilingLabel label("Worker::ChangeState");
254     pthread_mutex_lock(&state_mutex_);
255     State old_state = state_.load(std::memory_order_relaxed);
256     assert(old_state != new_state);
257     switch (old_state) {
258       case State::ThreadStartup:
259         assert(new_state == State::Ready);
260         break;
261       case State::Ready:
262         assert(new_state == State::HasWork ||
263                new_state == State::ExitAsSoonAsPossible);
264         break;
265       case State::HasWork:
266         assert(new_state == State::Ready ||
267                new_state == State::ExitAsSoonAsPossible);
268         break;
269       default:
270         abort();
271     }
272     switch (new_state) {
273       case State::Ready:
274         if (task_) {
275           // Doing work is part of reverting to 'ready' state.
276           task_->Run();
277           task_ = nullptr;
278         }
279         break;
280       case State::HasWork:
281         assert(!task_);
282         task->local_allocator = &local_allocator_;
283         task_ = task;
284         break;
285       default:
286         break;
287     }
288     state_.store(new_state, std::memory_order_relaxed);
289     pthread_cond_broadcast(&state_cond_);
290     pthread_mutex_unlock(&state_mutex_);
291     if (new_state == State::Ready) {
292       counter_to_decrement_when_ready_->DecrementCount();
293     }
294   }
295 
296   // Thread entry point.
ThreadFunc()297   void ThreadFunc() {
298     ScopedProfilingLabel label("Worker::ThreadFunc");
299 
300     ChangeState(State::Ready);
301 
302     // Thread main loop
303     while (true) {
304       // Get a state to act on
305       // In the 'Ready' state, we have nothing to do but to wait until
306       // we switch to another state.
307       State state_to_act_upon = WaitForVariableChange(
308           &state_, State::Ready, &state_cond_, &state_mutex_);
309 
310       // We now have a state to act on, so act.
311       switch (state_to_act_upon) {
312         case State::HasWork:
313           // Got work to do! So do it, and then revert to 'Ready' state.
314           ChangeState(State::Ready);
315           break;
316         case State::ExitAsSoonAsPossible:
317           return;
318         default:
319           abort();
320       }
321     }
322   }
323 
ThreadFunc(void * arg)324   static void* ThreadFunc(void* arg) {
325     static_cast<Worker*>(arg)->ThreadFunc();
326     return nullptr;
327   }
328 
329   // Called by the master thead to give this worker work to do.
StartWork(Task * task)330   void StartWork(Task* task) { ChangeState(State::HasWork, task); }
331 
332  private:
333   // The underlying thread.
334   pthread_t thread_;
335 
336   // The task to be worked on.
337   Task* task_;
338 
339   // The condition variable and mutex guarding state changes.
340   pthread_cond_t state_cond_;
341   pthread_mutex_t state_mutex_;
342 
343   // The state enum tells if we're currently working, waiting for work, etc.
344   // Its concurrent accesses by the worker and main threads are guarded by
345   // state_mutex_, and can thus use memory_order_relaxed. This still needs
346   // to be a std::atomic because we use WaitForVariableChange.
347   std::atomic<State> state_;
348 
349   // Each thread had a local allocator so they can allocate temporary
350   // buffers without blocking each other.
351   Allocator local_allocator_;
352 
353   // pointer to the master's thread BlockingCounter object, to notify the
354   // master thread of when this worker switches to the 'Ready' state.
355   BlockingCounter* const counter_to_decrement_when_ready_;
356 };
357 
358 // A very simple pool of workers, that only allows the very
359 // specific parallelization pattern that we use here:
360 // a fixed number of workers can be given work, and one then
361 // waits for all of them to finish.
362 //
363 // See MultiThreadGemmContextBase for how other WorkersPool implementations can
364 // be used.
365 class WorkersPool {
366  public:
WorkersPool()367   WorkersPool() {}
368 
~WorkersPool()369   ~WorkersPool() {
370     for (auto w : workers_) {
371       delete w;
372     }
373   }
374 
375   // Just executes the tasks. Does not destroy them. Similar to
376   // ruy::ThreadPool::Execute.
377   template <typename TaskType>
Execute(int tasks_count,TaskType * tasks)378   void Execute(int tasks_count, TaskType* tasks) {
379     assert(tasks_count >= 1);
380     // One of the tasks will be run on the current thread.
381     std::size_t workers_count = tasks_count - 1;
382     CreateWorkers(workers_count);
383     assert(workers_count <= workers_.size());
384     counter_to_decrement_when_ready_.Reset(workers_count);
385     for (std::size_t i = 0; i < tasks_count - 1; i++) {
386       workers_[i]->StartWork(&tasks[i]);
387     }
388     // Execute the remaining workload immediately on the current thread.
389     Task* task = &tasks[tasks_count - 1];
390     task->local_allocator = &main_thread_task_allocator_;
391     task->Run();
392     // Wait for the workers submitted above to finish.
393     counter_to_decrement_when_ready_.Wait();
394   }
395 
396   // Legacy: executes the tasks and destroys them
LegacyExecuteAndDestroyTasks(const std::vector<Task * > & tasks)397   void LegacyExecuteAndDestroyTasks(const std::vector<Task*>& tasks) {
398     std::size_t tasks_count = tasks.size();
399     assert(tasks_count >= 1);
400     // One of the tasks will be run on the current thread.
401     std::size_t workers_count = tasks_count - 1;
402     CreateWorkers(workers_count);
403     assert(workers_count <= workers_.size());
404     counter_to_decrement_when_ready_.Reset(workers_count);
405     for (int i = 0; i < tasks_count - 1; i++) {
406       workers_[i]->StartWork(tasks[i]);
407     }
408     // Execute the remaining workload immediately on the current thread.
409     Task* task = tasks[tasks_count - 1];
410     task->local_allocator = &main_thread_task_allocator_;
411     task->Run();
412     // Wait for the workers submitted above to finish.
413     counter_to_decrement_when_ready_.Wait();
414     // Cleanup tasks (best to do this from the same thread that allocated
415     // the memory).
416     std::for_each(tasks.begin(), tasks.end(), [](Task* task) { delete task; });
417   }
418 
419   // Legacy old name of LegacyExecuteAndDestroyTasks
Execute(const std::vector<Task * > & tasks)420   void Execute(const std::vector<Task*>& tasks) {
421     LegacyExecuteAndDestroyTasks(tasks);
422   }
423 
424  private:
425   // Ensures that the pool has at least the given count of workers.
426   // If any new worker has to be created, this function waits for it to
427   // be ready.
CreateWorkers(std::size_t workers_count)428   void CreateWorkers(std::size_t workers_count) {
429     if (workers_.size() >= workers_count) {
430       return;
431     }
432     counter_to_decrement_when_ready_.Reset(workers_count - workers_.size());
433     while (workers_.size() < workers_count) {
434       workers_.push_back(new Worker(&counter_to_decrement_when_ready_));
435     }
436     counter_to_decrement_when_ready_.Wait();
437   }
438 
439   // copy construction disallowed
440   WorkersPool(const WorkersPool&) = delete;
441 
442   // The workers in this pool. They are owned by the pool:
443   // the pool creates workers and destroys them in its destructor.
444   std::vector<Worker*> workers_;
445 
446   // The BlockingCounter used to wait for the workers.
447   BlockingCounter counter_to_decrement_when_ready_;
448 
449   // For N-threaded operations, we will use only N-1 worker threads
450   // while the last task will be run directly on the main thread.
451   // It will then use this main_thread_task_allocator_; having a
452   // dedicated allocator for that (separate from the base allocator_)
453   // allows to use the same code for all tasks regardless of which
454   // thread they run on.
455   Allocator main_thread_task_allocator_;
456 };
457 
458 // The task we use to implement a multi-threaded Gemm: a block of the
459 // RHS has been packed by the master thread; each worker thread
460 // then has to pack a block of the LHS and accumulate the Gemm of these
461 // packed LHS and RHS blocks.
462 template <typename KernelFormat, typename InputScalar, typename OutputScalar,
463           typename BitDepthParams, MapOrder LhsOrder, MapOrder RhsOrder,
464           MapOrder ResultOrder, typename LhsOffset, typename RhsOffset,
465           typename OutputPipelineType, typename GemmContextType>
466 struct GemmWithPackedRhsTask : Task {
467   typedef PackedSideBlock<typename KernelFormat::Lhs> PackedLhs;
468   typedef PackedSideBlock<typename KernelFormat::Rhs> PackedRhs;
GemmWithPackedRhsTaskGemmWithPackedRhsTask469   GemmWithPackedRhsTask(GemmContextType* _context, const KernelBase& _kernel,
470                         const MatrixMap<const InputScalar, LhsOrder>& _lhs,
471                         const PackedRhs& _packed_rhs,
472                         MatrixMap<OutputScalar, ResultOrder>* _result,
473                         const MatrixBlockBounds& _result_block,
474                         const LhsOffset& _lhs_offset,
475                         const RhsOffset& _rhs_offset,
476                         const BlockParams& _block_params,
477                         const OutputPipelineType& _output_pipeline)
478       : context(_context),
479         kernel(_kernel),
480         lhs(_lhs),
481         packed_rhs(_packed_rhs),
482         result(*_result),
483         result_block(_result_block),
484         lhs_offset(_lhs_offset),
485         rhs_offset(_rhs_offset),
486         block_params(_block_params),
487         output_pipeline(_output_pipeline) {}
488 
RunGemmWithPackedRhsTask489   void Run() override {
490     ScopedProfilingLabel label("GemmWithPackedRhsTask");
491 
492     const int rows = result_block.rows;
493     const int cols = result_block.cols;
494     const int depth = lhs.cols();
495 
496     PackedLhs packed_lhs(Side::Lhs, local_allocator, block_params);
497 
498     PackedResult packed_result(local_allocator, block_params);
499 
500     local_allocator->Commit();
501 
502     for (int c = 0; c < cols; c += block_params.l2_cols) {
503       int cs = std::min(block_params.l2_cols, cols - c);
504 
505       for (int r = 0; r < rows; r += block_params.l2_rows) {
506         int rs = std::min(block_params.l2_rows, rows - r);
507 
508         PackLhs(&packed_lhs, lhs.block(r, 0, rs, depth));
509 
510         Compute(kernel, block_params, &packed_result, packed_lhs, packed_rhs,
511                 depth);
512 
513         auto curr_result_block = MatrixBlockBounds(
514             result_block.start_row + r, result_block.start_col + c, rs, cs);
515         UnpackResult<KernelFormat>(
516             &result, curr_result_block, packed_result, depth,
517             packed_lhs.sums_of_each_slice(), packed_rhs.sums_of_each_slice(),
518             lhs_offset.block(curr_result_block.start_row, rs),
519             rhs_offset.block(curr_result_block.start_col, cs), output_pipeline);
520       }
521     }
522 
523     local_allocator->Decommit();
524   }
525 
526   const GemmContextType* context;
527   const KernelBase& kernel;
528   const MatrixMap<const InputScalar, LhsOrder> lhs;
529   const PackedRhs packed_rhs;
530   MatrixMap<OutputScalar, ResultOrder> result;
531   const MatrixBlockBounds result_block;
532   const LhsOffset& lhs_offset;
533   const RhsOffset& rhs_offset;
534   const BlockParams& block_params;
535   const OutputPipelineType& output_pipeline;
536 };
537 
538 // This base class for multi-threading allows subclasses to implement their own
539 // workers_pool() method.  See MultiThreadGemmContext below for an example;
540 // any other implementation of workers_pool() must return an object with the
541 // same public methods as WorkersPool.
542 class MultiThreadGemmContextBase : public SingleThreadGemmContext {
543  public:
set_max_num_threads(int n)544   void set_max_num_threads(int n) { max_num_threads_ = n; }
545 
max_num_threads()546   int max_num_threads() const { return max_num_threads_; }
547 
548  protected:
549   // The maximum number of worker threads to use (including
550   // the master thread).
551   // The default value 1 means single-threading. That is the default
552   // because gemmlowp's primary target is mobile hardware, where thermal
553   // constraints usually mean that it may not be realistic to use more
554   // than 1 CPU core even if multiple cores are present.
555   // The special value 0 means try to detect the number of hardware threads.
556   // Note: this assumes that all CPU cores are equivalent. That assumption
557   // is defeated on big.LITTLE ARM devices, where we have no API to query
558   // the number of big cores (which is typically what we would want to use,
559   // leaving aside above-mentioned thermal issues). That is the other reason
560   // why the best compromise here is to let max_num_threads_ default to 1,
561   // so users who want multi-threading have to make the decision of how many
562   // threads to use by themselves.
563   int max_num_threads_ = 1;
564 };
565 
566 class MultiThreadGemmContext : public MultiThreadGemmContextBase {
567  public:
workers_pool()568   WorkersPool* workers_pool() { return &workers_pool_; }
569 
570  private:
571   // The workers pool used by MultiThreadGemm. Making
572   // this part of the context allows it to be persistent,
573   // avoiding recreating threads on every Gemm.
574   WorkersPool workers_pool_;
575 };
576 
577 // Determines how many threads should be used for a given Gemm
578 // operation.
579 template <int KernelRows>
HowManyThreads(int max_num_threads,int rows,int cols,int depth)580 inline int HowManyThreads(int max_num_threads, int rows, int cols, int depth) {
581   // Early-exit in the default case where multi-threading is disabled.
582   if (max_num_threads == 1) {
583     return 1;
584   }
585 
586   // Determine the maximum number of threads.
587   int max_count = GetHardwareConcurrency(max_num_threads);
588 
589   // Basic calculation: take into account max pool size, and
590   // how many rows we have to feed our kernel.
591   // The motivation for an absolute minimum number of rows per thread,
592   // potentially higher than KernelRows, is that very thin thread workload
593   // currently defeat assumptions of the AddMod generator, resulting
594   // in substantial bias in TestWithRealData on 24 threads.
595   // Ideally, the AddMod generator should be aware of global (r,c) coordinates
596   // so as to be independent of the number of threads.
597   static const int AbsoluteMinRowsPerThread = 16;
598   static const int MinRowsPerThread = KernelRows > AbsoluteMinRowsPerThread
599                                           ? KernelRows
600                                           : AbsoluteMinRowsPerThread;
601   int thread_count = std::min(max_count, CeilQuotient(rows, MinRowsPerThread));
602 
603   // At this point for small products we already have thread_count==1 so
604   // we can avoid doing more work; otherwise, we still want to check
605   // that the cubic size (rows*cols*depth) is big enough to keep
606   // workers_ busy.
607   if (thread_count > 1) {
608     // Empirically determined value.
609     static const std::uint64_t min_cubic_size_per_thread = 64 * 1024;
610 
611     // We can only multiply two out of three sizes without risking overflow
612     const std::uint64_t cubic_size =
613         std::uint64_t(rows) * std::uint64_t(cols) * std::uint64_t(depth);
614 
615     thread_count =
616         std::min(thread_count, int(cubic_size / min_cubic_size_per_thread));
617 
618     if (thread_count < 1) {
619       thread_count = 1;
620     }
621   }
622 
623   assert(thread_count > 0 && thread_count <= max_count);
624   return thread_count;
625 }
626 
627 // The main multi-threaded Gemm function.
628 // To understand it, first read the code of SingleThreadGemm().
629 // The parallelization scheme used here is to have this master function
630 // pack a block of RHS and then start worker threads to pack a block of LHS
631 // each, and accumulate the corresponding products.
632 template <typename KernelFormat, typename InputScalar, typename OutputScalar,
633           typename BitDepthParams, MapOrder LhsOrder, MapOrder RhsOrder,
634           MapOrder ResultOrder, typename LhsOffset, typename RhsOffset,
635           typename OutputPipelineType, typename GemmContextType>
MultiThreadGemm(GemmContextType * context,const KernelBase & kernel,const MatrixMap<const InputScalar,LhsOrder> & lhs,const MatrixMap<const InputScalar,RhsOrder> & rhs,MatrixMap<OutputScalar,ResultOrder> * result,const LhsOffset & lhs_offset,const RhsOffset & rhs_offset,const OutputPipelineType & output_pipeline)636 void MultiThreadGemm(GemmContextType* context, const KernelBase& kernel,
637                      const MatrixMap<const InputScalar, LhsOrder>& lhs,
638                      const MatrixMap<const InputScalar, RhsOrder>& rhs,
639                      MatrixMap<OutputScalar, ResultOrder>* result,
640                      const LhsOffset& lhs_offset, const RhsOffset& rhs_offset,
641                      const OutputPipelineType& output_pipeline) {
642   ScopedProfilingLabel label("gemmlowp::MultiThreadGemm");
643 
644   assert(lhs.cols() == rhs.rows());
645 
646   int rows = result->rows();
647   int cols = result->cols();
648   int depth = lhs.cols();
649 
650   // zero sizes should have been caught earlier and early-returned.
651   assert(rows > 0);
652   assert(cols > 0);
653   assert(depth > 0);
654 
655   // The case of rows<cols should have been caught earlier and transposed.
656   assert(rows >= cols);
657 
658   const int thread_count = HowManyThreads<KernelFormat::kRows>(
659       context->max_num_threads(), rows, cols, depth);
660   if (thread_count == 1) {
661     return SingleThreadGemm<KernelFormat, InputScalar, OutputScalar,
662                             BitDepthParams>(context, kernel, lhs, rhs, result,
663                                             lhs_offset, rhs_offset,
664                                             output_pipeline);
665   }
666   assert(thread_count > 1);
667 
668   // Simple 1:1 mapping of tasks to physical cores, which is very important
669   // to getting good multithreaded performance, specially for not-very-large
670   // GEMMs, and especially on Android.
671   const int task_count = thread_count;
672 
673   Allocator* allocator = context->allocator();
674   auto* workers_pool = context->workers_pool();
675 
676   BlockParams block_params;
677   block_params.Init<KernelFormat>(
678       rows, cols, depth, task_count, context->l1_bytes_to_use(),
679       context->l2_bytes_to_use(), context->l2_rhs_factor());
680 
681   PackedSideBlock<typename KernelFormat::Rhs> packed_rhs(Side::Rhs, allocator,
682                                                          block_params);
683   allocator->Commit();
684 
685   // We loop over large blocks of the RHS.
686   for (int c = 0; c < cols; c += block_params.l2_cols) {
687     int cs = std::min(block_params.l2_cols, cols - c);
688 
689     // Pack a large block of the RHS.
690     PackRhs(&packed_rhs, rhs.block(0, c, depth, cs));
691 
692     // Give work to each worker.
693     std::vector<Task*> tasks;
694     int next_start_row = 0;
695     for (int n = 0; n < task_count; ++n) {
696       int start_row = next_start_row;
697       next_start_row = std::min(
698           rows, RoundUp<KernelFormat::kRows>(rows * (n + 1) / task_count));
699 
700       int block_rows = next_start_row - start_row;
701       auto lhs_block = lhs.block(start_row, 0, block_rows, depth);
702       typedef GemmWithPackedRhsTask<KernelFormat, InputScalar, OutputScalar,
703                                     BitDepthParams, LhsOrder, RhsOrder,
704                                     ResultOrder, LhsOffset, RhsOffset,
705                                     OutputPipelineType, GemmContextType>
706           TaskType;
707       tasks.push_back(
708           new TaskType(context, kernel, lhs_block, packed_rhs, result,
709                        MatrixBlockBounds(start_row, c, block_rows, cs),
710                        lhs_offset, rhs_offset, block_params, output_pipeline));
711     }
712     // Execute the work on the workers (and partially on this thread).
713     workers_pool->Execute(tasks);
714   }
715 
716   allocator->Decommit();
717 }
718 
719 }  // namespace gemmlowp
720 
721 #endif  // GEMMLOWP_INTERNAL_MULTI_THREAD_GEMM_H_
722