1 // Copyright 2019, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #include <vector>
28 
29 #include "globals-vixl.h"
30 #include "aarch64/macro-assembler-aarch64.h"
31 
32 #include "bench-utils.h"
33 
34 using namespace vixl;
35 using namespace vixl::aarch64;
36 
37 #define __ masm_->
38 
39 const Register BenchCodeGenerator::scratch = x28;
40 
PickR(unsigned size_in_bits)41 Register BenchCodeGenerator::PickR(unsigned size_in_bits) {
42   // Only select caller-saved registers [x0, x15].
43   return Register(static_cast<unsigned>(GetRandomBits(4)), size_in_bits);
44 }
45 
PickV(unsigned size_in_bits)46 VRegister BenchCodeGenerator::PickV(unsigned size_in_bits) {
47   // Only select caller-saved registers [v0, v7] or [v16, v31].
48   // The resulting distribution is not uniform.
49   unsigned code = static_cast<unsigned>(GetRandomBits(5));
50   if (code < 16) code &= 0x7;  // [v8, v15] -> [v0, v7]
51   return VRegister(code, size_in_bits);
52 }
53 
GetRandomBits(int bits)54 uint64_t BenchCodeGenerator::GetRandomBits(int bits) {
55   VIXL_ASSERT((bits >= 0) && (bits <= 64));
56   uint64_t result = 0;
57 
58   while (bits >= 32) {
59     // For big chunks, call jrand48 directly.
60     result = (result << 32) | jrand48(rand_state_);  // [-2^31, 2^31]
61     bits -= 32;
62   }
63   if (bits == 0) return result;
64 
65   // We often only want a few bits at a time, so use stored entropy to avoid
66   // frequent calls to jrand48.
67 
68   if (bits > rnd_bits_) {
69     // We want more bits than we have.
70     result = (result << rnd_bits_) | rnd_;
71     bits -= rnd_bits_;
72 
73     rnd_ = static_cast<uint32_t>(jrand48(rand_state_));  // [-2^31, 2^31]
74     rnd_bits_ = 32;
75   }
76 
77   VIXL_ASSERT(bits <= rnd_bits_);
78   result = (result << bits) | (rnd_ % (UINT32_C(1) << bits));
79   rnd_ >>= bits;
80   rnd_bits_ -= bits;
81   return result;
82 }
83 
PickRSize()84 unsigned BenchCodeGenerator::PickRSize() {
85   return PickBool() ? kWRegSize : kXRegSize;
86 }
87 
PickFPSize()88 unsigned BenchCodeGenerator::PickFPSize() {
89   uint64_t entropy = GetRandomBits(4);
90   // Doubles and floats are common in most languages, so use half-precision
91   // types only rarely.
92   if (entropy == 0) return kHRegSize;
93   return ((entropy & 1) == 0) ? kSRegSize : kDRegSize;
94 }
95 
Generate(size_t min_size_in_bytes)96 void BenchCodeGenerator::Generate(size_t min_size_in_bytes) {
97   Label start;
98   __ Bind(&start);
99 
100   call_depth_++;
101   GeneratePrologue();
102 
103   while (masm_->GetSizeOfCodeGeneratedSince(&start) < min_size_in_bytes) {
104     GenerateArbitrarySequence();
105   }
106 
107   GenerateEpilogue();
108   call_depth_--;
109 
110   // Make sure that any labels (created by GenerateBranchSequence) are bound
111   // before we exit.
112   if (call_depth_ == 0) BindAllPendingLabels();
113 }
114 
GeneratePrologue()115 void BenchCodeGenerator::GeneratePrologue() {
116   // Construct a normal frame.
117   VIXL_ASSERT(masm_->StackPointer().Is(sp));
118   __ Push(lr, x29);  // x29 is the frame pointer (fp).
119   __ Mov(x29, sp);
120   VIXL_ASSERT(call_depth_ > 0);
121   if (call_depth_ == 1) {
122     __ Push(scratch, xzr);
123     // Claim space to use for load and stores.
124     // - We need at least 4 * kQRegSize bytes for Ld4/St4.
125     // - The architecture requires that we allocate a multiple of 16 bytes.
126     // - There is no hard upper limit, but the Simulator has a limited stack
127     //   space.
128     __ Claim((4 * kQRegSize) + (16 * GetRandomBits(3)));
129     __ Mov(scratch, sp);
130   }
131 }
132 
GenerateEpilogue()133 void BenchCodeGenerator::GenerateEpilogue() {
134   VIXL_ASSERT(call_depth_ > 0);
135   if (call_depth_ == 1) {
136     __ Sub(sp, x29, 2 * kXRegSizeInBytes);  // Drop the scratch space.
137     __ Pop(xzr, scratch);
138   }
139   __ Pop(x29, lr);
140   __ Ret();
141 }
142 
GenerateArbitrarySequence()143 void BenchCodeGenerator::GenerateArbitrarySequence() {
144   // Bind pending labels, and remove them from the list.
145   // Recently-linked labels are much more likely to be bound than old ones. This
146   // should produce a mix of long- (veneered) and short-range branches.
147   uint32_t bind_mask = static_cast<uint32_t>(
148       GetRandomBits(8) | (GetRandomBits(7) << 1) | (GetRandomBits(6) << 2));
149   BindPendingLabels(bind_mask);
150 
151   // If we are at the top call level (call_depth_ == 1), generate nested calls
152   // 1/4 of the time, and halve the chance for each call level below that.
153   VIXL_ASSERT(call_depth_ > 0);
154   if (GetRandomBits(call_depth_ + 1) == 0) {
155     GenerateCallReturnSequence();
156     return;
157   }
158 
159   // These weightings should be roughly representative of real functions.
160   switch (GetRandomBits(4)) {
161     case 0x0:
162     case 0x1:
163       GenerateTrivialSequence();
164       return;
165     case 0x2:
166     case 0x3:
167     case 0x4:
168     case 0x5:
169       GenerateOperandSequence();
170       return;
171     case 0x6:
172     case 0x7:
173     case 0x8:
174       GenerateMemOperandSequence();
175       return;
176     case 0xb:
177     case 0x9:
178     case 0xa:
179       GenerateImmediateSequence();
180       return;
181     case 0xc:
182     case 0xd:
183       GenerateBranchSequence();
184       return;
185     case 0xe:
186       GenerateFPSequence();
187       return;
188     case 0xf:
189       GenerateNEONSequence();
190       return;
191   }
192 }
193 
GenerateTrivialSequence()194 void BenchCodeGenerator::GenerateTrivialSequence() {
195   unsigned size = PickRSize();
196   __ Asr(PickR(size), PickR(size), 4);
197   __ Bfi(PickR(size), PickR(size), 5, 14);
198   __ Bfc(PickR(size), 5, 14);
199   __ Cinc(PickR(size), PickR(size), ge);
200   __ Cinv(PickR(size), PickR(size), ne);
201   __ Cls(PickR(size), PickR(size));
202   __ Cneg(PickR(size), PickR(size), lt);
203   __ Mrs(PickX(), NZCV);
204   __ Nop();
205   __ Mul(PickR(size), PickR(size), PickR(size));
206   __ Rbit(PickR(size), PickR(size));
207   __ Rev(PickR(size), PickR(size));
208   __ Sdiv(PickR(size), PickR(size), PickR(size));
209   if (!labels_.empty()) {
210     __ Adr(PickX(), labels_.begin()->target);
211   }
212 }
213 
GenerateOperandSequence()214 void BenchCodeGenerator::GenerateOperandSequence() {
215   unsigned size = PickRSize();
216   // The cast to Operand is normally implicit for simple registers, but we
217   // explicitly specify it in every case here to ensure that the benchmark does
218   // what we expect.
219   __ And(PickR(size), PickR(size), Operand(PickR(size)));
220   __ Bics(PickR(size), PickR(size), Operand(PickR(size)));
221   __ Orr(PickR(size), PickR(size), Operand(PickR(size)));
222   __ Eor(PickR(size), PickR(size), Operand(PickR(size)));
223   __ Tst(PickR(size), Operand(PickR(size)));
224   __ Eon(PickR(size), PickR(size), Operand(PickR(size)));
225   __ Cmp(PickR(size), Operand(PickR(size)));
226   __ Negs(PickR(size), Operand(PickR(size)));
227   __ Mvn(PickR(size), Operand(PickR(size)));
228   __ Ccmp(PickR(size), Operand(PickR(size)), NoFlag, eq);
229   __ Ccmn(PickR(size), Operand(PickR(size)), NoFlag, eq);
230   __ Csel(PickR(size), Operand(PickR(size)), Operand(PickR(size)), lt);
231   {
232     // Ensure that `claim` doesn't alias any PickR().
233     UseScratchRegisterScope temps(masm_);
234     Register claim = temps.AcquireX();
235     // We should only claim a 16-byte-aligned amount, since we're using the
236     // system stack pointer.
237     __ Mov(claim, GetRandomBits(4) * 16);
238     __ Claim(Operand(claim));
239     // Also claim a bit more, so we can store at sp+claim.
240     __ Claim(Operand(32));
241     __ Poke(PickR(size), Operand(claim));
242     __ Peek(PickR(size), Operand(8));
243     __ Poke(PickR(size), Operand(16));
244     __ Peek(PickR(size), Operand(claim.W(), UXTW));
245     __ Drop(Operand(32));
246     __ Drop(Operand(claim));
247   }
248 }
249 
GenerateMemOperandSequence()250 void BenchCodeGenerator::GenerateMemOperandSequence() {
251   unsigned size = PickRSize();
252   RegList store_list = GetRandomBits(16);  // Restrict to [x0, x15].
253   __ StoreCPURegList(CPURegList(CPURegister::kRegister, size, store_list),
254                      MemOperand(scratch));
255   RegList load_list = GetRandomBits(16);  // Restrict to [x0, x15].
256   __ LoadCPURegList(CPURegList(CPURegister::kRegister, size, load_list),
257                     MemOperand(scratch));
258   __ Str(PickX(), MemOperand(scratch));
259   __ Strb(PickW(), MemOperand(scratch, 42));
260   __ Strh(PickW(), MemOperand(scratch, 42, PostIndex));
261   __ Ldrsw(PickX(), MemOperand(scratch, -42, PreIndex));
262   __ Ldr(PickR(size), MemOperand(scratch, 19));  // Translated to ldur.
263   __ Push(PickX(), PickX());
264   // Ensure unique registers (in [x0, x15]) for Pop.
265   __ Pop(Register(static_cast<int>(GetRandomBits(2)) + 0, kWRegSize),
266          Register(static_cast<int>(GetRandomBits(2)) + 4, kWRegSize),
267          Register(static_cast<int>(GetRandomBits(2)) + 8, kWRegSize),
268          Register(static_cast<int>(GetRandomBits(2)) + 12, kWRegSize));
269 }
270 
GenerateImmediateSequence()271 void BenchCodeGenerator::GenerateImmediateSequence() {
272   unsigned size = PickRSize();
273   __ And(PickR(size), PickR(size), GetRandomBits(size));
274   __ Sub(PickR(size), PickR(size), GetRandomBits(size));
275   __ Mov(PickR(size), GetRandomBits(size));
276   __ Movk(PickX(), GetRandomBits(16), static_cast<int>(GetRandomBits(2)) * 16);
277 }
278 
BindPendingLabels(uint64_t bind_mask)279 void BenchCodeGenerator::BindPendingLabels(uint64_t bind_mask) {
280   if (bind_mask == 0) return;
281   // The labels we bind here jump back to just after each branch that refers
282   // to them. This allows a simple, linear execution path, whilst still
283   // benchmarking long-range labels.
284   //
285   // Ensure that code falling through into this sequence does not jump
286   // back to an earlier point in the execution path.
287   Label done;
288   __ B(&done);
289 
290   std::list<LabelPair>::iterator it = labels_.begin();
291   while ((it != labels_.end()) && (bind_mask != 0)) {
292     if ((bind_mask & 1) != 0) {
293       // Bind the label and jump back to its source.
294       __ Bind(it->target);
295       __ B(it->cont);
296       delete it->target;
297       delete it->cont;
298       it = labels_.erase(it);
299     } else {
300       ++it;  // Don't bind this one.
301     }
302     bind_mask >>= 1;
303   }
304   __ Bind(&done);
305 }
306 
BindAllPendingLabels()307 void BenchCodeGenerator::BindAllPendingLabels() {
308   while (!labels_.empty()) {
309     // BindPendingLables generates a branch over each block of bound labels.
310     // This will be repeated for each call here, but the effect is minimal and
311     // (empirically) we rarely accumulate more than 64 pending labels anyway.
312     BindPendingLabels(UINT64_MAX);
313   }
314 }
315 
GenerateBranchSequence()316 void BenchCodeGenerator::GenerateBranchSequence() {
317   {
318     LabelPair pair = {new Label(), new Label()};
319     __ B(lt, pair.target);
320     __ Bind(pair.cont);
321     labels_.push_front(pair);
322   }
323 
324   {
325     LabelPair pair = {new Label(), new Label()};
326     __ Tbz(PickX(),
327            static_cast<int>(GetRandomBits(kXRegSizeLog2)),
328            pair.target);
329     __ Bind(pair.cont);
330     labels_.push_front(pair);
331   }
332 
333   {
334     LabelPair pair = {new Label(), new Label()};
335     __ Cbz(PickX(), pair.target);
336     __ Bind(pair.cont);
337     labels_.push_front(pair);
338   }
339 }
340 
GenerateCallReturnSequence()341 void BenchCodeGenerator::GenerateCallReturnSequence() {
342   Label fn, done;
343 
344   if (PickBool()) {
345     __ Bl(&fn);
346   } else {
347     Register reg = PickX();
348     __ Adr(reg, &fn);
349     __ Blr(reg);
350   }
351   __ B(&done);
352 
353   __ Bind(&fn);
354   // Recurse with a randomised (but fairly small) minimum size.
355   Generate(GetRandomBits(8));
356 
357   __ Bind(&done);
358 }
359 
GenerateFPSequence()360 void BenchCodeGenerator::GenerateFPSequence() {
361   unsigned size = PickFPSize();
362   unsigned other_size = PickBool() ? size * 2 : size / 2;
363   if (other_size < kHRegSize) other_size = kDRegSize;
364   if (other_size > kDRegSize) other_size = kHRegSize;
365 
366   __ Fadd(PickV(size), PickV(size), PickV(size));
367   __ Fmul(PickV(size), PickV(size), PickV(size));
368   __ Fcvt(PickV(other_size), PickV(size));
369   __ Fjcvtzs(PickW(), PickD());
370   __ Fccmp(PickV(size), PickV(size), NCVFlag, pl);
371   __ Fdiv(PickV(size), PickV(size), PickV(size));
372   __ Fmov(PickV(size), 1.25 * GetRandomBits(2));
373   __ Fmsub(PickV(size), PickV(size), PickV(size), PickV(size));
374   __ Frintn(PickV(size), PickV(size));
375 }
376 
GenerateNEONSequence()377 void BenchCodeGenerator::GenerateNEONSequence() {
378   __ And(PickV().V16B(), PickV().V16B(), PickV().V16B());
379   __ Sqrshl(PickV().V8H(), PickV().V8H(), PickV().V8H());
380   __ Umull(PickV().V2D(), PickV().V2S(), PickV().V2S());
381   __ Sqdmlal2(PickV().V4S(), PickV().V8H(), PickV().V8H());
382 
383   // For structured loads and stores, we have to specify sequential (wrapped)
384   // registers, so start with [v16, v31] and allow them to wrap in to the
385   // [v0, v7] range.
386   VRegister vt(16 + static_cast<unsigned>(GetRandomBits(4)), kQRegSize);
387   VRegister vt2((vt.GetCode() + 1) % kNumberOfVRegisters, kQRegSize);
388   VRegister vt3((vt.GetCode() + 2) % kNumberOfVRegisters, kQRegSize);
389   VRegister vt4((vt.GetCode() + 3) % kNumberOfVRegisters, kQRegSize);
390   VIXL_ASSERT(!kCalleeSavedV.IncludesAliasOf(vt));
391   VIXL_ASSERT(!kCalleeSavedV.IncludesAliasOf(vt2));
392   VIXL_ASSERT(!kCalleeSavedV.IncludesAliasOf(vt3));
393   VIXL_ASSERT(!kCalleeSavedV.IncludesAliasOf(vt4));
394   __ Ld3(vt.V4S(), vt2.V4S(), vt3.V4S(), MemOperand(scratch));
395   __ St4(vt.V16B(), vt2.V16B(), vt3.V16B(), vt4.V16B(), MemOperand(scratch));
396 
397   __ Fmaxv(PickV().H(), PickV().V8H());
398   __ Fminp(PickV().V4S(), PickV().V4S(), PickV().V4S());
399 }
400