1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/IR/Writer.h
11 //
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRPrintingPasses.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/TypeFinder.h"
37 #include "llvm/IR/UseListOrder.h"
38 #include "llvm/IR/ValueSymbolTable.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/Dwarf.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/Format.h"
43 #include "llvm/Support/FormattedStream.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cctype>
48 using namespace llvm;
49
50 // Make virtual table appear in this compilation unit.
~AssemblyAnnotationWriter()51 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
52
53 //===----------------------------------------------------------------------===//
54 // Helper Functions
55 //===----------------------------------------------------------------------===//
56
57 namespace {
58 struct OrderMap {
59 DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
60
size__anond169a03a0111::OrderMap61 unsigned size() const { return IDs.size(); }
operator []__anond169a03a0111::OrderMap62 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
lookup__anond169a03a0111::OrderMap63 std::pair<unsigned, bool> lookup(const Value *V) const {
64 return IDs.lookup(V);
65 }
index__anond169a03a0111::OrderMap66 void index(const Value *V) {
67 // Explicitly sequence get-size and insert-value operations to avoid UB.
68 unsigned ID = IDs.size() + 1;
69 IDs[V].first = ID;
70 }
71 };
72 }
73
orderValue(const Value * V,OrderMap & OM)74 static void orderValue(const Value *V, OrderMap &OM) {
75 if (OM.lookup(V).first)
76 return;
77
78 if (const Constant *C = dyn_cast<Constant>(V))
79 if (C->getNumOperands() && !isa<GlobalValue>(C))
80 for (const Value *Op : C->operands())
81 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
82 orderValue(Op, OM);
83
84 // Note: we cannot cache this lookup above, since inserting into the map
85 // changes the map's size, and thus affects the other IDs.
86 OM.index(V);
87 }
88
orderModule(const Module * M)89 static OrderMap orderModule(const Module *M) {
90 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
91 // and ValueEnumerator::incorporateFunction().
92 OrderMap OM;
93
94 for (const GlobalVariable &G : M->globals()) {
95 if (G.hasInitializer())
96 if (!isa<GlobalValue>(G.getInitializer()))
97 orderValue(G.getInitializer(), OM);
98 orderValue(&G, OM);
99 }
100 for (const GlobalAlias &A : M->aliases()) {
101 if (!isa<GlobalValue>(A.getAliasee()))
102 orderValue(A.getAliasee(), OM);
103 orderValue(&A, OM);
104 }
105 for (const GlobalIFunc &I : M->ifuncs()) {
106 if (!isa<GlobalValue>(I.getResolver()))
107 orderValue(I.getResolver(), OM);
108 orderValue(&I, OM);
109 }
110 for (const Function &F : *M) {
111 for (const Use &U : F.operands())
112 if (!isa<GlobalValue>(U.get()))
113 orderValue(U.get(), OM);
114
115 orderValue(&F, OM);
116
117 if (F.isDeclaration())
118 continue;
119
120 for (const Argument &A : F.args())
121 orderValue(&A, OM);
122 for (const BasicBlock &BB : F) {
123 orderValue(&BB, OM);
124 for (const Instruction &I : BB) {
125 for (const Value *Op : I.operands())
126 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
127 isa<InlineAsm>(*Op))
128 orderValue(Op, OM);
129 orderValue(&I, OM);
130 }
131 }
132 }
133 return OM;
134 }
135
predictValueUseListOrderImpl(const Value * V,const Function * F,unsigned ID,const OrderMap & OM,UseListOrderStack & Stack)136 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
137 unsigned ID, const OrderMap &OM,
138 UseListOrderStack &Stack) {
139 // Predict use-list order for this one.
140 typedef std::pair<const Use *, unsigned> Entry;
141 SmallVector<Entry, 64> List;
142 for (const Use &U : V->uses())
143 // Check if this user will be serialized.
144 if (OM.lookup(U.getUser()).first)
145 List.push_back(std::make_pair(&U, List.size()));
146
147 if (List.size() < 2)
148 // We may have lost some users.
149 return;
150
151 bool GetsReversed =
152 !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
153 if (auto *BA = dyn_cast<BlockAddress>(V))
154 ID = OM.lookup(BA->getBasicBlock()).first;
155 std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
156 const Use *LU = L.first;
157 const Use *RU = R.first;
158 if (LU == RU)
159 return false;
160
161 auto LID = OM.lookup(LU->getUser()).first;
162 auto RID = OM.lookup(RU->getUser()).first;
163
164 // If ID is 4, then expect: 7 6 5 1 2 3.
165 if (LID < RID) {
166 if (GetsReversed)
167 if (RID <= ID)
168 return true;
169 return false;
170 }
171 if (RID < LID) {
172 if (GetsReversed)
173 if (LID <= ID)
174 return false;
175 return true;
176 }
177
178 // LID and RID are equal, so we have different operands of the same user.
179 // Assume operands are added in order for all instructions.
180 if (GetsReversed)
181 if (LID <= ID)
182 return LU->getOperandNo() < RU->getOperandNo();
183 return LU->getOperandNo() > RU->getOperandNo();
184 });
185
186 if (std::is_sorted(
187 List.begin(), List.end(),
188 [](const Entry &L, const Entry &R) { return L.second < R.second; }))
189 // Order is already correct.
190 return;
191
192 // Store the shuffle.
193 Stack.emplace_back(V, F, List.size());
194 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
195 for (size_t I = 0, E = List.size(); I != E; ++I)
196 Stack.back().Shuffle[I] = List[I].second;
197 }
198
predictValueUseListOrder(const Value * V,const Function * F,OrderMap & OM,UseListOrderStack & Stack)199 static void predictValueUseListOrder(const Value *V, const Function *F,
200 OrderMap &OM, UseListOrderStack &Stack) {
201 auto &IDPair = OM[V];
202 assert(IDPair.first && "Unmapped value");
203 if (IDPair.second)
204 // Already predicted.
205 return;
206
207 // Do the actual prediction.
208 IDPair.second = true;
209 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
210 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
211
212 // Recursive descent into constants.
213 if (const Constant *C = dyn_cast<Constant>(V))
214 if (C->getNumOperands()) // Visit GlobalValues.
215 for (const Value *Op : C->operands())
216 if (isa<Constant>(Op)) // Visit GlobalValues.
217 predictValueUseListOrder(Op, F, OM, Stack);
218 }
219
predictUseListOrder(const Module * M)220 static UseListOrderStack predictUseListOrder(const Module *M) {
221 OrderMap OM = orderModule(M);
222
223 // Use-list orders need to be serialized after all the users have been added
224 // to a value, or else the shuffles will be incomplete. Store them per
225 // function in a stack.
226 //
227 // Aside from function order, the order of values doesn't matter much here.
228 UseListOrderStack Stack;
229
230 // We want to visit the functions backward now so we can list function-local
231 // constants in the last Function they're used in. Module-level constants
232 // have already been visited above.
233 for (const Function &F : make_range(M->rbegin(), M->rend())) {
234 if (F.isDeclaration())
235 continue;
236 for (const BasicBlock &BB : F)
237 predictValueUseListOrder(&BB, &F, OM, Stack);
238 for (const Argument &A : F.args())
239 predictValueUseListOrder(&A, &F, OM, Stack);
240 for (const BasicBlock &BB : F)
241 for (const Instruction &I : BB)
242 for (const Value *Op : I.operands())
243 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
244 predictValueUseListOrder(Op, &F, OM, Stack);
245 for (const BasicBlock &BB : F)
246 for (const Instruction &I : BB)
247 predictValueUseListOrder(&I, &F, OM, Stack);
248 }
249
250 // Visit globals last.
251 for (const GlobalVariable &G : M->globals())
252 predictValueUseListOrder(&G, nullptr, OM, Stack);
253 for (const Function &F : *M)
254 predictValueUseListOrder(&F, nullptr, OM, Stack);
255 for (const GlobalAlias &A : M->aliases())
256 predictValueUseListOrder(&A, nullptr, OM, Stack);
257 for (const GlobalIFunc &I : M->ifuncs())
258 predictValueUseListOrder(&I, nullptr, OM, Stack);
259 for (const GlobalVariable &G : M->globals())
260 if (G.hasInitializer())
261 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
262 for (const GlobalAlias &A : M->aliases())
263 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
264 for (const GlobalIFunc &I : M->ifuncs())
265 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
266 for (const Function &F : *M)
267 for (const Use &U : F.operands())
268 predictValueUseListOrder(U.get(), nullptr, OM, Stack);
269
270 return Stack;
271 }
272
getModuleFromVal(const Value * V)273 static const Module *getModuleFromVal(const Value *V) {
274 if (const Argument *MA = dyn_cast<Argument>(V))
275 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
276
277 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
278 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
279
280 if (const Instruction *I = dyn_cast<Instruction>(V)) {
281 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
282 return M ? M->getParent() : nullptr;
283 }
284
285 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
286 return GV->getParent();
287
288 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
289 for (const User *U : MAV->users())
290 if (isa<Instruction>(U))
291 if (const Module *M = getModuleFromVal(U))
292 return M;
293 return nullptr;
294 }
295
296 return nullptr;
297 }
298
PrintCallingConv(unsigned cc,raw_ostream & Out)299 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
300 switch (cc) {
301 default: Out << "cc" << cc; break;
302 case CallingConv::Fast: Out << "fastcc"; break;
303 case CallingConv::Cold: Out << "coldcc"; break;
304 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
305 case CallingConv::AnyReg: Out << "anyregcc"; break;
306 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
307 case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
308 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
309 case CallingConv::GHC: Out << "ghccc"; break;
310 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
311 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
312 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
313 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
314 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
315 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
316 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
317 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
318 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
319 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
320 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
321 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
322 case CallingConv::PTX_Device: Out << "ptx_device"; break;
323 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
324 case CallingConv::X86_64_Win64: Out << "x86_64_win64cc"; break;
325 case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
326 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
327 case CallingConv::Swift: Out << "swiftcc"; break;
328 case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
329 case CallingConv::HHVM: Out << "hhvmcc"; break;
330 case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
331 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
332 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
333 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
334 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
335 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
336 }
337 }
338
339 // PrintEscapedString - Print each character of the specified string, escaping
340 // it if it is not printable or if it is an escape char.
PrintEscapedString(StringRef Name,raw_ostream & Out)341 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
342 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
343 unsigned char C = Name[i];
344 if (isprint(C) && C != '\\' && C != '"')
345 Out << C;
346 else
347 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
348 }
349 }
350
351 enum PrefixType {
352 GlobalPrefix,
353 ComdatPrefix,
354 LabelPrefix,
355 LocalPrefix,
356 NoPrefix
357 };
358
printLLVMNameWithoutPrefix(raw_ostream & OS,StringRef Name)359 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
360 assert(!Name.empty() && "Cannot get empty name!");
361
362 // Scan the name to see if it needs quotes first.
363 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
364 if (!NeedsQuotes) {
365 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
366 // By making this unsigned, the value passed in to isalnum will always be
367 // in the range 0-255. This is important when building with MSVC because
368 // its implementation will assert. This situation can arise when dealing
369 // with UTF-8 multibyte characters.
370 unsigned char C = Name[i];
371 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
372 C != '_') {
373 NeedsQuotes = true;
374 break;
375 }
376 }
377 }
378
379 // If we didn't need any quotes, just write out the name in one blast.
380 if (!NeedsQuotes) {
381 OS << Name;
382 return;
383 }
384
385 // Okay, we need quotes. Output the quotes and escape any scary characters as
386 // needed.
387 OS << '"';
388 PrintEscapedString(Name, OS);
389 OS << '"';
390 }
391
392 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
393 /// (if the string only contains simple characters) or is surrounded with ""'s
394 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,StringRef Name,PrefixType Prefix)395 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
396 switch (Prefix) {
397 case NoPrefix:
398 break;
399 case GlobalPrefix:
400 OS << '@';
401 break;
402 case ComdatPrefix:
403 OS << '$';
404 break;
405 case LabelPrefix:
406 break;
407 case LocalPrefix:
408 OS << '%';
409 break;
410 }
411 printLLVMNameWithoutPrefix(OS, Name);
412 }
413
414 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
415 /// (if the string only contains simple characters) or is surrounded with ""'s
416 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,const Value * V)417 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
418 PrintLLVMName(OS, V->getName(),
419 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
420 }
421
422
423 namespace {
424 class TypePrinting {
425 TypePrinting(const TypePrinting &) = delete;
426 void operator=(const TypePrinting&) = delete;
427 public:
428
429 /// NamedTypes - The named types that are used by the current module.
430 TypeFinder NamedTypes;
431
432 /// NumberedTypes - The numbered types, along with their value.
433 DenseMap<StructType*, unsigned> NumberedTypes;
434
435 TypePrinting() = default;
436
437 void incorporateTypes(const Module &M);
438
439 void print(Type *Ty, raw_ostream &OS);
440
441 void printStructBody(StructType *Ty, raw_ostream &OS);
442 };
443 } // namespace
444
incorporateTypes(const Module & M)445 void TypePrinting::incorporateTypes(const Module &M) {
446 NamedTypes.run(M, false);
447
448 // The list of struct types we got back includes all the struct types, split
449 // the unnamed ones out to a numbering and remove the anonymous structs.
450 unsigned NextNumber = 0;
451
452 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
453 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
454 StructType *STy = *I;
455
456 // Ignore anonymous types.
457 if (STy->isLiteral())
458 continue;
459
460 if (STy->getName().empty())
461 NumberedTypes[STy] = NextNumber++;
462 else
463 *NextToUse++ = STy;
464 }
465
466 NamedTypes.erase(NextToUse, NamedTypes.end());
467 }
468
469
470 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
471 /// use of type names or up references to shorten the type name where possible.
print(Type * Ty,raw_ostream & OS)472 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
473 switch (Ty->getTypeID()) {
474 case Type::VoidTyID: OS << "void"; return;
475 case Type::HalfTyID: OS << "half"; return;
476 case Type::FloatTyID: OS << "float"; return;
477 case Type::DoubleTyID: OS << "double"; return;
478 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
479 case Type::FP128TyID: OS << "fp128"; return;
480 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
481 case Type::LabelTyID: OS << "label"; return;
482 case Type::MetadataTyID: OS << "metadata"; return;
483 case Type::X86_MMXTyID: OS << "x86_mmx"; return;
484 case Type::TokenTyID: OS << "token"; return;
485 case Type::IntegerTyID:
486 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
487 return;
488
489 case Type::FunctionTyID: {
490 FunctionType *FTy = cast<FunctionType>(Ty);
491 print(FTy->getReturnType(), OS);
492 OS << " (";
493 for (FunctionType::param_iterator I = FTy->param_begin(),
494 E = FTy->param_end(); I != E; ++I) {
495 if (I != FTy->param_begin())
496 OS << ", ";
497 print(*I, OS);
498 }
499 if (FTy->isVarArg()) {
500 if (FTy->getNumParams()) OS << ", ";
501 OS << "...";
502 }
503 OS << ')';
504 return;
505 }
506 case Type::StructTyID: {
507 StructType *STy = cast<StructType>(Ty);
508
509 if (STy->isLiteral())
510 return printStructBody(STy, OS);
511
512 if (!STy->getName().empty())
513 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
514
515 DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
516 if (I != NumberedTypes.end())
517 OS << '%' << I->second;
518 else // Not enumerated, print the hex address.
519 OS << "%\"type " << STy << '\"';
520 return;
521 }
522 case Type::PointerTyID: {
523 PointerType *PTy = cast<PointerType>(Ty);
524 print(PTy->getElementType(), OS);
525 if (unsigned AddressSpace = PTy->getAddressSpace())
526 OS << " addrspace(" << AddressSpace << ')';
527 OS << '*';
528 return;
529 }
530 case Type::ArrayTyID: {
531 ArrayType *ATy = cast<ArrayType>(Ty);
532 OS << '[' << ATy->getNumElements() << " x ";
533 print(ATy->getElementType(), OS);
534 OS << ']';
535 return;
536 }
537 case Type::VectorTyID: {
538 VectorType *PTy = cast<VectorType>(Ty);
539 OS << "<" << PTy->getNumElements() << " x ";
540 print(PTy->getElementType(), OS);
541 OS << '>';
542 return;
543 }
544 }
545 llvm_unreachable("Invalid TypeID");
546 }
547
printStructBody(StructType * STy,raw_ostream & OS)548 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
549 if (STy->isOpaque()) {
550 OS << "opaque";
551 return;
552 }
553
554 if (STy->isPacked())
555 OS << '<';
556
557 if (STy->getNumElements() == 0) {
558 OS << "{}";
559 } else {
560 StructType::element_iterator I = STy->element_begin();
561 OS << "{ ";
562 print(*I++, OS);
563 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
564 OS << ", ";
565 print(*I, OS);
566 }
567
568 OS << " }";
569 }
570 if (STy->isPacked())
571 OS << '>';
572 }
573
574 namespace llvm {
575 //===----------------------------------------------------------------------===//
576 // SlotTracker Class: Enumerate slot numbers for unnamed values
577 //===----------------------------------------------------------------------===//
578 /// This class provides computation of slot numbers for LLVM Assembly writing.
579 ///
580 class SlotTracker {
581 public:
582 /// ValueMap - A mapping of Values to slot numbers.
583 typedef DenseMap<const Value*, unsigned> ValueMap;
584
585 private:
586 /// TheModule - The module for which we are holding slot numbers.
587 const Module* TheModule;
588
589 /// TheFunction - The function for which we are holding slot numbers.
590 const Function* TheFunction;
591 bool FunctionProcessed;
592 bool ShouldInitializeAllMetadata;
593
594 /// mMap - The slot map for the module level data.
595 ValueMap mMap;
596 unsigned mNext;
597
598 /// fMap - The slot map for the function level data.
599 ValueMap fMap;
600 unsigned fNext;
601
602 /// mdnMap - Map for MDNodes.
603 DenseMap<const MDNode*, unsigned> mdnMap;
604 unsigned mdnNext;
605
606 /// asMap - The slot map for attribute sets.
607 DenseMap<AttributeSet, unsigned> asMap;
608 unsigned asNext;
609 public:
610 /// Construct from a module.
611 ///
612 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
613 /// functions, giving correct numbering for metadata referenced only from
614 /// within a function (even if no functions have been initialized).
615 explicit SlotTracker(const Module *M,
616 bool ShouldInitializeAllMetadata = false);
617 /// Construct from a function, starting out in incorp state.
618 ///
619 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
620 /// functions, giving correct numbering for metadata referenced only from
621 /// within a function (even if no functions have been initialized).
622 explicit SlotTracker(const Function *F,
623 bool ShouldInitializeAllMetadata = false);
624
625 /// Return the slot number of the specified value in it's type
626 /// plane. If something is not in the SlotTracker, return -1.
627 int getLocalSlot(const Value *V);
628 int getGlobalSlot(const GlobalValue *V);
629 int getMetadataSlot(const MDNode *N);
630 int getAttributeGroupSlot(AttributeSet AS);
631
632 /// If you'd like to deal with a function instead of just a module, use
633 /// this method to get its data into the SlotTracker.
incorporateFunction(const Function * F)634 void incorporateFunction(const Function *F) {
635 TheFunction = F;
636 FunctionProcessed = false;
637 }
638
getFunction() const639 const Function *getFunction() const { return TheFunction; }
640
641 /// After calling incorporateFunction, use this method to remove the
642 /// most recently incorporated function from the SlotTracker. This
643 /// will reset the state of the machine back to just the module contents.
644 void purgeFunction();
645
646 /// MDNode map iterators.
647 typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
mdn_begin()648 mdn_iterator mdn_begin() { return mdnMap.begin(); }
mdn_end()649 mdn_iterator mdn_end() { return mdnMap.end(); }
mdn_size() const650 unsigned mdn_size() const { return mdnMap.size(); }
mdn_empty() const651 bool mdn_empty() const { return mdnMap.empty(); }
652
653 /// AttributeSet map iterators.
654 typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
as_begin()655 as_iterator as_begin() { return asMap.begin(); }
as_end()656 as_iterator as_end() { return asMap.end(); }
as_size() const657 unsigned as_size() const { return asMap.size(); }
as_empty() const658 bool as_empty() const { return asMap.empty(); }
659
660 /// This function does the actual initialization.
661 inline void initialize();
662
663 // Implementation Details
664 private:
665 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
666 void CreateModuleSlot(const GlobalValue *V);
667
668 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
669 void CreateMetadataSlot(const MDNode *N);
670
671 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
672 void CreateFunctionSlot(const Value *V);
673
674 /// \brief Insert the specified AttributeSet into the slot table.
675 void CreateAttributeSetSlot(AttributeSet AS);
676
677 /// Add all of the module level global variables (and their initializers)
678 /// and function declarations, but not the contents of those functions.
679 void processModule();
680
681 /// Add all of the functions arguments, basic blocks, and instructions.
682 void processFunction();
683
684 /// Add the metadata directly attached to a GlobalObject.
685 void processGlobalObjectMetadata(const GlobalObject &GO);
686
687 /// Add all of the metadata from a function.
688 void processFunctionMetadata(const Function &F);
689
690 /// Add all of the metadata from an instruction.
691 void processInstructionMetadata(const Instruction &I);
692
693 SlotTracker(const SlotTracker &) = delete;
694 void operator=(const SlotTracker &) = delete;
695 };
696 } // namespace llvm
697
ModuleSlotTracker(SlotTracker & Machine,const Module * M,const Function * F)698 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
699 const Function *F)
700 : M(M), F(F), Machine(&Machine) {}
701
ModuleSlotTracker(const Module * M,bool ShouldInitializeAllMetadata)702 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
703 bool ShouldInitializeAllMetadata)
704 : ShouldCreateStorage(M),
705 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
706
~ModuleSlotTracker()707 ModuleSlotTracker::~ModuleSlotTracker() {}
708
getMachine()709 SlotTracker *ModuleSlotTracker::getMachine() {
710 if (!ShouldCreateStorage)
711 return Machine;
712
713 ShouldCreateStorage = false;
714 MachineStorage =
715 llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
716 Machine = MachineStorage.get();
717 return Machine;
718 }
719
incorporateFunction(const Function & F)720 void ModuleSlotTracker::incorporateFunction(const Function &F) {
721 // Using getMachine() may lazily create the slot tracker.
722 if (!getMachine())
723 return;
724
725 // Nothing to do if this is the right function already.
726 if (this->F == &F)
727 return;
728 if (this->F)
729 Machine->purgeFunction();
730 Machine->incorporateFunction(&F);
731 this->F = &F;
732 }
733
getLocalSlot(const Value * V)734 int ModuleSlotTracker::getLocalSlot(const Value *V) {
735 assert(F && "No function incorporated");
736 return Machine->getLocalSlot(V);
737 }
738
createSlotTracker(const Value * V)739 static SlotTracker *createSlotTracker(const Value *V) {
740 if (const Argument *FA = dyn_cast<Argument>(V))
741 return new SlotTracker(FA->getParent());
742
743 if (const Instruction *I = dyn_cast<Instruction>(V))
744 if (I->getParent())
745 return new SlotTracker(I->getParent()->getParent());
746
747 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
748 return new SlotTracker(BB->getParent());
749
750 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
751 return new SlotTracker(GV->getParent());
752
753 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
754 return new SlotTracker(GA->getParent());
755
756 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
757 return new SlotTracker(GIF->getParent());
758
759 if (const Function *Func = dyn_cast<Function>(V))
760 return new SlotTracker(Func);
761
762 return nullptr;
763 }
764
765 #if 0
766 #define ST_DEBUG(X) dbgs() << X
767 #else
768 #define ST_DEBUG(X)
769 #endif
770
771 // Module level constructor. Causes the contents of the Module (sans functions)
772 // to be added to the slot table.
SlotTracker(const Module * M,bool ShouldInitializeAllMetadata)773 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
774 : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
775 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
776 fNext(0), mdnNext(0), asNext(0) {}
777
778 // Function level constructor. Causes the contents of the Module and the one
779 // function provided to be added to the slot table.
SlotTracker(const Function * F,bool ShouldInitializeAllMetadata)780 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
781 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
782 FunctionProcessed(false),
783 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
784 fNext(0), mdnNext(0), asNext(0) {}
785
initialize()786 inline void SlotTracker::initialize() {
787 if (TheModule) {
788 processModule();
789 TheModule = nullptr; ///< Prevent re-processing next time we're called.
790 }
791
792 if (TheFunction && !FunctionProcessed)
793 processFunction();
794 }
795
796 // Iterate through all the global variables, functions, and global
797 // variable initializers and create slots for them.
processModule()798 void SlotTracker::processModule() {
799 ST_DEBUG("begin processModule!\n");
800
801 // Add all of the unnamed global variables to the value table.
802 for (const GlobalVariable &Var : TheModule->globals()) {
803 if (!Var.hasName())
804 CreateModuleSlot(&Var);
805 processGlobalObjectMetadata(Var);
806 }
807
808 for (const GlobalAlias &A : TheModule->aliases()) {
809 if (!A.hasName())
810 CreateModuleSlot(&A);
811 }
812
813 for (const GlobalIFunc &I : TheModule->ifuncs()) {
814 if (!I.hasName())
815 CreateModuleSlot(&I);
816 }
817
818 // Add metadata used by named metadata.
819 for (const NamedMDNode &NMD : TheModule->named_metadata()) {
820 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
821 CreateMetadataSlot(NMD.getOperand(i));
822 }
823
824 for (const Function &F : *TheModule) {
825 if (!F.hasName())
826 // Add all the unnamed functions to the table.
827 CreateModuleSlot(&F);
828
829 if (ShouldInitializeAllMetadata)
830 processFunctionMetadata(F);
831
832 // Add all the function attributes to the table.
833 // FIXME: Add attributes of other objects?
834 AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
835 if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
836 CreateAttributeSetSlot(FnAttrs);
837 }
838
839 ST_DEBUG("end processModule!\n");
840 }
841
842 // Process the arguments, basic blocks, and instructions of a function.
processFunction()843 void SlotTracker::processFunction() {
844 ST_DEBUG("begin processFunction!\n");
845 fNext = 0;
846
847 // Process function metadata if it wasn't hit at the module-level.
848 if (!ShouldInitializeAllMetadata)
849 processFunctionMetadata(*TheFunction);
850
851 // Add all the function arguments with no names.
852 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
853 AE = TheFunction->arg_end(); AI != AE; ++AI)
854 if (!AI->hasName())
855 CreateFunctionSlot(&*AI);
856
857 ST_DEBUG("Inserting Instructions:\n");
858
859 // Add all of the basic blocks and instructions with no names.
860 for (auto &BB : *TheFunction) {
861 if (!BB.hasName())
862 CreateFunctionSlot(&BB);
863
864 for (auto &I : BB) {
865 if (!I.getType()->isVoidTy() && !I.hasName())
866 CreateFunctionSlot(&I);
867
868 // We allow direct calls to any llvm.foo function here, because the
869 // target may not be linked into the optimizer.
870 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
871 // Add all the call attributes to the table.
872 AttributeSet Attrs = CI->getAttributes().getFnAttributes();
873 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
874 CreateAttributeSetSlot(Attrs);
875 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
876 // Add all the call attributes to the table.
877 AttributeSet Attrs = II->getAttributes().getFnAttributes();
878 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
879 CreateAttributeSetSlot(Attrs);
880 }
881 }
882 }
883
884 FunctionProcessed = true;
885
886 ST_DEBUG("end processFunction!\n");
887 }
888
processGlobalObjectMetadata(const GlobalObject & GO)889 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
890 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
891 GO.getAllMetadata(MDs);
892 for (auto &MD : MDs)
893 CreateMetadataSlot(MD.second);
894 }
895
processFunctionMetadata(const Function & F)896 void SlotTracker::processFunctionMetadata(const Function &F) {
897 processGlobalObjectMetadata(F);
898 for (auto &BB : F) {
899 for (auto &I : BB)
900 processInstructionMetadata(I);
901 }
902 }
903
processInstructionMetadata(const Instruction & I)904 void SlotTracker::processInstructionMetadata(const Instruction &I) {
905 // Process metadata used directly by intrinsics.
906 if (const CallInst *CI = dyn_cast<CallInst>(&I))
907 if (Function *F = CI->getCalledFunction())
908 if (F->isIntrinsic())
909 for (auto &Op : I.operands())
910 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
911 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
912 CreateMetadataSlot(N);
913
914 // Process metadata attached to this instruction.
915 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
916 I.getAllMetadata(MDs);
917 for (auto &MD : MDs)
918 CreateMetadataSlot(MD.second);
919 }
920
921 /// Clean up after incorporating a function. This is the only way to get out of
922 /// the function incorporation state that affects get*Slot/Create*Slot. Function
923 /// incorporation state is indicated by TheFunction != 0.
purgeFunction()924 void SlotTracker::purgeFunction() {
925 ST_DEBUG("begin purgeFunction!\n");
926 fMap.clear(); // Simply discard the function level map
927 TheFunction = nullptr;
928 FunctionProcessed = false;
929 ST_DEBUG("end purgeFunction!\n");
930 }
931
932 /// getGlobalSlot - Get the slot number of a global value.
getGlobalSlot(const GlobalValue * V)933 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
934 // Check for uninitialized state and do lazy initialization.
935 initialize();
936
937 // Find the value in the module map
938 ValueMap::iterator MI = mMap.find(V);
939 return MI == mMap.end() ? -1 : (int)MI->second;
940 }
941
942 /// getMetadataSlot - Get the slot number of a MDNode.
getMetadataSlot(const MDNode * N)943 int SlotTracker::getMetadataSlot(const MDNode *N) {
944 // Check for uninitialized state and do lazy initialization.
945 initialize();
946
947 // Find the MDNode in the module map
948 mdn_iterator MI = mdnMap.find(N);
949 return MI == mdnMap.end() ? -1 : (int)MI->second;
950 }
951
952
953 /// getLocalSlot - Get the slot number for a value that is local to a function.
getLocalSlot(const Value * V)954 int SlotTracker::getLocalSlot(const Value *V) {
955 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
956
957 // Check for uninitialized state and do lazy initialization.
958 initialize();
959
960 ValueMap::iterator FI = fMap.find(V);
961 return FI == fMap.end() ? -1 : (int)FI->second;
962 }
963
getAttributeGroupSlot(AttributeSet AS)964 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
965 // Check for uninitialized state and do lazy initialization.
966 initialize();
967
968 // Find the AttributeSet in the module map.
969 as_iterator AI = asMap.find(AS);
970 return AI == asMap.end() ? -1 : (int)AI->second;
971 }
972
973 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
CreateModuleSlot(const GlobalValue * V)974 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
975 assert(V && "Can't insert a null Value into SlotTracker!");
976 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
977 assert(!V->hasName() && "Doesn't need a slot!");
978
979 unsigned DestSlot = mNext++;
980 mMap[V] = DestSlot;
981
982 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
983 DestSlot << " [");
984 // G = Global, F = Function, A = Alias, I = IFunc, o = other
985 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
986 (isa<Function>(V) ? 'F' :
987 (isa<GlobalAlias>(V) ? 'A' :
988 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
989 }
990
991 /// CreateSlot - Create a new slot for the specified value if it has no name.
CreateFunctionSlot(const Value * V)992 void SlotTracker::CreateFunctionSlot(const Value *V) {
993 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
994
995 unsigned DestSlot = fNext++;
996 fMap[V] = DestSlot;
997
998 // G = Global, F = Function, o = other
999 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1000 DestSlot << " [o]\n");
1001 }
1002
1003 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
CreateMetadataSlot(const MDNode * N)1004 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1005 assert(N && "Can't insert a null Value into SlotTracker!");
1006
1007 unsigned DestSlot = mdnNext;
1008 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1009 return;
1010 ++mdnNext;
1011
1012 // Recursively add any MDNodes referenced by operands.
1013 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1014 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1015 CreateMetadataSlot(Op);
1016 }
1017
CreateAttributeSetSlot(AttributeSet AS)1018 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1019 assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
1020 "Doesn't need a slot!");
1021
1022 as_iterator I = asMap.find(AS);
1023 if (I != asMap.end())
1024 return;
1025
1026 unsigned DestSlot = asNext++;
1027 asMap[AS] = DestSlot;
1028 }
1029
1030 //===----------------------------------------------------------------------===//
1031 // AsmWriter Implementation
1032 //===----------------------------------------------------------------------===//
1033
1034 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1035 TypePrinting *TypePrinter,
1036 SlotTracker *Machine,
1037 const Module *Context);
1038
1039 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1040 TypePrinting *TypePrinter,
1041 SlotTracker *Machine, const Module *Context,
1042 bool FromValue = false);
1043
getPredicateText(unsigned predicate)1044 static const char *getPredicateText(unsigned predicate) {
1045 const char * pred = "unknown";
1046 switch (predicate) {
1047 case FCmpInst::FCMP_FALSE: pred = "false"; break;
1048 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
1049 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
1050 case FCmpInst::FCMP_OGE: pred = "oge"; break;
1051 case FCmpInst::FCMP_OLT: pred = "olt"; break;
1052 case FCmpInst::FCMP_OLE: pred = "ole"; break;
1053 case FCmpInst::FCMP_ONE: pred = "one"; break;
1054 case FCmpInst::FCMP_ORD: pred = "ord"; break;
1055 case FCmpInst::FCMP_UNO: pred = "uno"; break;
1056 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
1057 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
1058 case FCmpInst::FCMP_UGE: pred = "uge"; break;
1059 case FCmpInst::FCMP_ULT: pred = "ult"; break;
1060 case FCmpInst::FCMP_ULE: pred = "ule"; break;
1061 case FCmpInst::FCMP_UNE: pred = "une"; break;
1062 case FCmpInst::FCMP_TRUE: pred = "true"; break;
1063 case ICmpInst::ICMP_EQ: pred = "eq"; break;
1064 case ICmpInst::ICMP_NE: pred = "ne"; break;
1065 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
1066 case ICmpInst::ICMP_SGE: pred = "sge"; break;
1067 case ICmpInst::ICMP_SLT: pred = "slt"; break;
1068 case ICmpInst::ICMP_SLE: pred = "sle"; break;
1069 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
1070 case ICmpInst::ICMP_UGE: pred = "uge"; break;
1071 case ICmpInst::ICMP_ULT: pred = "ult"; break;
1072 case ICmpInst::ICMP_ULE: pred = "ule"; break;
1073 }
1074 return pred;
1075 }
1076
writeAtomicRMWOperation(raw_ostream & Out,AtomicRMWInst::BinOp Op)1077 static void writeAtomicRMWOperation(raw_ostream &Out,
1078 AtomicRMWInst::BinOp Op) {
1079 switch (Op) {
1080 default: Out << " <unknown operation " << Op << ">"; break;
1081 case AtomicRMWInst::Xchg: Out << " xchg"; break;
1082 case AtomicRMWInst::Add: Out << " add"; break;
1083 case AtomicRMWInst::Sub: Out << " sub"; break;
1084 case AtomicRMWInst::And: Out << " and"; break;
1085 case AtomicRMWInst::Nand: Out << " nand"; break;
1086 case AtomicRMWInst::Or: Out << " or"; break;
1087 case AtomicRMWInst::Xor: Out << " xor"; break;
1088 case AtomicRMWInst::Max: Out << " max"; break;
1089 case AtomicRMWInst::Min: Out << " min"; break;
1090 case AtomicRMWInst::UMax: Out << " umax"; break;
1091 case AtomicRMWInst::UMin: Out << " umin"; break;
1092 }
1093 }
1094
WriteOptimizationInfo(raw_ostream & Out,const User * U)1095 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1096 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1097 // Unsafe algebra implies all the others, no need to write them all out
1098 if (FPO->hasUnsafeAlgebra())
1099 Out << " fast";
1100 else {
1101 if (FPO->hasNoNaNs())
1102 Out << " nnan";
1103 if (FPO->hasNoInfs())
1104 Out << " ninf";
1105 if (FPO->hasNoSignedZeros())
1106 Out << " nsz";
1107 if (FPO->hasAllowReciprocal())
1108 Out << " arcp";
1109 }
1110 }
1111
1112 if (const OverflowingBinaryOperator *OBO =
1113 dyn_cast<OverflowingBinaryOperator>(U)) {
1114 if (OBO->hasNoUnsignedWrap())
1115 Out << " nuw";
1116 if (OBO->hasNoSignedWrap())
1117 Out << " nsw";
1118 } else if (const PossiblyExactOperator *Div =
1119 dyn_cast<PossiblyExactOperator>(U)) {
1120 if (Div->isExact())
1121 Out << " exact";
1122 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1123 if (GEP->isInBounds())
1124 Out << " inbounds";
1125 }
1126 }
1127
WriteConstantInternal(raw_ostream & Out,const Constant * CV,TypePrinting & TypePrinter,SlotTracker * Machine,const Module * Context)1128 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1129 TypePrinting &TypePrinter,
1130 SlotTracker *Machine,
1131 const Module *Context) {
1132 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1133 if (CI->getType()->isIntegerTy(1)) {
1134 Out << (CI->getZExtValue() ? "true" : "false");
1135 return;
1136 }
1137 Out << CI->getValue();
1138 return;
1139 }
1140
1141 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1142 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
1143 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
1144 // We would like to output the FP constant value in exponential notation,
1145 // but we cannot do this if doing so will lose precision. Check here to
1146 // make sure that we only output it in exponential format if we can parse
1147 // the value back and get the same value.
1148 //
1149 bool ignored;
1150 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
1151 bool isInf = CFP->getValueAPF().isInfinity();
1152 bool isNaN = CFP->getValueAPF().isNaN();
1153 if (!isInf && !isNaN) {
1154 double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
1155 CFP->getValueAPF().convertToFloat();
1156 SmallString<128> StrVal;
1157 raw_svector_ostream(StrVal) << Val;
1158
1159 // Check to make sure that the stringized number is not some string like
1160 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1161 // that the string matches the "[-+]?[0-9]" regex.
1162 //
1163 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1164 ((StrVal[0] == '-' || StrVal[0] == '+') &&
1165 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
1166 // Reparse stringized version!
1167 if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
1168 Out << StrVal;
1169 return;
1170 }
1171 }
1172 }
1173 // Otherwise we could not reparse it to exactly the same value, so we must
1174 // output the string in hexadecimal format! Note that loading and storing
1175 // floating point types changes the bits of NaNs on some hosts, notably
1176 // x86, so we must not use these types.
1177 static_assert(sizeof(double) == sizeof(uint64_t),
1178 "assuming that double is 64 bits!");
1179 APFloat apf = CFP->getValueAPF();
1180 // Floats are represented in ASCII IR as double, convert.
1181 if (!isDouble)
1182 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1183 &ignored);
1184 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1185 return;
1186 }
1187
1188 // Either half, or some form of long double.
1189 // These appear as a magic letter identifying the type, then a
1190 // fixed number of hex digits.
1191 Out << "0x";
1192 APInt API = CFP->getValueAPF().bitcastToAPInt();
1193 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
1194 Out << 'K';
1195 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1196 /*Upper=*/true);
1197 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1198 /*Upper=*/true);
1199 return;
1200 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
1201 Out << 'L';
1202 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1203 /*Upper=*/true);
1204 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1205 /*Upper=*/true);
1206 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
1207 Out << 'M';
1208 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1209 /*Upper=*/true);
1210 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1211 /*Upper=*/true);
1212 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
1213 Out << 'H';
1214 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1215 /*Upper=*/true);
1216 } else
1217 llvm_unreachable("Unsupported floating point type");
1218 return;
1219 }
1220
1221 if (isa<ConstantAggregateZero>(CV)) {
1222 Out << "zeroinitializer";
1223 return;
1224 }
1225
1226 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1227 Out << "blockaddress(";
1228 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1229 Context);
1230 Out << ", ";
1231 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1232 Context);
1233 Out << ")";
1234 return;
1235 }
1236
1237 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1238 Type *ETy = CA->getType()->getElementType();
1239 Out << '[';
1240 TypePrinter.print(ETy, Out);
1241 Out << ' ';
1242 WriteAsOperandInternal(Out, CA->getOperand(0),
1243 &TypePrinter, Machine,
1244 Context);
1245 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1246 Out << ", ";
1247 TypePrinter.print(ETy, Out);
1248 Out << ' ';
1249 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1250 Context);
1251 }
1252 Out << ']';
1253 return;
1254 }
1255
1256 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1257 // As a special case, print the array as a string if it is an array of
1258 // i8 with ConstantInt values.
1259 if (CA->isString()) {
1260 Out << "c\"";
1261 PrintEscapedString(CA->getAsString(), Out);
1262 Out << '"';
1263 return;
1264 }
1265
1266 Type *ETy = CA->getType()->getElementType();
1267 Out << '[';
1268 TypePrinter.print(ETy, Out);
1269 Out << ' ';
1270 WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1271 &TypePrinter, Machine,
1272 Context);
1273 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1274 Out << ", ";
1275 TypePrinter.print(ETy, Out);
1276 Out << ' ';
1277 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1278 Machine, Context);
1279 }
1280 Out << ']';
1281 return;
1282 }
1283
1284
1285 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1286 if (CS->getType()->isPacked())
1287 Out << '<';
1288 Out << '{';
1289 unsigned N = CS->getNumOperands();
1290 if (N) {
1291 Out << ' ';
1292 TypePrinter.print(CS->getOperand(0)->getType(), Out);
1293 Out << ' ';
1294
1295 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1296 Context);
1297
1298 for (unsigned i = 1; i < N; i++) {
1299 Out << ", ";
1300 TypePrinter.print(CS->getOperand(i)->getType(), Out);
1301 Out << ' ';
1302
1303 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1304 Context);
1305 }
1306 Out << ' ';
1307 }
1308
1309 Out << '}';
1310 if (CS->getType()->isPacked())
1311 Out << '>';
1312 return;
1313 }
1314
1315 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1316 Type *ETy = CV->getType()->getVectorElementType();
1317 Out << '<';
1318 TypePrinter.print(ETy, Out);
1319 Out << ' ';
1320 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1321 Machine, Context);
1322 for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1323 Out << ", ";
1324 TypePrinter.print(ETy, Out);
1325 Out << ' ';
1326 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1327 Machine, Context);
1328 }
1329 Out << '>';
1330 return;
1331 }
1332
1333 if (isa<ConstantPointerNull>(CV)) {
1334 Out << "null";
1335 return;
1336 }
1337
1338 if (isa<ConstantTokenNone>(CV)) {
1339 Out << "none";
1340 return;
1341 }
1342
1343 if (isa<UndefValue>(CV)) {
1344 Out << "undef";
1345 return;
1346 }
1347
1348 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1349 Out << CE->getOpcodeName();
1350 WriteOptimizationInfo(Out, CE);
1351 if (CE->isCompare())
1352 Out << ' ' << getPredicateText(CE->getPredicate());
1353 Out << " (";
1354
1355 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1356 TypePrinter.print(GEP->getSourceElementType(), Out);
1357 Out << ", ";
1358 }
1359
1360 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1361 TypePrinter.print((*OI)->getType(), Out);
1362 Out << ' ';
1363 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1364 if (OI+1 != CE->op_end())
1365 Out << ", ";
1366 }
1367
1368 if (CE->hasIndices()) {
1369 ArrayRef<unsigned> Indices = CE->getIndices();
1370 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1371 Out << ", " << Indices[i];
1372 }
1373
1374 if (CE->isCast()) {
1375 Out << " to ";
1376 TypePrinter.print(CE->getType(), Out);
1377 }
1378
1379 Out << ')';
1380 return;
1381 }
1382
1383 Out << "<placeholder or erroneous Constant>";
1384 }
1385
writeMDTuple(raw_ostream & Out,const MDTuple * Node,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1386 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1387 TypePrinting *TypePrinter, SlotTracker *Machine,
1388 const Module *Context) {
1389 Out << "!{";
1390 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1391 const Metadata *MD = Node->getOperand(mi);
1392 if (!MD)
1393 Out << "null";
1394 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1395 Value *V = MDV->getValue();
1396 TypePrinter->print(V->getType(), Out);
1397 Out << ' ';
1398 WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1399 } else {
1400 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1401 }
1402 if (mi + 1 != me)
1403 Out << ", ";
1404 }
1405
1406 Out << "}";
1407 }
1408
1409 namespace {
1410 struct FieldSeparator {
1411 bool Skip;
1412 const char *Sep;
FieldSeparator__anond169a03a0511::FieldSeparator1413 FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
1414 };
operator <<(raw_ostream & OS,FieldSeparator & FS)1415 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1416 if (FS.Skip) {
1417 FS.Skip = false;
1418 return OS;
1419 }
1420 return OS << FS.Sep;
1421 }
1422 struct MDFieldPrinter {
1423 raw_ostream &Out;
1424 FieldSeparator FS;
1425 TypePrinting *TypePrinter;
1426 SlotTracker *Machine;
1427 const Module *Context;
1428
MDFieldPrinter__anond169a03a0511::MDFieldPrinter1429 explicit MDFieldPrinter(raw_ostream &Out)
1430 : Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
MDFieldPrinter__anond169a03a0511::MDFieldPrinter1431 MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1432 SlotTracker *Machine, const Module *Context)
1433 : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1434 }
1435 void printTag(const DINode *N);
1436 void printMacinfoType(const DIMacroNode *N);
1437 void printString(StringRef Name, StringRef Value,
1438 bool ShouldSkipEmpty = true);
1439 void printMetadata(StringRef Name, const Metadata *MD,
1440 bool ShouldSkipNull = true);
1441 template <class IntTy>
1442 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1443 void printBool(StringRef Name, bool Value);
1444 void printDIFlags(StringRef Name, unsigned Flags);
1445 template <class IntTy, class Stringifier>
1446 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1447 bool ShouldSkipZero = true);
1448 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1449 };
1450 } // end namespace
1451
printTag(const DINode * N)1452 void MDFieldPrinter::printTag(const DINode *N) {
1453 Out << FS << "tag: ";
1454 if (const char *Tag = dwarf::TagString(N->getTag()))
1455 Out << Tag;
1456 else
1457 Out << N->getTag();
1458 }
1459
printMacinfoType(const DIMacroNode * N)1460 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1461 Out << FS << "type: ";
1462 if (const char *Type = dwarf::MacinfoString(N->getMacinfoType()))
1463 Out << Type;
1464 else
1465 Out << N->getMacinfoType();
1466 }
1467
printString(StringRef Name,StringRef Value,bool ShouldSkipEmpty)1468 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1469 bool ShouldSkipEmpty) {
1470 if (ShouldSkipEmpty && Value.empty())
1471 return;
1472
1473 Out << FS << Name << ": \"";
1474 PrintEscapedString(Value, Out);
1475 Out << "\"";
1476 }
1477
writeMetadataAsOperand(raw_ostream & Out,const Metadata * MD,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1478 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1479 TypePrinting *TypePrinter,
1480 SlotTracker *Machine,
1481 const Module *Context) {
1482 if (!MD) {
1483 Out << "null";
1484 return;
1485 }
1486 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1487 }
1488
printMetadata(StringRef Name,const Metadata * MD,bool ShouldSkipNull)1489 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1490 bool ShouldSkipNull) {
1491 if (ShouldSkipNull && !MD)
1492 return;
1493
1494 Out << FS << Name << ": ";
1495 writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1496 }
1497
1498 template <class IntTy>
printInt(StringRef Name,IntTy Int,bool ShouldSkipZero)1499 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1500 if (ShouldSkipZero && !Int)
1501 return;
1502
1503 Out << FS << Name << ": " << Int;
1504 }
1505
printBool(StringRef Name,bool Value)1506 void MDFieldPrinter::printBool(StringRef Name, bool Value) {
1507 Out << FS << Name << ": " << (Value ? "true" : "false");
1508 }
1509
printDIFlags(StringRef Name,unsigned Flags)1510 void MDFieldPrinter::printDIFlags(StringRef Name, unsigned Flags) {
1511 if (!Flags)
1512 return;
1513
1514 Out << FS << Name << ": ";
1515
1516 SmallVector<unsigned, 8> SplitFlags;
1517 unsigned Extra = DINode::splitFlags(Flags, SplitFlags);
1518
1519 FieldSeparator FlagsFS(" | ");
1520 for (unsigned F : SplitFlags) {
1521 const char *StringF = DINode::getFlagString(F);
1522 assert(StringF && "Expected valid flag");
1523 Out << FlagsFS << StringF;
1524 }
1525 if (Extra || SplitFlags.empty())
1526 Out << FlagsFS << Extra;
1527 }
1528
printEmissionKind(StringRef Name,DICompileUnit::DebugEmissionKind EK)1529 void MDFieldPrinter::printEmissionKind(StringRef Name,
1530 DICompileUnit::DebugEmissionKind EK) {
1531 Out << FS << Name << ": " << DICompileUnit::EmissionKindString(EK);
1532 }
1533
1534
1535 template <class IntTy, class Stringifier>
printDwarfEnum(StringRef Name,IntTy Value,Stringifier toString,bool ShouldSkipZero)1536 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1537 Stringifier toString, bool ShouldSkipZero) {
1538 if (!Value)
1539 return;
1540
1541 Out << FS << Name << ": ";
1542 if (const char *S = toString(Value))
1543 Out << S;
1544 else
1545 Out << Value;
1546 }
1547
writeGenericDINode(raw_ostream & Out,const GenericDINode * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1548 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1549 TypePrinting *TypePrinter, SlotTracker *Machine,
1550 const Module *Context) {
1551 Out << "!GenericDINode(";
1552 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1553 Printer.printTag(N);
1554 Printer.printString("header", N->getHeader());
1555 if (N->getNumDwarfOperands()) {
1556 Out << Printer.FS << "operands: {";
1557 FieldSeparator IFS;
1558 for (auto &I : N->dwarf_operands()) {
1559 Out << IFS;
1560 writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1561 }
1562 Out << "}";
1563 }
1564 Out << ")";
1565 }
1566
writeDILocation(raw_ostream & Out,const DILocation * DL,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1567 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1568 TypePrinting *TypePrinter, SlotTracker *Machine,
1569 const Module *Context) {
1570 Out << "!DILocation(";
1571 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1572 // Always output the line, since 0 is a relevant and important value for it.
1573 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1574 Printer.printInt("column", DL->getColumn());
1575 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1576 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1577 Out << ")";
1578 }
1579
writeDISubrange(raw_ostream & Out,const DISubrange * N,TypePrinting *,SlotTracker *,const Module *)1580 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1581 TypePrinting *, SlotTracker *, const Module *) {
1582 Out << "!DISubrange(";
1583 MDFieldPrinter Printer(Out);
1584 Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
1585 Printer.printInt("lowerBound", N->getLowerBound());
1586 Out << ")";
1587 }
1588
writeDIEnumerator(raw_ostream & Out,const DIEnumerator * N,TypePrinting *,SlotTracker *,const Module *)1589 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1590 TypePrinting *, SlotTracker *, const Module *) {
1591 Out << "!DIEnumerator(";
1592 MDFieldPrinter Printer(Out);
1593 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1594 Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1595 Out << ")";
1596 }
1597
writeDIBasicType(raw_ostream & Out,const DIBasicType * N,TypePrinting *,SlotTracker *,const Module *)1598 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1599 TypePrinting *, SlotTracker *, const Module *) {
1600 Out << "!DIBasicType(";
1601 MDFieldPrinter Printer(Out);
1602 if (N->getTag() != dwarf::DW_TAG_base_type)
1603 Printer.printTag(N);
1604 Printer.printString("name", N->getName());
1605 Printer.printInt("size", N->getSizeInBits());
1606 Printer.printInt("align", N->getAlignInBits());
1607 Printer.printDwarfEnum("encoding", N->getEncoding(),
1608 dwarf::AttributeEncodingString);
1609 Out << ")";
1610 }
1611
writeDIDerivedType(raw_ostream & Out,const DIDerivedType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1612 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1613 TypePrinting *TypePrinter, SlotTracker *Machine,
1614 const Module *Context) {
1615 Out << "!DIDerivedType(";
1616 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1617 Printer.printTag(N);
1618 Printer.printString("name", N->getName());
1619 Printer.printMetadata("scope", N->getRawScope());
1620 Printer.printMetadata("file", N->getRawFile());
1621 Printer.printInt("line", N->getLine());
1622 Printer.printMetadata("baseType", N->getRawBaseType(),
1623 /* ShouldSkipNull */ false);
1624 Printer.printInt("size", N->getSizeInBits());
1625 Printer.printInt("align", N->getAlignInBits());
1626 Printer.printInt("offset", N->getOffsetInBits());
1627 Printer.printDIFlags("flags", N->getFlags());
1628 Printer.printMetadata("extraData", N->getRawExtraData());
1629 Out << ")";
1630 }
1631
writeDICompositeType(raw_ostream & Out,const DICompositeType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1632 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1633 TypePrinting *TypePrinter,
1634 SlotTracker *Machine, const Module *Context) {
1635 Out << "!DICompositeType(";
1636 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1637 Printer.printTag(N);
1638 Printer.printString("name", N->getName());
1639 Printer.printMetadata("scope", N->getRawScope());
1640 Printer.printMetadata("file", N->getRawFile());
1641 Printer.printInt("line", N->getLine());
1642 Printer.printMetadata("baseType", N->getRawBaseType());
1643 Printer.printInt("size", N->getSizeInBits());
1644 Printer.printInt("align", N->getAlignInBits());
1645 Printer.printInt("offset", N->getOffsetInBits());
1646 Printer.printDIFlags("flags", N->getFlags());
1647 Printer.printMetadata("elements", N->getRawElements());
1648 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1649 dwarf::LanguageString);
1650 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1651 Printer.printMetadata("templateParams", N->getRawTemplateParams());
1652 Printer.printString("identifier", N->getIdentifier());
1653 Out << ")";
1654 }
1655
writeDISubroutineType(raw_ostream & Out,const DISubroutineType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1656 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1657 TypePrinting *TypePrinter,
1658 SlotTracker *Machine, const Module *Context) {
1659 Out << "!DISubroutineType(";
1660 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1661 Printer.printDIFlags("flags", N->getFlags());
1662 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1663 Printer.printMetadata("types", N->getRawTypeArray(),
1664 /* ShouldSkipNull */ false);
1665 Out << ")";
1666 }
1667
writeDIFile(raw_ostream & Out,const DIFile * N,TypePrinting *,SlotTracker *,const Module *)1668 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1669 SlotTracker *, const Module *) {
1670 Out << "!DIFile(";
1671 MDFieldPrinter Printer(Out);
1672 Printer.printString("filename", N->getFilename(),
1673 /* ShouldSkipEmpty */ false);
1674 Printer.printString("directory", N->getDirectory(),
1675 /* ShouldSkipEmpty */ false);
1676 Out << ")";
1677 }
1678
writeDICompileUnit(raw_ostream & Out,const DICompileUnit * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1679 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1680 TypePrinting *TypePrinter, SlotTracker *Machine,
1681 const Module *Context) {
1682 Out << "!DICompileUnit(";
1683 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1684 Printer.printDwarfEnum("language", N->getSourceLanguage(),
1685 dwarf::LanguageString, /* ShouldSkipZero */ false);
1686 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1687 Printer.printString("producer", N->getProducer());
1688 Printer.printBool("isOptimized", N->isOptimized());
1689 Printer.printString("flags", N->getFlags());
1690 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1691 /* ShouldSkipZero */ false);
1692 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1693 Printer.printEmissionKind("emissionKind", N->getEmissionKind());
1694 Printer.printMetadata("enums", N->getRawEnumTypes());
1695 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1696 Printer.printMetadata("globals", N->getRawGlobalVariables());
1697 Printer.printMetadata("imports", N->getRawImportedEntities());
1698 Printer.printMetadata("macros", N->getRawMacros());
1699 Printer.printInt("dwoId", N->getDWOId());
1700 Out << ")";
1701 }
1702
writeDISubprogram(raw_ostream & Out,const DISubprogram * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1703 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1704 TypePrinting *TypePrinter, SlotTracker *Machine,
1705 const Module *Context) {
1706 Out << "!DISubprogram(";
1707 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1708 Printer.printString("name", N->getName());
1709 Printer.printString("linkageName", N->getLinkageName());
1710 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1711 Printer.printMetadata("file", N->getRawFile());
1712 Printer.printInt("line", N->getLine());
1713 Printer.printMetadata("type", N->getRawType());
1714 Printer.printBool("isLocal", N->isLocalToUnit());
1715 Printer.printBool("isDefinition", N->isDefinition());
1716 Printer.printInt("scopeLine", N->getScopeLine());
1717 Printer.printMetadata("containingType", N->getRawContainingType());
1718 Printer.printDwarfEnum("virtuality", N->getVirtuality(),
1719 dwarf::VirtualityString);
1720 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
1721 N->getVirtualIndex() != 0)
1722 Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
1723 Printer.printInt("thisAdjustment", N->getThisAdjustment());
1724 Printer.printDIFlags("flags", N->getFlags());
1725 Printer.printBool("isOptimized", N->isOptimized());
1726 Printer.printMetadata("unit", N->getRawUnit());
1727 Printer.printMetadata("templateParams", N->getRawTemplateParams());
1728 Printer.printMetadata("declaration", N->getRawDeclaration());
1729 Printer.printMetadata("variables", N->getRawVariables());
1730 Out << ")";
1731 }
1732
writeDILexicalBlock(raw_ostream & Out,const DILexicalBlock * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1733 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1734 TypePrinting *TypePrinter, SlotTracker *Machine,
1735 const Module *Context) {
1736 Out << "!DILexicalBlock(";
1737 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1738 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1739 Printer.printMetadata("file", N->getRawFile());
1740 Printer.printInt("line", N->getLine());
1741 Printer.printInt("column", N->getColumn());
1742 Out << ")";
1743 }
1744
writeDILexicalBlockFile(raw_ostream & Out,const DILexicalBlockFile * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1745 static void writeDILexicalBlockFile(raw_ostream &Out,
1746 const DILexicalBlockFile *N,
1747 TypePrinting *TypePrinter,
1748 SlotTracker *Machine,
1749 const Module *Context) {
1750 Out << "!DILexicalBlockFile(";
1751 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1752 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1753 Printer.printMetadata("file", N->getRawFile());
1754 Printer.printInt("discriminator", N->getDiscriminator(),
1755 /* ShouldSkipZero */ false);
1756 Out << ")";
1757 }
1758
writeDINamespace(raw_ostream & Out,const DINamespace * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1759 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1760 TypePrinting *TypePrinter, SlotTracker *Machine,
1761 const Module *Context) {
1762 Out << "!DINamespace(";
1763 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1764 Printer.printString("name", N->getName());
1765 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1766 Printer.printMetadata("file", N->getRawFile());
1767 Printer.printInt("line", N->getLine());
1768 Out << ")";
1769 }
1770
writeDIMacro(raw_ostream & Out,const DIMacro * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1771 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
1772 TypePrinting *TypePrinter, SlotTracker *Machine,
1773 const Module *Context) {
1774 Out << "!DIMacro(";
1775 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1776 Printer.printMacinfoType(N);
1777 Printer.printInt("line", N->getLine());
1778 Printer.printString("name", N->getName());
1779 Printer.printString("value", N->getValue());
1780 Out << ")";
1781 }
1782
writeDIMacroFile(raw_ostream & Out,const DIMacroFile * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1783 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
1784 TypePrinting *TypePrinter, SlotTracker *Machine,
1785 const Module *Context) {
1786 Out << "!DIMacroFile(";
1787 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1788 Printer.printInt("line", N->getLine());
1789 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1790 Printer.printMetadata("nodes", N->getRawElements());
1791 Out << ")";
1792 }
1793
writeDIModule(raw_ostream & Out,const DIModule * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1794 static void writeDIModule(raw_ostream &Out, const DIModule *N,
1795 TypePrinting *TypePrinter, SlotTracker *Machine,
1796 const Module *Context) {
1797 Out << "!DIModule(";
1798 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1799 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1800 Printer.printString("name", N->getName());
1801 Printer.printString("configMacros", N->getConfigurationMacros());
1802 Printer.printString("includePath", N->getIncludePath());
1803 Printer.printString("isysroot", N->getISysRoot());
1804 Out << ")";
1805 }
1806
1807
writeDITemplateTypeParameter(raw_ostream & Out,const DITemplateTypeParameter * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1808 static void writeDITemplateTypeParameter(raw_ostream &Out,
1809 const DITemplateTypeParameter *N,
1810 TypePrinting *TypePrinter,
1811 SlotTracker *Machine,
1812 const Module *Context) {
1813 Out << "!DITemplateTypeParameter(";
1814 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1815 Printer.printString("name", N->getName());
1816 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
1817 Out << ")";
1818 }
1819
writeDITemplateValueParameter(raw_ostream & Out,const DITemplateValueParameter * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1820 static void writeDITemplateValueParameter(raw_ostream &Out,
1821 const DITemplateValueParameter *N,
1822 TypePrinting *TypePrinter,
1823 SlotTracker *Machine,
1824 const Module *Context) {
1825 Out << "!DITemplateValueParameter(";
1826 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1827 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
1828 Printer.printTag(N);
1829 Printer.printString("name", N->getName());
1830 Printer.printMetadata("type", N->getRawType());
1831 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
1832 Out << ")";
1833 }
1834
writeDIGlobalVariable(raw_ostream & Out,const DIGlobalVariable * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1835 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
1836 TypePrinting *TypePrinter,
1837 SlotTracker *Machine, const Module *Context) {
1838 Out << "!DIGlobalVariable(";
1839 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1840 Printer.printString("name", N->getName());
1841 Printer.printString("linkageName", N->getLinkageName());
1842 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1843 Printer.printMetadata("file", N->getRawFile());
1844 Printer.printInt("line", N->getLine());
1845 Printer.printMetadata("type", N->getRawType());
1846 Printer.printBool("isLocal", N->isLocalToUnit());
1847 Printer.printBool("isDefinition", N->isDefinition());
1848 Printer.printMetadata("variable", N->getRawVariable());
1849 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
1850 Out << ")";
1851 }
1852
writeDILocalVariable(raw_ostream & Out,const DILocalVariable * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1853 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
1854 TypePrinting *TypePrinter,
1855 SlotTracker *Machine, const Module *Context) {
1856 Out << "!DILocalVariable(";
1857 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1858 Printer.printString("name", N->getName());
1859 Printer.printInt("arg", N->getArg());
1860 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1861 Printer.printMetadata("file", N->getRawFile());
1862 Printer.printInt("line", N->getLine());
1863 Printer.printMetadata("type", N->getRawType());
1864 Printer.printDIFlags("flags", N->getFlags());
1865 Out << ")";
1866 }
1867
writeDIExpression(raw_ostream & Out,const DIExpression * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1868 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
1869 TypePrinting *TypePrinter, SlotTracker *Machine,
1870 const Module *Context) {
1871 Out << "!DIExpression(";
1872 FieldSeparator FS;
1873 if (N->isValid()) {
1874 for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
1875 const char *OpStr = dwarf::OperationEncodingString(I->getOp());
1876 assert(OpStr && "Expected valid opcode");
1877
1878 Out << FS << OpStr;
1879 for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
1880 Out << FS << I->getArg(A);
1881 }
1882 } else {
1883 for (const auto &I : N->getElements())
1884 Out << FS << I;
1885 }
1886 Out << ")";
1887 }
1888
writeDIObjCProperty(raw_ostream & Out,const DIObjCProperty * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1889 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
1890 TypePrinting *TypePrinter, SlotTracker *Machine,
1891 const Module *Context) {
1892 Out << "!DIObjCProperty(";
1893 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1894 Printer.printString("name", N->getName());
1895 Printer.printMetadata("file", N->getRawFile());
1896 Printer.printInt("line", N->getLine());
1897 Printer.printString("setter", N->getSetterName());
1898 Printer.printString("getter", N->getGetterName());
1899 Printer.printInt("attributes", N->getAttributes());
1900 Printer.printMetadata("type", N->getRawType());
1901 Out << ")";
1902 }
1903
writeDIImportedEntity(raw_ostream & Out,const DIImportedEntity * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1904 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
1905 TypePrinting *TypePrinter,
1906 SlotTracker *Machine, const Module *Context) {
1907 Out << "!DIImportedEntity(";
1908 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1909 Printer.printTag(N);
1910 Printer.printString("name", N->getName());
1911 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1912 Printer.printMetadata("entity", N->getRawEntity());
1913 Printer.printInt("line", N->getLine());
1914 Out << ")";
1915 }
1916
1917
WriteMDNodeBodyInternal(raw_ostream & Out,const MDNode * Node,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1918 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1919 TypePrinting *TypePrinter,
1920 SlotTracker *Machine,
1921 const Module *Context) {
1922 if (Node->isDistinct())
1923 Out << "distinct ";
1924 else if (Node->isTemporary())
1925 Out << "<temporary!> "; // Handle broken code.
1926
1927 switch (Node->getMetadataID()) {
1928 default:
1929 llvm_unreachable("Expected uniquable MDNode");
1930 #define HANDLE_MDNODE_LEAF(CLASS) \
1931 case Metadata::CLASS##Kind: \
1932 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
1933 break;
1934 #include "llvm/IR/Metadata.def"
1935 }
1936 }
1937
1938 // Full implementation of printing a Value as an operand with support for
1939 // TypePrinting, etc.
WriteAsOperandInternal(raw_ostream & Out,const Value * V,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1940 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1941 TypePrinting *TypePrinter,
1942 SlotTracker *Machine,
1943 const Module *Context) {
1944 if (V->hasName()) {
1945 PrintLLVMName(Out, V);
1946 return;
1947 }
1948
1949 const Constant *CV = dyn_cast<Constant>(V);
1950 if (CV && !isa<GlobalValue>(CV)) {
1951 assert(TypePrinter && "Constants require TypePrinting!");
1952 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1953 return;
1954 }
1955
1956 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1957 Out << "asm ";
1958 if (IA->hasSideEffects())
1959 Out << "sideeffect ";
1960 if (IA->isAlignStack())
1961 Out << "alignstack ";
1962 // We don't emit the AD_ATT dialect as it's the assumed default.
1963 if (IA->getDialect() == InlineAsm::AD_Intel)
1964 Out << "inteldialect ";
1965 Out << '"';
1966 PrintEscapedString(IA->getAsmString(), Out);
1967 Out << "\", \"";
1968 PrintEscapedString(IA->getConstraintString(), Out);
1969 Out << '"';
1970 return;
1971 }
1972
1973 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
1974 WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
1975 Context, /* FromValue */ true);
1976 return;
1977 }
1978
1979 char Prefix = '%';
1980 int Slot;
1981 // If we have a SlotTracker, use it.
1982 if (Machine) {
1983 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1984 Slot = Machine->getGlobalSlot(GV);
1985 Prefix = '@';
1986 } else {
1987 Slot = Machine->getLocalSlot(V);
1988
1989 // If the local value didn't succeed, then we may be referring to a value
1990 // from a different function. Translate it, as this can happen when using
1991 // address of blocks.
1992 if (Slot == -1)
1993 if ((Machine = createSlotTracker(V))) {
1994 Slot = Machine->getLocalSlot(V);
1995 delete Machine;
1996 }
1997 }
1998 } else if ((Machine = createSlotTracker(V))) {
1999 // Otherwise, create one to get the # and then destroy it.
2000 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2001 Slot = Machine->getGlobalSlot(GV);
2002 Prefix = '@';
2003 } else {
2004 Slot = Machine->getLocalSlot(V);
2005 }
2006 delete Machine;
2007 Machine = nullptr;
2008 } else {
2009 Slot = -1;
2010 }
2011
2012 if (Slot != -1)
2013 Out << Prefix << Slot;
2014 else
2015 Out << "<badref>";
2016 }
2017
WriteAsOperandInternal(raw_ostream & Out,const Metadata * MD,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context,bool FromValue)2018 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2019 TypePrinting *TypePrinter,
2020 SlotTracker *Machine, const Module *Context,
2021 bool FromValue) {
2022 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2023 std::unique_ptr<SlotTracker> MachineStorage;
2024 if (!Machine) {
2025 MachineStorage = make_unique<SlotTracker>(Context);
2026 Machine = MachineStorage.get();
2027 }
2028 int Slot = Machine->getMetadataSlot(N);
2029 if (Slot == -1)
2030 // Give the pointer value instead of "badref", since this comes up all
2031 // the time when debugging.
2032 Out << "<" << N << ">";
2033 else
2034 Out << '!' << Slot;
2035 return;
2036 }
2037
2038 if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2039 Out << "!\"";
2040 PrintEscapedString(MDS->getString(), Out);
2041 Out << '"';
2042 return;
2043 }
2044
2045 auto *V = cast<ValueAsMetadata>(MD);
2046 assert(TypePrinter && "TypePrinter required for metadata values");
2047 assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2048 "Unexpected function-local metadata outside of value argument");
2049
2050 TypePrinter->print(V->getValue()->getType(), Out);
2051 Out << ' ';
2052 WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2053 }
2054
2055 namespace {
2056 class AssemblyWriter {
2057 formatted_raw_ostream &Out;
2058 const Module *TheModule;
2059 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2060 SlotTracker &Machine;
2061 TypePrinting TypePrinter;
2062 AssemblyAnnotationWriter *AnnotationWriter;
2063 SetVector<const Comdat *> Comdats;
2064 bool IsForDebug;
2065 bool ShouldPreserveUseListOrder;
2066 UseListOrderStack UseListOrders;
2067 SmallVector<StringRef, 8> MDNames;
2068
2069 public:
2070 /// Construct an AssemblyWriter with an external SlotTracker
2071 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2072 AssemblyAnnotationWriter *AAW, bool IsForDebug,
2073 bool ShouldPreserveUseListOrder = false);
2074
2075 void printMDNodeBody(const MDNode *MD);
2076 void printNamedMDNode(const NamedMDNode *NMD);
2077
2078 void printModule(const Module *M);
2079
2080 void writeOperand(const Value *Op, bool PrintType);
2081 void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
2082 void writeOperandBundles(ImmutableCallSite CS);
2083 void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
2084 void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2085 AtomicOrdering FailureOrdering,
2086 SynchronizationScope SynchScope);
2087
2088 void writeAllMDNodes();
2089 void writeMDNode(unsigned Slot, const MDNode *Node);
2090 void writeAllAttributeGroups();
2091
2092 void printTypeIdentities();
2093 void printGlobal(const GlobalVariable *GV);
2094 void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2095 void printComdat(const Comdat *C);
2096 void printFunction(const Function *F);
2097 void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
2098 void printBasicBlock(const BasicBlock *BB);
2099 void printInstructionLine(const Instruction &I);
2100 void printInstruction(const Instruction &I);
2101
2102 void printUseListOrder(const UseListOrder &Order);
2103 void printUseLists(const Function *F);
2104
2105 private:
2106 /// \brief Print out metadata attachments.
2107 void printMetadataAttachments(
2108 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2109 StringRef Separator);
2110
2111 // printInfoComment - Print a little comment after the instruction indicating
2112 // which slot it occupies.
2113 void printInfoComment(const Value &V);
2114
2115 // printGCRelocateComment - print comment after call to the gc.relocate
2116 // intrinsic indicating base and derived pointer names.
2117 void printGCRelocateComment(const GCRelocateInst &Relocate);
2118 };
2119 } // namespace
2120
AssemblyWriter(formatted_raw_ostream & o,SlotTracker & Mac,const Module * M,AssemblyAnnotationWriter * AAW,bool IsForDebug,bool ShouldPreserveUseListOrder)2121 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2122 const Module *M, AssemblyAnnotationWriter *AAW,
2123 bool IsForDebug, bool ShouldPreserveUseListOrder)
2124 : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
2125 IsForDebug(IsForDebug),
2126 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2127 if (!TheModule)
2128 return;
2129 TypePrinter.incorporateTypes(*TheModule);
2130 for (const GlobalObject &GO : TheModule->global_objects())
2131 if (const Comdat *C = GO.getComdat())
2132 Comdats.insert(C);
2133 }
2134
writeOperand(const Value * Operand,bool PrintType)2135 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2136 if (!Operand) {
2137 Out << "<null operand!>";
2138 return;
2139 }
2140 if (PrintType) {
2141 TypePrinter.print(Operand->getType(), Out);
2142 Out << ' ';
2143 }
2144 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2145 }
2146
writeAtomic(AtomicOrdering Ordering,SynchronizationScope SynchScope)2147 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
2148 SynchronizationScope SynchScope) {
2149 if (Ordering == AtomicOrdering::NotAtomic)
2150 return;
2151
2152 switch (SynchScope) {
2153 case SingleThread: Out << " singlethread"; break;
2154 case CrossThread: break;
2155 }
2156
2157 Out << " " << toIRString(Ordering);
2158 }
2159
writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope)2160 void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2161 AtomicOrdering FailureOrdering,
2162 SynchronizationScope SynchScope) {
2163 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2164 FailureOrdering != AtomicOrdering::NotAtomic);
2165
2166 switch (SynchScope) {
2167 case SingleThread: Out << " singlethread"; break;
2168 case CrossThread: break;
2169 }
2170
2171 Out << " " << toIRString(SuccessOrdering);
2172 Out << " " << toIRString(FailureOrdering);
2173 }
2174
writeParamOperand(const Value * Operand,AttributeSet Attrs,unsigned Idx)2175 void AssemblyWriter::writeParamOperand(const Value *Operand,
2176 AttributeSet Attrs, unsigned Idx) {
2177 if (!Operand) {
2178 Out << "<null operand!>";
2179 return;
2180 }
2181
2182 // Print the type
2183 TypePrinter.print(Operand->getType(), Out);
2184 // Print parameter attributes list
2185 if (Attrs.hasAttributes(Idx))
2186 Out << ' ' << Attrs.getAsString(Idx);
2187 Out << ' ';
2188 // Print the operand
2189 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2190 }
2191
writeOperandBundles(ImmutableCallSite CS)2192 void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
2193 if (!CS.hasOperandBundles())
2194 return;
2195
2196 Out << " [ ";
2197
2198 bool FirstBundle = true;
2199 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2200 OperandBundleUse BU = CS.getOperandBundleAt(i);
2201
2202 if (!FirstBundle)
2203 Out << ", ";
2204 FirstBundle = false;
2205
2206 Out << '"';
2207 PrintEscapedString(BU.getTagName(), Out);
2208 Out << '"';
2209
2210 Out << '(';
2211
2212 bool FirstInput = true;
2213 for (const auto &Input : BU.Inputs) {
2214 if (!FirstInput)
2215 Out << ", ";
2216 FirstInput = false;
2217
2218 TypePrinter.print(Input->getType(), Out);
2219 Out << " ";
2220 WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2221 }
2222
2223 Out << ')';
2224 }
2225
2226 Out << " ]";
2227 }
2228
printModule(const Module * M)2229 void AssemblyWriter::printModule(const Module *M) {
2230 Machine.initialize();
2231
2232 if (ShouldPreserveUseListOrder)
2233 UseListOrders = predictUseListOrder(M);
2234
2235 if (!M->getModuleIdentifier().empty() &&
2236 // Don't print the ID if it will start a new line (which would
2237 // require a comment char before it).
2238 M->getModuleIdentifier().find('\n') == std::string::npos)
2239 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2240
2241 if (!M->getSourceFileName().empty()) {
2242 Out << "source_filename = \"";
2243 PrintEscapedString(M->getSourceFileName(), Out);
2244 Out << "\"\n";
2245 }
2246
2247 const std::string &DL = M->getDataLayoutStr();
2248 if (!DL.empty())
2249 Out << "target datalayout = \"" << DL << "\"\n";
2250 if (!M->getTargetTriple().empty())
2251 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2252
2253 if (!M->getModuleInlineAsm().empty()) {
2254 Out << '\n';
2255
2256 // Split the string into lines, to make it easier to read the .ll file.
2257 StringRef Asm = M->getModuleInlineAsm();
2258 do {
2259 StringRef Front;
2260 std::tie(Front, Asm) = Asm.split('\n');
2261
2262 // We found a newline, print the portion of the asm string from the
2263 // last newline up to this newline.
2264 Out << "module asm \"";
2265 PrintEscapedString(Front, Out);
2266 Out << "\"\n";
2267 } while (!Asm.empty());
2268 }
2269
2270 printTypeIdentities();
2271
2272 // Output all comdats.
2273 if (!Comdats.empty())
2274 Out << '\n';
2275 for (const Comdat *C : Comdats) {
2276 printComdat(C);
2277 if (C != Comdats.back())
2278 Out << '\n';
2279 }
2280
2281 // Output all globals.
2282 if (!M->global_empty()) Out << '\n';
2283 for (const GlobalVariable &GV : M->globals()) {
2284 printGlobal(&GV); Out << '\n';
2285 }
2286
2287 // Output all aliases.
2288 if (!M->alias_empty()) Out << "\n";
2289 for (const GlobalAlias &GA : M->aliases())
2290 printIndirectSymbol(&GA);
2291
2292 // Output all ifuncs.
2293 if (!M->ifunc_empty()) Out << "\n";
2294 for (const GlobalIFunc &GI : M->ifuncs())
2295 printIndirectSymbol(&GI);
2296
2297 // Output global use-lists.
2298 printUseLists(nullptr);
2299
2300 // Output all of the functions.
2301 for (const Function &F : *M)
2302 printFunction(&F);
2303 assert(UseListOrders.empty() && "All use-lists should have been consumed");
2304
2305 // Output all attribute groups.
2306 if (!Machine.as_empty()) {
2307 Out << '\n';
2308 writeAllAttributeGroups();
2309 }
2310
2311 // Output named metadata.
2312 if (!M->named_metadata_empty()) Out << '\n';
2313
2314 for (const NamedMDNode &Node : M->named_metadata())
2315 printNamedMDNode(&Node);
2316
2317 // Output metadata.
2318 if (!Machine.mdn_empty()) {
2319 Out << '\n';
2320 writeAllMDNodes();
2321 }
2322 }
2323
printMetadataIdentifier(StringRef Name,formatted_raw_ostream & Out)2324 static void printMetadataIdentifier(StringRef Name,
2325 formatted_raw_ostream &Out) {
2326 if (Name.empty()) {
2327 Out << "<empty name> ";
2328 } else {
2329 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
2330 Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
2331 Out << Name[0];
2332 else
2333 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
2334 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
2335 unsigned char C = Name[i];
2336 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
2337 C == '.' || C == '_')
2338 Out << C;
2339 else
2340 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
2341 }
2342 }
2343 }
2344
printNamedMDNode(const NamedMDNode * NMD)2345 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
2346 Out << '!';
2347 printMetadataIdentifier(NMD->getName(), Out);
2348 Out << " = !{";
2349 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2350 if (i)
2351 Out << ", ";
2352 int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
2353 if (Slot == -1)
2354 Out << "<badref>";
2355 else
2356 Out << '!' << Slot;
2357 }
2358 Out << "}\n";
2359 }
2360
getLinkagePrintName(GlobalValue::LinkageTypes LT)2361 static const char *getLinkagePrintName(GlobalValue::LinkageTypes LT) {
2362 switch (LT) {
2363 case GlobalValue::ExternalLinkage:
2364 return "";
2365 case GlobalValue::PrivateLinkage:
2366 return "private ";
2367 case GlobalValue::InternalLinkage:
2368 return "internal ";
2369 case GlobalValue::LinkOnceAnyLinkage:
2370 return "linkonce ";
2371 case GlobalValue::LinkOnceODRLinkage:
2372 return "linkonce_odr ";
2373 case GlobalValue::WeakAnyLinkage:
2374 return "weak ";
2375 case GlobalValue::WeakODRLinkage:
2376 return "weak_odr ";
2377 case GlobalValue::CommonLinkage:
2378 return "common ";
2379 case GlobalValue::AppendingLinkage:
2380 return "appending ";
2381 case GlobalValue::ExternalWeakLinkage:
2382 return "extern_weak ";
2383 case GlobalValue::AvailableExternallyLinkage:
2384 return "available_externally ";
2385 }
2386 llvm_unreachable("invalid linkage");
2387 }
2388
PrintVisibility(GlobalValue::VisibilityTypes Vis,formatted_raw_ostream & Out)2389 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
2390 formatted_raw_ostream &Out) {
2391 switch (Vis) {
2392 case GlobalValue::DefaultVisibility: break;
2393 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
2394 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
2395 }
2396 }
2397
PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,formatted_raw_ostream & Out)2398 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
2399 formatted_raw_ostream &Out) {
2400 switch (SCT) {
2401 case GlobalValue::DefaultStorageClass: break;
2402 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
2403 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
2404 }
2405 }
2406
PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,formatted_raw_ostream & Out)2407 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
2408 formatted_raw_ostream &Out) {
2409 switch (TLM) {
2410 case GlobalVariable::NotThreadLocal:
2411 break;
2412 case GlobalVariable::GeneralDynamicTLSModel:
2413 Out << "thread_local ";
2414 break;
2415 case GlobalVariable::LocalDynamicTLSModel:
2416 Out << "thread_local(localdynamic) ";
2417 break;
2418 case GlobalVariable::InitialExecTLSModel:
2419 Out << "thread_local(initialexec) ";
2420 break;
2421 case GlobalVariable::LocalExecTLSModel:
2422 Out << "thread_local(localexec) ";
2423 break;
2424 }
2425 }
2426
getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)2427 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
2428 switch (UA) {
2429 case GlobalVariable::UnnamedAddr::None:
2430 return "";
2431 case GlobalVariable::UnnamedAddr::Local:
2432 return "local_unnamed_addr";
2433 case GlobalVariable::UnnamedAddr::Global:
2434 return "unnamed_addr";
2435 }
2436 llvm_unreachable("Unknown UnnamedAddr");
2437 }
2438
maybePrintComdat(formatted_raw_ostream & Out,const GlobalObject & GO)2439 static void maybePrintComdat(formatted_raw_ostream &Out,
2440 const GlobalObject &GO) {
2441 const Comdat *C = GO.getComdat();
2442 if (!C)
2443 return;
2444
2445 if (isa<GlobalVariable>(GO))
2446 Out << ',';
2447 Out << " comdat";
2448
2449 if (GO.getName() == C->getName())
2450 return;
2451
2452 Out << '(';
2453 PrintLLVMName(Out, C->getName(), ComdatPrefix);
2454 Out << ')';
2455 }
2456
printGlobal(const GlobalVariable * GV)2457 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
2458 if (GV->isMaterializable())
2459 Out << "; Materializable\n";
2460
2461 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
2462 Out << " = ";
2463
2464 if (!GV->hasInitializer() && GV->hasExternalLinkage())
2465 Out << "external ";
2466
2467 Out << getLinkagePrintName(GV->getLinkage());
2468 PrintVisibility(GV->getVisibility(), Out);
2469 PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
2470 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
2471 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
2472 if (!UA.empty())
2473 Out << UA << ' ';
2474
2475 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
2476 Out << "addrspace(" << AddressSpace << ") ";
2477 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
2478 Out << (GV->isConstant() ? "constant " : "global ");
2479 TypePrinter.print(GV->getValueType(), Out);
2480
2481 if (GV->hasInitializer()) {
2482 Out << ' ';
2483 writeOperand(GV->getInitializer(), false);
2484 }
2485
2486 if (GV->hasSection()) {
2487 Out << ", section \"";
2488 PrintEscapedString(GV->getSection(), Out);
2489 Out << '"';
2490 }
2491 maybePrintComdat(Out, *GV);
2492 if (GV->getAlignment())
2493 Out << ", align " << GV->getAlignment();
2494
2495 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2496 GV->getAllMetadata(MDs);
2497 printMetadataAttachments(MDs, ", ");
2498
2499 printInfoComment(*GV);
2500 }
2501
printIndirectSymbol(const GlobalIndirectSymbol * GIS)2502 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
2503 if (GIS->isMaterializable())
2504 Out << "; Materializable\n";
2505
2506 WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
2507 Out << " = ";
2508
2509 Out << getLinkagePrintName(GIS->getLinkage());
2510 PrintVisibility(GIS->getVisibility(), Out);
2511 PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
2512 PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
2513 StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
2514 if (!UA.empty())
2515 Out << UA << ' ';
2516
2517 if (isa<GlobalAlias>(GIS))
2518 Out << "alias ";
2519 else if (isa<GlobalIFunc>(GIS))
2520 Out << "ifunc ";
2521 else
2522 llvm_unreachable("Not an alias or ifunc!");
2523
2524 TypePrinter.print(GIS->getValueType(), Out);
2525
2526 Out << ", ";
2527
2528 const Constant *IS = GIS->getIndirectSymbol();
2529
2530 if (!IS) {
2531 TypePrinter.print(GIS->getType(), Out);
2532 Out << " <<NULL ALIASEE>>";
2533 } else {
2534 writeOperand(IS, !isa<ConstantExpr>(IS));
2535 }
2536
2537 printInfoComment(*GIS);
2538 Out << '\n';
2539 }
2540
printComdat(const Comdat * C)2541 void AssemblyWriter::printComdat(const Comdat *C) {
2542 C->print(Out);
2543 }
2544
printTypeIdentities()2545 void AssemblyWriter::printTypeIdentities() {
2546 if (TypePrinter.NumberedTypes.empty() &&
2547 TypePrinter.NamedTypes.empty())
2548 return;
2549
2550 Out << '\n';
2551
2552 // We know all the numbers that each type is used and we know that it is a
2553 // dense assignment. Convert the map to an index table.
2554 std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
2555 for (DenseMap<StructType*, unsigned>::iterator I =
2556 TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
2557 I != E; ++I) {
2558 assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
2559 NumberedTypes[I->second] = I->first;
2560 }
2561
2562 // Emit all numbered types.
2563 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
2564 Out << '%' << i << " = type ";
2565
2566 // Make sure we print out at least one level of the type structure, so
2567 // that we do not get %2 = type %2
2568 TypePrinter.printStructBody(NumberedTypes[i], Out);
2569 Out << '\n';
2570 }
2571
2572 for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
2573 PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
2574 Out << " = type ";
2575
2576 // Make sure we print out at least one level of the type structure, so
2577 // that we do not get %FILE = type %FILE
2578 TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
2579 Out << '\n';
2580 }
2581 }
2582
2583 /// printFunction - Print all aspects of a function.
2584 ///
printFunction(const Function * F)2585 void AssemblyWriter::printFunction(const Function *F) {
2586 // Print out the return type and name.
2587 Out << '\n';
2588
2589 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
2590
2591 if (F->isMaterializable())
2592 Out << "; Materializable\n";
2593
2594 const AttributeSet &Attrs = F->getAttributes();
2595 if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
2596 AttributeSet AS = Attrs.getFnAttributes();
2597 std::string AttrStr;
2598
2599 unsigned Idx = 0;
2600 for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
2601 if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
2602 break;
2603
2604 for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
2605 I != E; ++I) {
2606 Attribute Attr = *I;
2607 if (!Attr.isStringAttribute()) {
2608 if (!AttrStr.empty()) AttrStr += ' ';
2609 AttrStr += Attr.getAsString();
2610 }
2611 }
2612
2613 if (!AttrStr.empty())
2614 Out << "; Function Attrs: " << AttrStr << '\n';
2615 }
2616
2617 Machine.incorporateFunction(F);
2618
2619 if (F->isDeclaration()) {
2620 Out << "declare";
2621 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2622 F->getAllMetadata(MDs);
2623 printMetadataAttachments(MDs, " ");
2624 Out << ' ';
2625 } else
2626 Out << "define ";
2627
2628 Out << getLinkagePrintName(F->getLinkage());
2629 PrintVisibility(F->getVisibility(), Out);
2630 PrintDLLStorageClass(F->getDLLStorageClass(), Out);
2631
2632 // Print the calling convention.
2633 if (F->getCallingConv() != CallingConv::C) {
2634 PrintCallingConv(F->getCallingConv(), Out);
2635 Out << " ";
2636 }
2637
2638 FunctionType *FT = F->getFunctionType();
2639 if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
2640 Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
2641 TypePrinter.print(F->getReturnType(), Out);
2642 Out << ' ';
2643 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
2644 Out << '(';
2645
2646 // Loop over the arguments, printing them...
2647 if (F->isDeclaration() && !IsForDebug) {
2648 // We're only interested in the type here - don't print argument names.
2649 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
2650 // Insert commas as we go... the first arg doesn't get a comma
2651 if (I)
2652 Out << ", ";
2653 // Output type...
2654 TypePrinter.print(FT->getParamType(I), Out);
2655
2656 if (Attrs.hasAttributes(I + 1))
2657 Out << ' ' << Attrs.getAsString(I + 1);
2658 }
2659 } else {
2660 // The arguments are meaningful here, print them in detail.
2661 unsigned Idx = 1;
2662 for (const Argument &Arg : F->args()) {
2663 // Insert commas as we go... the first arg doesn't get a comma
2664 if (Idx != 1)
2665 Out << ", ";
2666 printArgument(&Arg, Attrs, Idx++);
2667 }
2668 }
2669
2670 // Finish printing arguments...
2671 if (FT->isVarArg()) {
2672 if (FT->getNumParams()) Out << ", ";
2673 Out << "..."; // Output varargs portion of signature!
2674 }
2675 Out << ')';
2676 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
2677 if (!UA.empty())
2678 Out << ' ' << UA;
2679 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
2680 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
2681 if (F->hasSection()) {
2682 Out << " section \"";
2683 PrintEscapedString(F->getSection(), Out);
2684 Out << '"';
2685 }
2686 maybePrintComdat(Out, *F);
2687 if (F->getAlignment())
2688 Out << " align " << F->getAlignment();
2689 if (F->hasGC())
2690 Out << " gc \"" << F->getGC() << '"';
2691 if (F->hasPrefixData()) {
2692 Out << " prefix ";
2693 writeOperand(F->getPrefixData(), true);
2694 }
2695 if (F->hasPrologueData()) {
2696 Out << " prologue ";
2697 writeOperand(F->getPrologueData(), true);
2698 }
2699 if (F->hasPersonalityFn()) {
2700 Out << " personality ";
2701 writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
2702 }
2703
2704 if (F->isDeclaration()) {
2705 Out << '\n';
2706 } else {
2707 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2708 F->getAllMetadata(MDs);
2709 printMetadataAttachments(MDs, " ");
2710
2711 Out << " {";
2712 // Output all of the function's basic blocks.
2713 for (const BasicBlock &BB : *F)
2714 printBasicBlock(&BB);
2715
2716 // Output the function's use-lists.
2717 printUseLists(F);
2718
2719 Out << "}\n";
2720 }
2721
2722 Machine.purgeFunction();
2723 }
2724
2725 /// printArgument - This member is called for every argument that is passed into
2726 /// the function. Simply print it out
2727 ///
printArgument(const Argument * Arg,AttributeSet Attrs,unsigned Idx)2728 void AssemblyWriter::printArgument(const Argument *Arg,
2729 AttributeSet Attrs, unsigned Idx) {
2730 // Output type...
2731 TypePrinter.print(Arg->getType(), Out);
2732
2733 // Output parameter attributes list
2734 if (Attrs.hasAttributes(Idx))
2735 Out << ' ' << Attrs.getAsString(Idx);
2736
2737 // Output name, if available...
2738 if (Arg->hasName()) {
2739 Out << ' ';
2740 PrintLLVMName(Out, Arg);
2741 }
2742 }
2743
2744 /// printBasicBlock - This member is called for each basic block in a method.
2745 ///
printBasicBlock(const BasicBlock * BB)2746 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
2747 if (BB->hasName()) { // Print out the label if it exists...
2748 Out << "\n";
2749 PrintLLVMName(Out, BB->getName(), LabelPrefix);
2750 Out << ':';
2751 } else if (!BB->use_empty()) { // Don't print block # of no uses...
2752 Out << "\n; <label>:";
2753 int Slot = Machine.getLocalSlot(BB);
2754 if (Slot != -1)
2755 Out << Slot << ":";
2756 else
2757 Out << "<badref>";
2758 }
2759
2760 if (!BB->getParent()) {
2761 Out.PadToColumn(50);
2762 Out << "; Error: Block without parent!";
2763 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
2764 // Output predecessors for the block.
2765 Out.PadToColumn(50);
2766 Out << ";";
2767 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
2768
2769 if (PI == PE) {
2770 Out << " No predecessors!";
2771 } else {
2772 Out << " preds = ";
2773 writeOperand(*PI, false);
2774 for (++PI; PI != PE; ++PI) {
2775 Out << ", ";
2776 writeOperand(*PI, false);
2777 }
2778 }
2779 }
2780
2781 Out << "\n";
2782
2783 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
2784
2785 // Output all of the instructions in the basic block...
2786 for (const Instruction &I : *BB) {
2787 printInstructionLine(I);
2788 }
2789
2790 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
2791 }
2792
2793 /// printInstructionLine - Print an instruction and a newline character.
printInstructionLine(const Instruction & I)2794 void AssemblyWriter::printInstructionLine(const Instruction &I) {
2795 printInstruction(I);
2796 Out << '\n';
2797 }
2798
2799 /// printGCRelocateComment - print comment after call to the gc.relocate
2800 /// intrinsic indicating base and derived pointer names.
printGCRelocateComment(const GCRelocateInst & Relocate)2801 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
2802 Out << " ; (";
2803 writeOperand(Relocate.getBasePtr(), false);
2804 Out << ", ";
2805 writeOperand(Relocate.getDerivedPtr(), false);
2806 Out << ")";
2807 }
2808
2809 /// printInfoComment - Print a little comment after the instruction indicating
2810 /// which slot it occupies.
2811 ///
printInfoComment(const Value & V)2812 void AssemblyWriter::printInfoComment(const Value &V) {
2813 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
2814 printGCRelocateComment(*Relocate);
2815
2816 if (AnnotationWriter)
2817 AnnotationWriter->printInfoComment(V, Out);
2818 }
2819
2820 // This member is called for each Instruction in a function..
printInstruction(const Instruction & I)2821 void AssemblyWriter::printInstruction(const Instruction &I) {
2822 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
2823
2824 // Print out indentation for an instruction.
2825 Out << " ";
2826
2827 // Print out name if it exists...
2828 if (I.hasName()) {
2829 PrintLLVMName(Out, &I);
2830 Out << " = ";
2831 } else if (!I.getType()->isVoidTy()) {
2832 // Print out the def slot taken.
2833 int SlotNum = Machine.getLocalSlot(&I);
2834 if (SlotNum == -1)
2835 Out << "<badref> = ";
2836 else
2837 Out << '%' << SlotNum << " = ";
2838 }
2839
2840 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2841 if (CI->isMustTailCall())
2842 Out << "musttail ";
2843 else if (CI->isTailCall())
2844 Out << "tail ";
2845 else if (CI->isNoTailCall())
2846 Out << "notail ";
2847 }
2848
2849 // Print out the opcode...
2850 Out << I.getOpcodeName();
2851
2852 // If this is an atomic load or store, print out the atomic marker.
2853 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
2854 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
2855 Out << " atomic";
2856
2857 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
2858 Out << " weak";
2859
2860 // If this is a volatile operation, print out the volatile marker.
2861 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
2862 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
2863 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
2864 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
2865 Out << " volatile";
2866
2867 // Print out optimization information.
2868 WriteOptimizationInfo(Out, &I);
2869
2870 // Print out the compare instruction predicates
2871 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
2872 Out << ' ' << getPredicateText(CI->getPredicate());
2873
2874 // Print out the atomicrmw operation
2875 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
2876 writeAtomicRMWOperation(Out, RMWI->getOperation());
2877
2878 // Print out the type of the operands...
2879 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
2880
2881 // Special case conditional branches to swizzle the condition out to the front
2882 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
2883 const BranchInst &BI(cast<BranchInst>(I));
2884 Out << ' ';
2885 writeOperand(BI.getCondition(), true);
2886 Out << ", ";
2887 writeOperand(BI.getSuccessor(0), true);
2888 Out << ", ";
2889 writeOperand(BI.getSuccessor(1), true);
2890
2891 } else if (isa<SwitchInst>(I)) {
2892 const SwitchInst& SI(cast<SwitchInst>(I));
2893 // Special case switch instruction to get formatting nice and correct.
2894 Out << ' ';
2895 writeOperand(SI.getCondition(), true);
2896 Out << ", ";
2897 writeOperand(SI.getDefaultDest(), true);
2898 Out << " [";
2899 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2900 i != e; ++i) {
2901 Out << "\n ";
2902 writeOperand(i.getCaseValue(), true);
2903 Out << ", ";
2904 writeOperand(i.getCaseSuccessor(), true);
2905 }
2906 Out << "\n ]";
2907 } else if (isa<IndirectBrInst>(I)) {
2908 // Special case indirectbr instruction to get formatting nice and correct.
2909 Out << ' ';
2910 writeOperand(Operand, true);
2911 Out << ", [";
2912
2913 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2914 if (i != 1)
2915 Out << ", ";
2916 writeOperand(I.getOperand(i), true);
2917 }
2918 Out << ']';
2919 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
2920 Out << ' ';
2921 TypePrinter.print(I.getType(), Out);
2922 Out << ' ';
2923
2924 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
2925 if (op) Out << ", ";
2926 Out << "[ ";
2927 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
2928 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
2929 }
2930 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
2931 Out << ' ';
2932 writeOperand(I.getOperand(0), true);
2933 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
2934 Out << ", " << *i;
2935 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
2936 Out << ' ';
2937 writeOperand(I.getOperand(0), true); Out << ", ";
2938 writeOperand(I.getOperand(1), true);
2939 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
2940 Out << ", " << *i;
2941 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
2942 Out << ' ';
2943 TypePrinter.print(I.getType(), Out);
2944 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
2945 Out << '\n';
2946
2947 if (LPI->isCleanup())
2948 Out << " cleanup";
2949
2950 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
2951 if (i != 0 || LPI->isCleanup()) Out << "\n";
2952 if (LPI->isCatch(i))
2953 Out << " catch ";
2954 else
2955 Out << " filter ";
2956
2957 writeOperand(LPI->getClause(i), true);
2958 }
2959 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
2960 Out << " within ";
2961 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
2962 Out << " [";
2963 unsigned Op = 0;
2964 for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
2965 if (Op > 0)
2966 Out << ", ";
2967 writeOperand(PadBB, /*PrintType=*/true);
2968 ++Op;
2969 }
2970 Out << "] unwind ";
2971 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
2972 writeOperand(UnwindDest, /*PrintType=*/true);
2973 else
2974 Out << "to caller";
2975 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
2976 Out << " within ";
2977 writeOperand(FPI->getParentPad(), /*PrintType=*/false);
2978 Out << " [";
2979 for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
2980 ++Op) {
2981 if (Op > 0)
2982 Out << ", ";
2983 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
2984 }
2985 Out << ']';
2986 } else if (isa<ReturnInst>(I) && !Operand) {
2987 Out << " void";
2988 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
2989 Out << " from ";
2990 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
2991
2992 Out << " to ";
2993 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
2994 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
2995 Out << " from ";
2996 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
2997
2998 Out << " unwind ";
2999 if (CRI->hasUnwindDest())
3000 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3001 else
3002 Out << "to caller";
3003 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3004 // Print the calling convention being used.
3005 if (CI->getCallingConv() != CallingConv::C) {
3006 Out << " ";
3007 PrintCallingConv(CI->getCallingConv(), Out);
3008 }
3009
3010 Operand = CI->getCalledValue();
3011 FunctionType *FTy = cast<FunctionType>(CI->getFunctionType());
3012 Type *RetTy = FTy->getReturnType();
3013 const AttributeSet &PAL = CI->getAttributes();
3014
3015 if (PAL.hasAttributes(AttributeSet::ReturnIndex))
3016 Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
3017
3018 // If possible, print out the short form of the call instruction. We can
3019 // only do this if the first argument is a pointer to a nonvararg function,
3020 // and if the return type is not a pointer to a function.
3021 //
3022 Out << ' ';
3023 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3024 Out << ' ';
3025 writeOperand(Operand, false);
3026 Out << '(';
3027 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3028 if (op > 0)
3029 Out << ", ";
3030 writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
3031 }
3032
3033 // Emit an ellipsis if this is a musttail call in a vararg function. This
3034 // is only to aid readability, musttail calls forward varargs by default.
3035 if (CI->isMustTailCall() && CI->getParent() &&
3036 CI->getParent()->getParent() &&
3037 CI->getParent()->getParent()->isVarArg())
3038 Out << ", ...";
3039
3040 Out << ')';
3041 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
3042 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3043
3044 writeOperandBundles(CI);
3045
3046 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3047 Operand = II->getCalledValue();
3048 FunctionType *FTy = cast<FunctionType>(II->getFunctionType());
3049 Type *RetTy = FTy->getReturnType();
3050 const AttributeSet &PAL = II->getAttributes();
3051
3052 // Print the calling convention being used.
3053 if (II->getCallingConv() != CallingConv::C) {
3054 Out << " ";
3055 PrintCallingConv(II->getCallingConv(), Out);
3056 }
3057
3058 if (PAL.hasAttributes(AttributeSet::ReturnIndex))
3059 Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
3060
3061 // If possible, print out the short form of the invoke instruction. We can
3062 // only do this if the first argument is a pointer to a nonvararg function,
3063 // and if the return type is not a pointer to a function.
3064 //
3065 Out << ' ';
3066 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3067 Out << ' ';
3068 writeOperand(Operand, false);
3069 Out << '(';
3070 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
3071 if (op)
3072 Out << ", ";
3073 writeParamOperand(II->getArgOperand(op), PAL, op + 1);
3074 }
3075
3076 Out << ')';
3077 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
3078 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3079
3080 writeOperandBundles(II);
3081
3082 Out << "\n to ";
3083 writeOperand(II->getNormalDest(), true);
3084 Out << " unwind ";
3085 writeOperand(II->getUnwindDest(), true);
3086
3087 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3088 Out << ' ';
3089 if (AI->isUsedWithInAlloca())
3090 Out << "inalloca ";
3091 if (AI->isSwiftError())
3092 Out << "swifterror ";
3093 TypePrinter.print(AI->getAllocatedType(), Out);
3094
3095 // Explicitly write the array size if the code is broken, if it's an array
3096 // allocation, or if the type is not canonical for scalar allocations. The
3097 // latter case prevents the type from mutating when round-tripping through
3098 // assembly.
3099 if (!AI->getArraySize() || AI->isArrayAllocation() ||
3100 !AI->getArraySize()->getType()->isIntegerTy(32)) {
3101 Out << ", ";
3102 writeOperand(AI->getArraySize(), true);
3103 }
3104 if (AI->getAlignment()) {
3105 Out << ", align " << AI->getAlignment();
3106 }
3107 } else if (isa<CastInst>(I)) {
3108 if (Operand) {
3109 Out << ' ';
3110 writeOperand(Operand, true); // Work with broken code
3111 }
3112 Out << " to ";
3113 TypePrinter.print(I.getType(), Out);
3114 } else if (isa<VAArgInst>(I)) {
3115 if (Operand) {
3116 Out << ' ';
3117 writeOperand(Operand, true); // Work with broken code
3118 }
3119 Out << ", ";
3120 TypePrinter.print(I.getType(), Out);
3121 } else if (Operand) { // Print the normal way.
3122 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3123 Out << ' ';
3124 TypePrinter.print(GEP->getSourceElementType(), Out);
3125 Out << ',';
3126 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
3127 Out << ' ';
3128 TypePrinter.print(LI->getType(), Out);
3129 Out << ',';
3130 }
3131
3132 // PrintAllTypes - Instructions who have operands of all the same type
3133 // omit the type from all but the first operand. If the instruction has
3134 // different type operands (for example br), then they are all printed.
3135 bool PrintAllTypes = false;
3136 Type *TheType = Operand->getType();
3137
3138 // Select, Store and ShuffleVector always print all types.
3139 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
3140 || isa<ReturnInst>(I)) {
3141 PrintAllTypes = true;
3142 } else {
3143 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
3144 Operand = I.getOperand(i);
3145 // note that Operand shouldn't be null, but the test helps make dump()
3146 // more tolerant of malformed IR
3147 if (Operand && Operand->getType() != TheType) {
3148 PrintAllTypes = true; // We have differing types! Print them all!
3149 break;
3150 }
3151 }
3152 }
3153
3154 if (!PrintAllTypes) {
3155 Out << ' ';
3156 TypePrinter.print(TheType, Out);
3157 }
3158
3159 Out << ' ';
3160 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3161 if (i) Out << ", ";
3162 writeOperand(I.getOperand(i), PrintAllTypes);
3163 }
3164 }
3165
3166 // Print atomic ordering/alignment for memory operations
3167 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3168 if (LI->isAtomic())
3169 writeAtomic(LI->getOrdering(), LI->getSynchScope());
3170 if (LI->getAlignment())
3171 Out << ", align " << LI->getAlignment();
3172 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3173 if (SI->isAtomic())
3174 writeAtomic(SI->getOrdering(), SI->getSynchScope());
3175 if (SI->getAlignment())
3176 Out << ", align " << SI->getAlignment();
3177 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3178 writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
3179 CXI->getSynchScope());
3180 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3181 writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
3182 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3183 writeAtomic(FI->getOrdering(), FI->getSynchScope());
3184 }
3185
3186 // Print Metadata info.
3187 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
3188 I.getAllMetadata(InstMD);
3189 printMetadataAttachments(InstMD, ", ");
3190
3191 // Print a nice comment.
3192 printInfoComment(I);
3193 }
3194
printMetadataAttachments(const SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs,StringRef Separator)3195 void AssemblyWriter::printMetadataAttachments(
3196 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
3197 StringRef Separator) {
3198 if (MDs.empty())
3199 return;
3200
3201 if (MDNames.empty())
3202 MDs[0].second->getContext().getMDKindNames(MDNames);
3203
3204 for (const auto &I : MDs) {
3205 unsigned Kind = I.first;
3206 Out << Separator;
3207 if (Kind < MDNames.size()) {
3208 Out << "!";
3209 printMetadataIdentifier(MDNames[Kind], Out);
3210 } else
3211 Out << "!<unknown kind #" << Kind << ">";
3212 Out << ' ';
3213 WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
3214 }
3215 }
3216
writeMDNode(unsigned Slot,const MDNode * Node)3217 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
3218 Out << '!' << Slot << " = ";
3219 printMDNodeBody(Node);
3220 Out << "\n";
3221 }
3222
writeAllMDNodes()3223 void AssemblyWriter::writeAllMDNodes() {
3224 SmallVector<const MDNode *, 16> Nodes;
3225 Nodes.resize(Machine.mdn_size());
3226 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
3227 I != E; ++I)
3228 Nodes[I->second] = cast<MDNode>(I->first);
3229
3230 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3231 writeMDNode(i, Nodes[i]);
3232 }
3233 }
3234
printMDNodeBody(const MDNode * Node)3235 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
3236 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
3237 }
3238
writeAllAttributeGroups()3239 void AssemblyWriter::writeAllAttributeGroups() {
3240 std::vector<std::pair<AttributeSet, unsigned> > asVec;
3241 asVec.resize(Machine.as_size());
3242
3243 for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
3244 I != E; ++I)
3245 asVec[I->second] = *I;
3246
3247 for (const auto &I : asVec)
3248 Out << "attributes #" << I.second << " = { "
3249 << I.first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
3250 }
3251
printUseListOrder(const UseListOrder & Order)3252 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
3253 bool IsInFunction = Machine.getFunction();
3254 if (IsInFunction)
3255 Out << " ";
3256
3257 Out << "uselistorder";
3258 if (const BasicBlock *BB =
3259 IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
3260 Out << "_bb ";
3261 writeOperand(BB->getParent(), false);
3262 Out << ", ";
3263 writeOperand(BB, false);
3264 } else {
3265 Out << " ";
3266 writeOperand(Order.V, true);
3267 }
3268 Out << ", { ";
3269
3270 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3271 Out << Order.Shuffle[0];
3272 for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
3273 Out << ", " << Order.Shuffle[I];
3274 Out << " }\n";
3275 }
3276
printUseLists(const Function * F)3277 void AssemblyWriter::printUseLists(const Function *F) {
3278 auto hasMore =
3279 [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
3280 if (!hasMore())
3281 // Nothing to do.
3282 return;
3283
3284 Out << "\n; uselistorder directives\n";
3285 while (hasMore()) {
3286 printUseListOrder(UseListOrders.back());
3287 UseListOrders.pop_back();
3288 }
3289 }
3290
3291 //===----------------------------------------------------------------------===//
3292 // External Interface declarations
3293 //===----------------------------------------------------------------------===//
3294
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const3295 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3296 bool ShouldPreserveUseListOrder,
3297 bool IsForDebug) const {
3298 SlotTracker SlotTable(this->getParent());
3299 formatted_raw_ostream OS(ROS);
3300 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
3301 IsForDebug,
3302 ShouldPreserveUseListOrder);
3303 W.printFunction(this);
3304 }
3305
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const3306 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3307 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
3308 SlotTracker SlotTable(this);
3309 formatted_raw_ostream OS(ROS);
3310 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
3311 ShouldPreserveUseListOrder);
3312 W.printModule(this);
3313 }
3314
print(raw_ostream & ROS,bool IsForDebug) const3315 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
3316 SlotTracker SlotTable(getParent());
3317 formatted_raw_ostream OS(ROS);
3318 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
3319 W.printNamedMDNode(this);
3320 }
3321
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const3322 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
3323 bool IsForDebug) const {
3324 Optional<SlotTracker> LocalST;
3325 SlotTracker *SlotTable;
3326 if (auto *ST = MST.getMachine())
3327 SlotTable = ST;
3328 else {
3329 LocalST.emplace(getParent());
3330 SlotTable = &*LocalST;
3331 }
3332
3333 formatted_raw_ostream OS(ROS);
3334 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
3335 W.printNamedMDNode(this);
3336 }
3337
print(raw_ostream & ROS,bool) const3338 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
3339 PrintLLVMName(ROS, getName(), ComdatPrefix);
3340 ROS << " = comdat ";
3341
3342 switch (getSelectionKind()) {
3343 case Comdat::Any:
3344 ROS << "any";
3345 break;
3346 case Comdat::ExactMatch:
3347 ROS << "exactmatch";
3348 break;
3349 case Comdat::Largest:
3350 ROS << "largest";
3351 break;
3352 case Comdat::NoDuplicates:
3353 ROS << "noduplicates";
3354 break;
3355 case Comdat::SameSize:
3356 ROS << "samesize";
3357 break;
3358 }
3359
3360 ROS << '\n';
3361 }
3362
print(raw_ostream & OS,bool,bool NoDetails) const3363 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
3364 TypePrinting TP;
3365 TP.print(const_cast<Type*>(this), OS);
3366
3367 if (NoDetails)
3368 return;
3369
3370 // If the type is a named struct type, print the body as well.
3371 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
3372 if (!STy->isLiteral()) {
3373 OS << " = type ";
3374 TP.printStructBody(STy, OS);
3375 }
3376 }
3377
isReferencingMDNode(const Instruction & I)3378 static bool isReferencingMDNode(const Instruction &I) {
3379 if (const auto *CI = dyn_cast<CallInst>(&I))
3380 if (Function *F = CI->getCalledFunction())
3381 if (F->isIntrinsic())
3382 for (auto &Op : I.operands())
3383 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
3384 if (isa<MDNode>(V->getMetadata()))
3385 return true;
3386 return false;
3387 }
3388
print(raw_ostream & ROS,bool IsForDebug) const3389 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
3390 bool ShouldInitializeAllMetadata = false;
3391 if (auto *I = dyn_cast<Instruction>(this))
3392 ShouldInitializeAllMetadata = isReferencingMDNode(*I);
3393 else if (isa<Function>(this) || isa<MetadataAsValue>(this))
3394 ShouldInitializeAllMetadata = true;
3395
3396 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
3397 print(ROS, MST, IsForDebug);
3398 }
3399
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const3400 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
3401 bool IsForDebug) const {
3402 formatted_raw_ostream OS(ROS);
3403 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
3404 SlotTracker &SlotTable =
3405 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
3406 auto incorporateFunction = [&](const Function *F) {
3407 if (F)
3408 MST.incorporateFunction(*F);
3409 };
3410
3411 if (const Instruction *I = dyn_cast<Instruction>(this)) {
3412 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
3413 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
3414 W.printInstruction(*I);
3415 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
3416 incorporateFunction(BB->getParent());
3417 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
3418 W.printBasicBlock(BB);
3419 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
3420 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
3421 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
3422 W.printGlobal(V);
3423 else if (const Function *F = dyn_cast<Function>(GV))
3424 W.printFunction(F);
3425 else
3426 W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
3427 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
3428 V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
3429 } else if (const Constant *C = dyn_cast<Constant>(this)) {
3430 TypePrinting TypePrinter;
3431 TypePrinter.print(C->getType(), OS);
3432 OS << ' ';
3433 WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
3434 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
3435 this->printAsOperand(OS, /* PrintType */ true, MST);
3436 } else {
3437 llvm_unreachable("Unknown value to print out!");
3438 }
3439 }
3440
3441 /// Print without a type, skipping the TypePrinting object.
3442 ///
3443 /// \return \c true iff printing was successful.
printWithoutType(const Value & V,raw_ostream & O,SlotTracker * Machine,const Module * M)3444 static bool printWithoutType(const Value &V, raw_ostream &O,
3445 SlotTracker *Machine, const Module *M) {
3446 if (V.hasName() || isa<GlobalValue>(V) ||
3447 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
3448 WriteAsOperandInternal(O, &V, nullptr, Machine, M);
3449 return true;
3450 }
3451 return false;
3452 }
3453
printAsOperandImpl(const Value & V,raw_ostream & O,bool PrintType,ModuleSlotTracker & MST)3454 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
3455 ModuleSlotTracker &MST) {
3456 TypePrinting TypePrinter;
3457 if (const Module *M = MST.getModule())
3458 TypePrinter.incorporateTypes(*M);
3459 if (PrintType) {
3460 TypePrinter.print(V.getType(), O);
3461 O << ' ';
3462 }
3463
3464 WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
3465 MST.getModule());
3466 }
3467
printAsOperand(raw_ostream & O,bool PrintType,const Module * M) const3468 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3469 const Module *M) const {
3470 if (!M)
3471 M = getModuleFromVal(this);
3472
3473 if (!PrintType)
3474 if (printWithoutType(*this, O, nullptr, M))
3475 return;
3476
3477 SlotTracker Machine(
3478 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
3479 ModuleSlotTracker MST(Machine, M);
3480 printAsOperandImpl(*this, O, PrintType, MST);
3481 }
3482
printAsOperand(raw_ostream & O,bool PrintType,ModuleSlotTracker & MST) const3483 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3484 ModuleSlotTracker &MST) const {
3485 if (!PrintType)
3486 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
3487 return;
3488
3489 printAsOperandImpl(*this, O, PrintType, MST);
3490 }
3491
printMetadataImpl(raw_ostream & ROS,const Metadata & MD,ModuleSlotTracker & MST,const Module * M,bool OnlyAsOperand)3492 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
3493 ModuleSlotTracker &MST, const Module *M,
3494 bool OnlyAsOperand) {
3495 formatted_raw_ostream OS(ROS);
3496
3497 TypePrinting TypePrinter;
3498 if (M)
3499 TypePrinter.incorporateTypes(*M);
3500
3501 WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
3502 /* FromValue */ true);
3503
3504 auto *N = dyn_cast<MDNode>(&MD);
3505 if (OnlyAsOperand || !N)
3506 return;
3507
3508 OS << " = ";
3509 WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
3510 }
3511
printAsOperand(raw_ostream & OS,const Module * M) const3512 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
3513 ModuleSlotTracker MST(M, isa<MDNode>(this));
3514 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3515 }
3516
printAsOperand(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M) const3517 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
3518 const Module *M) const {
3519 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3520 }
3521
print(raw_ostream & OS,const Module * M,bool) const3522 void Metadata::print(raw_ostream &OS, const Module *M,
3523 bool /*IsForDebug*/) const {
3524 ModuleSlotTracker MST(M, isa<MDNode>(this));
3525 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3526 }
3527
print(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M,bool) const3528 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
3529 const Module *M, bool /*IsForDebug*/) const {
3530 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3531 }
3532
3533 // Value::dump - allow easy printing of Values from the debugger.
3534 LLVM_DUMP_METHOD
dump() const3535 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3536
3537 // Type::dump - allow easy printing of Types from the debugger.
3538 LLVM_DUMP_METHOD
dump() const3539 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3540
3541 // Module::dump() - Allow printing of Modules from the debugger.
3542 LLVM_DUMP_METHOD
dump() const3543 void Module::dump() const {
3544 print(dbgs(), nullptr,
3545 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
3546 }
3547
3548 // \brief Allow printing of Comdats from the debugger.
3549 LLVM_DUMP_METHOD
dump() const3550 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3551
3552 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
3553 LLVM_DUMP_METHOD
dump() const3554 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3555
3556 LLVM_DUMP_METHOD
dump() const3557 void Metadata::dump() const { dump(nullptr); }
3558
3559 LLVM_DUMP_METHOD
dump(const Module * M) const3560 void Metadata::dump(const Module *M) const {
3561 print(dbgs(), M, /*IsForDebug=*/true);
3562 dbgs() << '\n';
3563 }
3564