1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/IR/Writer.h
11 //
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRPrintingPasses.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/TypeFinder.h"
37 #include "llvm/IR/UseListOrder.h"
38 #include "llvm/IR/ValueSymbolTable.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/Dwarf.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/Format.h"
43 #include "llvm/Support/FormattedStream.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cctype>
48 using namespace llvm;
49 
50 // Make virtual table appear in this compilation unit.
~AssemblyAnnotationWriter()51 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
52 
53 //===----------------------------------------------------------------------===//
54 // Helper Functions
55 //===----------------------------------------------------------------------===//
56 
57 namespace {
58 struct OrderMap {
59   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
60 
size__anond169a03a0111::OrderMap61   unsigned size() const { return IDs.size(); }
operator []__anond169a03a0111::OrderMap62   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
lookup__anond169a03a0111::OrderMap63   std::pair<unsigned, bool> lookup(const Value *V) const {
64     return IDs.lookup(V);
65   }
index__anond169a03a0111::OrderMap66   void index(const Value *V) {
67     // Explicitly sequence get-size and insert-value operations to avoid UB.
68     unsigned ID = IDs.size() + 1;
69     IDs[V].first = ID;
70   }
71 };
72 }
73 
orderValue(const Value * V,OrderMap & OM)74 static void orderValue(const Value *V, OrderMap &OM) {
75   if (OM.lookup(V).first)
76     return;
77 
78   if (const Constant *C = dyn_cast<Constant>(V))
79     if (C->getNumOperands() && !isa<GlobalValue>(C))
80       for (const Value *Op : C->operands())
81         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
82           orderValue(Op, OM);
83 
84   // Note: we cannot cache this lookup above, since inserting into the map
85   // changes the map's size, and thus affects the other IDs.
86   OM.index(V);
87 }
88 
orderModule(const Module * M)89 static OrderMap orderModule(const Module *M) {
90   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
91   // and ValueEnumerator::incorporateFunction().
92   OrderMap OM;
93 
94   for (const GlobalVariable &G : M->globals()) {
95     if (G.hasInitializer())
96       if (!isa<GlobalValue>(G.getInitializer()))
97         orderValue(G.getInitializer(), OM);
98     orderValue(&G, OM);
99   }
100   for (const GlobalAlias &A : M->aliases()) {
101     if (!isa<GlobalValue>(A.getAliasee()))
102       orderValue(A.getAliasee(), OM);
103     orderValue(&A, OM);
104   }
105   for (const GlobalIFunc &I : M->ifuncs()) {
106     if (!isa<GlobalValue>(I.getResolver()))
107       orderValue(I.getResolver(), OM);
108     orderValue(&I, OM);
109   }
110   for (const Function &F : *M) {
111     for (const Use &U : F.operands())
112       if (!isa<GlobalValue>(U.get()))
113         orderValue(U.get(), OM);
114 
115     orderValue(&F, OM);
116 
117     if (F.isDeclaration())
118       continue;
119 
120     for (const Argument &A : F.args())
121       orderValue(&A, OM);
122     for (const BasicBlock &BB : F) {
123       orderValue(&BB, OM);
124       for (const Instruction &I : BB) {
125         for (const Value *Op : I.operands())
126           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
127               isa<InlineAsm>(*Op))
128             orderValue(Op, OM);
129         orderValue(&I, OM);
130       }
131     }
132   }
133   return OM;
134 }
135 
predictValueUseListOrderImpl(const Value * V,const Function * F,unsigned ID,const OrderMap & OM,UseListOrderStack & Stack)136 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
137                                          unsigned ID, const OrderMap &OM,
138                                          UseListOrderStack &Stack) {
139   // Predict use-list order for this one.
140   typedef std::pair<const Use *, unsigned> Entry;
141   SmallVector<Entry, 64> List;
142   for (const Use &U : V->uses())
143     // Check if this user will be serialized.
144     if (OM.lookup(U.getUser()).first)
145       List.push_back(std::make_pair(&U, List.size()));
146 
147   if (List.size() < 2)
148     // We may have lost some users.
149     return;
150 
151   bool GetsReversed =
152       !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
153   if (auto *BA = dyn_cast<BlockAddress>(V))
154     ID = OM.lookup(BA->getBasicBlock()).first;
155   std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
156     const Use *LU = L.first;
157     const Use *RU = R.first;
158     if (LU == RU)
159       return false;
160 
161     auto LID = OM.lookup(LU->getUser()).first;
162     auto RID = OM.lookup(RU->getUser()).first;
163 
164     // If ID is 4, then expect: 7 6 5 1 2 3.
165     if (LID < RID) {
166       if (GetsReversed)
167         if (RID <= ID)
168           return true;
169       return false;
170     }
171     if (RID < LID) {
172       if (GetsReversed)
173         if (LID <= ID)
174           return false;
175       return true;
176     }
177 
178     // LID and RID are equal, so we have different operands of the same user.
179     // Assume operands are added in order for all instructions.
180     if (GetsReversed)
181       if (LID <= ID)
182         return LU->getOperandNo() < RU->getOperandNo();
183     return LU->getOperandNo() > RU->getOperandNo();
184   });
185 
186   if (std::is_sorted(
187           List.begin(), List.end(),
188           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
189     // Order is already correct.
190     return;
191 
192   // Store the shuffle.
193   Stack.emplace_back(V, F, List.size());
194   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
195   for (size_t I = 0, E = List.size(); I != E; ++I)
196     Stack.back().Shuffle[I] = List[I].second;
197 }
198 
predictValueUseListOrder(const Value * V,const Function * F,OrderMap & OM,UseListOrderStack & Stack)199 static void predictValueUseListOrder(const Value *V, const Function *F,
200                                      OrderMap &OM, UseListOrderStack &Stack) {
201   auto &IDPair = OM[V];
202   assert(IDPair.first && "Unmapped value");
203   if (IDPair.second)
204     // Already predicted.
205     return;
206 
207   // Do the actual prediction.
208   IDPair.second = true;
209   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
210     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
211 
212   // Recursive descent into constants.
213   if (const Constant *C = dyn_cast<Constant>(V))
214     if (C->getNumOperands()) // Visit GlobalValues.
215       for (const Value *Op : C->operands())
216         if (isa<Constant>(Op)) // Visit GlobalValues.
217           predictValueUseListOrder(Op, F, OM, Stack);
218 }
219 
predictUseListOrder(const Module * M)220 static UseListOrderStack predictUseListOrder(const Module *M) {
221   OrderMap OM = orderModule(M);
222 
223   // Use-list orders need to be serialized after all the users have been added
224   // to a value, or else the shuffles will be incomplete.  Store them per
225   // function in a stack.
226   //
227   // Aside from function order, the order of values doesn't matter much here.
228   UseListOrderStack Stack;
229 
230   // We want to visit the functions backward now so we can list function-local
231   // constants in the last Function they're used in.  Module-level constants
232   // have already been visited above.
233   for (const Function &F : make_range(M->rbegin(), M->rend())) {
234     if (F.isDeclaration())
235       continue;
236     for (const BasicBlock &BB : F)
237       predictValueUseListOrder(&BB, &F, OM, Stack);
238     for (const Argument &A : F.args())
239       predictValueUseListOrder(&A, &F, OM, Stack);
240     for (const BasicBlock &BB : F)
241       for (const Instruction &I : BB)
242         for (const Value *Op : I.operands())
243           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
244             predictValueUseListOrder(Op, &F, OM, Stack);
245     for (const BasicBlock &BB : F)
246       for (const Instruction &I : BB)
247         predictValueUseListOrder(&I, &F, OM, Stack);
248   }
249 
250   // Visit globals last.
251   for (const GlobalVariable &G : M->globals())
252     predictValueUseListOrder(&G, nullptr, OM, Stack);
253   for (const Function &F : *M)
254     predictValueUseListOrder(&F, nullptr, OM, Stack);
255   for (const GlobalAlias &A : M->aliases())
256     predictValueUseListOrder(&A, nullptr, OM, Stack);
257   for (const GlobalIFunc &I : M->ifuncs())
258     predictValueUseListOrder(&I, nullptr, OM, Stack);
259   for (const GlobalVariable &G : M->globals())
260     if (G.hasInitializer())
261       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
262   for (const GlobalAlias &A : M->aliases())
263     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
264   for (const GlobalIFunc &I : M->ifuncs())
265     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
266   for (const Function &F : *M)
267     for (const Use &U : F.operands())
268       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
269 
270   return Stack;
271 }
272 
getModuleFromVal(const Value * V)273 static const Module *getModuleFromVal(const Value *V) {
274   if (const Argument *MA = dyn_cast<Argument>(V))
275     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
276 
277   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
278     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
279 
280   if (const Instruction *I = dyn_cast<Instruction>(V)) {
281     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
282     return M ? M->getParent() : nullptr;
283   }
284 
285   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
286     return GV->getParent();
287 
288   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
289     for (const User *U : MAV->users())
290       if (isa<Instruction>(U))
291         if (const Module *M = getModuleFromVal(U))
292           return M;
293     return nullptr;
294   }
295 
296   return nullptr;
297 }
298 
PrintCallingConv(unsigned cc,raw_ostream & Out)299 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
300   switch (cc) {
301   default:                         Out << "cc" << cc; break;
302   case CallingConv::Fast:          Out << "fastcc"; break;
303   case CallingConv::Cold:          Out << "coldcc"; break;
304   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
305   case CallingConv::AnyReg:        Out << "anyregcc"; break;
306   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
307   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
308   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
309   case CallingConv::GHC:           Out << "ghccc"; break;
310   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
311   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
312   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
313   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
314   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
315   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
316   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
317   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
318   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
319   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
320   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
321   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
322   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
323   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
324   case CallingConv::X86_64_Win64:  Out << "x86_64_win64cc"; break;
325   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
326   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
327   case CallingConv::Swift:         Out << "swiftcc"; break;
328   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
329   case CallingConv::HHVM:          Out << "hhvmcc"; break;
330   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
331   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
332   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
333   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
334   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
335   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
336   }
337 }
338 
339 // PrintEscapedString - Print each character of the specified string, escaping
340 // it if it is not printable or if it is an escape char.
PrintEscapedString(StringRef Name,raw_ostream & Out)341 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
342   for (unsigned i = 0, e = Name.size(); i != e; ++i) {
343     unsigned char C = Name[i];
344     if (isprint(C) && C != '\\' && C != '"')
345       Out << C;
346     else
347       Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
348   }
349 }
350 
351 enum PrefixType {
352   GlobalPrefix,
353   ComdatPrefix,
354   LabelPrefix,
355   LocalPrefix,
356   NoPrefix
357 };
358 
printLLVMNameWithoutPrefix(raw_ostream & OS,StringRef Name)359 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
360   assert(!Name.empty() && "Cannot get empty name!");
361 
362   // Scan the name to see if it needs quotes first.
363   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
364   if (!NeedsQuotes) {
365     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
366       // By making this unsigned, the value passed in to isalnum will always be
367       // in the range 0-255.  This is important when building with MSVC because
368       // its implementation will assert.  This situation can arise when dealing
369       // with UTF-8 multibyte characters.
370       unsigned char C = Name[i];
371       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
372           C != '_') {
373         NeedsQuotes = true;
374         break;
375       }
376     }
377   }
378 
379   // If we didn't need any quotes, just write out the name in one blast.
380   if (!NeedsQuotes) {
381     OS << Name;
382     return;
383   }
384 
385   // Okay, we need quotes.  Output the quotes and escape any scary characters as
386   // needed.
387   OS << '"';
388   PrintEscapedString(Name, OS);
389   OS << '"';
390 }
391 
392 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
393 /// (if the string only contains simple characters) or is surrounded with ""'s
394 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,StringRef Name,PrefixType Prefix)395 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
396   switch (Prefix) {
397   case NoPrefix:
398     break;
399   case GlobalPrefix:
400     OS << '@';
401     break;
402   case ComdatPrefix:
403     OS << '$';
404     break;
405   case LabelPrefix:
406     break;
407   case LocalPrefix:
408     OS << '%';
409     break;
410   }
411   printLLVMNameWithoutPrefix(OS, Name);
412 }
413 
414 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
415 /// (if the string only contains simple characters) or is surrounded with ""'s
416 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,const Value * V)417 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
418   PrintLLVMName(OS, V->getName(),
419                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
420 }
421 
422 
423 namespace {
424 class TypePrinting {
425   TypePrinting(const TypePrinting &) = delete;
426   void operator=(const TypePrinting&) = delete;
427 public:
428 
429   /// NamedTypes - The named types that are used by the current module.
430   TypeFinder NamedTypes;
431 
432   /// NumberedTypes - The numbered types, along with their value.
433   DenseMap<StructType*, unsigned> NumberedTypes;
434 
435   TypePrinting() = default;
436 
437   void incorporateTypes(const Module &M);
438 
439   void print(Type *Ty, raw_ostream &OS);
440 
441   void printStructBody(StructType *Ty, raw_ostream &OS);
442 };
443 } // namespace
444 
incorporateTypes(const Module & M)445 void TypePrinting::incorporateTypes(const Module &M) {
446   NamedTypes.run(M, false);
447 
448   // The list of struct types we got back includes all the struct types, split
449   // the unnamed ones out to a numbering and remove the anonymous structs.
450   unsigned NextNumber = 0;
451 
452   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
453   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
454     StructType *STy = *I;
455 
456     // Ignore anonymous types.
457     if (STy->isLiteral())
458       continue;
459 
460     if (STy->getName().empty())
461       NumberedTypes[STy] = NextNumber++;
462     else
463       *NextToUse++ = STy;
464   }
465 
466   NamedTypes.erase(NextToUse, NamedTypes.end());
467 }
468 
469 
470 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
471 /// use of type names or up references to shorten the type name where possible.
print(Type * Ty,raw_ostream & OS)472 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
473   switch (Ty->getTypeID()) {
474   case Type::VoidTyID:      OS << "void"; return;
475   case Type::HalfTyID:      OS << "half"; return;
476   case Type::FloatTyID:     OS << "float"; return;
477   case Type::DoubleTyID:    OS << "double"; return;
478   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
479   case Type::FP128TyID:     OS << "fp128"; return;
480   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
481   case Type::LabelTyID:     OS << "label"; return;
482   case Type::MetadataTyID:  OS << "metadata"; return;
483   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
484   case Type::TokenTyID:     OS << "token"; return;
485   case Type::IntegerTyID:
486     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
487     return;
488 
489   case Type::FunctionTyID: {
490     FunctionType *FTy = cast<FunctionType>(Ty);
491     print(FTy->getReturnType(), OS);
492     OS << " (";
493     for (FunctionType::param_iterator I = FTy->param_begin(),
494          E = FTy->param_end(); I != E; ++I) {
495       if (I != FTy->param_begin())
496         OS << ", ";
497       print(*I, OS);
498     }
499     if (FTy->isVarArg()) {
500       if (FTy->getNumParams()) OS << ", ";
501       OS << "...";
502     }
503     OS << ')';
504     return;
505   }
506   case Type::StructTyID: {
507     StructType *STy = cast<StructType>(Ty);
508 
509     if (STy->isLiteral())
510       return printStructBody(STy, OS);
511 
512     if (!STy->getName().empty())
513       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
514 
515     DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
516     if (I != NumberedTypes.end())
517       OS << '%' << I->second;
518     else  // Not enumerated, print the hex address.
519       OS << "%\"type " << STy << '\"';
520     return;
521   }
522   case Type::PointerTyID: {
523     PointerType *PTy = cast<PointerType>(Ty);
524     print(PTy->getElementType(), OS);
525     if (unsigned AddressSpace = PTy->getAddressSpace())
526       OS << " addrspace(" << AddressSpace << ')';
527     OS << '*';
528     return;
529   }
530   case Type::ArrayTyID: {
531     ArrayType *ATy = cast<ArrayType>(Ty);
532     OS << '[' << ATy->getNumElements() << " x ";
533     print(ATy->getElementType(), OS);
534     OS << ']';
535     return;
536   }
537   case Type::VectorTyID: {
538     VectorType *PTy = cast<VectorType>(Ty);
539     OS << "<" << PTy->getNumElements() << " x ";
540     print(PTy->getElementType(), OS);
541     OS << '>';
542     return;
543   }
544   }
545   llvm_unreachable("Invalid TypeID");
546 }
547 
printStructBody(StructType * STy,raw_ostream & OS)548 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
549   if (STy->isOpaque()) {
550     OS << "opaque";
551     return;
552   }
553 
554   if (STy->isPacked())
555     OS << '<';
556 
557   if (STy->getNumElements() == 0) {
558     OS << "{}";
559   } else {
560     StructType::element_iterator I = STy->element_begin();
561     OS << "{ ";
562     print(*I++, OS);
563     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
564       OS << ", ";
565       print(*I, OS);
566     }
567 
568     OS << " }";
569   }
570   if (STy->isPacked())
571     OS << '>';
572 }
573 
574 namespace llvm {
575 //===----------------------------------------------------------------------===//
576 // SlotTracker Class: Enumerate slot numbers for unnamed values
577 //===----------------------------------------------------------------------===//
578 /// This class provides computation of slot numbers for LLVM Assembly writing.
579 ///
580 class SlotTracker {
581 public:
582   /// ValueMap - A mapping of Values to slot numbers.
583   typedef DenseMap<const Value*, unsigned> ValueMap;
584 
585 private:
586   /// TheModule - The module for which we are holding slot numbers.
587   const Module* TheModule;
588 
589   /// TheFunction - The function for which we are holding slot numbers.
590   const Function* TheFunction;
591   bool FunctionProcessed;
592   bool ShouldInitializeAllMetadata;
593 
594   /// mMap - The slot map for the module level data.
595   ValueMap mMap;
596   unsigned mNext;
597 
598   /// fMap - The slot map for the function level data.
599   ValueMap fMap;
600   unsigned fNext;
601 
602   /// mdnMap - Map for MDNodes.
603   DenseMap<const MDNode*, unsigned> mdnMap;
604   unsigned mdnNext;
605 
606   /// asMap - The slot map for attribute sets.
607   DenseMap<AttributeSet, unsigned> asMap;
608   unsigned asNext;
609 public:
610   /// Construct from a module.
611   ///
612   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
613   /// functions, giving correct numbering for metadata referenced only from
614   /// within a function (even if no functions have been initialized).
615   explicit SlotTracker(const Module *M,
616                        bool ShouldInitializeAllMetadata = false);
617   /// Construct from a function, starting out in incorp state.
618   ///
619   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
620   /// functions, giving correct numbering for metadata referenced only from
621   /// within a function (even if no functions have been initialized).
622   explicit SlotTracker(const Function *F,
623                        bool ShouldInitializeAllMetadata = false);
624 
625   /// Return the slot number of the specified value in it's type
626   /// plane.  If something is not in the SlotTracker, return -1.
627   int getLocalSlot(const Value *V);
628   int getGlobalSlot(const GlobalValue *V);
629   int getMetadataSlot(const MDNode *N);
630   int getAttributeGroupSlot(AttributeSet AS);
631 
632   /// If you'd like to deal with a function instead of just a module, use
633   /// this method to get its data into the SlotTracker.
incorporateFunction(const Function * F)634   void incorporateFunction(const Function *F) {
635     TheFunction = F;
636     FunctionProcessed = false;
637   }
638 
getFunction() const639   const Function *getFunction() const { return TheFunction; }
640 
641   /// After calling incorporateFunction, use this method to remove the
642   /// most recently incorporated function from the SlotTracker. This
643   /// will reset the state of the machine back to just the module contents.
644   void purgeFunction();
645 
646   /// MDNode map iterators.
647   typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
mdn_begin()648   mdn_iterator mdn_begin() { return mdnMap.begin(); }
mdn_end()649   mdn_iterator mdn_end() { return mdnMap.end(); }
mdn_size() const650   unsigned mdn_size() const { return mdnMap.size(); }
mdn_empty() const651   bool mdn_empty() const { return mdnMap.empty(); }
652 
653   /// AttributeSet map iterators.
654   typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
as_begin()655   as_iterator as_begin()   { return asMap.begin(); }
as_end()656   as_iterator as_end()     { return asMap.end(); }
as_size() const657   unsigned as_size() const { return asMap.size(); }
as_empty() const658   bool as_empty() const    { return asMap.empty(); }
659 
660   /// This function does the actual initialization.
661   inline void initialize();
662 
663   // Implementation Details
664 private:
665   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
666   void CreateModuleSlot(const GlobalValue *V);
667 
668   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
669   void CreateMetadataSlot(const MDNode *N);
670 
671   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
672   void CreateFunctionSlot(const Value *V);
673 
674   /// \brief Insert the specified AttributeSet into the slot table.
675   void CreateAttributeSetSlot(AttributeSet AS);
676 
677   /// Add all of the module level global variables (and their initializers)
678   /// and function declarations, but not the contents of those functions.
679   void processModule();
680 
681   /// Add all of the functions arguments, basic blocks, and instructions.
682   void processFunction();
683 
684   /// Add the metadata directly attached to a GlobalObject.
685   void processGlobalObjectMetadata(const GlobalObject &GO);
686 
687   /// Add all of the metadata from a function.
688   void processFunctionMetadata(const Function &F);
689 
690   /// Add all of the metadata from an instruction.
691   void processInstructionMetadata(const Instruction &I);
692 
693   SlotTracker(const SlotTracker &) = delete;
694   void operator=(const SlotTracker &) = delete;
695 };
696 } // namespace llvm
697 
ModuleSlotTracker(SlotTracker & Machine,const Module * M,const Function * F)698 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
699                                      const Function *F)
700     : M(M), F(F), Machine(&Machine) {}
701 
ModuleSlotTracker(const Module * M,bool ShouldInitializeAllMetadata)702 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
703                                      bool ShouldInitializeAllMetadata)
704     : ShouldCreateStorage(M),
705       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
706 
~ModuleSlotTracker()707 ModuleSlotTracker::~ModuleSlotTracker() {}
708 
getMachine()709 SlotTracker *ModuleSlotTracker::getMachine() {
710   if (!ShouldCreateStorage)
711     return Machine;
712 
713   ShouldCreateStorage = false;
714   MachineStorage =
715       llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
716   Machine = MachineStorage.get();
717   return Machine;
718 }
719 
incorporateFunction(const Function & F)720 void ModuleSlotTracker::incorporateFunction(const Function &F) {
721   // Using getMachine() may lazily create the slot tracker.
722   if (!getMachine())
723     return;
724 
725   // Nothing to do if this is the right function already.
726   if (this->F == &F)
727     return;
728   if (this->F)
729     Machine->purgeFunction();
730   Machine->incorporateFunction(&F);
731   this->F = &F;
732 }
733 
getLocalSlot(const Value * V)734 int ModuleSlotTracker::getLocalSlot(const Value *V) {
735   assert(F && "No function incorporated");
736   return Machine->getLocalSlot(V);
737 }
738 
createSlotTracker(const Value * V)739 static SlotTracker *createSlotTracker(const Value *V) {
740   if (const Argument *FA = dyn_cast<Argument>(V))
741     return new SlotTracker(FA->getParent());
742 
743   if (const Instruction *I = dyn_cast<Instruction>(V))
744     if (I->getParent())
745       return new SlotTracker(I->getParent()->getParent());
746 
747   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
748     return new SlotTracker(BB->getParent());
749 
750   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
751     return new SlotTracker(GV->getParent());
752 
753   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
754     return new SlotTracker(GA->getParent());
755 
756   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
757     return new SlotTracker(GIF->getParent());
758 
759   if (const Function *Func = dyn_cast<Function>(V))
760     return new SlotTracker(Func);
761 
762   return nullptr;
763 }
764 
765 #if 0
766 #define ST_DEBUG(X) dbgs() << X
767 #else
768 #define ST_DEBUG(X)
769 #endif
770 
771 // Module level constructor. Causes the contents of the Module (sans functions)
772 // to be added to the slot table.
SlotTracker(const Module * M,bool ShouldInitializeAllMetadata)773 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
774     : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
775       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
776       fNext(0), mdnNext(0), asNext(0) {}
777 
778 // Function level constructor. Causes the contents of the Module and the one
779 // function provided to be added to the slot table.
SlotTracker(const Function * F,bool ShouldInitializeAllMetadata)780 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
781     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
782       FunctionProcessed(false),
783       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
784       fNext(0), mdnNext(0), asNext(0) {}
785 
initialize()786 inline void SlotTracker::initialize() {
787   if (TheModule) {
788     processModule();
789     TheModule = nullptr; ///< Prevent re-processing next time we're called.
790   }
791 
792   if (TheFunction && !FunctionProcessed)
793     processFunction();
794 }
795 
796 // Iterate through all the global variables, functions, and global
797 // variable initializers and create slots for them.
processModule()798 void SlotTracker::processModule() {
799   ST_DEBUG("begin processModule!\n");
800 
801   // Add all of the unnamed global variables to the value table.
802   for (const GlobalVariable &Var : TheModule->globals()) {
803     if (!Var.hasName())
804       CreateModuleSlot(&Var);
805     processGlobalObjectMetadata(Var);
806   }
807 
808   for (const GlobalAlias &A : TheModule->aliases()) {
809     if (!A.hasName())
810       CreateModuleSlot(&A);
811   }
812 
813   for (const GlobalIFunc &I : TheModule->ifuncs()) {
814     if (!I.hasName())
815       CreateModuleSlot(&I);
816   }
817 
818   // Add metadata used by named metadata.
819   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
820     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
821       CreateMetadataSlot(NMD.getOperand(i));
822   }
823 
824   for (const Function &F : *TheModule) {
825     if (!F.hasName())
826       // Add all the unnamed functions to the table.
827       CreateModuleSlot(&F);
828 
829     if (ShouldInitializeAllMetadata)
830       processFunctionMetadata(F);
831 
832     // Add all the function attributes to the table.
833     // FIXME: Add attributes of other objects?
834     AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
835     if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
836       CreateAttributeSetSlot(FnAttrs);
837   }
838 
839   ST_DEBUG("end processModule!\n");
840 }
841 
842 // Process the arguments, basic blocks, and instructions  of a function.
processFunction()843 void SlotTracker::processFunction() {
844   ST_DEBUG("begin processFunction!\n");
845   fNext = 0;
846 
847   // Process function metadata if it wasn't hit at the module-level.
848   if (!ShouldInitializeAllMetadata)
849     processFunctionMetadata(*TheFunction);
850 
851   // Add all the function arguments with no names.
852   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
853       AE = TheFunction->arg_end(); AI != AE; ++AI)
854     if (!AI->hasName())
855       CreateFunctionSlot(&*AI);
856 
857   ST_DEBUG("Inserting Instructions:\n");
858 
859   // Add all of the basic blocks and instructions with no names.
860   for (auto &BB : *TheFunction) {
861     if (!BB.hasName())
862       CreateFunctionSlot(&BB);
863 
864     for (auto &I : BB) {
865       if (!I.getType()->isVoidTy() && !I.hasName())
866         CreateFunctionSlot(&I);
867 
868       // We allow direct calls to any llvm.foo function here, because the
869       // target may not be linked into the optimizer.
870       if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
871         // Add all the call attributes to the table.
872         AttributeSet Attrs = CI->getAttributes().getFnAttributes();
873         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
874           CreateAttributeSetSlot(Attrs);
875       } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
876         // Add all the call attributes to the table.
877         AttributeSet Attrs = II->getAttributes().getFnAttributes();
878         if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
879           CreateAttributeSetSlot(Attrs);
880       }
881     }
882   }
883 
884   FunctionProcessed = true;
885 
886   ST_DEBUG("end processFunction!\n");
887 }
888 
processGlobalObjectMetadata(const GlobalObject & GO)889 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
890   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
891   GO.getAllMetadata(MDs);
892   for (auto &MD : MDs)
893     CreateMetadataSlot(MD.second);
894 }
895 
processFunctionMetadata(const Function & F)896 void SlotTracker::processFunctionMetadata(const Function &F) {
897   processGlobalObjectMetadata(F);
898   for (auto &BB : F) {
899     for (auto &I : BB)
900       processInstructionMetadata(I);
901   }
902 }
903 
processInstructionMetadata(const Instruction & I)904 void SlotTracker::processInstructionMetadata(const Instruction &I) {
905   // Process metadata used directly by intrinsics.
906   if (const CallInst *CI = dyn_cast<CallInst>(&I))
907     if (Function *F = CI->getCalledFunction())
908       if (F->isIntrinsic())
909         for (auto &Op : I.operands())
910           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
911             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
912               CreateMetadataSlot(N);
913 
914   // Process metadata attached to this instruction.
915   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
916   I.getAllMetadata(MDs);
917   for (auto &MD : MDs)
918     CreateMetadataSlot(MD.second);
919 }
920 
921 /// Clean up after incorporating a function. This is the only way to get out of
922 /// the function incorporation state that affects get*Slot/Create*Slot. Function
923 /// incorporation state is indicated by TheFunction != 0.
purgeFunction()924 void SlotTracker::purgeFunction() {
925   ST_DEBUG("begin purgeFunction!\n");
926   fMap.clear(); // Simply discard the function level map
927   TheFunction = nullptr;
928   FunctionProcessed = false;
929   ST_DEBUG("end purgeFunction!\n");
930 }
931 
932 /// getGlobalSlot - Get the slot number of a global value.
getGlobalSlot(const GlobalValue * V)933 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
934   // Check for uninitialized state and do lazy initialization.
935   initialize();
936 
937   // Find the value in the module map
938   ValueMap::iterator MI = mMap.find(V);
939   return MI == mMap.end() ? -1 : (int)MI->second;
940 }
941 
942 /// getMetadataSlot - Get the slot number of a MDNode.
getMetadataSlot(const MDNode * N)943 int SlotTracker::getMetadataSlot(const MDNode *N) {
944   // Check for uninitialized state and do lazy initialization.
945   initialize();
946 
947   // Find the MDNode in the module map
948   mdn_iterator MI = mdnMap.find(N);
949   return MI == mdnMap.end() ? -1 : (int)MI->second;
950 }
951 
952 
953 /// getLocalSlot - Get the slot number for a value that is local to a function.
getLocalSlot(const Value * V)954 int SlotTracker::getLocalSlot(const Value *V) {
955   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
956 
957   // Check for uninitialized state and do lazy initialization.
958   initialize();
959 
960   ValueMap::iterator FI = fMap.find(V);
961   return FI == fMap.end() ? -1 : (int)FI->second;
962 }
963 
getAttributeGroupSlot(AttributeSet AS)964 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
965   // Check for uninitialized state and do lazy initialization.
966   initialize();
967 
968   // Find the AttributeSet in the module map.
969   as_iterator AI = asMap.find(AS);
970   return AI == asMap.end() ? -1 : (int)AI->second;
971 }
972 
973 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
CreateModuleSlot(const GlobalValue * V)974 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
975   assert(V && "Can't insert a null Value into SlotTracker!");
976   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
977   assert(!V->hasName() && "Doesn't need a slot!");
978 
979   unsigned DestSlot = mNext++;
980   mMap[V] = DestSlot;
981 
982   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
983            DestSlot << " [");
984   // G = Global, F = Function, A = Alias, I = IFunc, o = other
985   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
986             (isa<Function>(V) ? 'F' :
987              (isa<GlobalAlias>(V) ? 'A' :
988               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
989 }
990 
991 /// CreateSlot - Create a new slot for the specified value if it has no name.
CreateFunctionSlot(const Value * V)992 void SlotTracker::CreateFunctionSlot(const Value *V) {
993   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
994 
995   unsigned DestSlot = fNext++;
996   fMap[V] = DestSlot;
997 
998   // G = Global, F = Function, o = other
999   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1000            DestSlot << " [o]\n");
1001 }
1002 
1003 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
CreateMetadataSlot(const MDNode * N)1004 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1005   assert(N && "Can't insert a null Value into SlotTracker!");
1006 
1007   unsigned DestSlot = mdnNext;
1008   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1009     return;
1010   ++mdnNext;
1011 
1012   // Recursively add any MDNodes referenced by operands.
1013   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1014     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1015       CreateMetadataSlot(Op);
1016 }
1017 
CreateAttributeSetSlot(AttributeSet AS)1018 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1019   assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
1020          "Doesn't need a slot!");
1021 
1022   as_iterator I = asMap.find(AS);
1023   if (I != asMap.end())
1024     return;
1025 
1026   unsigned DestSlot = asNext++;
1027   asMap[AS] = DestSlot;
1028 }
1029 
1030 //===----------------------------------------------------------------------===//
1031 // AsmWriter Implementation
1032 //===----------------------------------------------------------------------===//
1033 
1034 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1035                                    TypePrinting *TypePrinter,
1036                                    SlotTracker *Machine,
1037                                    const Module *Context);
1038 
1039 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1040                                    TypePrinting *TypePrinter,
1041                                    SlotTracker *Machine, const Module *Context,
1042                                    bool FromValue = false);
1043 
getPredicateText(unsigned predicate)1044 static const char *getPredicateText(unsigned predicate) {
1045   const char * pred = "unknown";
1046   switch (predicate) {
1047   case FCmpInst::FCMP_FALSE: pred = "false"; break;
1048   case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
1049   case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
1050   case FCmpInst::FCMP_OGE:   pred = "oge"; break;
1051   case FCmpInst::FCMP_OLT:   pred = "olt"; break;
1052   case FCmpInst::FCMP_OLE:   pred = "ole"; break;
1053   case FCmpInst::FCMP_ONE:   pred = "one"; break;
1054   case FCmpInst::FCMP_ORD:   pred = "ord"; break;
1055   case FCmpInst::FCMP_UNO:   pred = "uno"; break;
1056   case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
1057   case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
1058   case FCmpInst::FCMP_UGE:   pred = "uge"; break;
1059   case FCmpInst::FCMP_ULT:   pred = "ult"; break;
1060   case FCmpInst::FCMP_ULE:   pred = "ule"; break;
1061   case FCmpInst::FCMP_UNE:   pred = "une"; break;
1062   case FCmpInst::FCMP_TRUE:  pred = "true"; break;
1063   case ICmpInst::ICMP_EQ:    pred = "eq"; break;
1064   case ICmpInst::ICMP_NE:    pred = "ne"; break;
1065   case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
1066   case ICmpInst::ICMP_SGE:   pred = "sge"; break;
1067   case ICmpInst::ICMP_SLT:   pred = "slt"; break;
1068   case ICmpInst::ICMP_SLE:   pred = "sle"; break;
1069   case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
1070   case ICmpInst::ICMP_UGE:   pred = "uge"; break;
1071   case ICmpInst::ICMP_ULT:   pred = "ult"; break;
1072   case ICmpInst::ICMP_ULE:   pred = "ule"; break;
1073   }
1074   return pred;
1075 }
1076 
writeAtomicRMWOperation(raw_ostream & Out,AtomicRMWInst::BinOp Op)1077 static void writeAtomicRMWOperation(raw_ostream &Out,
1078                                     AtomicRMWInst::BinOp Op) {
1079   switch (Op) {
1080   default: Out << " <unknown operation " << Op << ">"; break;
1081   case AtomicRMWInst::Xchg: Out << " xchg"; break;
1082   case AtomicRMWInst::Add:  Out << " add"; break;
1083   case AtomicRMWInst::Sub:  Out << " sub"; break;
1084   case AtomicRMWInst::And:  Out << " and"; break;
1085   case AtomicRMWInst::Nand: Out << " nand"; break;
1086   case AtomicRMWInst::Or:   Out << " or"; break;
1087   case AtomicRMWInst::Xor:  Out << " xor"; break;
1088   case AtomicRMWInst::Max:  Out << " max"; break;
1089   case AtomicRMWInst::Min:  Out << " min"; break;
1090   case AtomicRMWInst::UMax: Out << " umax"; break;
1091   case AtomicRMWInst::UMin: Out << " umin"; break;
1092   }
1093 }
1094 
WriteOptimizationInfo(raw_ostream & Out,const User * U)1095 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1096   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1097     // Unsafe algebra implies all the others, no need to write them all out
1098     if (FPO->hasUnsafeAlgebra())
1099       Out << " fast";
1100     else {
1101       if (FPO->hasNoNaNs())
1102         Out << " nnan";
1103       if (FPO->hasNoInfs())
1104         Out << " ninf";
1105       if (FPO->hasNoSignedZeros())
1106         Out << " nsz";
1107       if (FPO->hasAllowReciprocal())
1108         Out << " arcp";
1109     }
1110   }
1111 
1112   if (const OverflowingBinaryOperator *OBO =
1113         dyn_cast<OverflowingBinaryOperator>(U)) {
1114     if (OBO->hasNoUnsignedWrap())
1115       Out << " nuw";
1116     if (OBO->hasNoSignedWrap())
1117       Out << " nsw";
1118   } else if (const PossiblyExactOperator *Div =
1119                dyn_cast<PossiblyExactOperator>(U)) {
1120     if (Div->isExact())
1121       Out << " exact";
1122   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1123     if (GEP->isInBounds())
1124       Out << " inbounds";
1125   }
1126 }
1127 
WriteConstantInternal(raw_ostream & Out,const Constant * CV,TypePrinting & TypePrinter,SlotTracker * Machine,const Module * Context)1128 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1129                                   TypePrinting &TypePrinter,
1130                                   SlotTracker *Machine,
1131                                   const Module *Context) {
1132   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1133     if (CI->getType()->isIntegerTy(1)) {
1134       Out << (CI->getZExtValue() ? "true" : "false");
1135       return;
1136     }
1137     Out << CI->getValue();
1138     return;
1139   }
1140 
1141   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1142     if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
1143         &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
1144       // We would like to output the FP constant value in exponential notation,
1145       // but we cannot do this if doing so will lose precision.  Check here to
1146       // make sure that we only output it in exponential format if we can parse
1147       // the value back and get the same value.
1148       //
1149       bool ignored;
1150       bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
1151       bool isInf = CFP->getValueAPF().isInfinity();
1152       bool isNaN = CFP->getValueAPF().isNaN();
1153       if (!isInf && !isNaN) {
1154         double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
1155                                 CFP->getValueAPF().convertToFloat();
1156         SmallString<128> StrVal;
1157         raw_svector_ostream(StrVal) << Val;
1158 
1159         // Check to make sure that the stringized number is not some string like
1160         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1161         // that the string matches the "[-+]?[0-9]" regex.
1162         //
1163         if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1164             ((StrVal[0] == '-' || StrVal[0] == '+') &&
1165              (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
1166           // Reparse stringized version!
1167           if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
1168             Out << StrVal;
1169             return;
1170           }
1171         }
1172       }
1173       // Otherwise we could not reparse it to exactly the same value, so we must
1174       // output the string in hexadecimal format!  Note that loading and storing
1175       // floating point types changes the bits of NaNs on some hosts, notably
1176       // x86, so we must not use these types.
1177       static_assert(sizeof(double) == sizeof(uint64_t),
1178                     "assuming that double is 64 bits!");
1179       APFloat apf = CFP->getValueAPF();
1180       // Floats are represented in ASCII IR as double, convert.
1181       if (!isDouble)
1182         apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1183                           &ignored);
1184       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1185       return;
1186     }
1187 
1188     // Either half, or some form of long double.
1189     // These appear as a magic letter identifying the type, then a
1190     // fixed number of hex digits.
1191     Out << "0x";
1192     APInt API = CFP->getValueAPF().bitcastToAPInt();
1193     if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
1194       Out << 'K';
1195       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1196                                   /*Upper=*/true);
1197       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1198                                   /*Upper=*/true);
1199       return;
1200     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
1201       Out << 'L';
1202       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1203                                   /*Upper=*/true);
1204       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1205                                   /*Upper=*/true);
1206     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
1207       Out << 'M';
1208       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1209                                   /*Upper=*/true);
1210       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1211                                   /*Upper=*/true);
1212     } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
1213       Out << 'H';
1214       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1215                                   /*Upper=*/true);
1216     } else
1217       llvm_unreachable("Unsupported floating point type");
1218     return;
1219   }
1220 
1221   if (isa<ConstantAggregateZero>(CV)) {
1222     Out << "zeroinitializer";
1223     return;
1224   }
1225 
1226   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1227     Out << "blockaddress(";
1228     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1229                            Context);
1230     Out << ", ";
1231     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1232                            Context);
1233     Out << ")";
1234     return;
1235   }
1236 
1237   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1238     Type *ETy = CA->getType()->getElementType();
1239     Out << '[';
1240     TypePrinter.print(ETy, Out);
1241     Out << ' ';
1242     WriteAsOperandInternal(Out, CA->getOperand(0),
1243                            &TypePrinter, Machine,
1244                            Context);
1245     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1246       Out << ", ";
1247       TypePrinter.print(ETy, Out);
1248       Out << ' ';
1249       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1250                              Context);
1251     }
1252     Out << ']';
1253     return;
1254   }
1255 
1256   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1257     // As a special case, print the array as a string if it is an array of
1258     // i8 with ConstantInt values.
1259     if (CA->isString()) {
1260       Out << "c\"";
1261       PrintEscapedString(CA->getAsString(), Out);
1262       Out << '"';
1263       return;
1264     }
1265 
1266     Type *ETy = CA->getType()->getElementType();
1267     Out << '[';
1268     TypePrinter.print(ETy, Out);
1269     Out << ' ';
1270     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1271                            &TypePrinter, Machine,
1272                            Context);
1273     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1274       Out << ", ";
1275       TypePrinter.print(ETy, Out);
1276       Out << ' ';
1277       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1278                              Machine, Context);
1279     }
1280     Out << ']';
1281     return;
1282   }
1283 
1284 
1285   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1286     if (CS->getType()->isPacked())
1287       Out << '<';
1288     Out << '{';
1289     unsigned N = CS->getNumOperands();
1290     if (N) {
1291       Out << ' ';
1292       TypePrinter.print(CS->getOperand(0)->getType(), Out);
1293       Out << ' ';
1294 
1295       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1296                              Context);
1297 
1298       for (unsigned i = 1; i < N; i++) {
1299         Out << ", ";
1300         TypePrinter.print(CS->getOperand(i)->getType(), Out);
1301         Out << ' ';
1302 
1303         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1304                                Context);
1305       }
1306       Out << ' ';
1307     }
1308 
1309     Out << '}';
1310     if (CS->getType()->isPacked())
1311       Out << '>';
1312     return;
1313   }
1314 
1315   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1316     Type *ETy = CV->getType()->getVectorElementType();
1317     Out << '<';
1318     TypePrinter.print(ETy, Out);
1319     Out << ' ';
1320     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1321                            Machine, Context);
1322     for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1323       Out << ", ";
1324       TypePrinter.print(ETy, Out);
1325       Out << ' ';
1326       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1327                              Machine, Context);
1328     }
1329     Out << '>';
1330     return;
1331   }
1332 
1333   if (isa<ConstantPointerNull>(CV)) {
1334     Out << "null";
1335     return;
1336   }
1337 
1338   if (isa<ConstantTokenNone>(CV)) {
1339     Out << "none";
1340     return;
1341   }
1342 
1343   if (isa<UndefValue>(CV)) {
1344     Out << "undef";
1345     return;
1346   }
1347 
1348   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1349     Out << CE->getOpcodeName();
1350     WriteOptimizationInfo(Out, CE);
1351     if (CE->isCompare())
1352       Out << ' ' << getPredicateText(CE->getPredicate());
1353     Out << " (";
1354 
1355     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1356       TypePrinter.print(GEP->getSourceElementType(), Out);
1357       Out << ", ";
1358     }
1359 
1360     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1361       TypePrinter.print((*OI)->getType(), Out);
1362       Out << ' ';
1363       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1364       if (OI+1 != CE->op_end())
1365         Out << ", ";
1366     }
1367 
1368     if (CE->hasIndices()) {
1369       ArrayRef<unsigned> Indices = CE->getIndices();
1370       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1371         Out << ", " << Indices[i];
1372     }
1373 
1374     if (CE->isCast()) {
1375       Out << " to ";
1376       TypePrinter.print(CE->getType(), Out);
1377     }
1378 
1379     Out << ')';
1380     return;
1381   }
1382 
1383   Out << "<placeholder or erroneous Constant>";
1384 }
1385 
writeMDTuple(raw_ostream & Out,const MDTuple * Node,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1386 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1387                          TypePrinting *TypePrinter, SlotTracker *Machine,
1388                          const Module *Context) {
1389   Out << "!{";
1390   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1391     const Metadata *MD = Node->getOperand(mi);
1392     if (!MD)
1393       Out << "null";
1394     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1395       Value *V = MDV->getValue();
1396       TypePrinter->print(V->getType(), Out);
1397       Out << ' ';
1398       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1399     } else {
1400       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1401     }
1402     if (mi + 1 != me)
1403       Out << ", ";
1404   }
1405 
1406   Out << "}";
1407 }
1408 
1409 namespace {
1410 struct FieldSeparator {
1411   bool Skip;
1412   const char *Sep;
FieldSeparator__anond169a03a0511::FieldSeparator1413   FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
1414 };
operator <<(raw_ostream & OS,FieldSeparator & FS)1415 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1416   if (FS.Skip) {
1417     FS.Skip = false;
1418     return OS;
1419   }
1420   return OS << FS.Sep;
1421 }
1422 struct MDFieldPrinter {
1423   raw_ostream &Out;
1424   FieldSeparator FS;
1425   TypePrinting *TypePrinter;
1426   SlotTracker *Machine;
1427   const Module *Context;
1428 
MDFieldPrinter__anond169a03a0511::MDFieldPrinter1429   explicit MDFieldPrinter(raw_ostream &Out)
1430       : Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
MDFieldPrinter__anond169a03a0511::MDFieldPrinter1431   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1432                  SlotTracker *Machine, const Module *Context)
1433       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1434   }
1435   void printTag(const DINode *N);
1436   void printMacinfoType(const DIMacroNode *N);
1437   void printString(StringRef Name, StringRef Value,
1438                    bool ShouldSkipEmpty = true);
1439   void printMetadata(StringRef Name, const Metadata *MD,
1440                      bool ShouldSkipNull = true);
1441   template <class IntTy>
1442   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1443   void printBool(StringRef Name, bool Value);
1444   void printDIFlags(StringRef Name, unsigned Flags);
1445   template <class IntTy, class Stringifier>
1446   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1447                       bool ShouldSkipZero = true);
1448   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1449 };
1450 } // end namespace
1451 
printTag(const DINode * N)1452 void MDFieldPrinter::printTag(const DINode *N) {
1453   Out << FS << "tag: ";
1454   if (const char *Tag = dwarf::TagString(N->getTag()))
1455     Out << Tag;
1456   else
1457     Out << N->getTag();
1458 }
1459 
printMacinfoType(const DIMacroNode * N)1460 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1461   Out << FS << "type: ";
1462   if (const char *Type = dwarf::MacinfoString(N->getMacinfoType()))
1463     Out << Type;
1464   else
1465     Out << N->getMacinfoType();
1466 }
1467 
printString(StringRef Name,StringRef Value,bool ShouldSkipEmpty)1468 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1469                                  bool ShouldSkipEmpty) {
1470   if (ShouldSkipEmpty && Value.empty())
1471     return;
1472 
1473   Out << FS << Name << ": \"";
1474   PrintEscapedString(Value, Out);
1475   Out << "\"";
1476 }
1477 
writeMetadataAsOperand(raw_ostream & Out,const Metadata * MD,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1478 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1479                                    TypePrinting *TypePrinter,
1480                                    SlotTracker *Machine,
1481                                    const Module *Context) {
1482   if (!MD) {
1483     Out << "null";
1484     return;
1485   }
1486   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1487 }
1488 
printMetadata(StringRef Name,const Metadata * MD,bool ShouldSkipNull)1489 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1490                                    bool ShouldSkipNull) {
1491   if (ShouldSkipNull && !MD)
1492     return;
1493 
1494   Out << FS << Name << ": ";
1495   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1496 }
1497 
1498 template <class IntTy>
printInt(StringRef Name,IntTy Int,bool ShouldSkipZero)1499 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1500   if (ShouldSkipZero && !Int)
1501     return;
1502 
1503   Out << FS << Name << ": " << Int;
1504 }
1505 
printBool(StringRef Name,bool Value)1506 void MDFieldPrinter::printBool(StringRef Name, bool Value) {
1507   Out << FS << Name << ": " << (Value ? "true" : "false");
1508 }
1509 
printDIFlags(StringRef Name,unsigned Flags)1510 void MDFieldPrinter::printDIFlags(StringRef Name, unsigned Flags) {
1511   if (!Flags)
1512     return;
1513 
1514   Out << FS << Name << ": ";
1515 
1516   SmallVector<unsigned, 8> SplitFlags;
1517   unsigned Extra = DINode::splitFlags(Flags, SplitFlags);
1518 
1519   FieldSeparator FlagsFS(" | ");
1520   for (unsigned F : SplitFlags) {
1521     const char *StringF = DINode::getFlagString(F);
1522     assert(StringF && "Expected valid flag");
1523     Out << FlagsFS << StringF;
1524   }
1525   if (Extra || SplitFlags.empty())
1526     Out << FlagsFS << Extra;
1527 }
1528 
printEmissionKind(StringRef Name,DICompileUnit::DebugEmissionKind EK)1529 void MDFieldPrinter::printEmissionKind(StringRef Name,
1530                                        DICompileUnit::DebugEmissionKind EK) {
1531   Out << FS << Name << ": " << DICompileUnit::EmissionKindString(EK);
1532 }
1533 
1534 
1535 template <class IntTy, class Stringifier>
printDwarfEnum(StringRef Name,IntTy Value,Stringifier toString,bool ShouldSkipZero)1536 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1537                                     Stringifier toString, bool ShouldSkipZero) {
1538   if (!Value)
1539     return;
1540 
1541   Out << FS << Name << ": ";
1542   if (const char *S = toString(Value))
1543     Out << S;
1544   else
1545     Out << Value;
1546 }
1547 
writeGenericDINode(raw_ostream & Out,const GenericDINode * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1548 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1549                                TypePrinting *TypePrinter, SlotTracker *Machine,
1550                                const Module *Context) {
1551   Out << "!GenericDINode(";
1552   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1553   Printer.printTag(N);
1554   Printer.printString("header", N->getHeader());
1555   if (N->getNumDwarfOperands()) {
1556     Out << Printer.FS << "operands: {";
1557     FieldSeparator IFS;
1558     for (auto &I : N->dwarf_operands()) {
1559       Out << IFS;
1560       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1561     }
1562     Out << "}";
1563   }
1564   Out << ")";
1565 }
1566 
writeDILocation(raw_ostream & Out,const DILocation * DL,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1567 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1568                             TypePrinting *TypePrinter, SlotTracker *Machine,
1569                             const Module *Context) {
1570   Out << "!DILocation(";
1571   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1572   // Always output the line, since 0 is a relevant and important value for it.
1573   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1574   Printer.printInt("column", DL->getColumn());
1575   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1576   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1577   Out << ")";
1578 }
1579 
writeDISubrange(raw_ostream & Out,const DISubrange * N,TypePrinting *,SlotTracker *,const Module *)1580 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1581                             TypePrinting *, SlotTracker *, const Module *) {
1582   Out << "!DISubrange(";
1583   MDFieldPrinter Printer(Out);
1584   Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
1585   Printer.printInt("lowerBound", N->getLowerBound());
1586   Out << ")";
1587 }
1588 
writeDIEnumerator(raw_ostream & Out,const DIEnumerator * N,TypePrinting *,SlotTracker *,const Module *)1589 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1590                               TypePrinting *, SlotTracker *, const Module *) {
1591   Out << "!DIEnumerator(";
1592   MDFieldPrinter Printer(Out);
1593   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1594   Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1595   Out << ")";
1596 }
1597 
writeDIBasicType(raw_ostream & Out,const DIBasicType * N,TypePrinting *,SlotTracker *,const Module *)1598 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1599                              TypePrinting *, SlotTracker *, const Module *) {
1600   Out << "!DIBasicType(";
1601   MDFieldPrinter Printer(Out);
1602   if (N->getTag() != dwarf::DW_TAG_base_type)
1603     Printer.printTag(N);
1604   Printer.printString("name", N->getName());
1605   Printer.printInt("size", N->getSizeInBits());
1606   Printer.printInt("align", N->getAlignInBits());
1607   Printer.printDwarfEnum("encoding", N->getEncoding(),
1608                          dwarf::AttributeEncodingString);
1609   Out << ")";
1610 }
1611 
writeDIDerivedType(raw_ostream & Out,const DIDerivedType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1612 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1613                                TypePrinting *TypePrinter, SlotTracker *Machine,
1614                                const Module *Context) {
1615   Out << "!DIDerivedType(";
1616   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1617   Printer.printTag(N);
1618   Printer.printString("name", N->getName());
1619   Printer.printMetadata("scope", N->getRawScope());
1620   Printer.printMetadata("file", N->getRawFile());
1621   Printer.printInt("line", N->getLine());
1622   Printer.printMetadata("baseType", N->getRawBaseType(),
1623                         /* ShouldSkipNull */ false);
1624   Printer.printInt("size", N->getSizeInBits());
1625   Printer.printInt("align", N->getAlignInBits());
1626   Printer.printInt("offset", N->getOffsetInBits());
1627   Printer.printDIFlags("flags", N->getFlags());
1628   Printer.printMetadata("extraData", N->getRawExtraData());
1629   Out << ")";
1630 }
1631 
writeDICompositeType(raw_ostream & Out,const DICompositeType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1632 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1633                                  TypePrinting *TypePrinter,
1634                                  SlotTracker *Machine, const Module *Context) {
1635   Out << "!DICompositeType(";
1636   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1637   Printer.printTag(N);
1638   Printer.printString("name", N->getName());
1639   Printer.printMetadata("scope", N->getRawScope());
1640   Printer.printMetadata("file", N->getRawFile());
1641   Printer.printInt("line", N->getLine());
1642   Printer.printMetadata("baseType", N->getRawBaseType());
1643   Printer.printInt("size", N->getSizeInBits());
1644   Printer.printInt("align", N->getAlignInBits());
1645   Printer.printInt("offset", N->getOffsetInBits());
1646   Printer.printDIFlags("flags", N->getFlags());
1647   Printer.printMetadata("elements", N->getRawElements());
1648   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1649                          dwarf::LanguageString);
1650   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1651   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1652   Printer.printString("identifier", N->getIdentifier());
1653   Out << ")";
1654 }
1655 
writeDISubroutineType(raw_ostream & Out,const DISubroutineType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1656 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1657                                   TypePrinting *TypePrinter,
1658                                   SlotTracker *Machine, const Module *Context) {
1659   Out << "!DISubroutineType(";
1660   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1661   Printer.printDIFlags("flags", N->getFlags());
1662   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1663   Printer.printMetadata("types", N->getRawTypeArray(),
1664                         /* ShouldSkipNull */ false);
1665   Out << ")";
1666 }
1667 
writeDIFile(raw_ostream & Out,const DIFile * N,TypePrinting *,SlotTracker *,const Module *)1668 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1669                         SlotTracker *, const Module *) {
1670   Out << "!DIFile(";
1671   MDFieldPrinter Printer(Out);
1672   Printer.printString("filename", N->getFilename(),
1673                       /* ShouldSkipEmpty */ false);
1674   Printer.printString("directory", N->getDirectory(),
1675                       /* ShouldSkipEmpty */ false);
1676   Out << ")";
1677 }
1678 
writeDICompileUnit(raw_ostream & Out,const DICompileUnit * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1679 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1680                                TypePrinting *TypePrinter, SlotTracker *Machine,
1681                                const Module *Context) {
1682   Out << "!DICompileUnit(";
1683   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1684   Printer.printDwarfEnum("language", N->getSourceLanguage(),
1685                          dwarf::LanguageString, /* ShouldSkipZero */ false);
1686   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1687   Printer.printString("producer", N->getProducer());
1688   Printer.printBool("isOptimized", N->isOptimized());
1689   Printer.printString("flags", N->getFlags());
1690   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1691                    /* ShouldSkipZero */ false);
1692   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1693   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
1694   Printer.printMetadata("enums", N->getRawEnumTypes());
1695   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1696   Printer.printMetadata("globals", N->getRawGlobalVariables());
1697   Printer.printMetadata("imports", N->getRawImportedEntities());
1698   Printer.printMetadata("macros", N->getRawMacros());
1699   Printer.printInt("dwoId", N->getDWOId());
1700   Out << ")";
1701 }
1702 
writeDISubprogram(raw_ostream & Out,const DISubprogram * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1703 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1704                               TypePrinting *TypePrinter, SlotTracker *Machine,
1705                               const Module *Context) {
1706   Out << "!DISubprogram(";
1707   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1708   Printer.printString("name", N->getName());
1709   Printer.printString("linkageName", N->getLinkageName());
1710   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1711   Printer.printMetadata("file", N->getRawFile());
1712   Printer.printInt("line", N->getLine());
1713   Printer.printMetadata("type", N->getRawType());
1714   Printer.printBool("isLocal", N->isLocalToUnit());
1715   Printer.printBool("isDefinition", N->isDefinition());
1716   Printer.printInt("scopeLine", N->getScopeLine());
1717   Printer.printMetadata("containingType", N->getRawContainingType());
1718   Printer.printDwarfEnum("virtuality", N->getVirtuality(),
1719                          dwarf::VirtualityString);
1720   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
1721       N->getVirtualIndex() != 0)
1722     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
1723   Printer.printInt("thisAdjustment", N->getThisAdjustment());
1724   Printer.printDIFlags("flags", N->getFlags());
1725   Printer.printBool("isOptimized", N->isOptimized());
1726   Printer.printMetadata("unit", N->getRawUnit());
1727   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1728   Printer.printMetadata("declaration", N->getRawDeclaration());
1729   Printer.printMetadata("variables", N->getRawVariables());
1730   Out << ")";
1731 }
1732 
writeDILexicalBlock(raw_ostream & Out,const DILexicalBlock * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1733 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1734                                 TypePrinting *TypePrinter, SlotTracker *Machine,
1735                                 const Module *Context) {
1736   Out << "!DILexicalBlock(";
1737   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1738   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1739   Printer.printMetadata("file", N->getRawFile());
1740   Printer.printInt("line", N->getLine());
1741   Printer.printInt("column", N->getColumn());
1742   Out << ")";
1743 }
1744 
writeDILexicalBlockFile(raw_ostream & Out,const DILexicalBlockFile * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1745 static void writeDILexicalBlockFile(raw_ostream &Out,
1746                                     const DILexicalBlockFile *N,
1747                                     TypePrinting *TypePrinter,
1748                                     SlotTracker *Machine,
1749                                     const Module *Context) {
1750   Out << "!DILexicalBlockFile(";
1751   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1752   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1753   Printer.printMetadata("file", N->getRawFile());
1754   Printer.printInt("discriminator", N->getDiscriminator(),
1755                    /* ShouldSkipZero */ false);
1756   Out << ")";
1757 }
1758 
writeDINamespace(raw_ostream & Out,const DINamespace * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1759 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1760                              TypePrinting *TypePrinter, SlotTracker *Machine,
1761                              const Module *Context) {
1762   Out << "!DINamespace(";
1763   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1764   Printer.printString("name", N->getName());
1765   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1766   Printer.printMetadata("file", N->getRawFile());
1767   Printer.printInt("line", N->getLine());
1768   Out << ")";
1769 }
1770 
writeDIMacro(raw_ostream & Out,const DIMacro * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1771 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
1772                          TypePrinting *TypePrinter, SlotTracker *Machine,
1773                          const Module *Context) {
1774   Out << "!DIMacro(";
1775   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1776   Printer.printMacinfoType(N);
1777   Printer.printInt("line", N->getLine());
1778   Printer.printString("name", N->getName());
1779   Printer.printString("value", N->getValue());
1780   Out << ")";
1781 }
1782 
writeDIMacroFile(raw_ostream & Out,const DIMacroFile * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1783 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
1784                              TypePrinting *TypePrinter, SlotTracker *Machine,
1785                              const Module *Context) {
1786   Out << "!DIMacroFile(";
1787   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1788   Printer.printInt("line", N->getLine());
1789   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1790   Printer.printMetadata("nodes", N->getRawElements());
1791   Out << ")";
1792 }
1793 
writeDIModule(raw_ostream & Out,const DIModule * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1794 static void writeDIModule(raw_ostream &Out, const DIModule *N,
1795                           TypePrinting *TypePrinter, SlotTracker *Machine,
1796                           const Module *Context) {
1797   Out << "!DIModule(";
1798   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1799   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1800   Printer.printString("name", N->getName());
1801   Printer.printString("configMacros", N->getConfigurationMacros());
1802   Printer.printString("includePath", N->getIncludePath());
1803   Printer.printString("isysroot", N->getISysRoot());
1804   Out << ")";
1805 }
1806 
1807 
writeDITemplateTypeParameter(raw_ostream & Out,const DITemplateTypeParameter * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1808 static void writeDITemplateTypeParameter(raw_ostream &Out,
1809                                          const DITemplateTypeParameter *N,
1810                                          TypePrinting *TypePrinter,
1811                                          SlotTracker *Machine,
1812                                          const Module *Context) {
1813   Out << "!DITemplateTypeParameter(";
1814   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1815   Printer.printString("name", N->getName());
1816   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
1817   Out << ")";
1818 }
1819 
writeDITemplateValueParameter(raw_ostream & Out,const DITemplateValueParameter * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1820 static void writeDITemplateValueParameter(raw_ostream &Out,
1821                                           const DITemplateValueParameter *N,
1822                                           TypePrinting *TypePrinter,
1823                                           SlotTracker *Machine,
1824                                           const Module *Context) {
1825   Out << "!DITemplateValueParameter(";
1826   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1827   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
1828     Printer.printTag(N);
1829   Printer.printString("name", N->getName());
1830   Printer.printMetadata("type", N->getRawType());
1831   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
1832   Out << ")";
1833 }
1834 
writeDIGlobalVariable(raw_ostream & Out,const DIGlobalVariable * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1835 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
1836                                   TypePrinting *TypePrinter,
1837                                   SlotTracker *Machine, const Module *Context) {
1838   Out << "!DIGlobalVariable(";
1839   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1840   Printer.printString("name", N->getName());
1841   Printer.printString("linkageName", N->getLinkageName());
1842   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1843   Printer.printMetadata("file", N->getRawFile());
1844   Printer.printInt("line", N->getLine());
1845   Printer.printMetadata("type", N->getRawType());
1846   Printer.printBool("isLocal", N->isLocalToUnit());
1847   Printer.printBool("isDefinition", N->isDefinition());
1848   Printer.printMetadata("variable", N->getRawVariable());
1849   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
1850   Out << ")";
1851 }
1852 
writeDILocalVariable(raw_ostream & Out,const DILocalVariable * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1853 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
1854                                  TypePrinting *TypePrinter,
1855                                  SlotTracker *Machine, const Module *Context) {
1856   Out << "!DILocalVariable(";
1857   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1858   Printer.printString("name", N->getName());
1859   Printer.printInt("arg", N->getArg());
1860   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1861   Printer.printMetadata("file", N->getRawFile());
1862   Printer.printInt("line", N->getLine());
1863   Printer.printMetadata("type", N->getRawType());
1864   Printer.printDIFlags("flags", N->getFlags());
1865   Out << ")";
1866 }
1867 
writeDIExpression(raw_ostream & Out,const DIExpression * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1868 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
1869                               TypePrinting *TypePrinter, SlotTracker *Machine,
1870                               const Module *Context) {
1871   Out << "!DIExpression(";
1872   FieldSeparator FS;
1873   if (N->isValid()) {
1874     for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
1875       const char *OpStr = dwarf::OperationEncodingString(I->getOp());
1876       assert(OpStr && "Expected valid opcode");
1877 
1878       Out << FS << OpStr;
1879       for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
1880         Out << FS << I->getArg(A);
1881     }
1882   } else {
1883     for (const auto &I : N->getElements())
1884       Out << FS << I;
1885   }
1886   Out << ")";
1887 }
1888 
writeDIObjCProperty(raw_ostream & Out,const DIObjCProperty * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1889 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
1890                                 TypePrinting *TypePrinter, SlotTracker *Machine,
1891                                 const Module *Context) {
1892   Out << "!DIObjCProperty(";
1893   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1894   Printer.printString("name", N->getName());
1895   Printer.printMetadata("file", N->getRawFile());
1896   Printer.printInt("line", N->getLine());
1897   Printer.printString("setter", N->getSetterName());
1898   Printer.printString("getter", N->getGetterName());
1899   Printer.printInt("attributes", N->getAttributes());
1900   Printer.printMetadata("type", N->getRawType());
1901   Out << ")";
1902 }
1903 
writeDIImportedEntity(raw_ostream & Out,const DIImportedEntity * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1904 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
1905                                   TypePrinting *TypePrinter,
1906                                   SlotTracker *Machine, const Module *Context) {
1907   Out << "!DIImportedEntity(";
1908   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1909   Printer.printTag(N);
1910   Printer.printString("name", N->getName());
1911   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1912   Printer.printMetadata("entity", N->getRawEntity());
1913   Printer.printInt("line", N->getLine());
1914   Out << ")";
1915 }
1916 
1917 
WriteMDNodeBodyInternal(raw_ostream & Out,const MDNode * Node,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1918 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1919                                     TypePrinting *TypePrinter,
1920                                     SlotTracker *Machine,
1921                                     const Module *Context) {
1922   if (Node->isDistinct())
1923     Out << "distinct ";
1924   else if (Node->isTemporary())
1925     Out << "<temporary!> "; // Handle broken code.
1926 
1927   switch (Node->getMetadataID()) {
1928   default:
1929     llvm_unreachable("Expected uniquable MDNode");
1930 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1931   case Metadata::CLASS##Kind:                                                  \
1932     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
1933     break;
1934 #include "llvm/IR/Metadata.def"
1935   }
1936 }
1937 
1938 // Full implementation of printing a Value as an operand with support for
1939 // TypePrinting, etc.
WriteAsOperandInternal(raw_ostream & Out,const Value * V,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1940 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1941                                    TypePrinting *TypePrinter,
1942                                    SlotTracker *Machine,
1943                                    const Module *Context) {
1944   if (V->hasName()) {
1945     PrintLLVMName(Out, V);
1946     return;
1947   }
1948 
1949   const Constant *CV = dyn_cast<Constant>(V);
1950   if (CV && !isa<GlobalValue>(CV)) {
1951     assert(TypePrinter && "Constants require TypePrinting!");
1952     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1953     return;
1954   }
1955 
1956   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1957     Out << "asm ";
1958     if (IA->hasSideEffects())
1959       Out << "sideeffect ";
1960     if (IA->isAlignStack())
1961       Out << "alignstack ";
1962     // We don't emit the AD_ATT dialect as it's the assumed default.
1963     if (IA->getDialect() == InlineAsm::AD_Intel)
1964       Out << "inteldialect ";
1965     Out << '"';
1966     PrintEscapedString(IA->getAsmString(), Out);
1967     Out << "\", \"";
1968     PrintEscapedString(IA->getConstraintString(), Out);
1969     Out << '"';
1970     return;
1971   }
1972 
1973   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
1974     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
1975                            Context, /* FromValue */ true);
1976     return;
1977   }
1978 
1979   char Prefix = '%';
1980   int Slot;
1981   // If we have a SlotTracker, use it.
1982   if (Machine) {
1983     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1984       Slot = Machine->getGlobalSlot(GV);
1985       Prefix = '@';
1986     } else {
1987       Slot = Machine->getLocalSlot(V);
1988 
1989       // If the local value didn't succeed, then we may be referring to a value
1990       // from a different function.  Translate it, as this can happen when using
1991       // address of blocks.
1992       if (Slot == -1)
1993         if ((Machine = createSlotTracker(V))) {
1994           Slot = Machine->getLocalSlot(V);
1995           delete Machine;
1996         }
1997     }
1998   } else if ((Machine = createSlotTracker(V))) {
1999     // Otherwise, create one to get the # and then destroy it.
2000     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2001       Slot = Machine->getGlobalSlot(GV);
2002       Prefix = '@';
2003     } else {
2004       Slot = Machine->getLocalSlot(V);
2005     }
2006     delete Machine;
2007     Machine = nullptr;
2008   } else {
2009     Slot = -1;
2010   }
2011 
2012   if (Slot != -1)
2013     Out << Prefix << Slot;
2014   else
2015     Out << "<badref>";
2016 }
2017 
WriteAsOperandInternal(raw_ostream & Out,const Metadata * MD,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context,bool FromValue)2018 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2019                                    TypePrinting *TypePrinter,
2020                                    SlotTracker *Machine, const Module *Context,
2021                                    bool FromValue) {
2022   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2023     std::unique_ptr<SlotTracker> MachineStorage;
2024     if (!Machine) {
2025       MachineStorage = make_unique<SlotTracker>(Context);
2026       Machine = MachineStorage.get();
2027     }
2028     int Slot = Machine->getMetadataSlot(N);
2029     if (Slot == -1)
2030       // Give the pointer value instead of "badref", since this comes up all
2031       // the time when debugging.
2032       Out << "<" << N << ">";
2033     else
2034       Out << '!' << Slot;
2035     return;
2036   }
2037 
2038   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2039     Out << "!\"";
2040     PrintEscapedString(MDS->getString(), Out);
2041     Out << '"';
2042     return;
2043   }
2044 
2045   auto *V = cast<ValueAsMetadata>(MD);
2046   assert(TypePrinter && "TypePrinter required for metadata values");
2047   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2048          "Unexpected function-local metadata outside of value argument");
2049 
2050   TypePrinter->print(V->getValue()->getType(), Out);
2051   Out << ' ';
2052   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2053 }
2054 
2055 namespace {
2056 class AssemblyWriter {
2057   formatted_raw_ostream &Out;
2058   const Module *TheModule;
2059   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2060   SlotTracker &Machine;
2061   TypePrinting TypePrinter;
2062   AssemblyAnnotationWriter *AnnotationWriter;
2063   SetVector<const Comdat *> Comdats;
2064   bool IsForDebug;
2065   bool ShouldPreserveUseListOrder;
2066   UseListOrderStack UseListOrders;
2067   SmallVector<StringRef, 8> MDNames;
2068 
2069 public:
2070   /// Construct an AssemblyWriter with an external SlotTracker
2071   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2072                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2073                  bool ShouldPreserveUseListOrder = false);
2074 
2075   void printMDNodeBody(const MDNode *MD);
2076   void printNamedMDNode(const NamedMDNode *NMD);
2077 
2078   void printModule(const Module *M);
2079 
2080   void writeOperand(const Value *Op, bool PrintType);
2081   void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
2082   void writeOperandBundles(ImmutableCallSite CS);
2083   void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
2084   void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2085                           AtomicOrdering FailureOrdering,
2086                           SynchronizationScope SynchScope);
2087 
2088   void writeAllMDNodes();
2089   void writeMDNode(unsigned Slot, const MDNode *Node);
2090   void writeAllAttributeGroups();
2091 
2092   void printTypeIdentities();
2093   void printGlobal(const GlobalVariable *GV);
2094   void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2095   void printComdat(const Comdat *C);
2096   void printFunction(const Function *F);
2097   void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
2098   void printBasicBlock(const BasicBlock *BB);
2099   void printInstructionLine(const Instruction &I);
2100   void printInstruction(const Instruction &I);
2101 
2102   void printUseListOrder(const UseListOrder &Order);
2103   void printUseLists(const Function *F);
2104 
2105 private:
2106   /// \brief Print out metadata attachments.
2107   void printMetadataAttachments(
2108       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2109       StringRef Separator);
2110 
2111   // printInfoComment - Print a little comment after the instruction indicating
2112   // which slot it occupies.
2113   void printInfoComment(const Value &V);
2114 
2115   // printGCRelocateComment - print comment after call to the gc.relocate
2116   // intrinsic indicating base and derived pointer names.
2117   void printGCRelocateComment(const GCRelocateInst &Relocate);
2118 };
2119 } // namespace
2120 
AssemblyWriter(formatted_raw_ostream & o,SlotTracker & Mac,const Module * M,AssemblyAnnotationWriter * AAW,bool IsForDebug,bool ShouldPreserveUseListOrder)2121 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2122                                const Module *M, AssemblyAnnotationWriter *AAW,
2123                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2124     : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
2125       IsForDebug(IsForDebug),
2126       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2127   if (!TheModule)
2128     return;
2129   TypePrinter.incorporateTypes(*TheModule);
2130   for (const GlobalObject &GO : TheModule->global_objects())
2131     if (const Comdat *C = GO.getComdat())
2132       Comdats.insert(C);
2133 }
2134 
writeOperand(const Value * Operand,bool PrintType)2135 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2136   if (!Operand) {
2137     Out << "<null operand!>";
2138     return;
2139   }
2140   if (PrintType) {
2141     TypePrinter.print(Operand->getType(), Out);
2142     Out << ' ';
2143   }
2144   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2145 }
2146 
writeAtomic(AtomicOrdering Ordering,SynchronizationScope SynchScope)2147 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
2148                                  SynchronizationScope SynchScope) {
2149   if (Ordering == AtomicOrdering::NotAtomic)
2150     return;
2151 
2152   switch (SynchScope) {
2153   case SingleThread: Out << " singlethread"; break;
2154   case CrossThread: break;
2155   }
2156 
2157   Out << " " << toIRString(Ordering);
2158 }
2159 
writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope)2160 void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2161                                         AtomicOrdering FailureOrdering,
2162                                         SynchronizationScope SynchScope) {
2163   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2164          FailureOrdering != AtomicOrdering::NotAtomic);
2165 
2166   switch (SynchScope) {
2167   case SingleThread: Out << " singlethread"; break;
2168   case CrossThread: break;
2169   }
2170 
2171   Out << " " << toIRString(SuccessOrdering);
2172   Out << " " << toIRString(FailureOrdering);
2173 }
2174 
writeParamOperand(const Value * Operand,AttributeSet Attrs,unsigned Idx)2175 void AssemblyWriter::writeParamOperand(const Value *Operand,
2176                                        AttributeSet Attrs, unsigned Idx) {
2177   if (!Operand) {
2178     Out << "<null operand!>";
2179     return;
2180   }
2181 
2182   // Print the type
2183   TypePrinter.print(Operand->getType(), Out);
2184   // Print parameter attributes list
2185   if (Attrs.hasAttributes(Idx))
2186     Out << ' ' << Attrs.getAsString(Idx);
2187   Out << ' ';
2188   // Print the operand
2189   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2190 }
2191 
writeOperandBundles(ImmutableCallSite CS)2192 void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
2193   if (!CS.hasOperandBundles())
2194     return;
2195 
2196   Out << " [ ";
2197 
2198   bool FirstBundle = true;
2199   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2200     OperandBundleUse BU = CS.getOperandBundleAt(i);
2201 
2202     if (!FirstBundle)
2203       Out << ", ";
2204     FirstBundle = false;
2205 
2206     Out << '"';
2207     PrintEscapedString(BU.getTagName(), Out);
2208     Out << '"';
2209 
2210     Out << '(';
2211 
2212     bool FirstInput = true;
2213     for (const auto &Input : BU.Inputs) {
2214       if (!FirstInput)
2215         Out << ", ";
2216       FirstInput = false;
2217 
2218       TypePrinter.print(Input->getType(), Out);
2219       Out << " ";
2220       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2221     }
2222 
2223     Out << ')';
2224   }
2225 
2226   Out << " ]";
2227 }
2228 
printModule(const Module * M)2229 void AssemblyWriter::printModule(const Module *M) {
2230   Machine.initialize();
2231 
2232   if (ShouldPreserveUseListOrder)
2233     UseListOrders = predictUseListOrder(M);
2234 
2235   if (!M->getModuleIdentifier().empty() &&
2236       // Don't print the ID if it will start a new line (which would
2237       // require a comment char before it).
2238       M->getModuleIdentifier().find('\n') == std::string::npos)
2239     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2240 
2241   if (!M->getSourceFileName().empty()) {
2242     Out << "source_filename = \"";
2243     PrintEscapedString(M->getSourceFileName(), Out);
2244     Out << "\"\n";
2245   }
2246 
2247   const std::string &DL = M->getDataLayoutStr();
2248   if (!DL.empty())
2249     Out << "target datalayout = \"" << DL << "\"\n";
2250   if (!M->getTargetTriple().empty())
2251     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2252 
2253   if (!M->getModuleInlineAsm().empty()) {
2254     Out << '\n';
2255 
2256     // Split the string into lines, to make it easier to read the .ll file.
2257     StringRef Asm = M->getModuleInlineAsm();
2258     do {
2259       StringRef Front;
2260       std::tie(Front, Asm) = Asm.split('\n');
2261 
2262       // We found a newline, print the portion of the asm string from the
2263       // last newline up to this newline.
2264       Out << "module asm \"";
2265       PrintEscapedString(Front, Out);
2266       Out << "\"\n";
2267     } while (!Asm.empty());
2268   }
2269 
2270   printTypeIdentities();
2271 
2272   // Output all comdats.
2273   if (!Comdats.empty())
2274     Out << '\n';
2275   for (const Comdat *C : Comdats) {
2276     printComdat(C);
2277     if (C != Comdats.back())
2278       Out << '\n';
2279   }
2280 
2281   // Output all globals.
2282   if (!M->global_empty()) Out << '\n';
2283   for (const GlobalVariable &GV : M->globals()) {
2284     printGlobal(&GV); Out << '\n';
2285   }
2286 
2287   // Output all aliases.
2288   if (!M->alias_empty()) Out << "\n";
2289   for (const GlobalAlias &GA : M->aliases())
2290     printIndirectSymbol(&GA);
2291 
2292   // Output all ifuncs.
2293   if (!M->ifunc_empty()) Out << "\n";
2294   for (const GlobalIFunc &GI : M->ifuncs())
2295     printIndirectSymbol(&GI);
2296 
2297   // Output global use-lists.
2298   printUseLists(nullptr);
2299 
2300   // Output all of the functions.
2301   for (const Function &F : *M)
2302     printFunction(&F);
2303   assert(UseListOrders.empty() && "All use-lists should have been consumed");
2304 
2305   // Output all attribute groups.
2306   if (!Machine.as_empty()) {
2307     Out << '\n';
2308     writeAllAttributeGroups();
2309   }
2310 
2311   // Output named metadata.
2312   if (!M->named_metadata_empty()) Out << '\n';
2313 
2314   for (const NamedMDNode &Node : M->named_metadata())
2315     printNamedMDNode(&Node);
2316 
2317   // Output metadata.
2318   if (!Machine.mdn_empty()) {
2319     Out << '\n';
2320     writeAllMDNodes();
2321   }
2322 }
2323 
printMetadataIdentifier(StringRef Name,formatted_raw_ostream & Out)2324 static void printMetadataIdentifier(StringRef Name,
2325                                     formatted_raw_ostream &Out) {
2326   if (Name.empty()) {
2327     Out << "<empty name> ";
2328   } else {
2329     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
2330         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
2331       Out << Name[0];
2332     else
2333       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
2334     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
2335       unsigned char C = Name[i];
2336       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
2337           C == '.' || C == '_')
2338         Out << C;
2339       else
2340         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
2341     }
2342   }
2343 }
2344 
printNamedMDNode(const NamedMDNode * NMD)2345 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
2346   Out << '!';
2347   printMetadataIdentifier(NMD->getName(), Out);
2348   Out << " = !{";
2349   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2350     if (i)
2351       Out << ", ";
2352     int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
2353     if (Slot == -1)
2354       Out << "<badref>";
2355     else
2356       Out << '!' << Slot;
2357   }
2358   Out << "}\n";
2359 }
2360 
getLinkagePrintName(GlobalValue::LinkageTypes LT)2361 static const char *getLinkagePrintName(GlobalValue::LinkageTypes LT) {
2362   switch (LT) {
2363   case GlobalValue::ExternalLinkage:
2364     return "";
2365   case GlobalValue::PrivateLinkage:
2366     return "private ";
2367   case GlobalValue::InternalLinkage:
2368     return "internal ";
2369   case GlobalValue::LinkOnceAnyLinkage:
2370     return "linkonce ";
2371   case GlobalValue::LinkOnceODRLinkage:
2372     return "linkonce_odr ";
2373   case GlobalValue::WeakAnyLinkage:
2374     return "weak ";
2375   case GlobalValue::WeakODRLinkage:
2376     return "weak_odr ";
2377   case GlobalValue::CommonLinkage:
2378     return "common ";
2379   case GlobalValue::AppendingLinkage:
2380     return "appending ";
2381   case GlobalValue::ExternalWeakLinkage:
2382     return "extern_weak ";
2383   case GlobalValue::AvailableExternallyLinkage:
2384     return "available_externally ";
2385   }
2386   llvm_unreachable("invalid linkage");
2387 }
2388 
PrintVisibility(GlobalValue::VisibilityTypes Vis,formatted_raw_ostream & Out)2389 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
2390                             formatted_raw_ostream &Out) {
2391   switch (Vis) {
2392   case GlobalValue::DefaultVisibility: break;
2393   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
2394   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
2395   }
2396 }
2397 
PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,formatted_raw_ostream & Out)2398 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
2399                                  formatted_raw_ostream &Out) {
2400   switch (SCT) {
2401   case GlobalValue::DefaultStorageClass: break;
2402   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
2403   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
2404   }
2405 }
2406 
PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,formatted_raw_ostream & Out)2407 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
2408                                   formatted_raw_ostream &Out) {
2409   switch (TLM) {
2410     case GlobalVariable::NotThreadLocal:
2411       break;
2412     case GlobalVariable::GeneralDynamicTLSModel:
2413       Out << "thread_local ";
2414       break;
2415     case GlobalVariable::LocalDynamicTLSModel:
2416       Out << "thread_local(localdynamic) ";
2417       break;
2418     case GlobalVariable::InitialExecTLSModel:
2419       Out << "thread_local(initialexec) ";
2420       break;
2421     case GlobalVariable::LocalExecTLSModel:
2422       Out << "thread_local(localexec) ";
2423       break;
2424   }
2425 }
2426 
getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)2427 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
2428   switch (UA) {
2429   case GlobalVariable::UnnamedAddr::None:
2430     return "";
2431   case GlobalVariable::UnnamedAddr::Local:
2432     return "local_unnamed_addr";
2433   case GlobalVariable::UnnamedAddr::Global:
2434     return "unnamed_addr";
2435   }
2436   llvm_unreachable("Unknown UnnamedAddr");
2437 }
2438 
maybePrintComdat(formatted_raw_ostream & Out,const GlobalObject & GO)2439 static void maybePrintComdat(formatted_raw_ostream &Out,
2440                              const GlobalObject &GO) {
2441   const Comdat *C = GO.getComdat();
2442   if (!C)
2443     return;
2444 
2445   if (isa<GlobalVariable>(GO))
2446     Out << ',';
2447   Out << " comdat";
2448 
2449   if (GO.getName() == C->getName())
2450     return;
2451 
2452   Out << '(';
2453   PrintLLVMName(Out, C->getName(), ComdatPrefix);
2454   Out << ')';
2455 }
2456 
printGlobal(const GlobalVariable * GV)2457 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
2458   if (GV->isMaterializable())
2459     Out << "; Materializable\n";
2460 
2461   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
2462   Out << " = ";
2463 
2464   if (!GV->hasInitializer() && GV->hasExternalLinkage())
2465     Out << "external ";
2466 
2467   Out << getLinkagePrintName(GV->getLinkage());
2468   PrintVisibility(GV->getVisibility(), Out);
2469   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
2470   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
2471   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
2472   if (!UA.empty())
2473       Out << UA << ' ';
2474 
2475   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
2476     Out << "addrspace(" << AddressSpace << ") ";
2477   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
2478   Out << (GV->isConstant() ? "constant " : "global ");
2479   TypePrinter.print(GV->getValueType(), Out);
2480 
2481   if (GV->hasInitializer()) {
2482     Out << ' ';
2483     writeOperand(GV->getInitializer(), false);
2484   }
2485 
2486   if (GV->hasSection()) {
2487     Out << ", section \"";
2488     PrintEscapedString(GV->getSection(), Out);
2489     Out << '"';
2490   }
2491   maybePrintComdat(Out, *GV);
2492   if (GV->getAlignment())
2493     Out << ", align " << GV->getAlignment();
2494 
2495   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2496   GV->getAllMetadata(MDs);
2497   printMetadataAttachments(MDs, ", ");
2498 
2499   printInfoComment(*GV);
2500 }
2501 
printIndirectSymbol(const GlobalIndirectSymbol * GIS)2502 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
2503   if (GIS->isMaterializable())
2504     Out << "; Materializable\n";
2505 
2506   WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
2507   Out << " = ";
2508 
2509   Out << getLinkagePrintName(GIS->getLinkage());
2510   PrintVisibility(GIS->getVisibility(), Out);
2511   PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
2512   PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
2513   StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
2514   if (!UA.empty())
2515       Out << UA << ' ';
2516 
2517   if (isa<GlobalAlias>(GIS))
2518     Out << "alias ";
2519   else if (isa<GlobalIFunc>(GIS))
2520     Out << "ifunc ";
2521   else
2522     llvm_unreachable("Not an alias or ifunc!");
2523 
2524   TypePrinter.print(GIS->getValueType(), Out);
2525 
2526   Out << ", ";
2527 
2528   const Constant *IS = GIS->getIndirectSymbol();
2529 
2530   if (!IS) {
2531     TypePrinter.print(GIS->getType(), Out);
2532     Out << " <<NULL ALIASEE>>";
2533   } else {
2534     writeOperand(IS, !isa<ConstantExpr>(IS));
2535   }
2536 
2537   printInfoComment(*GIS);
2538   Out << '\n';
2539 }
2540 
printComdat(const Comdat * C)2541 void AssemblyWriter::printComdat(const Comdat *C) {
2542   C->print(Out);
2543 }
2544 
printTypeIdentities()2545 void AssemblyWriter::printTypeIdentities() {
2546   if (TypePrinter.NumberedTypes.empty() &&
2547       TypePrinter.NamedTypes.empty())
2548     return;
2549 
2550   Out << '\n';
2551 
2552   // We know all the numbers that each type is used and we know that it is a
2553   // dense assignment.  Convert the map to an index table.
2554   std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
2555   for (DenseMap<StructType*, unsigned>::iterator I =
2556        TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
2557        I != E; ++I) {
2558     assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
2559     NumberedTypes[I->second] = I->first;
2560   }
2561 
2562   // Emit all numbered types.
2563   for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
2564     Out << '%' << i << " = type ";
2565 
2566     // Make sure we print out at least one level of the type structure, so
2567     // that we do not get %2 = type %2
2568     TypePrinter.printStructBody(NumberedTypes[i], Out);
2569     Out << '\n';
2570   }
2571 
2572   for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
2573     PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
2574     Out << " = type ";
2575 
2576     // Make sure we print out at least one level of the type structure, so
2577     // that we do not get %FILE = type %FILE
2578     TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
2579     Out << '\n';
2580   }
2581 }
2582 
2583 /// printFunction - Print all aspects of a function.
2584 ///
printFunction(const Function * F)2585 void AssemblyWriter::printFunction(const Function *F) {
2586   // Print out the return type and name.
2587   Out << '\n';
2588 
2589   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
2590 
2591   if (F->isMaterializable())
2592     Out << "; Materializable\n";
2593 
2594   const AttributeSet &Attrs = F->getAttributes();
2595   if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
2596     AttributeSet AS = Attrs.getFnAttributes();
2597     std::string AttrStr;
2598 
2599     unsigned Idx = 0;
2600     for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
2601       if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
2602         break;
2603 
2604     for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
2605          I != E; ++I) {
2606       Attribute Attr = *I;
2607       if (!Attr.isStringAttribute()) {
2608         if (!AttrStr.empty()) AttrStr += ' ';
2609         AttrStr += Attr.getAsString();
2610       }
2611     }
2612 
2613     if (!AttrStr.empty())
2614       Out << "; Function Attrs: " << AttrStr << '\n';
2615   }
2616 
2617   Machine.incorporateFunction(F);
2618 
2619   if (F->isDeclaration()) {
2620     Out << "declare";
2621     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2622     F->getAllMetadata(MDs);
2623     printMetadataAttachments(MDs, " ");
2624     Out << ' ';
2625   } else
2626     Out << "define ";
2627 
2628   Out << getLinkagePrintName(F->getLinkage());
2629   PrintVisibility(F->getVisibility(), Out);
2630   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
2631 
2632   // Print the calling convention.
2633   if (F->getCallingConv() != CallingConv::C) {
2634     PrintCallingConv(F->getCallingConv(), Out);
2635     Out << " ";
2636   }
2637 
2638   FunctionType *FT = F->getFunctionType();
2639   if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
2640     Out <<  Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
2641   TypePrinter.print(F->getReturnType(), Out);
2642   Out << ' ';
2643   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
2644   Out << '(';
2645 
2646   // Loop over the arguments, printing them...
2647   if (F->isDeclaration() && !IsForDebug) {
2648     // We're only interested in the type here - don't print argument names.
2649     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
2650       // Insert commas as we go... the first arg doesn't get a comma
2651       if (I)
2652         Out << ", ";
2653       // Output type...
2654       TypePrinter.print(FT->getParamType(I), Out);
2655 
2656       if (Attrs.hasAttributes(I + 1))
2657         Out << ' ' << Attrs.getAsString(I + 1);
2658     }
2659   } else {
2660     // The arguments are meaningful here, print them in detail.
2661     unsigned Idx = 1;
2662     for (const Argument &Arg : F->args()) {
2663       // Insert commas as we go... the first arg doesn't get a comma
2664       if (Idx != 1)
2665         Out << ", ";
2666       printArgument(&Arg, Attrs, Idx++);
2667     }
2668   }
2669 
2670   // Finish printing arguments...
2671   if (FT->isVarArg()) {
2672     if (FT->getNumParams()) Out << ", ";
2673     Out << "...";  // Output varargs portion of signature!
2674   }
2675   Out << ')';
2676   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
2677   if (!UA.empty())
2678     Out << ' ' << UA;
2679   if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
2680     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
2681   if (F->hasSection()) {
2682     Out << " section \"";
2683     PrintEscapedString(F->getSection(), Out);
2684     Out << '"';
2685   }
2686   maybePrintComdat(Out, *F);
2687   if (F->getAlignment())
2688     Out << " align " << F->getAlignment();
2689   if (F->hasGC())
2690     Out << " gc \"" << F->getGC() << '"';
2691   if (F->hasPrefixData()) {
2692     Out << " prefix ";
2693     writeOperand(F->getPrefixData(), true);
2694   }
2695   if (F->hasPrologueData()) {
2696     Out << " prologue ";
2697     writeOperand(F->getPrologueData(), true);
2698   }
2699   if (F->hasPersonalityFn()) {
2700     Out << " personality ";
2701     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
2702   }
2703 
2704   if (F->isDeclaration()) {
2705     Out << '\n';
2706   } else {
2707     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2708     F->getAllMetadata(MDs);
2709     printMetadataAttachments(MDs, " ");
2710 
2711     Out << " {";
2712     // Output all of the function's basic blocks.
2713     for (const BasicBlock &BB : *F)
2714       printBasicBlock(&BB);
2715 
2716     // Output the function's use-lists.
2717     printUseLists(F);
2718 
2719     Out << "}\n";
2720   }
2721 
2722   Machine.purgeFunction();
2723 }
2724 
2725 /// printArgument - This member is called for every argument that is passed into
2726 /// the function.  Simply print it out
2727 ///
printArgument(const Argument * Arg,AttributeSet Attrs,unsigned Idx)2728 void AssemblyWriter::printArgument(const Argument *Arg,
2729                                    AttributeSet Attrs, unsigned Idx) {
2730   // Output type...
2731   TypePrinter.print(Arg->getType(), Out);
2732 
2733   // Output parameter attributes list
2734   if (Attrs.hasAttributes(Idx))
2735     Out << ' ' << Attrs.getAsString(Idx);
2736 
2737   // Output name, if available...
2738   if (Arg->hasName()) {
2739     Out << ' ';
2740     PrintLLVMName(Out, Arg);
2741   }
2742 }
2743 
2744 /// printBasicBlock - This member is called for each basic block in a method.
2745 ///
printBasicBlock(const BasicBlock * BB)2746 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
2747   if (BB->hasName()) {              // Print out the label if it exists...
2748     Out << "\n";
2749     PrintLLVMName(Out, BB->getName(), LabelPrefix);
2750     Out << ':';
2751   } else if (!BB->use_empty()) {      // Don't print block # of no uses...
2752     Out << "\n; <label>:";
2753     int Slot = Machine.getLocalSlot(BB);
2754     if (Slot != -1)
2755       Out << Slot << ":";
2756     else
2757       Out << "<badref>";
2758   }
2759 
2760   if (!BB->getParent()) {
2761     Out.PadToColumn(50);
2762     Out << "; Error: Block without parent!";
2763   } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
2764     // Output predecessors for the block.
2765     Out.PadToColumn(50);
2766     Out << ";";
2767     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
2768 
2769     if (PI == PE) {
2770       Out << " No predecessors!";
2771     } else {
2772       Out << " preds = ";
2773       writeOperand(*PI, false);
2774       for (++PI; PI != PE; ++PI) {
2775         Out << ", ";
2776         writeOperand(*PI, false);
2777       }
2778     }
2779   }
2780 
2781   Out << "\n";
2782 
2783   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
2784 
2785   // Output all of the instructions in the basic block...
2786   for (const Instruction &I : *BB) {
2787     printInstructionLine(I);
2788   }
2789 
2790   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
2791 }
2792 
2793 /// printInstructionLine - Print an instruction and a newline character.
printInstructionLine(const Instruction & I)2794 void AssemblyWriter::printInstructionLine(const Instruction &I) {
2795   printInstruction(I);
2796   Out << '\n';
2797 }
2798 
2799 /// printGCRelocateComment - print comment after call to the gc.relocate
2800 /// intrinsic indicating base and derived pointer names.
printGCRelocateComment(const GCRelocateInst & Relocate)2801 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
2802   Out << " ; (";
2803   writeOperand(Relocate.getBasePtr(), false);
2804   Out << ", ";
2805   writeOperand(Relocate.getDerivedPtr(), false);
2806   Out << ")";
2807 }
2808 
2809 /// printInfoComment - Print a little comment after the instruction indicating
2810 /// which slot it occupies.
2811 ///
printInfoComment(const Value & V)2812 void AssemblyWriter::printInfoComment(const Value &V) {
2813   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
2814     printGCRelocateComment(*Relocate);
2815 
2816   if (AnnotationWriter)
2817     AnnotationWriter->printInfoComment(V, Out);
2818 }
2819 
2820 // This member is called for each Instruction in a function..
printInstruction(const Instruction & I)2821 void AssemblyWriter::printInstruction(const Instruction &I) {
2822   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
2823 
2824   // Print out indentation for an instruction.
2825   Out << "  ";
2826 
2827   // Print out name if it exists...
2828   if (I.hasName()) {
2829     PrintLLVMName(Out, &I);
2830     Out << " = ";
2831   } else if (!I.getType()->isVoidTy()) {
2832     // Print out the def slot taken.
2833     int SlotNum = Machine.getLocalSlot(&I);
2834     if (SlotNum == -1)
2835       Out << "<badref> = ";
2836     else
2837       Out << '%' << SlotNum << " = ";
2838   }
2839 
2840   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2841     if (CI->isMustTailCall())
2842       Out << "musttail ";
2843     else if (CI->isTailCall())
2844       Out << "tail ";
2845     else if (CI->isNoTailCall())
2846       Out << "notail ";
2847   }
2848 
2849   // Print out the opcode...
2850   Out << I.getOpcodeName();
2851 
2852   // If this is an atomic load or store, print out the atomic marker.
2853   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
2854       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
2855     Out << " atomic";
2856 
2857   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
2858     Out << " weak";
2859 
2860   // If this is a volatile operation, print out the volatile marker.
2861   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
2862       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
2863       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
2864       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
2865     Out << " volatile";
2866 
2867   // Print out optimization information.
2868   WriteOptimizationInfo(Out, &I);
2869 
2870   // Print out the compare instruction predicates
2871   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
2872     Out << ' ' << getPredicateText(CI->getPredicate());
2873 
2874   // Print out the atomicrmw operation
2875   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
2876     writeAtomicRMWOperation(Out, RMWI->getOperation());
2877 
2878   // Print out the type of the operands...
2879   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
2880 
2881   // Special case conditional branches to swizzle the condition out to the front
2882   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
2883     const BranchInst &BI(cast<BranchInst>(I));
2884     Out << ' ';
2885     writeOperand(BI.getCondition(), true);
2886     Out << ", ";
2887     writeOperand(BI.getSuccessor(0), true);
2888     Out << ", ";
2889     writeOperand(BI.getSuccessor(1), true);
2890 
2891   } else if (isa<SwitchInst>(I)) {
2892     const SwitchInst& SI(cast<SwitchInst>(I));
2893     // Special case switch instruction to get formatting nice and correct.
2894     Out << ' ';
2895     writeOperand(SI.getCondition(), true);
2896     Out << ", ";
2897     writeOperand(SI.getDefaultDest(), true);
2898     Out << " [";
2899     for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2900          i != e; ++i) {
2901       Out << "\n    ";
2902       writeOperand(i.getCaseValue(), true);
2903       Out << ", ";
2904       writeOperand(i.getCaseSuccessor(), true);
2905     }
2906     Out << "\n  ]";
2907   } else if (isa<IndirectBrInst>(I)) {
2908     // Special case indirectbr instruction to get formatting nice and correct.
2909     Out << ' ';
2910     writeOperand(Operand, true);
2911     Out << ", [";
2912 
2913     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2914       if (i != 1)
2915         Out << ", ";
2916       writeOperand(I.getOperand(i), true);
2917     }
2918     Out << ']';
2919   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
2920     Out << ' ';
2921     TypePrinter.print(I.getType(), Out);
2922     Out << ' ';
2923 
2924     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
2925       if (op) Out << ", ";
2926       Out << "[ ";
2927       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
2928       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
2929     }
2930   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
2931     Out << ' ';
2932     writeOperand(I.getOperand(0), true);
2933     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
2934       Out << ", " << *i;
2935   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
2936     Out << ' ';
2937     writeOperand(I.getOperand(0), true); Out << ", ";
2938     writeOperand(I.getOperand(1), true);
2939     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
2940       Out << ", " << *i;
2941   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
2942     Out << ' ';
2943     TypePrinter.print(I.getType(), Out);
2944     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
2945       Out << '\n';
2946 
2947     if (LPI->isCleanup())
2948       Out << "          cleanup";
2949 
2950     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
2951       if (i != 0 || LPI->isCleanup()) Out << "\n";
2952       if (LPI->isCatch(i))
2953         Out << "          catch ";
2954       else
2955         Out << "          filter ";
2956 
2957       writeOperand(LPI->getClause(i), true);
2958     }
2959   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
2960     Out << " within ";
2961     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
2962     Out << " [";
2963     unsigned Op = 0;
2964     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
2965       if (Op > 0)
2966         Out << ", ";
2967       writeOperand(PadBB, /*PrintType=*/true);
2968       ++Op;
2969     }
2970     Out << "] unwind ";
2971     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
2972       writeOperand(UnwindDest, /*PrintType=*/true);
2973     else
2974       Out << "to caller";
2975   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
2976     Out << " within ";
2977     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
2978     Out << " [";
2979     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
2980          ++Op) {
2981       if (Op > 0)
2982         Out << ", ";
2983       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
2984     }
2985     Out << ']';
2986   } else if (isa<ReturnInst>(I) && !Operand) {
2987     Out << " void";
2988   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
2989     Out << " from ";
2990     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
2991 
2992     Out << " to ";
2993     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
2994   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
2995     Out << " from ";
2996     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
2997 
2998     Out << " unwind ";
2999     if (CRI->hasUnwindDest())
3000       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3001     else
3002       Out << "to caller";
3003   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3004     // Print the calling convention being used.
3005     if (CI->getCallingConv() != CallingConv::C) {
3006       Out << " ";
3007       PrintCallingConv(CI->getCallingConv(), Out);
3008     }
3009 
3010     Operand = CI->getCalledValue();
3011     FunctionType *FTy = cast<FunctionType>(CI->getFunctionType());
3012     Type *RetTy = FTy->getReturnType();
3013     const AttributeSet &PAL = CI->getAttributes();
3014 
3015     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
3016       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
3017 
3018     // If possible, print out the short form of the call instruction.  We can
3019     // only do this if the first argument is a pointer to a nonvararg function,
3020     // and if the return type is not a pointer to a function.
3021     //
3022     Out << ' ';
3023     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3024     Out << ' ';
3025     writeOperand(Operand, false);
3026     Out << '(';
3027     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3028       if (op > 0)
3029         Out << ", ";
3030       writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
3031     }
3032 
3033     // Emit an ellipsis if this is a musttail call in a vararg function.  This
3034     // is only to aid readability, musttail calls forward varargs by default.
3035     if (CI->isMustTailCall() && CI->getParent() &&
3036         CI->getParent()->getParent() &&
3037         CI->getParent()->getParent()->isVarArg())
3038       Out << ", ...";
3039 
3040     Out << ')';
3041     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
3042       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3043 
3044     writeOperandBundles(CI);
3045 
3046   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3047     Operand = II->getCalledValue();
3048     FunctionType *FTy = cast<FunctionType>(II->getFunctionType());
3049     Type *RetTy = FTy->getReturnType();
3050     const AttributeSet &PAL = II->getAttributes();
3051 
3052     // Print the calling convention being used.
3053     if (II->getCallingConv() != CallingConv::C) {
3054       Out << " ";
3055       PrintCallingConv(II->getCallingConv(), Out);
3056     }
3057 
3058     if (PAL.hasAttributes(AttributeSet::ReturnIndex))
3059       Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
3060 
3061     // If possible, print out the short form of the invoke instruction. We can
3062     // only do this if the first argument is a pointer to a nonvararg function,
3063     // and if the return type is not a pointer to a function.
3064     //
3065     Out << ' ';
3066     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3067     Out << ' ';
3068     writeOperand(Operand, false);
3069     Out << '(';
3070     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
3071       if (op)
3072         Out << ", ";
3073       writeParamOperand(II->getArgOperand(op), PAL, op + 1);
3074     }
3075 
3076     Out << ')';
3077     if (PAL.hasAttributes(AttributeSet::FunctionIndex))
3078       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3079 
3080     writeOperandBundles(II);
3081 
3082     Out << "\n          to ";
3083     writeOperand(II->getNormalDest(), true);
3084     Out << " unwind ";
3085     writeOperand(II->getUnwindDest(), true);
3086 
3087   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3088     Out << ' ';
3089     if (AI->isUsedWithInAlloca())
3090       Out << "inalloca ";
3091     if (AI->isSwiftError())
3092       Out << "swifterror ";
3093     TypePrinter.print(AI->getAllocatedType(), Out);
3094 
3095     // Explicitly write the array size if the code is broken, if it's an array
3096     // allocation, or if the type is not canonical for scalar allocations.  The
3097     // latter case prevents the type from mutating when round-tripping through
3098     // assembly.
3099     if (!AI->getArraySize() || AI->isArrayAllocation() ||
3100         !AI->getArraySize()->getType()->isIntegerTy(32)) {
3101       Out << ", ";
3102       writeOperand(AI->getArraySize(), true);
3103     }
3104     if (AI->getAlignment()) {
3105       Out << ", align " << AI->getAlignment();
3106     }
3107   } else if (isa<CastInst>(I)) {
3108     if (Operand) {
3109       Out << ' ';
3110       writeOperand(Operand, true);   // Work with broken code
3111     }
3112     Out << " to ";
3113     TypePrinter.print(I.getType(), Out);
3114   } else if (isa<VAArgInst>(I)) {
3115     if (Operand) {
3116       Out << ' ';
3117       writeOperand(Operand, true);   // Work with broken code
3118     }
3119     Out << ", ";
3120     TypePrinter.print(I.getType(), Out);
3121   } else if (Operand) {   // Print the normal way.
3122     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3123       Out << ' ';
3124       TypePrinter.print(GEP->getSourceElementType(), Out);
3125       Out << ',';
3126     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
3127       Out << ' ';
3128       TypePrinter.print(LI->getType(), Out);
3129       Out << ',';
3130     }
3131 
3132     // PrintAllTypes - Instructions who have operands of all the same type
3133     // omit the type from all but the first operand.  If the instruction has
3134     // different type operands (for example br), then they are all printed.
3135     bool PrintAllTypes = false;
3136     Type *TheType = Operand->getType();
3137 
3138     // Select, Store and ShuffleVector always print all types.
3139     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
3140         || isa<ReturnInst>(I)) {
3141       PrintAllTypes = true;
3142     } else {
3143       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
3144         Operand = I.getOperand(i);
3145         // note that Operand shouldn't be null, but the test helps make dump()
3146         // more tolerant of malformed IR
3147         if (Operand && Operand->getType() != TheType) {
3148           PrintAllTypes = true;    // We have differing types!  Print them all!
3149           break;
3150         }
3151       }
3152     }
3153 
3154     if (!PrintAllTypes) {
3155       Out << ' ';
3156       TypePrinter.print(TheType, Out);
3157     }
3158 
3159     Out << ' ';
3160     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3161       if (i) Out << ", ";
3162       writeOperand(I.getOperand(i), PrintAllTypes);
3163     }
3164   }
3165 
3166   // Print atomic ordering/alignment for memory operations
3167   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3168     if (LI->isAtomic())
3169       writeAtomic(LI->getOrdering(), LI->getSynchScope());
3170     if (LI->getAlignment())
3171       Out << ", align " << LI->getAlignment();
3172   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3173     if (SI->isAtomic())
3174       writeAtomic(SI->getOrdering(), SI->getSynchScope());
3175     if (SI->getAlignment())
3176       Out << ", align " << SI->getAlignment();
3177   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3178     writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
3179                        CXI->getSynchScope());
3180   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3181     writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
3182   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3183     writeAtomic(FI->getOrdering(), FI->getSynchScope());
3184   }
3185 
3186   // Print Metadata info.
3187   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
3188   I.getAllMetadata(InstMD);
3189   printMetadataAttachments(InstMD, ", ");
3190 
3191   // Print a nice comment.
3192   printInfoComment(I);
3193 }
3194 
printMetadataAttachments(const SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs,StringRef Separator)3195 void AssemblyWriter::printMetadataAttachments(
3196     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
3197     StringRef Separator) {
3198   if (MDs.empty())
3199     return;
3200 
3201   if (MDNames.empty())
3202     MDs[0].second->getContext().getMDKindNames(MDNames);
3203 
3204   for (const auto &I : MDs) {
3205     unsigned Kind = I.first;
3206     Out << Separator;
3207     if (Kind < MDNames.size()) {
3208       Out << "!";
3209       printMetadataIdentifier(MDNames[Kind], Out);
3210     } else
3211       Out << "!<unknown kind #" << Kind << ">";
3212     Out << ' ';
3213     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
3214   }
3215 }
3216 
writeMDNode(unsigned Slot,const MDNode * Node)3217 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
3218   Out << '!' << Slot << " = ";
3219   printMDNodeBody(Node);
3220   Out << "\n";
3221 }
3222 
writeAllMDNodes()3223 void AssemblyWriter::writeAllMDNodes() {
3224   SmallVector<const MDNode *, 16> Nodes;
3225   Nodes.resize(Machine.mdn_size());
3226   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
3227        I != E; ++I)
3228     Nodes[I->second] = cast<MDNode>(I->first);
3229 
3230   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3231     writeMDNode(i, Nodes[i]);
3232   }
3233 }
3234 
printMDNodeBody(const MDNode * Node)3235 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
3236   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
3237 }
3238 
writeAllAttributeGroups()3239 void AssemblyWriter::writeAllAttributeGroups() {
3240   std::vector<std::pair<AttributeSet, unsigned> > asVec;
3241   asVec.resize(Machine.as_size());
3242 
3243   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
3244        I != E; ++I)
3245     asVec[I->second] = *I;
3246 
3247   for (const auto &I : asVec)
3248     Out << "attributes #" << I.second << " = { "
3249         << I.first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
3250 }
3251 
printUseListOrder(const UseListOrder & Order)3252 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
3253   bool IsInFunction = Machine.getFunction();
3254   if (IsInFunction)
3255     Out << "  ";
3256 
3257   Out << "uselistorder";
3258   if (const BasicBlock *BB =
3259           IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
3260     Out << "_bb ";
3261     writeOperand(BB->getParent(), false);
3262     Out << ", ";
3263     writeOperand(BB, false);
3264   } else {
3265     Out << " ";
3266     writeOperand(Order.V, true);
3267   }
3268   Out << ", { ";
3269 
3270   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3271   Out << Order.Shuffle[0];
3272   for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
3273     Out << ", " << Order.Shuffle[I];
3274   Out << " }\n";
3275 }
3276 
printUseLists(const Function * F)3277 void AssemblyWriter::printUseLists(const Function *F) {
3278   auto hasMore =
3279       [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
3280   if (!hasMore())
3281     // Nothing to do.
3282     return;
3283 
3284   Out << "\n; uselistorder directives\n";
3285   while (hasMore()) {
3286     printUseListOrder(UseListOrders.back());
3287     UseListOrders.pop_back();
3288   }
3289 }
3290 
3291 //===----------------------------------------------------------------------===//
3292 //                       External Interface declarations
3293 //===----------------------------------------------------------------------===//
3294 
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const3295 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3296                      bool ShouldPreserveUseListOrder,
3297                      bool IsForDebug) const {
3298   SlotTracker SlotTable(this->getParent());
3299   formatted_raw_ostream OS(ROS);
3300   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
3301                    IsForDebug,
3302                    ShouldPreserveUseListOrder);
3303   W.printFunction(this);
3304 }
3305 
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const3306 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3307                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
3308   SlotTracker SlotTable(this);
3309   formatted_raw_ostream OS(ROS);
3310   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
3311                    ShouldPreserveUseListOrder);
3312   W.printModule(this);
3313 }
3314 
print(raw_ostream & ROS,bool IsForDebug) const3315 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
3316   SlotTracker SlotTable(getParent());
3317   formatted_raw_ostream OS(ROS);
3318   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
3319   W.printNamedMDNode(this);
3320 }
3321 
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const3322 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
3323                         bool IsForDebug) const {
3324   Optional<SlotTracker> LocalST;
3325   SlotTracker *SlotTable;
3326   if (auto *ST = MST.getMachine())
3327     SlotTable = ST;
3328   else {
3329     LocalST.emplace(getParent());
3330     SlotTable = &*LocalST;
3331   }
3332 
3333   formatted_raw_ostream OS(ROS);
3334   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
3335   W.printNamedMDNode(this);
3336 }
3337 
print(raw_ostream & ROS,bool) const3338 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
3339   PrintLLVMName(ROS, getName(), ComdatPrefix);
3340   ROS << " = comdat ";
3341 
3342   switch (getSelectionKind()) {
3343   case Comdat::Any:
3344     ROS << "any";
3345     break;
3346   case Comdat::ExactMatch:
3347     ROS << "exactmatch";
3348     break;
3349   case Comdat::Largest:
3350     ROS << "largest";
3351     break;
3352   case Comdat::NoDuplicates:
3353     ROS << "noduplicates";
3354     break;
3355   case Comdat::SameSize:
3356     ROS << "samesize";
3357     break;
3358   }
3359 
3360   ROS << '\n';
3361 }
3362 
print(raw_ostream & OS,bool,bool NoDetails) const3363 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
3364   TypePrinting TP;
3365   TP.print(const_cast<Type*>(this), OS);
3366 
3367   if (NoDetails)
3368     return;
3369 
3370   // If the type is a named struct type, print the body as well.
3371   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
3372     if (!STy->isLiteral()) {
3373       OS << " = type ";
3374       TP.printStructBody(STy, OS);
3375     }
3376 }
3377 
isReferencingMDNode(const Instruction & I)3378 static bool isReferencingMDNode(const Instruction &I) {
3379   if (const auto *CI = dyn_cast<CallInst>(&I))
3380     if (Function *F = CI->getCalledFunction())
3381       if (F->isIntrinsic())
3382         for (auto &Op : I.operands())
3383           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
3384             if (isa<MDNode>(V->getMetadata()))
3385               return true;
3386   return false;
3387 }
3388 
print(raw_ostream & ROS,bool IsForDebug) const3389 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
3390   bool ShouldInitializeAllMetadata = false;
3391   if (auto *I = dyn_cast<Instruction>(this))
3392     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
3393   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
3394     ShouldInitializeAllMetadata = true;
3395 
3396   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
3397   print(ROS, MST, IsForDebug);
3398 }
3399 
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const3400 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
3401                   bool IsForDebug) const {
3402   formatted_raw_ostream OS(ROS);
3403   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
3404   SlotTracker &SlotTable =
3405       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
3406   auto incorporateFunction = [&](const Function *F) {
3407     if (F)
3408       MST.incorporateFunction(*F);
3409   };
3410 
3411   if (const Instruction *I = dyn_cast<Instruction>(this)) {
3412     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
3413     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
3414     W.printInstruction(*I);
3415   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
3416     incorporateFunction(BB->getParent());
3417     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
3418     W.printBasicBlock(BB);
3419   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
3420     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
3421     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
3422       W.printGlobal(V);
3423     else if (const Function *F = dyn_cast<Function>(GV))
3424       W.printFunction(F);
3425     else
3426       W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
3427   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
3428     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
3429   } else if (const Constant *C = dyn_cast<Constant>(this)) {
3430     TypePrinting TypePrinter;
3431     TypePrinter.print(C->getType(), OS);
3432     OS << ' ';
3433     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
3434   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
3435     this->printAsOperand(OS, /* PrintType */ true, MST);
3436   } else {
3437     llvm_unreachable("Unknown value to print out!");
3438   }
3439 }
3440 
3441 /// Print without a type, skipping the TypePrinting object.
3442 ///
3443 /// \return \c true iff printing was successful.
printWithoutType(const Value & V,raw_ostream & O,SlotTracker * Machine,const Module * M)3444 static bool printWithoutType(const Value &V, raw_ostream &O,
3445                              SlotTracker *Machine, const Module *M) {
3446   if (V.hasName() || isa<GlobalValue>(V) ||
3447       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
3448     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
3449     return true;
3450   }
3451   return false;
3452 }
3453 
printAsOperandImpl(const Value & V,raw_ostream & O,bool PrintType,ModuleSlotTracker & MST)3454 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
3455                                ModuleSlotTracker &MST) {
3456   TypePrinting TypePrinter;
3457   if (const Module *M = MST.getModule())
3458     TypePrinter.incorporateTypes(*M);
3459   if (PrintType) {
3460     TypePrinter.print(V.getType(), O);
3461     O << ' ';
3462   }
3463 
3464   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
3465                          MST.getModule());
3466 }
3467 
printAsOperand(raw_ostream & O,bool PrintType,const Module * M) const3468 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3469                            const Module *M) const {
3470   if (!M)
3471     M = getModuleFromVal(this);
3472 
3473   if (!PrintType)
3474     if (printWithoutType(*this, O, nullptr, M))
3475       return;
3476 
3477   SlotTracker Machine(
3478       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
3479   ModuleSlotTracker MST(Machine, M);
3480   printAsOperandImpl(*this, O, PrintType, MST);
3481 }
3482 
printAsOperand(raw_ostream & O,bool PrintType,ModuleSlotTracker & MST) const3483 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3484                            ModuleSlotTracker &MST) const {
3485   if (!PrintType)
3486     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
3487       return;
3488 
3489   printAsOperandImpl(*this, O, PrintType, MST);
3490 }
3491 
printMetadataImpl(raw_ostream & ROS,const Metadata & MD,ModuleSlotTracker & MST,const Module * M,bool OnlyAsOperand)3492 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
3493                               ModuleSlotTracker &MST, const Module *M,
3494                               bool OnlyAsOperand) {
3495   formatted_raw_ostream OS(ROS);
3496 
3497   TypePrinting TypePrinter;
3498   if (M)
3499     TypePrinter.incorporateTypes(*M);
3500 
3501   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
3502                          /* FromValue */ true);
3503 
3504   auto *N = dyn_cast<MDNode>(&MD);
3505   if (OnlyAsOperand || !N)
3506     return;
3507 
3508   OS << " = ";
3509   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
3510 }
3511 
printAsOperand(raw_ostream & OS,const Module * M) const3512 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
3513   ModuleSlotTracker MST(M, isa<MDNode>(this));
3514   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3515 }
3516 
printAsOperand(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M) const3517 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
3518                               const Module *M) const {
3519   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3520 }
3521 
print(raw_ostream & OS,const Module * M,bool) const3522 void Metadata::print(raw_ostream &OS, const Module *M,
3523                      bool /*IsForDebug*/) const {
3524   ModuleSlotTracker MST(M, isa<MDNode>(this));
3525   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3526 }
3527 
print(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M,bool) const3528 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
3529                      const Module *M, bool /*IsForDebug*/) const {
3530   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3531 }
3532 
3533 // Value::dump - allow easy printing of Values from the debugger.
3534 LLVM_DUMP_METHOD
dump() const3535 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3536 
3537 // Type::dump - allow easy printing of Types from the debugger.
3538 LLVM_DUMP_METHOD
dump() const3539 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3540 
3541 // Module::dump() - Allow printing of Modules from the debugger.
3542 LLVM_DUMP_METHOD
dump() const3543 void Module::dump() const {
3544   print(dbgs(), nullptr,
3545         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
3546 }
3547 
3548 // \brief Allow printing of Comdats from the debugger.
3549 LLVM_DUMP_METHOD
dump() const3550 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3551 
3552 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
3553 LLVM_DUMP_METHOD
dump() const3554 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3555 
3556 LLVM_DUMP_METHOD
dump() const3557 void Metadata::dump() const { dump(nullptr); }
3558 
3559 LLVM_DUMP_METHOD
dump(const Module * M) const3560 void Metadata::dump(const Module *M) const {
3561   print(dbgs(), M, /*IsForDebug=*/true);
3562   dbgs() << '\n';
3563 }
3564