1 //===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// Scudo Hardened Allocator implementation.
10 /// It uses the sanitizer_common allocator as a base and aims at mitigating
11 /// heap corruption vulnerabilities. It provides a checksum-guarded chunk
12 /// header, a delayed free list, and additional sanity checks.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #include "scudo_allocator.h"
17 #include "scudo_crc32.h"
18 #include "scudo_errors.h"
19 #include "scudo_flags.h"
20 #include "scudo_interface_internal.h"
21 #include "scudo_tsd.h"
22 #include "scudo_utils.h"
23
24 #include "sanitizer_common/sanitizer_allocator_checks.h"
25 #include "sanitizer_common/sanitizer_allocator_interface.h"
26 #include "sanitizer_common/sanitizer_quarantine.h"
27
28 #ifdef GWP_ASAN_HOOKS
29 # include "gwp_asan/guarded_pool_allocator.h"
30 # include "gwp_asan/optional/backtrace.h"
31 # include "gwp_asan/optional/options_parser.h"
32 #include "gwp_asan/optional/segv_handler.h"
33 #endif // GWP_ASAN_HOOKS
34
35 #include <errno.h>
36 #include <string.h>
37
38 namespace __scudo {
39
40 // Global static cookie, initialized at start-up.
41 static u32 Cookie;
42
43 // We default to software CRC32 if the alternatives are not supported, either
44 // at compilation or at runtime.
45 static atomic_uint8_t HashAlgorithm = { CRC32Software };
46
computeCRC32(u32 Crc,uptr Value,uptr * Array,uptr ArraySize)47 inline u32 computeCRC32(u32 Crc, uptr Value, uptr *Array, uptr ArraySize) {
48 // If the hardware CRC32 feature is defined here, it was enabled everywhere,
49 // as opposed to only for scudo_crc32.cpp. This means that other hardware
50 // specific instructions were likely emitted at other places, and as a
51 // result there is no reason to not use it here.
52 #if defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
53 Crc = CRC32_INTRINSIC(Crc, Value);
54 for (uptr i = 0; i < ArraySize; i++)
55 Crc = CRC32_INTRINSIC(Crc, Array[i]);
56 return Crc;
57 #else
58 if (atomic_load_relaxed(&HashAlgorithm) == CRC32Hardware) {
59 Crc = computeHardwareCRC32(Crc, Value);
60 for (uptr i = 0; i < ArraySize; i++)
61 Crc = computeHardwareCRC32(Crc, Array[i]);
62 return Crc;
63 }
64 Crc = computeSoftwareCRC32(Crc, Value);
65 for (uptr i = 0; i < ArraySize; i++)
66 Crc = computeSoftwareCRC32(Crc, Array[i]);
67 return Crc;
68 #endif // defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
69 }
70
71 static BackendT &getBackend();
72
73 namespace Chunk {
getAtomicHeader(void * Ptr)74 static inline AtomicPackedHeader *getAtomicHeader(void *Ptr) {
75 return reinterpret_cast<AtomicPackedHeader *>(reinterpret_cast<uptr>(Ptr) -
76 getHeaderSize());
77 }
78 static inline
getConstAtomicHeader(const void * Ptr)79 const AtomicPackedHeader *getConstAtomicHeader(const void *Ptr) {
80 return reinterpret_cast<const AtomicPackedHeader *>(
81 reinterpret_cast<uptr>(Ptr) - getHeaderSize());
82 }
83
isAligned(const void * Ptr)84 static inline bool isAligned(const void *Ptr) {
85 return IsAligned(reinterpret_cast<uptr>(Ptr), MinAlignment);
86 }
87
88 // We can't use the offset member of the chunk itself, as we would double
89 // fetch it without any warranty that it wouldn't have been tampered. To
90 // prevent this, we work with a local copy of the header.
getBackendPtr(const void * Ptr,UnpackedHeader * Header)91 static inline void *getBackendPtr(const void *Ptr, UnpackedHeader *Header) {
92 return reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
93 getHeaderSize() - (Header->Offset << MinAlignmentLog));
94 }
95
96 // Returns the usable size for a chunk, meaning the amount of bytes from the
97 // beginning of the user data to the end of the backend allocated chunk.
getUsableSize(const void * Ptr,UnpackedHeader * Header)98 static inline uptr getUsableSize(const void *Ptr, UnpackedHeader *Header) {
99 const uptr ClassId = Header->ClassId;
100 if (ClassId)
101 return PrimaryT::ClassIdToSize(ClassId) - getHeaderSize() -
102 (Header->Offset << MinAlignmentLog);
103 return SecondaryT::GetActuallyAllocatedSize(
104 getBackendPtr(Ptr, Header)) - getHeaderSize();
105 }
106
107 // Returns the size the user requested when allocating the chunk.
getSize(const void * Ptr,UnpackedHeader * Header)108 static inline uptr getSize(const void *Ptr, UnpackedHeader *Header) {
109 const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
110 if (Header->ClassId)
111 return SizeOrUnusedBytes;
112 return SecondaryT::GetActuallyAllocatedSize(
113 getBackendPtr(Ptr, Header)) - getHeaderSize() - SizeOrUnusedBytes;
114 }
115
116 // Compute the checksum of the chunk pointer and its header.
computeChecksum(const void * Ptr,UnpackedHeader * Header)117 static inline u16 computeChecksum(const void *Ptr, UnpackedHeader *Header) {
118 UnpackedHeader ZeroChecksumHeader = *Header;
119 ZeroChecksumHeader.Checksum = 0;
120 uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)];
121 memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder));
122 const u32 Crc = computeCRC32(Cookie, reinterpret_cast<uptr>(Ptr),
123 HeaderHolder, ARRAY_SIZE(HeaderHolder));
124 return static_cast<u16>(Crc);
125 }
126
127 // Checks the validity of a chunk by verifying its checksum. It doesn't
128 // incur termination in the event of an invalid chunk.
isValid(const void * Ptr)129 static inline bool isValid(const void *Ptr) {
130 PackedHeader NewPackedHeader =
131 atomic_load_relaxed(getConstAtomicHeader(Ptr));
132 UnpackedHeader NewUnpackedHeader =
133 bit_cast<UnpackedHeader>(NewPackedHeader);
134 return (NewUnpackedHeader.Checksum ==
135 computeChecksum(Ptr, &NewUnpackedHeader));
136 }
137
138 // Ensure that ChunkAvailable is 0, so that if a 0 checksum is ever valid
139 // for a fully nulled out header, its state will be available anyway.
140 COMPILER_CHECK(ChunkAvailable == 0);
141
142 // Loads and unpacks the header, verifying the checksum in the process.
143 static inline
loadHeader(const void * Ptr,UnpackedHeader * NewUnpackedHeader)144 void loadHeader(const void *Ptr, UnpackedHeader *NewUnpackedHeader) {
145 PackedHeader NewPackedHeader =
146 atomic_load_relaxed(getConstAtomicHeader(Ptr));
147 *NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
148 if (UNLIKELY(NewUnpackedHeader->Checksum !=
149 computeChecksum(Ptr, NewUnpackedHeader)))
150 dieWithMessage("corrupted chunk header at address %p\n", Ptr);
151 }
152
153 // Packs and stores the header, computing the checksum in the process.
storeHeader(void * Ptr,UnpackedHeader * NewUnpackedHeader)154 static inline void storeHeader(void *Ptr, UnpackedHeader *NewUnpackedHeader) {
155 NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
156 PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
157 atomic_store_relaxed(getAtomicHeader(Ptr), NewPackedHeader);
158 }
159
160 // Packs and stores the header, computing the checksum in the process. We
161 // compare the current header with the expected provided one to ensure that
162 // we are not being raced by a corruption occurring in another thread.
compareExchangeHeader(void * Ptr,UnpackedHeader * NewUnpackedHeader,UnpackedHeader * OldUnpackedHeader)163 static inline void compareExchangeHeader(void *Ptr,
164 UnpackedHeader *NewUnpackedHeader,
165 UnpackedHeader *OldUnpackedHeader) {
166 NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
167 PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
168 PackedHeader OldPackedHeader = bit_cast<PackedHeader>(*OldUnpackedHeader);
169 if (UNLIKELY(!atomic_compare_exchange_strong(
170 getAtomicHeader(Ptr), &OldPackedHeader, NewPackedHeader,
171 memory_order_relaxed)))
172 dieWithMessage("race on chunk header at address %p\n", Ptr);
173 }
174 } // namespace Chunk
175
176 struct QuarantineCallback {
QuarantineCallback__scudo::QuarantineCallback177 explicit QuarantineCallback(AllocatorCacheT *Cache)
178 : Cache_(Cache) {}
179
180 // Chunk recycling function, returns a quarantined chunk to the backend,
181 // first making sure it hasn't been tampered with.
Recycle__scudo::QuarantineCallback182 void Recycle(void *Ptr) {
183 UnpackedHeader Header;
184 Chunk::loadHeader(Ptr, &Header);
185 if (UNLIKELY(Header.State != ChunkQuarantine))
186 dieWithMessage("invalid chunk state when recycling address %p\n", Ptr);
187 UnpackedHeader NewHeader = Header;
188 NewHeader.State = ChunkAvailable;
189 Chunk::compareExchangeHeader(Ptr, &NewHeader, &Header);
190 void *BackendPtr = Chunk::getBackendPtr(Ptr, &Header);
191 if (Header.ClassId)
192 getBackend().deallocatePrimary(Cache_, BackendPtr, Header.ClassId);
193 else
194 getBackend().deallocateSecondary(BackendPtr);
195 }
196
197 // Internal quarantine allocation and deallocation functions. We first check
198 // that the batches are indeed serviced by the Primary.
199 // TODO(kostyak): figure out the best way to protect the batches.
Allocate__scudo::QuarantineCallback200 void *Allocate(uptr Size) {
201 const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
202 return getBackend().allocatePrimary(Cache_, BatchClassId);
203 }
204
Deallocate__scudo::QuarantineCallback205 void Deallocate(void *Ptr) {
206 const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
207 getBackend().deallocatePrimary(Cache_, Ptr, BatchClassId);
208 }
209
210 AllocatorCacheT *Cache_;
211 COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize);
212 };
213
214 typedef Quarantine<QuarantineCallback, void> QuarantineT;
215 typedef QuarantineT::Cache QuarantineCacheT;
216 COMPILER_CHECK(sizeof(QuarantineCacheT) <=
217 sizeof(ScudoTSD::QuarantineCachePlaceHolder));
218
getQuarantineCache(ScudoTSD * TSD)219 QuarantineCacheT *getQuarantineCache(ScudoTSD *TSD) {
220 return reinterpret_cast<QuarantineCacheT *>(TSD->QuarantineCachePlaceHolder);
221 }
222
223 #ifdef GWP_ASAN_HOOKS
224 static gwp_asan::GuardedPoolAllocator GuardedAlloc;
225 #endif // GWP_ASAN_HOOKS
226
227 struct Allocator {
228 static const uptr MaxAllowedMallocSize =
229 FIRST_32_SECOND_64(2UL << 30, 1ULL << 40);
230
231 BackendT Backend;
232 QuarantineT Quarantine;
233
234 u32 QuarantineChunksUpToSize;
235
236 bool DeallocationTypeMismatch;
237 bool ZeroContents;
238 bool DeleteSizeMismatch;
239
240 bool CheckRssLimit;
241 uptr HardRssLimitMb;
242 uptr SoftRssLimitMb;
243 atomic_uint8_t RssLimitExceeded;
244 atomic_uint64_t RssLastCheckedAtNS;
245
Allocator__scudo::Allocator246 explicit Allocator(LinkerInitialized)
247 : Quarantine(LINKER_INITIALIZED) {}
248
249 NOINLINE void performSanityChecks();
250
init__scudo::Allocator251 void init() {
252 SanitizerToolName = "Scudo";
253 PrimaryAllocatorName = "ScudoPrimary";
254 SecondaryAllocatorName = "ScudoSecondary";
255
256 initFlags();
257
258 performSanityChecks();
259
260 // Check if hardware CRC32 is supported in the binary and by the platform,
261 // if so, opt for the CRC32 hardware version of the checksum.
262 if (&computeHardwareCRC32 && hasHardwareCRC32())
263 atomic_store_relaxed(&HashAlgorithm, CRC32Hardware);
264
265 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
266 Backend.init(common_flags()->allocator_release_to_os_interval_ms);
267 HardRssLimitMb = common_flags()->hard_rss_limit_mb;
268 SoftRssLimitMb = common_flags()->soft_rss_limit_mb;
269 Quarantine.Init(
270 static_cast<uptr>(getFlags()->QuarantineSizeKb) << 10,
271 static_cast<uptr>(getFlags()->ThreadLocalQuarantineSizeKb) << 10);
272 QuarantineChunksUpToSize = (Quarantine.GetCacheSize() == 0) ? 0 :
273 getFlags()->QuarantineChunksUpToSize;
274 DeallocationTypeMismatch = getFlags()->DeallocationTypeMismatch;
275 DeleteSizeMismatch = getFlags()->DeleteSizeMismatch;
276 ZeroContents = getFlags()->ZeroContents;
277
278 if (UNLIKELY(!GetRandom(reinterpret_cast<void *>(&Cookie), sizeof(Cookie),
279 /*blocking=*/false))) {
280 Cookie = static_cast<u32>((NanoTime() >> 12) ^
281 (reinterpret_cast<uptr>(this) >> 4));
282 }
283
284 CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
285 if (CheckRssLimit)
286 atomic_store_relaxed(&RssLastCheckedAtNS, MonotonicNanoTime());
287 }
288
289 // Helper function that checks for a valid Scudo chunk. nullptr isn't.
isValidPointer__scudo::Allocator290 bool isValidPointer(const void *Ptr) {
291 initThreadMaybe();
292 if (UNLIKELY(!Ptr))
293 return false;
294 if (!Chunk::isAligned(Ptr))
295 return false;
296 return Chunk::isValid(Ptr);
297 }
298
299 NOINLINE bool isRssLimitExceeded();
300
301 // Allocates a chunk.
allocate__scudo::Allocator302 void *allocate(uptr Size, uptr Alignment, AllocType Type,
303 bool ForceZeroContents = false) {
304 initThreadMaybe();
305
306 #ifdef GWP_ASAN_HOOKS
307 if (UNLIKELY(GuardedAlloc.shouldSample())) {
308 if (void *Ptr = GuardedAlloc.allocate(Size))
309 return Ptr;
310 }
311 #endif // GWP_ASAN_HOOKS
312
313 if (UNLIKELY(Alignment > MaxAlignment)) {
314 if (AllocatorMayReturnNull())
315 return nullptr;
316 reportAllocationAlignmentTooBig(Alignment, MaxAlignment);
317 }
318 if (UNLIKELY(Alignment < MinAlignment))
319 Alignment = MinAlignment;
320
321 const uptr NeededSize = RoundUpTo(Size ? Size : 1, MinAlignment) +
322 Chunk::getHeaderSize();
323 const uptr AlignedSize = (Alignment > MinAlignment) ?
324 NeededSize + (Alignment - Chunk::getHeaderSize()) : NeededSize;
325 if (UNLIKELY(Size >= MaxAllowedMallocSize) ||
326 UNLIKELY(AlignedSize >= MaxAllowedMallocSize)) {
327 if (AllocatorMayReturnNull())
328 return nullptr;
329 reportAllocationSizeTooBig(Size, AlignedSize, MaxAllowedMallocSize);
330 }
331
332 if (CheckRssLimit && UNLIKELY(isRssLimitExceeded())) {
333 if (AllocatorMayReturnNull())
334 return nullptr;
335 reportRssLimitExceeded();
336 }
337
338 // Primary and Secondary backed allocations have a different treatment. We
339 // deal with alignment requirements of Primary serviced allocations here,
340 // but the Secondary will take care of its own alignment needs.
341 void *BackendPtr;
342 uptr BackendSize;
343 u8 ClassId;
344 if (PrimaryT::CanAllocate(AlignedSize, MinAlignment)) {
345 BackendSize = AlignedSize;
346 ClassId = SizeClassMap::ClassID(BackendSize);
347 bool UnlockRequired;
348 ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
349 BackendPtr = Backend.allocatePrimary(&TSD->Cache, ClassId);
350 if (UnlockRequired)
351 TSD->unlock();
352 } else {
353 BackendSize = NeededSize;
354 ClassId = 0;
355 BackendPtr = Backend.allocateSecondary(BackendSize, Alignment);
356 }
357 if (UNLIKELY(!BackendPtr)) {
358 SetAllocatorOutOfMemory();
359 if (AllocatorMayReturnNull())
360 return nullptr;
361 reportOutOfMemory(Size);
362 }
363
364 // If requested, we will zero out the entire contents of the returned chunk.
365 if ((ForceZeroContents || ZeroContents) && ClassId)
366 memset(BackendPtr, 0, PrimaryT::ClassIdToSize(ClassId));
367
368 UnpackedHeader Header = {};
369 uptr UserPtr = reinterpret_cast<uptr>(BackendPtr) + Chunk::getHeaderSize();
370 if (UNLIKELY(!IsAligned(UserPtr, Alignment))) {
371 // Since the Secondary takes care of alignment, a non-aligned pointer
372 // means it is from the Primary. It is also the only case where the offset
373 // field of the header would be non-zero.
374 DCHECK(ClassId);
375 const uptr AlignedUserPtr = RoundUpTo(UserPtr, Alignment);
376 Header.Offset = (AlignedUserPtr - UserPtr) >> MinAlignmentLog;
377 UserPtr = AlignedUserPtr;
378 }
379 DCHECK_LE(UserPtr + Size, reinterpret_cast<uptr>(BackendPtr) + BackendSize);
380 Header.State = ChunkAllocated;
381 Header.AllocType = Type;
382 if (ClassId) {
383 Header.ClassId = ClassId;
384 Header.SizeOrUnusedBytes = Size;
385 } else {
386 // The secondary fits the allocations to a page, so the amount of unused
387 // bytes is the difference between the end of the user allocation and the
388 // next page boundary.
389 const uptr PageSize = GetPageSizeCached();
390 const uptr TrailingBytes = (UserPtr + Size) & (PageSize - 1);
391 if (TrailingBytes)
392 Header.SizeOrUnusedBytes = PageSize - TrailingBytes;
393 }
394 void *Ptr = reinterpret_cast<void *>(UserPtr);
395 Chunk::storeHeader(Ptr, &Header);
396 if (SCUDO_CAN_USE_HOOKS && &__sanitizer_malloc_hook)
397 __sanitizer_malloc_hook(Ptr, Size);
398 return Ptr;
399 }
400
401 // Place a chunk in the quarantine or directly deallocate it in the event of
402 // a zero-sized quarantine, or if the size of the chunk is greater than the
403 // quarantine chunk size threshold.
quarantineOrDeallocateChunk__scudo::Allocator404 void quarantineOrDeallocateChunk(void *Ptr, UnpackedHeader *Header,
405 uptr Size) {
406 const bool BypassQuarantine = !Size || (Size > QuarantineChunksUpToSize);
407 if (BypassQuarantine) {
408 UnpackedHeader NewHeader = *Header;
409 NewHeader.State = ChunkAvailable;
410 Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
411 void *BackendPtr = Chunk::getBackendPtr(Ptr, Header);
412 if (Header->ClassId) {
413 bool UnlockRequired;
414 ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
415 getBackend().deallocatePrimary(&TSD->Cache, BackendPtr,
416 Header->ClassId);
417 if (UnlockRequired)
418 TSD->unlock();
419 } else {
420 getBackend().deallocateSecondary(BackendPtr);
421 }
422 } else {
423 // If a small memory amount was allocated with a larger alignment, we want
424 // to take that into account. Otherwise the Quarantine would be filled
425 // with tiny chunks, taking a lot of VA memory. This is an approximation
426 // of the usable size, that allows us to not call
427 // GetActuallyAllocatedSize.
428 const uptr EstimatedSize = Size + (Header->Offset << MinAlignmentLog);
429 UnpackedHeader NewHeader = *Header;
430 NewHeader.State = ChunkQuarantine;
431 Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
432 bool UnlockRequired;
433 ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
434 Quarantine.Put(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache),
435 Ptr, EstimatedSize);
436 if (UnlockRequired)
437 TSD->unlock();
438 }
439 }
440
441 // Deallocates a Chunk, which means either adding it to the quarantine or
442 // directly returning it to the backend if criteria are met.
deallocate__scudo::Allocator443 void deallocate(void *Ptr, uptr DeleteSize, uptr DeleteAlignment,
444 AllocType Type) {
445 // For a deallocation, we only ensure minimal initialization, meaning thread
446 // local data will be left uninitialized for now (when using ELF TLS). The
447 // fallback cache will be used instead. This is a workaround for a situation
448 // where the only heap operation performed in a thread would be a free past
449 // the TLS destructors, ending up in initialized thread specific data never
450 // being destroyed properly. Any other heap operation will do a full init.
451 initThreadMaybe(/*MinimalInit=*/true);
452 if (SCUDO_CAN_USE_HOOKS && &__sanitizer_free_hook)
453 __sanitizer_free_hook(Ptr);
454 if (UNLIKELY(!Ptr))
455 return;
456
457 #ifdef GWP_ASAN_HOOKS
458 if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
459 GuardedAlloc.deallocate(Ptr);
460 return;
461 }
462 #endif // GWP_ASAN_HOOKS
463
464 if (UNLIKELY(!Chunk::isAligned(Ptr)))
465 dieWithMessage("misaligned pointer when deallocating address %p\n", Ptr);
466 UnpackedHeader Header;
467 Chunk::loadHeader(Ptr, &Header);
468 if (UNLIKELY(Header.State != ChunkAllocated))
469 dieWithMessage("invalid chunk state when deallocating address %p\n", Ptr);
470 if (DeallocationTypeMismatch) {
471 // The deallocation type has to match the allocation one.
472 if (Header.AllocType != Type) {
473 // With the exception of memalign'd Chunks, that can be still be free'd.
474 if (Header.AllocType != FromMemalign || Type != FromMalloc)
475 dieWithMessage("allocation type mismatch when deallocating address "
476 "%p\n", Ptr);
477 }
478 }
479 const uptr Size = Chunk::getSize(Ptr, &Header);
480 if (DeleteSizeMismatch) {
481 if (DeleteSize && DeleteSize != Size)
482 dieWithMessage("invalid sized delete when deallocating address %p\n",
483 Ptr);
484 }
485 (void)DeleteAlignment; // TODO(kostyak): verify that the alignment matches.
486 quarantineOrDeallocateChunk(Ptr, &Header, Size);
487 }
488
489 // Reallocates a chunk. We can save on a new allocation if the new requested
490 // size still fits in the chunk.
reallocate__scudo::Allocator491 void *reallocate(void *OldPtr, uptr NewSize) {
492 initThreadMaybe();
493
494 #ifdef GWP_ASAN_HOOKS
495 if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
496 size_t OldSize = GuardedAlloc.getSize(OldPtr);
497 void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
498 if (NewPtr)
499 memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
500 GuardedAlloc.deallocate(OldPtr);
501 return NewPtr;
502 }
503 #endif // GWP_ASAN_HOOKS
504
505 if (UNLIKELY(!Chunk::isAligned(OldPtr)))
506 dieWithMessage("misaligned address when reallocating address %p\n",
507 OldPtr);
508 UnpackedHeader OldHeader;
509 Chunk::loadHeader(OldPtr, &OldHeader);
510 if (UNLIKELY(OldHeader.State != ChunkAllocated))
511 dieWithMessage("invalid chunk state when reallocating address %p\n",
512 OldPtr);
513 if (DeallocationTypeMismatch) {
514 if (UNLIKELY(OldHeader.AllocType != FromMalloc))
515 dieWithMessage("allocation type mismatch when reallocating address "
516 "%p\n", OldPtr);
517 }
518 const uptr UsableSize = Chunk::getUsableSize(OldPtr, &OldHeader);
519 // The new size still fits in the current chunk, and the size difference
520 // is reasonable.
521 if (NewSize <= UsableSize &&
522 (UsableSize - NewSize) < (SizeClassMap::kMaxSize / 2)) {
523 UnpackedHeader NewHeader = OldHeader;
524 NewHeader.SizeOrUnusedBytes =
525 OldHeader.ClassId ? NewSize : UsableSize - NewSize;
526 Chunk::compareExchangeHeader(OldPtr, &NewHeader, &OldHeader);
527 return OldPtr;
528 }
529 // Otherwise, we have to allocate a new chunk and copy the contents of the
530 // old one.
531 void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
532 if (NewPtr) {
533 const uptr OldSize = OldHeader.ClassId ? OldHeader.SizeOrUnusedBytes :
534 UsableSize - OldHeader.SizeOrUnusedBytes;
535 memcpy(NewPtr, OldPtr, Min(NewSize, UsableSize));
536 quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
537 }
538 return NewPtr;
539 }
540
541 // Helper function that returns the actual usable size of a chunk.
getUsableSize__scudo::Allocator542 uptr getUsableSize(const void *Ptr) {
543 initThreadMaybe();
544 if (UNLIKELY(!Ptr))
545 return 0;
546
547 #ifdef GWP_ASAN_HOOKS
548 if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
549 return GuardedAlloc.getSize(Ptr);
550 #endif // GWP_ASAN_HOOKS
551
552 UnpackedHeader Header;
553 Chunk::loadHeader(Ptr, &Header);
554 // Getting the usable size of a chunk only makes sense if it's allocated.
555 if (UNLIKELY(Header.State != ChunkAllocated))
556 dieWithMessage("invalid chunk state when sizing address %p\n", Ptr);
557 return Chunk::getUsableSize(Ptr, &Header);
558 }
559
calloc__scudo::Allocator560 void *calloc(uptr NMemB, uptr Size) {
561 initThreadMaybe();
562 if (UNLIKELY(CheckForCallocOverflow(NMemB, Size))) {
563 if (AllocatorMayReturnNull())
564 return nullptr;
565 reportCallocOverflow(NMemB, Size);
566 }
567 return allocate(NMemB * Size, MinAlignment, FromMalloc, true);
568 }
569
commitBack__scudo::Allocator570 void commitBack(ScudoTSD *TSD) {
571 Quarantine.Drain(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache));
572 Backend.destroyCache(&TSD->Cache);
573 }
574
getStats__scudo::Allocator575 uptr getStats(AllocatorStat StatType) {
576 initThreadMaybe();
577 uptr stats[AllocatorStatCount];
578 Backend.getStats(stats);
579 return stats[StatType];
580 }
581
canReturnNull__scudo::Allocator582 bool canReturnNull() {
583 initThreadMaybe();
584 return AllocatorMayReturnNull();
585 }
586
setRssLimit__scudo::Allocator587 void setRssLimit(uptr LimitMb, bool HardLimit) {
588 if (HardLimit)
589 HardRssLimitMb = LimitMb;
590 else
591 SoftRssLimitMb = LimitMb;
592 CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
593 }
594
printStats__scudo::Allocator595 void printStats() {
596 initThreadMaybe();
597 Backend.printStats();
598 }
599 };
600
performSanityChecks()601 NOINLINE void Allocator::performSanityChecks() {
602 // Verify that the header offset field can hold the maximum offset. In the
603 // case of the Secondary allocator, it takes care of alignment and the
604 // offset will always be 0. In the case of the Primary, the worst case
605 // scenario happens in the last size class, when the backend allocation
606 // would already be aligned on the requested alignment, which would happen
607 // to be the maximum alignment that would fit in that size class. As a
608 // result, the maximum offset will be at most the maximum alignment for the
609 // last size class minus the header size, in multiples of MinAlignment.
610 UnpackedHeader Header = {};
611 const uptr MaxPrimaryAlignment =
612 1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment);
613 const uptr MaxOffset =
614 (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
615 Header.Offset = MaxOffset;
616 if (Header.Offset != MaxOffset)
617 dieWithMessage("maximum possible offset doesn't fit in header\n");
618 // Verify that we can fit the maximum size or amount of unused bytes in the
619 // header. Given that the Secondary fits the allocation to a page, the worst
620 // case scenario happens in the Primary. It will depend on the second to
621 // last and last class sizes, as well as the dynamic base for the Primary.
622 // The following is an over-approximation that works for our needs.
623 const uptr MaxSizeOrUnusedBytes = SizeClassMap::kMaxSize - 1;
624 Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
625 if (Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes)
626 dieWithMessage("maximum possible unused bytes doesn't fit in header\n");
627
628 const uptr LargestClassId = SizeClassMap::kLargestClassID;
629 Header.ClassId = LargestClassId;
630 if (Header.ClassId != LargestClassId)
631 dieWithMessage("largest class ID doesn't fit in header\n");
632 }
633
634 // Opportunistic RSS limit check. This will update the RSS limit status, if
635 // it can, every 250ms, otherwise it will just return the current one.
isRssLimitExceeded()636 NOINLINE bool Allocator::isRssLimitExceeded() {
637 u64 LastCheck = atomic_load_relaxed(&RssLastCheckedAtNS);
638 const u64 CurrentCheck = MonotonicNanoTime();
639 if (LIKELY(CurrentCheck < LastCheck + (250ULL * 1000000ULL)))
640 return atomic_load_relaxed(&RssLimitExceeded);
641 if (!atomic_compare_exchange_weak(&RssLastCheckedAtNS, &LastCheck,
642 CurrentCheck, memory_order_relaxed))
643 return atomic_load_relaxed(&RssLimitExceeded);
644 // TODO(kostyak): We currently use sanitizer_common's GetRSS which reads the
645 // RSS from /proc/self/statm by default. We might want to
646 // call getrusage directly, even if it's less accurate.
647 const uptr CurrentRssMb = GetRSS() >> 20;
648 if (HardRssLimitMb && UNLIKELY(HardRssLimitMb < CurrentRssMb))
649 dieWithMessage("hard RSS limit exhausted (%zdMb vs %zdMb)\n",
650 HardRssLimitMb, CurrentRssMb);
651 if (SoftRssLimitMb) {
652 if (atomic_load_relaxed(&RssLimitExceeded)) {
653 if (CurrentRssMb <= SoftRssLimitMb)
654 atomic_store_relaxed(&RssLimitExceeded, false);
655 } else {
656 if (CurrentRssMb > SoftRssLimitMb) {
657 atomic_store_relaxed(&RssLimitExceeded, true);
658 Printf("Scudo INFO: soft RSS limit exhausted (%zdMb vs %zdMb)\n",
659 SoftRssLimitMb, CurrentRssMb);
660 }
661 }
662 }
663 return atomic_load_relaxed(&RssLimitExceeded);
664 }
665
666 static Allocator Instance(LINKER_INITIALIZED);
667
getBackend()668 static BackendT &getBackend() {
669 return Instance.Backend;
670 }
671
initScudo()672 void initScudo() {
673 Instance.init();
674 #ifdef GWP_ASAN_HOOKS
675 gwp_asan::options::initOptions();
676 gwp_asan::options::Options &Opts = gwp_asan::options::getOptions();
677 Opts.Backtrace = gwp_asan::options::getBacktraceFunction();
678 GuardedAlloc.init(Opts);
679
680 if (Opts.InstallSignalHandlers)
681 gwp_asan::crash_handler::installSignalHandlers(
682 &GuardedAlloc, __sanitizer::Printf,
683 gwp_asan::options::getPrintBacktraceFunction(),
684 gwp_asan::crash_handler::getSegvBacktraceFunction());
685 #endif // GWP_ASAN_HOOKS
686 }
687
init()688 void ScudoTSD::init() {
689 getBackend().initCache(&Cache);
690 memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder));
691 }
692
commitBack()693 void ScudoTSD::commitBack() {
694 Instance.commitBack(this);
695 }
696
scudoAllocate(uptr Size,uptr Alignment,AllocType Type)697 void *scudoAllocate(uptr Size, uptr Alignment, AllocType Type) {
698 if (Alignment && UNLIKELY(!IsPowerOfTwo(Alignment))) {
699 errno = EINVAL;
700 if (Instance.canReturnNull())
701 return nullptr;
702 reportAllocationAlignmentNotPowerOfTwo(Alignment);
703 }
704 return SetErrnoOnNull(Instance.allocate(Size, Alignment, Type));
705 }
706
scudoDeallocate(void * Ptr,uptr Size,uptr Alignment,AllocType Type)707 void scudoDeallocate(void *Ptr, uptr Size, uptr Alignment, AllocType Type) {
708 Instance.deallocate(Ptr, Size, Alignment, Type);
709 }
710
scudoRealloc(void * Ptr,uptr Size)711 void *scudoRealloc(void *Ptr, uptr Size) {
712 if (!Ptr)
713 return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc));
714 if (Size == 0) {
715 Instance.deallocate(Ptr, 0, 0, FromMalloc);
716 return nullptr;
717 }
718 return SetErrnoOnNull(Instance.reallocate(Ptr, Size));
719 }
720
scudoCalloc(uptr NMemB,uptr Size)721 void *scudoCalloc(uptr NMemB, uptr Size) {
722 return SetErrnoOnNull(Instance.calloc(NMemB, Size));
723 }
724
scudoValloc(uptr Size)725 void *scudoValloc(uptr Size) {
726 return SetErrnoOnNull(
727 Instance.allocate(Size, GetPageSizeCached(), FromMemalign));
728 }
729
scudoPvalloc(uptr Size)730 void *scudoPvalloc(uptr Size) {
731 const uptr PageSize = GetPageSizeCached();
732 if (UNLIKELY(CheckForPvallocOverflow(Size, PageSize))) {
733 errno = ENOMEM;
734 if (Instance.canReturnNull())
735 return nullptr;
736 reportPvallocOverflow(Size);
737 }
738 // pvalloc(0) should allocate one page.
739 Size = Size ? RoundUpTo(Size, PageSize) : PageSize;
740 return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign));
741 }
742
scudoPosixMemalign(void ** MemPtr,uptr Alignment,uptr Size)743 int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
744 if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) {
745 if (!Instance.canReturnNull())
746 reportInvalidPosixMemalignAlignment(Alignment);
747 return EINVAL;
748 }
749 void *Ptr = Instance.allocate(Size, Alignment, FromMemalign);
750 if (UNLIKELY(!Ptr))
751 return ENOMEM;
752 *MemPtr = Ptr;
753 return 0;
754 }
755
scudoAlignedAlloc(uptr Alignment,uptr Size)756 void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
757 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) {
758 errno = EINVAL;
759 if (Instance.canReturnNull())
760 return nullptr;
761 reportInvalidAlignedAllocAlignment(Size, Alignment);
762 }
763 return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc));
764 }
765
scudoMallocUsableSize(void * Ptr)766 uptr scudoMallocUsableSize(void *Ptr) {
767 return Instance.getUsableSize(Ptr);
768 }
769
770 } // namespace __scudo
771
772 using namespace __scudo;
773
774 // MallocExtension helper functions
775
__sanitizer_get_current_allocated_bytes()776 uptr __sanitizer_get_current_allocated_bytes() {
777 return Instance.getStats(AllocatorStatAllocated);
778 }
779
__sanitizer_get_heap_size()780 uptr __sanitizer_get_heap_size() {
781 return Instance.getStats(AllocatorStatMapped);
782 }
783
__sanitizer_get_free_bytes()784 uptr __sanitizer_get_free_bytes() {
785 return 1;
786 }
787
__sanitizer_get_unmapped_bytes()788 uptr __sanitizer_get_unmapped_bytes() {
789 return 1;
790 }
791
__sanitizer_get_estimated_allocated_size(uptr Size)792 uptr __sanitizer_get_estimated_allocated_size(uptr Size) {
793 return Size;
794 }
795
__sanitizer_get_ownership(const void * Ptr)796 int __sanitizer_get_ownership(const void *Ptr) {
797 return Instance.isValidPointer(Ptr);
798 }
799
__sanitizer_get_allocated_size(const void * Ptr)800 uptr __sanitizer_get_allocated_size(const void *Ptr) {
801 return Instance.getUsableSize(Ptr);
802 }
803
804 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
SANITIZER_INTERFACE_WEAK_DEF(void,__sanitizer_malloc_hook,void * Ptr,uptr Size)805 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
806 void *Ptr, uptr Size) {
807 (void)Ptr;
808 (void)Size;
809 }
810
SANITIZER_INTERFACE_WEAK_DEF(void,__sanitizer_free_hook,void * Ptr)811 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *Ptr) {
812 (void)Ptr;
813 }
814 #endif
815
816 // Interface functions
817
__scudo_set_rss_limit(uptr LimitMb,s32 HardLimit)818 void __scudo_set_rss_limit(uptr LimitMb, s32 HardLimit) {
819 if (!SCUDO_CAN_USE_PUBLIC_INTERFACE)
820 return;
821 Instance.setRssLimit(LimitMb, !!HardLimit);
822 }
823
__scudo_print_stats()824 void __scudo_print_stats() {
825 Instance.printStats();
826 }
827