1 //===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// Scudo Hardened Allocator implementation.
10 /// It uses the sanitizer_common allocator as a base and aims at mitigating
11 /// heap corruption vulnerabilities. It provides a checksum-guarded chunk
12 /// header, a delayed free list, and additional sanity checks.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "scudo_allocator.h"
17 #include "scudo_crc32.h"
18 #include "scudo_errors.h"
19 #include "scudo_flags.h"
20 #include "scudo_interface_internal.h"
21 #include "scudo_tsd.h"
22 #include "scudo_utils.h"
23 
24 #include "sanitizer_common/sanitizer_allocator_checks.h"
25 #include "sanitizer_common/sanitizer_allocator_interface.h"
26 #include "sanitizer_common/sanitizer_quarantine.h"
27 
28 #ifdef GWP_ASAN_HOOKS
29 # include "gwp_asan/guarded_pool_allocator.h"
30 # include "gwp_asan/optional/backtrace.h"
31 # include "gwp_asan/optional/options_parser.h"
32 #include "gwp_asan/optional/segv_handler.h"
33 #endif // GWP_ASAN_HOOKS
34 
35 #include <errno.h>
36 #include <string.h>
37 
38 namespace __scudo {
39 
40 // Global static cookie, initialized at start-up.
41 static u32 Cookie;
42 
43 // We default to software CRC32 if the alternatives are not supported, either
44 // at compilation or at runtime.
45 static atomic_uint8_t HashAlgorithm = { CRC32Software };
46 
computeCRC32(u32 Crc,uptr Value,uptr * Array,uptr ArraySize)47 inline u32 computeCRC32(u32 Crc, uptr Value, uptr *Array, uptr ArraySize) {
48   // If the hardware CRC32 feature is defined here, it was enabled everywhere,
49   // as opposed to only for scudo_crc32.cpp. This means that other hardware
50   // specific instructions were likely emitted at other places, and as a
51   // result there is no reason to not use it here.
52 #if defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
53   Crc = CRC32_INTRINSIC(Crc, Value);
54   for (uptr i = 0; i < ArraySize; i++)
55     Crc = CRC32_INTRINSIC(Crc, Array[i]);
56   return Crc;
57 #else
58   if (atomic_load_relaxed(&HashAlgorithm) == CRC32Hardware) {
59     Crc = computeHardwareCRC32(Crc, Value);
60     for (uptr i = 0; i < ArraySize; i++)
61       Crc = computeHardwareCRC32(Crc, Array[i]);
62     return Crc;
63   }
64   Crc = computeSoftwareCRC32(Crc, Value);
65   for (uptr i = 0; i < ArraySize; i++)
66     Crc = computeSoftwareCRC32(Crc, Array[i]);
67   return Crc;
68 #endif  // defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
69 }
70 
71 static BackendT &getBackend();
72 
73 namespace Chunk {
getAtomicHeader(void * Ptr)74   static inline AtomicPackedHeader *getAtomicHeader(void *Ptr) {
75     return reinterpret_cast<AtomicPackedHeader *>(reinterpret_cast<uptr>(Ptr) -
76         getHeaderSize());
77   }
78   static inline
getConstAtomicHeader(const void * Ptr)79   const AtomicPackedHeader *getConstAtomicHeader(const void *Ptr) {
80     return reinterpret_cast<const AtomicPackedHeader *>(
81         reinterpret_cast<uptr>(Ptr) - getHeaderSize());
82   }
83 
isAligned(const void * Ptr)84   static inline bool isAligned(const void *Ptr) {
85     return IsAligned(reinterpret_cast<uptr>(Ptr), MinAlignment);
86   }
87 
88   // We can't use the offset member of the chunk itself, as we would double
89   // fetch it without any warranty that it wouldn't have been tampered. To
90   // prevent this, we work with a local copy of the header.
getBackendPtr(const void * Ptr,UnpackedHeader * Header)91   static inline void *getBackendPtr(const void *Ptr, UnpackedHeader *Header) {
92     return reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
93         getHeaderSize() - (Header->Offset << MinAlignmentLog));
94   }
95 
96   // Returns the usable size for a chunk, meaning the amount of bytes from the
97   // beginning of the user data to the end of the backend allocated chunk.
getUsableSize(const void * Ptr,UnpackedHeader * Header)98   static inline uptr getUsableSize(const void *Ptr, UnpackedHeader *Header) {
99     const uptr ClassId = Header->ClassId;
100     if (ClassId)
101       return PrimaryT::ClassIdToSize(ClassId) - getHeaderSize() -
102           (Header->Offset << MinAlignmentLog);
103     return SecondaryT::GetActuallyAllocatedSize(
104         getBackendPtr(Ptr, Header)) - getHeaderSize();
105   }
106 
107   // Returns the size the user requested when allocating the chunk.
getSize(const void * Ptr,UnpackedHeader * Header)108   static inline uptr getSize(const void *Ptr, UnpackedHeader *Header) {
109     const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
110     if (Header->ClassId)
111       return SizeOrUnusedBytes;
112     return SecondaryT::GetActuallyAllocatedSize(
113         getBackendPtr(Ptr, Header)) - getHeaderSize() - SizeOrUnusedBytes;
114   }
115 
116   // Compute the checksum of the chunk pointer and its header.
computeChecksum(const void * Ptr,UnpackedHeader * Header)117   static inline u16 computeChecksum(const void *Ptr, UnpackedHeader *Header) {
118     UnpackedHeader ZeroChecksumHeader = *Header;
119     ZeroChecksumHeader.Checksum = 0;
120     uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)];
121     memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder));
122     const u32 Crc = computeCRC32(Cookie, reinterpret_cast<uptr>(Ptr),
123                                  HeaderHolder, ARRAY_SIZE(HeaderHolder));
124     return static_cast<u16>(Crc);
125   }
126 
127   // Checks the validity of a chunk by verifying its checksum. It doesn't
128   // incur termination in the event of an invalid chunk.
isValid(const void * Ptr)129   static inline bool isValid(const void *Ptr) {
130     PackedHeader NewPackedHeader =
131         atomic_load_relaxed(getConstAtomicHeader(Ptr));
132     UnpackedHeader NewUnpackedHeader =
133         bit_cast<UnpackedHeader>(NewPackedHeader);
134     return (NewUnpackedHeader.Checksum ==
135             computeChecksum(Ptr, &NewUnpackedHeader));
136   }
137 
138   // Ensure that ChunkAvailable is 0, so that if a 0 checksum is ever valid
139   // for a fully nulled out header, its state will be available anyway.
140   COMPILER_CHECK(ChunkAvailable == 0);
141 
142   // Loads and unpacks the header, verifying the checksum in the process.
143   static inline
loadHeader(const void * Ptr,UnpackedHeader * NewUnpackedHeader)144   void loadHeader(const void *Ptr, UnpackedHeader *NewUnpackedHeader) {
145     PackedHeader NewPackedHeader =
146         atomic_load_relaxed(getConstAtomicHeader(Ptr));
147     *NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
148     if (UNLIKELY(NewUnpackedHeader->Checksum !=
149         computeChecksum(Ptr, NewUnpackedHeader)))
150       dieWithMessage("corrupted chunk header at address %p\n", Ptr);
151   }
152 
153   // Packs and stores the header, computing the checksum in the process.
storeHeader(void * Ptr,UnpackedHeader * NewUnpackedHeader)154   static inline void storeHeader(void *Ptr, UnpackedHeader *NewUnpackedHeader) {
155     NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
156     PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
157     atomic_store_relaxed(getAtomicHeader(Ptr), NewPackedHeader);
158   }
159 
160   // Packs and stores the header, computing the checksum in the process. We
161   // compare the current header with the expected provided one to ensure that
162   // we are not being raced by a corruption occurring in another thread.
compareExchangeHeader(void * Ptr,UnpackedHeader * NewUnpackedHeader,UnpackedHeader * OldUnpackedHeader)163   static inline void compareExchangeHeader(void *Ptr,
164                                            UnpackedHeader *NewUnpackedHeader,
165                                            UnpackedHeader *OldUnpackedHeader) {
166     NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
167     PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
168     PackedHeader OldPackedHeader = bit_cast<PackedHeader>(*OldUnpackedHeader);
169     if (UNLIKELY(!atomic_compare_exchange_strong(
170             getAtomicHeader(Ptr), &OldPackedHeader, NewPackedHeader,
171             memory_order_relaxed)))
172       dieWithMessage("race on chunk header at address %p\n", Ptr);
173   }
174 }  // namespace Chunk
175 
176 struct QuarantineCallback {
QuarantineCallback__scudo::QuarantineCallback177   explicit QuarantineCallback(AllocatorCacheT *Cache)
178     : Cache_(Cache) {}
179 
180   // Chunk recycling function, returns a quarantined chunk to the backend,
181   // first making sure it hasn't been tampered with.
Recycle__scudo::QuarantineCallback182   void Recycle(void *Ptr) {
183     UnpackedHeader Header;
184     Chunk::loadHeader(Ptr, &Header);
185     if (UNLIKELY(Header.State != ChunkQuarantine))
186       dieWithMessage("invalid chunk state when recycling address %p\n", Ptr);
187     UnpackedHeader NewHeader = Header;
188     NewHeader.State = ChunkAvailable;
189     Chunk::compareExchangeHeader(Ptr, &NewHeader, &Header);
190     void *BackendPtr = Chunk::getBackendPtr(Ptr, &Header);
191     if (Header.ClassId)
192       getBackend().deallocatePrimary(Cache_, BackendPtr, Header.ClassId);
193     else
194       getBackend().deallocateSecondary(BackendPtr);
195   }
196 
197   // Internal quarantine allocation and deallocation functions. We first check
198   // that the batches are indeed serviced by the Primary.
199   // TODO(kostyak): figure out the best way to protect the batches.
Allocate__scudo::QuarantineCallback200   void *Allocate(uptr Size) {
201     const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
202     return getBackend().allocatePrimary(Cache_, BatchClassId);
203   }
204 
Deallocate__scudo::QuarantineCallback205   void Deallocate(void *Ptr) {
206     const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
207     getBackend().deallocatePrimary(Cache_, Ptr, BatchClassId);
208   }
209 
210   AllocatorCacheT *Cache_;
211   COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize);
212 };
213 
214 typedef Quarantine<QuarantineCallback, void> QuarantineT;
215 typedef QuarantineT::Cache QuarantineCacheT;
216 COMPILER_CHECK(sizeof(QuarantineCacheT) <=
217                sizeof(ScudoTSD::QuarantineCachePlaceHolder));
218 
getQuarantineCache(ScudoTSD * TSD)219 QuarantineCacheT *getQuarantineCache(ScudoTSD *TSD) {
220   return reinterpret_cast<QuarantineCacheT *>(TSD->QuarantineCachePlaceHolder);
221 }
222 
223 #ifdef GWP_ASAN_HOOKS
224 static gwp_asan::GuardedPoolAllocator GuardedAlloc;
225 #endif // GWP_ASAN_HOOKS
226 
227 struct Allocator {
228   static const uptr MaxAllowedMallocSize =
229       FIRST_32_SECOND_64(2UL << 30, 1ULL << 40);
230 
231   BackendT Backend;
232   QuarantineT Quarantine;
233 
234   u32 QuarantineChunksUpToSize;
235 
236   bool DeallocationTypeMismatch;
237   bool ZeroContents;
238   bool DeleteSizeMismatch;
239 
240   bool CheckRssLimit;
241   uptr HardRssLimitMb;
242   uptr SoftRssLimitMb;
243   atomic_uint8_t RssLimitExceeded;
244   atomic_uint64_t RssLastCheckedAtNS;
245 
Allocator__scudo::Allocator246   explicit Allocator(LinkerInitialized)
247     : Quarantine(LINKER_INITIALIZED) {}
248 
249   NOINLINE void performSanityChecks();
250 
init__scudo::Allocator251   void init() {
252     SanitizerToolName = "Scudo";
253     PrimaryAllocatorName = "ScudoPrimary";
254     SecondaryAllocatorName = "ScudoSecondary";
255 
256     initFlags();
257 
258     performSanityChecks();
259 
260     // Check if hardware CRC32 is supported in the binary and by the platform,
261     // if so, opt for the CRC32 hardware version of the checksum.
262     if (&computeHardwareCRC32 && hasHardwareCRC32())
263       atomic_store_relaxed(&HashAlgorithm, CRC32Hardware);
264 
265     SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
266     Backend.init(common_flags()->allocator_release_to_os_interval_ms);
267     HardRssLimitMb = common_flags()->hard_rss_limit_mb;
268     SoftRssLimitMb = common_flags()->soft_rss_limit_mb;
269     Quarantine.Init(
270         static_cast<uptr>(getFlags()->QuarantineSizeKb) << 10,
271         static_cast<uptr>(getFlags()->ThreadLocalQuarantineSizeKb) << 10);
272     QuarantineChunksUpToSize = (Quarantine.GetCacheSize() == 0) ? 0 :
273         getFlags()->QuarantineChunksUpToSize;
274     DeallocationTypeMismatch = getFlags()->DeallocationTypeMismatch;
275     DeleteSizeMismatch = getFlags()->DeleteSizeMismatch;
276     ZeroContents = getFlags()->ZeroContents;
277 
278     if (UNLIKELY(!GetRandom(reinterpret_cast<void *>(&Cookie), sizeof(Cookie),
279                             /*blocking=*/false))) {
280       Cookie = static_cast<u32>((NanoTime() >> 12) ^
281                                 (reinterpret_cast<uptr>(this) >> 4));
282     }
283 
284     CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
285     if (CheckRssLimit)
286       atomic_store_relaxed(&RssLastCheckedAtNS, MonotonicNanoTime());
287   }
288 
289   // Helper function that checks for a valid Scudo chunk. nullptr isn't.
isValidPointer__scudo::Allocator290   bool isValidPointer(const void *Ptr) {
291     initThreadMaybe();
292     if (UNLIKELY(!Ptr))
293       return false;
294     if (!Chunk::isAligned(Ptr))
295       return false;
296     return Chunk::isValid(Ptr);
297   }
298 
299   NOINLINE bool isRssLimitExceeded();
300 
301   // Allocates a chunk.
allocate__scudo::Allocator302   void *allocate(uptr Size, uptr Alignment, AllocType Type,
303                  bool ForceZeroContents = false) {
304     initThreadMaybe();
305 
306 #ifdef GWP_ASAN_HOOKS
307     if (UNLIKELY(GuardedAlloc.shouldSample())) {
308       if (void *Ptr = GuardedAlloc.allocate(Size))
309         return Ptr;
310     }
311 #endif // GWP_ASAN_HOOKS
312 
313     if (UNLIKELY(Alignment > MaxAlignment)) {
314       if (AllocatorMayReturnNull())
315         return nullptr;
316       reportAllocationAlignmentTooBig(Alignment, MaxAlignment);
317     }
318     if (UNLIKELY(Alignment < MinAlignment))
319       Alignment = MinAlignment;
320 
321     const uptr NeededSize = RoundUpTo(Size ? Size : 1, MinAlignment) +
322         Chunk::getHeaderSize();
323     const uptr AlignedSize = (Alignment > MinAlignment) ?
324         NeededSize + (Alignment - Chunk::getHeaderSize()) : NeededSize;
325     if (UNLIKELY(Size >= MaxAllowedMallocSize) ||
326         UNLIKELY(AlignedSize >= MaxAllowedMallocSize)) {
327       if (AllocatorMayReturnNull())
328         return nullptr;
329       reportAllocationSizeTooBig(Size, AlignedSize, MaxAllowedMallocSize);
330     }
331 
332     if (CheckRssLimit && UNLIKELY(isRssLimitExceeded())) {
333       if (AllocatorMayReturnNull())
334         return nullptr;
335       reportRssLimitExceeded();
336     }
337 
338     // Primary and Secondary backed allocations have a different treatment. We
339     // deal with alignment requirements of Primary serviced allocations here,
340     // but the Secondary will take care of its own alignment needs.
341     void *BackendPtr;
342     uptr BackendSize;
343     u8 ClassId;
344     if (PrimaryT::CanAllocate(AlignedSize, MinAlignment)) {
345       BackendSize = AlignedSize;
346       ClassId = SizeClassMap::ClassID(BackendSize);
347       bool UnlockRequired;
348       ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
349       BackendPtr = Backend.allocatePrimary(&TSD->Cache, ClassId);
350       if (UnlockRequired)
351         TSD->unlock();
352     } else {
353       BackendSize = NeededSize;
354       ClassId = 0;
355       BackendPtr = Backend.allocateSecondary(BackendSize, Alignment);
356     }
357     if (UNLIKELY(!BackendPtr)) {
358       SetAllocatorOutOfMemory();
359       if (AllocatorMayReturnNull())
360         return nullptr;
361       reportOutOfMemory(Size);
362     }
363 
364     // If requested, we will zero out the entire contents of the returned chunk.
365     if ((ForceZeroContents || ZeroContents) && ClassId)
366       memset(BackendPtr, 0, PrimaryT::ClassIdToSize(ClassId));
367 
368     UnpackedHeader Header = {};
369     uptr UserPtr = reinterpret_cast<uptr>(BackendPtr) + Chunk::getHeaderSize();
370     if (UNLIKELY(!IsAligned(UserPtr, Alignment))) {
371       // Since the Secondary takes care of alignment, a non-aligned pointer
372       // means it is from the Primary. It is also the only case where the offset
373       // field of the header would be non-zero.
374       DCHECK(ClassId);
375       const uptr AlignedUserPtr = RoundUpTo(UserPtr, Alignment);
376       Header.Offset = (AlignedUserPtr - UserPtr) >> MinAlignmentLog;
377       UserPtr = AlignedUserPtr;
378     }
379     DCHECK_LE(UserPtr + Size, reinterpret_cast<uptr>(BackendPtr) + BackendSize);
380     Header.State = ChunkAllocated;
381     Header.AllocType = Type;
382     if (ClassId) {
383       Header.ClassId = ClassId;
384       Header.SizeOrUnusedBytes = Size;
385     } else {
386       // The secondary fits the allocations to a page, so the amount of unused
387       // bytes is the difference between the end of the user allocation and the
388       // next page boundary.
389       const uptr PageSize = GetPageSizeCached();
390       const uptr TrailingBytes = (UserPtr + Size) & (PageSize - 1);
391       if (TrailingBytes)
392         Header.SizeOrUnusedBytes = PageSize - TrailingBytes;
393     }
394     void *Ptr = reinterpret_cast<void *>(UserPtr);
395     Chunk::storeHeader(Ptr, &Header);
396     if (SCUDO_CAN_USE_HOOKS && &__sanitizer_malloc_hook)
397       __sanitizer_malloc_hook(Ptr, Size);
398     return Ptr;
399   }
400 
401   // Place a chunk in the quarantine or directly deallocate it in the event of
402   // a zero-sized quarantine, or if the size of the chunk is greater than the
403   // quarantine chunk size threshold.
quarantineOrDeallocateChunk__scudo::Allocator404   void quarantineOrDeallocateChunk(void *Ptr, UnpackedHeader *Header,
405                                    uptr Size) {
406     const bool BypassQuarantine = !Size || (Size > QuarantineChunksUpToSize);
407     if (BypassQuarantine) {
408       UnpackedHeader NewHeader = *Header;
409       NewHeader.State = ChunkAvailable;
410       Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
411       void *BackendPtr = Chunk::getBackendPtr(Ptr, Header);
412       if (Header->ClassId) {
413         bool UnlockRequired;
414         ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
415         getBackend().deallocatePrimary(&TSD->Cache, BackendPtr,
416                                        Header->ClassId);
417         if (UnlockRequired)
418           TSD->unlock();
419       } else {
420         getBackend().deallocateSecondary(BackendPtr);
421       }
422     } else {
423       // If a small memory amount was allocated with a larger alignment, we want
424       // to take that into account. Otherwise the Quarantine would be filled
425       // with tiny chunks, taking a lot of VA memory. This is an approximation
426       // of the usable size, that allows us to not call
427       // GetActuallyAllocatedSize.
428       const uptr EstimatedSize = Size + (Header->Offset << MinAlignmentLog);
429       UnpackedHeader NewHeader = *Header;
430       NewHeader.State = ChunkQuarantine;
431       Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
432       bool UnlockRequired;
433       ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
434       Quarantine.Put(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache),
435                      Ptr, EstimatedSize);
436       if (UnlockRequired)
437         TSD->unlock();
438     }
439   }
440 
441   // Deallocates a Chunk, which means either adding it to the quarantine or
442   // directly returning it to the backend if criteria are met.
deallocate__scudo::Allocator443   void deallocate(void *Ptr, uptr DeleteSize, uptr DeleteAlignment,
444                   AllocType Type) {
445     // For a deallocation, we only ensure minimal initialization, meaning thread
446     // local data will be left uninitialized for now (when using ELF TLS). The
447     // fallback cache will be used instead. This is a workaround for a situation
448     // where the only heap operation performed in a thread would be a free past
449     // the TLS destructors, ending up in initialized thread specific data never
450     // being destroyed properly. Any other heap operation will do a full init.
451     initThreadMaybe(/*MinimalInit=*/true);
452     if (SCUDO_CAN_USE_HOOKS && &__sanitizer_free_hook)
453       __sanitizer_free_hook(Ptr);
454     if (UNLIKELY(!Ptr))
455       return;
456 
457 #ifdef GWP_ASAN_HOOKS
458     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
459       GuardedAlloc.deallocate(Ptr);
460       return;
461     }
462 #endif // GWP_ASAN_HOOKS
463 
464     if (UNLIKELY(!Chunk::isAligned(Ptr)))
465       dieWithMessage("misaligned pointer when deallocating address %p\n", Ptr);
466     UnpackedHeader Header;
467     Chunk::loadHeader(Ptr, &Header);
468     if (UNLIKELY(Header.State != ChunkAllocated))
469       dieWithMessage("invalid chunk state when deallocating address %p\n", Ptr);
470     if (DeallocationTypeMismatch) {
471       // The deallocation type has to match the allocation one.
472       if (Header.AllocType != Type) {
473         // With the exception of memalign'd Chunks, that can be still be free'd.
474         if (Header.AllocType != FromMemalign || Type != FromMalloc)
475           dieWithMessage("allocation type mismatch when deallocating address "
476                          "%p\n", Ptr);
477       }
478     }
479     const uptr Size = Chunk::getSize(Ptr, &Header);
480     if (DeleteSizeMismatch) {
481       if (DeleteSize && DeleteSize != Size)
482         dieWithMessage("invalid sized delete when deallocating address %p\n",
483                        Ptr);
484     }
485     (void)DeleteAlignment;  // TODO(kostyak): verify that the alignment matches.
486     quarantineOrDeallocateChunk(Ptr, &Header, Size);
487   }
488 
489   // Reallocates a chunk. We can save on a new allocation if the new requested
490   // size still fits in the chunk.
reallocate__scudo::Allocator491   void *reallocate(void *OldPtr, uptr NewSize) {
492     initThreadMaybe();
493 
494 #ifdef GWP_ASAN_HOOKS
495     if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
496       size_t OldSize = GuardedAlloc.getSize(OldPtr);
497       void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
498       if (NewPtr)
499         memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
500       GuardedAlloc.deallocate(OldPtr);
501       return NewPtr;
502     }
503 #endif // GWP_ASAN_HOOKS
504 
505     if (UNLIKELY(!Chunk::isAligned(OldPtr)))
506       dieWithMessage("misaligned address when reallocating address %p\n",
507                      OldPtr);
508     UnpackedHeader OldHeader;
509     Chunk::loadHeader(OldPtr, &OldHeader);
510     if (UNLIKELY(OldHeader.State != ChunkAllocated))
511       dieWithMessage("invalid chunk state when reallocating address %p\n",
512                      OldPtr);
513     if (DeallocationTypeMismatch) {
514       if (UNLIKELY(OldHeader.AllocType != FromMalloc))
515         dieWithMessage("allocation type mismatch when reallocating address "
516                        "%p\n", OldPtr);
517     }
518     const uptr UsableSize = Chunk::getUsableSize(OldPtr, &OldHeader);
519     // The new size still fits in the current chunk, and the size difference
520     // is reasonable.
521     if (NewSize <= UsableSize &&
522         (UsableSize - NewSize) < (SizeClassMap::kMaxSize / 2)) {
523       UnpackedHeader NewHeader = OldHeader;
524       NewHeader.SizeOrUnusedBytes =
525           OldHeader.ClassId ? NewSize : UsableSize - NewSize;
526       Chunk::compareExchangeHeader(OldPtr, &NewHeader, &OldHeader);
527       return OldPtr;
528     }
529     // Otherwise, we have to allocate a new chunk and copy the contents of the
530     // old one.
531     void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
532     if (NewPtr) {
533       const uptr OldSize = OldHeader.ClassId ? OldHeader.SizeOrUnusedBytes :
534           UsableSize - OldHeader.SizeOrUnusedBytes;
535       memcpy(NewPtr, OldPtr, Min(NewSize, UsableSize));
536       quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
537     }
538     return NewPtr;
539   }
540 
541   // Helper function that returns the actual usable size of a chunk.
getUsableSize__scudo::Allocator542   uptr getUsableSize(const void *Ptr) {
543     initThreadMaybe();
544     if (UNLIKELY(!Ptr))
545       return 0;
546 
547 #ifdef GWP_ASAN_HOOKS
548     if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
549       return GuardedAlloc.getSize(Ptr);
550 #endif // GWP_ASAN_HOOKS
551 
552     UnpackedHeader Header;
553     Chunk::loadHeader(Ptr, &Header);
554     // Getting the usable size of a chunk only makes sense if it's allocated.
555     if (UNLIKELY(Header.State != ChunkAllocated))
556       dieWithMessage("invalid chunk state when sizing address %p\n", Ptr);
557     return Chunk::getUsableSize(Ptr, &Header);
558   }
559 
calloc__scudo::Allocator560   void *calloc(uptr NMemB, uptr Size) {
561     initThreadMaybe();
562     if (UNLIKELY(CheckForCallocOverflow(NMemB, Size))) {
563       if (AllocatorMayReturnNull())
564         return nullptr;
565       reportCallocOverflow(NMemB, Size);
566     }
567     return allocate(NMemB * Size, MinAlignment, FromMalloc, true);
568   }
569 
commitBack__scudo::Allocator570   void commitBack(ScudoTSD *TSD) {
571     Quarantine.Drain(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache));
572     Backend.destroyCache(&TSD->Cache);
573   }
574 
getStats__scudo::Allocator575   uptr getStats(AllocatorStat StatType) {
576     initThreadMaybe();
577     uptr stats[AllocatorStatCount];
578     Backend.getStats(stats);
579     return stats[StatType];
580   }
581 
canReturnNull__scudo::Allocator582   bool canReturnNull() {
583     initThreadMaybe();
584     return AllocatorMayReturnNull();
585   }
586 
setRssLimit__scudo::Allocator587   void setRssLimit(uptr LimitMb, bool HardLimit) {
588     if (HardLimit)
589       HardRssLimitMb = LimitMb;
590     else
591       SoftRssLimitMb = LimitMb;
592     CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
593   }
594 
printStats__scudo::Allocator595   void printStats() {
596     initThreadMaybe();
597     Backend.printStats();
598   }
599 };
600 
performSanityChecks()601 NOINLINE void Allocator::performSanityChecks() {
602   // Verify that the header offset field can hold the maximum offset. In the
603   // case of the Secondary allocator, it takes care of alignment and the
604   // offset will always be 0. In the case of the Primary, the worst case
605   // scenario happens in the last size class, when the backend allocation
606   // would already be aligned on the requested alignment, which would happen
607   // to be the maximum alignment that would fit in that size class. As a
608   // result, the maximum offset will be at most the maximum alignment for the
609   // last size class minus the header size, in multiples of MinAlignment.
610   UnpackedHeader Header = {};
611   const uptr MaxPrimaryAlignment =
612       1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment);
613   const uptr MaxOffset =
614       (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
615   Header.Offset = MaxOffset;
616   if (Header.Offset != MaxOffset)
617     dieWithMessage("maximum possible offset doesn't fit in header\n");
618   // Verify that we can fit the maximum size or amount of unused bytes in the
619   // header. Given that the Secondary fits the allocation to a page, the worst
620   // case scenario happens in the Primary. It will depend on the second to
621   // last and last class sizes, as well as the dynamic base for the Primary.
622   // The following is an over-approximation that works for our needs.
623   const uptr MaxSizeOrUnusedBytes = SizeClassMap::kMaxSize - 1;
624   Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
625   if (Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes)
626     dieWithMessage("maximum possible unused bytes doesn't fit in header\n");
627 
628   const uptr LargestClassId = SizeClassMap::kLargestClassID;
629   Header.ClassId = LargestClassId;
630   if (Header.ClassId != LargestClassId)
631     dieWithMessage("largest class ID doesn't fit in header\n");
632 }
633 
634 // Opportunistic RSS limit check. This will update the RSS limit status, if
635 // it can, every 250ms, otherwise it will just return the current one.
isRssLimitExceeded()636 NOINLINE bool Allocator::isRssLimitExceeded() {
637   u64 LastCheck = atomic_load_relaxed(&RssLastCheckedAtNS);
638   const u64 CurrentCheck = MonotonicNanoTime();
639   if (LIKELY(CurrentCheck < LastCheck + (250ULL * 1000000ULL)))
640     return atomic_load_relaxed(&RssLimitExceeded);
641   if (!atomic_compare_exchange_weak(&RssLastCheckedAtNS, &LastCheck,
642                                     CurrentCheck, memory_order_relaxed))
643     return atomic_load_relaxed(&RssLimitExceeded);
644   // TODO(kostyak): We currently use sanitizer_common's GetRSS which reads the
645   //                RSS from /proc/self/statm by default. We might want to
646   //                call getrusage directly, even if it's less accurate.
647   const uptr CurrentRssMb = GetRSS() >> 20;
648   if (HardRssLimitMb && UNLIKELY(HardRssLimitMb < CurrentRssMb))
649     dieWithMessage("hard RSS limit exhausted (%zdMb vs %zdMb)\n",
650                    HardRssLimitMb, CurrentRssMb);
651   if (SoftRssLimitMb) {
652     if (atomic_load_relaxed(&RssLimitExceeded)) {
653       if (CurrentRssMb <= SoftRssLimitMb)
654         atomic_store_relaxed(&RssLimitExceeded, false);
655     } else {
656       if (CurrentRssMb > SoftRssLimitMb) {
657         atomic_store_relaxed(&RssLimitExceeded, true);
658         Printf("Scudo INFO: soft RSS limit exhausted (%zdMb vs %zdMb)\n",
659                SoftRssLimitMb, CurrentRssMb);
660       }
661     }
662   }
663   return atomic_load_relaxed(&RssLimitExceeded);
664 }
665 
666 static Allocator Instance(LINKER_INITIALIZED);
667 
getBackend()668 static BackendT &getBackend() {
669   return Instance.Backend;
670 }
671 
initScudo()672 void initScudo() {
673   Instance.init();
674 #ifdef GWP_ASAN_HOOKS
675   gwp_asan::options::initOptions();
676   gwp_asan::options::Options &Opts = gwp_asan::options::getOptions();
677   Opts.Backtrace = gwp_asan::options::getBacktraceFunction();
678   GuardedAlloc.init(Opts);
679 
680   if (Opts.InstallSignalHandlers)
681     gwp_asan::crash_handler::installSignalHandlers(
682         &GuardedAlloc, __sanitizer::Printf,
683         gwp_asan::options::getPrintBacktraceFunction(),
684         gwp_asan::crash_handler::getSegvBacktraceFunction());
685 #endif // GWP_ASAN_HOOKS
686 }
687 
init()688 void ScudoTSD::init() {
689   getBackend().initCache(&Cache);
690   memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder));
691 }
692 
commitBack()693 void ScudoTSD::commitBack() {
694   Instance.commitBack(this);
695 }
696 
scudoAllocate(uptr Size,uptr Alignment,AllocType Type)697 void *scudoAllocate(uptr Size, uptr Alignment, AllocType Type) {
698   if (Alignment && UNLIKELY(!IsPowerOfTwo(Alignment))) {
699     errno = EINVAL;
700     if (Instance.canReturnNull())
701       return nullptr;
702     reportAllocationAlignmentNotPowerOfTwo(Alignment);
703   }
704   return SetErrnoOnNull(Instance.allocate(Size, Alignment, Type));
705 }
706 
scudoDeallocate(void * Ptr,uptr Size,uptr Alignment,AllocType Type)707 void scudoDeallocate(void *Ptr, uptr Size, uptr Alignment, AllocType Type) {
708   Instance.deallocate(Ptr, Size, Alignment, Type);
709 }
710 
scudoRealloc(void * Ptr,uptr Size)711 void *scudoRealloc(void *Ptr, uptr Size) {
712   if (!Ptr)
713     return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc));
714   if (Size == 0) {
715     Instance.deallocate(Ptr, 0, 0, FromMalloc);
716     return nullptr;
717   }
718   return SetErrnoOnNull(Instance.reallocate(Ptr, Size));
719 }
720 
scudoCalloc(uptr NMemB,uptr Size)721 void *scudoCalloc(uptr NMemB, uptr Size) {
722   return SetErrnoOnNull(Instance.calloc(NMemB, Size));
723 }
724 
scudoValloc(uptr Size)725 void *scudoValloc(uptr Size) {
726   return SetErrnoOnNull(
727       Instance.allocate(Size, GetPageSizeCached(), FromMemalign));
728 }
729 
scudoPvalloc(uptr Size)730 void *scudoPvalloc(uptr Size) {
731   const uptr PageSize = GetPageSizeCached();
732   if (UNLIKELY(CheckForPvallocOverflow(Size, PageSize))) {
733     errno = ENOMEM;
734     if (Instance.canReturnNull())
735       return nullptr;
736     reportPvallocOverflow(Size);
737   }
738   // pvalloc(0) should allocate one page.
739   Size = Size ? RoundUpTo(Size, PageSize) : PageSize;
740   return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign));
741 }
742 
scudoPosixMemalign(void ** MemPtr,uptr Alignment,uptr Size)743 int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
744   if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) {
745     if (!Instance.canReturnNull())
746       reportInvalidPosixMemalignAlignment(Alignment);
747     return EINVAL;
748   }
749   void *Ptr = Instance.allocate(Size, Alignment, FromMemalign);
750   if (UNLIKELY(!Ptr))
751     return ENOMEM;
752   *MemPtr = Ptr;
753   return 0;
754 }
755 
scudoAlignedAlloc(uptr Alignment,uptr Size)756 void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
757   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) {
758     errno = EINVAL;
759     if (Instance.canReturnNull())
760       return nullptr;
761     reportInvalidAlignedAllocAlignment(Size, Alignment);
762   }
763   return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc));
764 }
765 
scudoMallocUsableSize(void * Ptr)766 uptr scudoMallocUsableSize(void *Ptr) {
767   return Instance.getUsableSize(Ptr);
768 }
769 
770 }  // namespace __scudo
771 
772 using namespace __scudo;
773 
774 // MallocExtension helper functions
775 
__sanitizer_get_current_allocated_bytes()776 uptr __sanitizer_get_current_allocated_bytes() {
777   return Instance.getStats(AllocatorStatAllocated);
778 }
779 
__sanitizer_get_heap_size()780 uptr __sanitizer_get_heap_size() {
781   return Instance.getStats(AllocatorStatMapped);
782 }
783 
__sanitizer_get_free_bytes()784 uptr __sanitizer_get_free_bytes() {
785   return 1;
786 }
787 
__sanitizer_get_unmapped_bytes()788 uptr __sanitizer_get_unmapped_bytes() {
789   return 1;
790 }
791 
__sanitizer_get_estimated_allocated_size(uptr Size)792 uptr __sanitizer_get_estimated_allocated_size(uptr Size) {
793   return Size;
794 }
795 
__sanitizer_get_ownership(const void * Ptr)796 int __sanitizer_get_ownership(const void *Ptr) {
797   return Instance.isValidPointer(Ptr);
798 }
799 
__sanitizer_get_allocated_size(const void * Ptr)800 uptr __sanitizer_get_allocated_size(const void *Ptr) {
801   return Instance.getUsableSize(Ptr);
802 }
803 
804 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
SANITIZER_INTERFACE_WEAK_DEF(void,__sanitizer_malloc_hook,void * Ptr,uptr Size)805 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
806                              void *Ptr, uptr Size) {
807   (void)Ptr;
808   (void)Size;
809 }
810 
SANITIZER_INTERFACE_WEAK_DEF(void,__sanitizer_free_hook,void * Ptr)811 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *Ptr) {
812   (void)Ptr;
813 }
814 #endif
815 
816 // Interface functions
817 
__scudo_set_rss_limit(uptr LimitMb,s32 HardLimit)818 void __scudo_set_rss_limit(uptr LimitMb, s32 HardLimit) {
819   if (!SCUDO_CAN_USE_PUBLIC_INTERFACE)
820     return;
821   Instance.setRssLimit(LimitMb, !!HardLimit);
822 }
823 
__scudo_print_stats()824 void __scudo_print_stats() {
825   Instance.printStats();
826 }
827