1 /*
2 * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/audio_processing/transient/transient_detector.h"
12
13 #include <float.h>
14 #include <string.h>
15
16 #include <algorithm>
17 #include <cmath>
18
19 #include "modules/audio_processing/transient/common.h"
20 #include "modules/audio_processing/transient/daubechies_8_wavelet_coeffs.h"
21 #include "modules/audio_processing/transient/moving_moments.h"
22 #include "modules/audio_processing/transient/wpd_node.h"
23 #include "modules/audio_processing/transient/wpd_tree.h"
24 #include "rtc_base/checks.h"
25
26 namespace webrtc {
27
28 static const int kTransientLengthMs = 30;
29 static const int kChunksAtStartupLeftToDelete =
30 kTransientLengthMs / ts::kChunkSizeMs;
31 static const float kDetectThreshold = 16.f;
32
TransientDetector(int sample_rate_hz)33 TransientDetector::TransientDetector(int sample_rate_hz)
34 : samples_per_chunk_(sample_rate_hz * ts::kChunkSizeMs / 1000),
35 last_first_moment_(),
36 last_second_moment_(),
37 chunks_at_startup_left_to_delete_(kChunksAtStartupLeftToDelete),
38 reference_energy_(1.f),
39 using_reference_(false) {
40 RTC_DCHECK(sample_rate_hz == ts::kSampleRate8kHz ||
41 sample_rate_hz == ts::kSampleRate16kHz ||
42 sample_rate_hz == ts::kSampleRate32kHz ||
43 sample_rate_hz == ts::kSampleRate48kHz);
44 int samples_per_transient = sample_rate_hz * kTransientLengthMs / 1000;
45 // Adjustment to avoid data loss while downsampling, making
46 // |samples_per_chunk_| and |samples_per_transient| always divisible by
47 // |kLeaves|.
48 samples_per_chunk_ -= samples_per_chunk_ % kLeaves;
49 samples_per_transient -= samples_per_transient % kLeaves;
50
51 tree_leaves_data_length_ = samples_per_chunk_ / kLeaves;
52 wpd_tree_.reset(new WPDTree(samples_per_chunk_,
53 kDaubechies8HighPassCoefficients,
54 kDaubechies8LowPassCoefficients,
55 kDaubechies8CoefficientsLength, kLevels));
56 for (size_t i = 0; i < kLeaves; ++i) {
57 moving_moments_[i].reset(
58 new MovingMoments(samples_per_transient / kLeaves));
59 }
60
61 first_moments_.reset(new float[tree_leaves_data_length_]);
62 second_moments_.reset(new float[tree_leaves_data_length_]);
63
64 for (int i = 0; i < kChunksAtStartupLeftToDelete; ++i) {
65 previous_results_.push_back(0.f);
66 }
67 }
68
~TransientDetector()69 TransientDetector::~TransientDetector() {}
70
Detect(const float * data,size_t data_length,const float * reference_data,size_t reference_length)71 float TransientDetector::Detect(const float* data,
72 size_t data_length,
73 const float* reference_data,
74 size_t reference_length) {
75 RTC_DCHECK(data);
76 RTC_DCHECK_EQ(samples_per_chunk_, data_length);
77
78 // TODO(aluebs): Check if these errors can logically happen and if not assert
79 // on them.
80 if (wpd_tree_->Update(data, samples_per_chunk_) != 0) {
81 return -1.f;
82 }
83
84 float result = 0.f;
85
86 for (size_t i = 0; i < kLeaves; ++i) {
87 WPDNode* leaf = wpd_tree_->NodeAt(kLevels, i);
88
89 moving_moments_[i]->CalculateMoments(leaf->data(), tree_leaves_data_length_,
90 first_moments_.get(),
91 second_moments_.get());
92
93 // Add value delayed (Use the last moments from the last call to Detect).
94 float unbiased_data = leaf->data()[0] - last_first_moment_[i];
95 result +=
96 unbiased_data * unbiased_data / (last_second_moment_[i] + FLT_MIN);
97
98 // Add new values.
99 for (size_t j = 1; j < tree_leaves_data_length_; ++j) {
100 unbiased_data = leaf->data()[j] - first_moments_[j - 1];
101 result +=
102 unbiased_data * unbiased_data / (second_moments_[j - 1] + FLT_MIN);
103 }
104
105 last_first_moment_[i] = first_moments_[tree_leaves_data_length_ - 1];
106 last_second_moment_[i] = second_moments_[tree_leaves_data_length_ - 1];
107 }
108
109 result /= tree_leaves_data_length_;
110
111 result *= ReferenceDetectionValue(reference_data, reference_length);
112
113 if (chunks_at_startup_left_to_delete_ > 0) {
114 chunks_at_startup_left_to_delete_--;
115 result = 0.f;
116 }
117
118 if (result >= kDetectThreshold) {
119 result = 1.f;
120 } else {
121 // Get proportional value.
122 // Proportion achieved with a squared raised cosine function with domain
123 // [0, kDetectThreshold) and image [0, 1), it's always increasing.
124 const float horizontal_scaling = ts::kPi / kDetectThreshold;
125 const float kHorizontalShift = ts::kPi;
126 const float kVerticalScaling = 0.5f;
127 const float kVerticalShift = 1.f;
128
129 result = (std::cos(result * horizontal_scaling + kHorizontalShift) +
130 kVerticalShift) *
131 kVerticalScaling;
132 result *= result;
133 }
134
135 previous_results_.pop_front();
136 previous_results_.push_back(result);
137
138 // In the current implementation we return the max of the current result and
139 // the previous results, so the high results have a width equals to
140 // |transient_length|.
141 return *std::max_element(previous_results_.begin(), previous_results_.end());
142 }
143
144 // Looks for the highest slope and compares it with the previous ones.
145 // An exponential transformation takes this to the [0, 1] range. This value is
146 // multiplied by the detection result to avoid false positives.
ReferenceDetectionValue(const float * data,size_t length)147 float TransientDetector::ReferenceDetectionValue(const float* data,
148 size_t length) {
149 if (data == NULL) {
150 using_reference_ = false;
151 return 1.f;
152 }
153 static const float kEnergyRatioThreshold = 0.2f;
154 static const float kReferenceNonLinearity = 20.f;
155 static const float kMemory = 0.99f;
156 float reference_energy = 0.f;
157 for (size_t i = 1; i < length; ++i) {
158 reference_energy += data[i] * data[i];
159 }
160 if (reference_energy == 0.f) {
161 using_reference_ = false;
162 return 1.f;
163 }
164 RTC_DCHECK_NE(0, reference_energy_);
165 float result = 1.f / (1.f + std::exp(kReferenceNonLinearity *
166 (kEnergyRatioThreshold -
167 reference_energy / reference_energy_)));
168 reference_energy_ =
169 kMemory * reference_energy_ + (1.f - kMemory) * reference_energy;
170
171 using_reference_ = true;
172
173 return result;
174 }
175
176 } // namespace webrtc
177