1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""A SessionRunHook extends `session.run()` calls for the `MonitoredSession`.
16
17SessionRunHooks are useful to track training, report progress, request early
18stopping and more. SessionRunHooks use the observer pattern and notify at the
19following points:
20 - when a session starts being used
21 - before a call to the `session.run()`
22 - after a call to the `session.run()`
23 - when the session closed
24
25A SessionRunHook encapsulates a piece of reusable/composable computation that
26can piggyback a call to `MonitoredSession.run()`. A hook can add any
27ops-or-tensor/feeds to the run call, and when the run call finishes with success
28gets the outputs it requested. Hooks are allowed to add ops to the graph in
29`hook.begin()`. The graph is finalized after the `begin()` method is called.
30
31There are a few pre-defined hooks:
32 - StopAtStepHook: Request stop based on global_step
33 - CheckpointSaverHook: saves checkpoint
34 - LoggingTensorHook: outputs one or more tensor values to log
35 - NanTensorHook: Request stop if given `Tensor` contains Nans.
36 - SummarySaverHook: saves summaries to a summary writer
37
38For more specific needs, you can create custom hooks:
39  class ExampleHook(SessionRunHook):
40    def begin(self):
41      # You can add ops to the graph here.
42      print('Starting the session.')
43      self.your_tensor = ...
44
45    def after_create_session(self, session, coord):
46      # When this is called, the graph is finalized and
47      # ops can no longer be added to the graph.
48      print('Session created.')
49
50    def before_run(self, run_context):
51      print('Before calling session.run().')
52      return SessionRunArgs(self.your_tensor)
53
54    def after_run(self, run_context, run_values):
55      print('Done running one step. The value of my tensor: %s',
56            run_values.results)
57      if you-need-to-stop-loop:
58        run_context.request_stop()
59
60    def end(self, session):
61      print('Done with the session.')
62
63To understand how hooks interact with calls to `MonitoredSession.run()`,
64look at following code:
65  with MonitoredTrainingSession(hooks=your_hooks, ...) as sess:
66    while not sess.should_stop():
67      sess.run(your_fetches)
68
69Above user code leads to following execution:
70  call hooks.begin()
71  sess = tf.compat.v1.Session()
72  call hooks.after_create_session()
73  while not stop is requested:
74    call hooks.before_run()
75    try:
76      results = sess.run(merged_fetches, feed_dict=merged_feeds)
77    except (errors.OutOfRangeError, StopIteration):
78      break
79    call hooks.after_run()
80  call hooks.end()
81  sess.close()
82
83Note that if sess.run() raises OutOfRangeError or StopIteration then
84hooks.after_run() will not be called but hooks.end() will still be called.
85If sess.run() raises any other exception then neither hooks.after_run() nor
86hooks.end() will be called.
87"""
88
89from __future__ import absolute_import
90from __future__ import division
91from __future__ import print_function
92
93import collections
94from tensorflow.python.util.tf_export import tf_export
95
96
97@tf_export(v1=["train.SessionRunHook"])
98class SessionRunHook(object):
99  """Hook to extend calls to MonitoredSession.run()."""
100
101  def begin(self):
102    """Called once before using the session.
103
104    When called, the default graph is the one that will be launched in the
105    session.  The hook can modify the graph by adding new operations to it.
106    After the `begin()` call the graph will be finalized and the other callbacks
107    can not modify the graph anymore. Second call of `begin()` on the same
108    graph, should not change the graph.
109    """
110    pass
111
112  def after_create_session(self, session, coord):  # pylint: disable=unused-argument
113    """Called when new TensorFlow session is created.
114
115    This is called to signal the hooks that a new session has been created. This
116    has two essential differences with the situation in which `begin` is called:
117
118    * When this is called, the graph is finalized and ops can no longer be added
119        to the graph.
120    * This method will also be called as a result of recovering a wrapped
121        session, not only at the beginning of the overall session.
122
123    Args:
124      session: A TensorFlow Session that has been created.
125      coord: A Coordinator object which keeps track of all threads.
126    """
127    pass
128
129  def before_run(self, run_context):  # pylint: disable=unused-argument
130    """Called before each call to run().
131
132    You can return from this call a `SessionRunArgs` object indicating ops or
133    tensors to add to the upcoming `run()` call.  These ops/tensors will be run
134    together with the ops/tensors originally passed to the original run() call.
135    The run args you return can also contain feeds to be added to the run()
136    call.
137
138    The `run_context` argument is a `SessionRunContext` that provides
139    information about the upcoming `run()` call: the originally requested
140    op/tensors, the TensorFlow Session.
141
142    At this point graph is finalized and you can not add ops.
143
144    Args:
145      run_context: A `SessionRunContext` object.
146
147    Returns:
148      None or a `SessionRunArgs` object.
149    """
150    return None
151
152  def after_run(self,
153                run_context,  # pylint: disable=unused-argument
154                run_values):  # pylint: disable=unused-argument
155    """Called after each call to run().
156
157    The `run_values` argument contains results of requested ops/tensors by
158    `before_run()`.
159
160    The `run_context` argument is the same one send to `before_run` call.
161    `run_context.request_stop()` can be called to stop the iteration.
162
163    If `session.run()` raises any exceptions then `after_run()` is not called.
164
165    Args:
166      run_context: A `SessionRunContext` object.
167      run_values: A SessionRunValues object.
168    """
169    pass
170
171  def end(self, session):  # pylint: disable=unused-argument
172    """Called at the end of session.
173
174    The `session` argument can be used in case the hook wants to run final ops,
175    such as saving a last checkpoint.
176
177    If `session.run()` raises exception other than OutOfRangeError or
178    StopIteration then `end()` is not called.
179    Note the difference between `end()` and `after_run()` behavior when
180    `session.run()` raises OutOfRangeError or StopIteration. In that case
181    `end()` is called but `after_run()` is not called.
182
183    Args:
184      session: A TensorFlow Session that will be soon closed.
185    """
186    pass
187
188
189@tf_export(v1=["train.SessionRunArgs"])
190class SessionRunArgs(
191    collections.namedtuple("SessionRunArgs",
192                           ["fetches", "feed_dict", "options"])):
193  """Represents arguments to be added to a `Session.run()` call.
194
195  Args:
196    fetches: Exactly like the 'fetches' argument to Session.Run().
197      Can be a single tensor or op, a list of 'fetches' or a dictionary
198      of fetches.  For example:
199        fetches = global_step_tensor
200        fetches = [train_op, summary_op, global_step_tensor]
201        fetches = {'step': global_step_tensor, 'summ': summary_op}
202      Note that this can recurse as expected:
203        fetches = {'step': global_step_tensor,
204                   'ops': [train_op, check_nan_op]}
205    feed_dict: Exactly like the `feed_dict` argument to `Session.Run()`
206    options: Exactly like the `options` argument to `Session.run()`, i.e., a
207      config_pb2.RunOptions proto.
208  """
209
210  def __new__(cls, fetches, feed_dict=None, options=None):
211    return super(SessionRunArgs, cls).__new__(cls, fetches, feed_dict, options)
212
213
214@tf_export(v1=["train.SessionRunContext"])
215class SessionRunContext(object):
216  """Provides information about the `session.run()` call being made.
217
218  Provides information about original request to `Session.Run()` function.
219  SessionRunHook objects can stop the loop by calling `request_stop()` of
220  `run_context`. In the future we may use this object to add more information
221  about run without changing the Hook API.
222  """
223
224  def __init__(self, original_args, session):
225    """Initializes SessionRunContext."""
226    self._original_args = original_args
227    self._session = session
228    self._stop_requested = False
229
230  @property
231  def original_args(self):
232    """A `SessionRunArgs` object holding the original arguments of `run()`.
233
234    If user called `MonitoredSession.run(fetches=a, feed_dict=b)`, then this
235    field is equal to SessionRunArgs(a, b).
236
237    Returns:
238     A `SessionRunArgs` object
239    """
240    return self._original_args
241
242  @property
243  def session(self):
244    """A TensorFlow session object which will execute the `run`."""
245    return self._session
246
247  @property
248  def stop_requested(self):
249    """Returns whether a stop is requested or not.
250
251    If true, `MonitoredSession` stops iterations.
252    Returns:
253      A `bool`
254    """
255    return self._stop_requested
256
257  def request_stop(self):
258    """Sets stop requested field.
259
260    Hooks can use this function to request stop of iterations.
261    `MonitoredSession` checks whether this is called or not.
262    """
263    self._stop_requested = True
264
265
266@tf_export(v1=["train.SessionRunValues"])
267class SessionRunValues(
268    collections.namedtuple("SessionRunValues",
269                           ["results", "options", "run_metadata"])):
270  """Contains the results of `Session.run()`.
271
272  In the future we may use this object to add more information about result of
273  run without changing the Hook API.
274
275  Args:
276    results: The return values from `Session.run()` corresponding to the fetches
277      attribute returned in the RunArgs. Note that this has the same shape as
278      the RunArgs fetches.  For example:
279        fetches = global_step_tensor
280        => results = nparray(int)
281        fetches = [train_op, summary_op, global_step_tensor]
282        => results = [None, nparray(string), nparray(int)]
283        fetches = {'step': global_step_tensor, 'summ': summary_op}
284        => results = {'step': nparray(int), 'summ': nparray(string)}
285    options: `RunOptions` from the `Session.run()` call.
286    run_metadata: `RunMetadata` from the `Session.run()` call.
287  """
288