1 /*
2  *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "modules/pacing/pacing_controller.h"
12 
13 #include <algorithm>
14 #include <memory>
15 #include <utility>
16 #include <vector>
17 
18 #include "absl/strings/match.h"
19 #include "modules/pacing/bitrate_prober.h"
20 #include "modules/pacing/interval_budget.h"
21 #include "modules/utility/include/process_thread.h"
22 #include "rtc_base/checks.h"
23 #include "rtc_base/experiments/field_trial_parser.h"
24 #include "rtc_base/logging.h"
25 #include "rtc_base/time_utils.h"
26 #include "system_wrappers/include/clock.h"
27 
28 namespace webrtc {
29 namespace {
30 // Time limit in milliseconds between packet bursts.
31 constexpr TimeDelta kDefaultMinPacketLimit = TimeDelta::Millis(5);
32 constexpr TimeDelta kCongestedPacketInterval = TimeDelta::Millis(500);
33 // TODO(sprang): Consider dropping this limit.
34 // The maximum debt level, in terms of time, capped when sending packets.
35 constexpr TimeDelta kMaxDebtInTime = TimeDelta::Millis(500);
36 constexpr TimeDelta kMaxElapsedTime = TimeDelta::Seconds(2);
37 
38 // Upper cap on process interval, in case process has not been called in a long
39 // time. Applies only to periodic mode.
40 constexpr TimeDelta kMaxProcessingInterval = TimeDelta::Millis(30);
41 
42 constexpr int kFirstPriority = 0;
43 
IsDisabled(const WebRtcKeyValueConfig & field_trials,absl::string_view key)44 bool IsDisabled(const WebRtcKeyValueConfig& field_trials,
45                 absl::string_view key) {
46   return absl::StartsWith(field_trials.Lookup(key), "Disabled");
47 }
48 
IsEnabled(const WebRtcKeyValueConfig & field_trials,absl::string_view key)49 bool IsEnabled(const WebRtcKeyValueConfig& field_trials,
50                absl::string_view key) {
51   return absl::StartsWith(field_trials.Lookup(key), "Enabled");
52 }
53 
GetDynamicPaddingTarget(const WebRtcKeyValueConfig & field_trials)54 TimeDelta GetDynamicPaddingTarget(const WebRtcKeyValueConfig& field_trials) {
55   FieldTrialParameter<TimeDelta> padding_target("timedelta",
56                                                 TimeDelta::Millis(5));
57   ParseFieldTrial({&padding_target},
58                   field_trials.Lookup("WebRTC-Pacer-DynamicPaddingTarget"));
59   return padding_target.Get();
60 }
61 
GetPriorityForType(RtpPacketMediaType type)62 int GetPriorityForType(RtpPacketMediaType type) {
63   // Lower number takes priority over higher.
64   switch (type) {
65     case RtpPacketMediaType::kAudio:
66       // Audio is always prioritized over other packet types.
67       return kFirstPriority + 1;
68     case RtpPacketMediaType::kRetransmission:
69       // Send retransmissions before new media.
70       return kFirstPriority + 2;
71     case RtpPacketMediaType::kVideo:
72     case RtpPacketMediaType::kForwardErrorCorrection:
73       // Video has "normal" priority, in the old speak.
74       // Send redundancy concurrently to video. If it is delayed it might have a
75       // lower chance of being useful.
76       return kFirstPriority + 3;
77     case RtpPacketMediaType::kPadding:
78       // Packets that are in themselves likely useless, only sent to keep the
79       // BWE high.
80       return kFirstPriority + 4;
81   }
82 }
83 
84 }  // namespace
85 
86 const TimeDelta PacingController::kMaxExpectedQueueLength =
87     TimeDelta::Millis(2000);
88 const float PacingController::kDefaultPaceMultiplier = 2.5f;
89 const TimeDelta PacingController::kPausedProcessInterval =
90     kCongestedPacketInterval;
91 const TimeDelta PacingController::kMinSleepTime = TimeDelta::Millis(1);
92 
PacingController(Clock * clock,PacketSender * packet_sender,RtcEventLog * event_log,const WebRtcKeyValueConfig * field_trials,ProcessMode mode)93 PacingController::PacingController(Clock* clock,
94                                    PacketSender* packet_sender,
95                                    RtcEventLog* event_log,
96                                    const WebRtcKeyValueConfig* field_trials,
97                                    ProcessMode mode)
98     : mode_(mode),
99       clock_(clock),
100       packet_sender_(packet_sender),
101       fallback_field_trials_(
102           !field_trials ? std::make_unique<FieldTrialBasedConfig>() : nullptr),
103       field_trials_(field_trials ? field_trials : fallback_field_trials_.get()),
104       drain_large_queues_(
105           !IsDisabled(*field_trials_, "WebRTC-Pacer-DrainQueue")),
106       send_padding_if_silent_(
107           IsEnabled(*field_trials_, "WebRTC-Pacer-PadInSilence")),
108       pace_audio_(IsEnabled(*field_trials_, "WebRTC-Pacer-BlockAudio")),
109       small_first_probe_packet_(
110           IsEnabled(*field_trials_, "WebRTC-Pacer-SmallFirstProbePacket")),
111       ignore_transport_overhead_(
112           IsEnabled(*field_trials_, "WebRTC-Pacer-IgnoreTransportOverhead")),
113       padding_target_duration_(GetDynamicPaddingTarget(*field_trials_)),
114       min_packet_limit_(kDefaultMinPacketLimit),
115       transport_overhead_per_packet_(DataSize::Zero()),
116       last_timestamp_(clock_->CurrentTime()),
117       paused_(false),
118       media_budget_(0),
119       padding_budget_(0),
120       media_debt_(DataSize::Zero()),
121       padding_debt_(DataSize::Zero()),
122       media_rate_(DataRate::Zero()),
123       padding_rate_(DataRate::Zero()),
124       prober_(*field_trials_),
125       probing_send_failure_(false),
126       pacing_bitrate_(DataRate::Zero()),
127       last_process_time_(clock->CurrentTime()),
128       last_send_time_(last_process_time_),
129       packet_queue_(last_process_time_, field_trials_),
130       packet_counter_(0),
131       congestion_window_size_(DataSize::PlusInfinity()),
132       outstanding_data_(DataSize::Zero()),
133       queue_time_limit(kMaxExpectedQueueLength),
134       account_for_audio_(false),
135       include_overhead_(false) {
136   if (!drain_large_queues_) {
137     RTC_LOG(LS_WARNING) << "Pacer queues will not be drained,"
138                            "pushback experiment must be enabled.";
139   }
140   FieldTrialParameter<int> min_packet_limit_ms("", min_packet_limit_.ms());
141   ParseFieldTrial({&min_packet_limit_ms},
142                   field_trials_->Lookup("WebRTC-Pacer-MinPacketLimitMs"));
143   min_packet_limit_ = TimeDelta::Millis(min_packet_limit_ms.Get());
144   UpdateBudgetWithElapsedTime(min_packet_limit_);
145 }
146 
147 PacingController::~PacingController() = default;
148 
CreateProbeCluster(DataRate bitrate,int cluster_id)149 void PacingController::CreateProbeCluster(DataRate bitrate, int cluster_id) {
150   prober_.CreateProbeCluster(bitrate, CurrentTime(), cluster_id);
151 }
152 
Pause()153 void PacingController::Pause() {
154   if (!paused_)
155     RTC_LOG(LS_INFO) << "PacedSender paused.";
156   paused_ = true;
157   packet_queue_.SetPauseState(true, CurrentTime());
158 }
159 
Resume()160 void PacingController::Resume() {
161   if (paused_)
162     RTC_LOG(LS_INFO) << "PacedSender resumed.";
163   paused_ = false;
164   packet_queue_.SetPauseState(false, CurrentTime());
165 }
166 
IsPaused() const167 bool PacingController::IsPaused() const {
168   return paused_;
169 }
170 
SetCongestionWindow(DataSize congestion_window_size)171 void PacingController::SetCongestionWindow(DataSize congestion_window_size) {
172   const bool was_congested = Congested();
173   congestion_window_size_ = congestion_window_size;
174   if (was_congested && !Congested()) {
175     TimeDelta elapsed_time = UpdateTimeAndGetElapsed(CurrentTime());
176     UpdateBudgetWithElapsedTime(elapsed_time);
177   }
178 }
179 
UpdateOutstandingData(DataSize outstanding_data)180 void PacingController::UpdateOutstandingData(DataSize outstanding_data) {
181   const bool was_congested = Congested();
182   outstanding_data_ = outstanding_data;
183   if (was_congested && !Congested()) {
184     TimeDelta elapsed_time = UpdateTimeAndGetElapsed(CurrentTime());
185     UpdateBudgetWithElapsedTime(elapsed_time);
186   }
187 }
188 
Congested() const189 bool PacingController::Congested() const {
190   if (congestion_window_size_.IsFinite()) {
191     return outstanding_data_ >= congestion_window_size_;
192   }
193   return false;
194 }
195 
IsProbing() const196 bool PacingController::IsProbing() const {
197   return prober_.is_probing();
198 }
199 
CurrentTime() const200 Timestamp PacingController::CurrentTime() const {
201   Timestamp time = clock_->CurrentTime();
202   if (time < last_timestamp_) {
203     RTC_LOG(LS_WARNING)
204         << "Non-monotonic clock behavior observed. Previous timestamp: "
205         << last_timestamp_.ms() << ", new timestamp: " << time.ms();
206     RTC_DCHECK_GE(time, last_timestamp_);
207     time = last_timestamp_;
208   }
209   last_timestamp_ = time;
210   return time;
211 }
212 
SetProbingEnabled(bool enabled)213 void PacingController::SetProbingEnabled(bool enabled) {
214   RTC_CHECK_EQ(0, packet_counter_);
215   prober_.SetEnabled(enabled);
216 }
217 
SetPacingRates(DataRate pacing_rate,DataRate padding_rate)218 void PacingController::SetPacingRates(DataRate pacing_rate,
219                                       DataRate padding_rate) {
220   RTC_DCHECK_GT(pacing_rate, DataRate::Zero());
221   media_rate_ = pacing_rate;
222   padding_rate_ = padding_rate;
223   pacing_bitrate_ = pacing_rate;
224   padding_budget_.set_target_rate_kbps(padding_rate.kbps());
225 
226   RTC_LOG(LS_VERBOSE) << "bwe:pacer_updated pacing_kbps="
227                       << pacing_bitrate_.kbps()
228                       << " padding_budget_kbps=" << padding_rate.kbps();
229 }
230 
EnqueuePacket(std::unique_ptr<RtpPacketToSend> packet)231 void PacingController::EnqueuePacket(std::unique_ptr<RtpPacketToSend> packet) {
232   RTC_DCHECK(pacing_bitrate_ > DataRate::Zero())
233       << "SetPacingRate must be called before InsertPacket.";
234   RTC_CHECK(packet->packet_type());
235   // Get priority first and store in temporary, to avoid chance of object being
236   // moved before GetPriorityForType() being called.
237   const int priority = GetPriorityForType(*packet->packet_type());
238   EnqueuePacketInternal(std::move(packet), priority);
239 }
240 
SetAccountForAudioPackets(bool account_for_audio)241 void PacingController::SetAccountForAudioPackets(bool account_for_audio) {
242   account_for_audio_ = account_for_audio;
243 }
244 
SetIncludeOverhead()245 void PacingController::SetIncludeOverhead() {
246   include_overhead_ = true;
247   packet_queue_.SetIncludeOverhead();
248 }
249 
SetTransportOverhead(DataSize overhead_per_packet)250 void PacingController::SetTransportOverhead(DataSize overhead_per_packet) {
251   if (ignore_transport_overhead_)
252     return;
253   transport_overhead_per_packet_ = overhead_per_packet;
254   packet_queue_.SetTransportOverhead(overhead_per_packet);
255 }
256 
ExpectedQueueTime() const257 TimeDelta PacingController::ExpectedQueueTime() const {
258   RTC_DCHECK_GT(pacing_bitrate_, DataRate::Zero());
259   return TimeDelta::Millis(
260       (QueueSizeData().bytes() * 8 * rtc::kNumMillisecsPerSec) /
261       pacing_bitrate_.bps());
262 }
263 
QueueSizePackets() const264 size_t PacingController::QueueSizePackets() const {
265   return packet_queue_.SizeInPackets();
266 }
267 
QueueSizeData() const268 DataSize PacingController::QueueSizeData() const {
269   return packet_queue_.Size();
270 }
271 
CurrentBufferLevel() const272 DataSize PacingController::CurrentBufferLevel() const {
273   return std::max(media_debt_, padding_debt_);
274 }
275 
FirstSentPacketTime() const276 absl::optional<Timestamp> PacingController::FirstSentPacketTime() const {
277   return first_sent_packet_time_;
278 }
279 
OldestPacketWaitTime() const280 TimeDelta PacingController::OldestPacketWaitTime() const {
281   Timestamp oldest_packet = packet_queue_.OldestEnqueueTime();
282   if (oldest_packet.IsInfinite()) {
283     return TimeDelta::Zero();
284   }
285 
286   return CurrentTime() - oldest_packet;
287 }
288 
EnqueuePacketInternal(std::unique_ptr<RtpPacketToSend> packet,int priority)289 void PacingController::EnqueuePacketInternal(
290     std::unique_ptr<RtpPacketToSend> packet,
291     int priority) {
292   prober_.OnIncomingPacket(DataSize::Bytes(packet->payload_size()));
293 
294   // TODO(sprang): Make sure tests respect this, replace with DCHECK.
295   Timestamp now = CurrentTime();
296   if (packet->capture_time_ms() < 0) {
297     packet->set_capture_time_ms(now.ms());
298   }
299 
300   if (mode_ == ProcessMode::kDynamic && packet_queue_.Empty() &&
301       NextSendTime() <= now) {
302     TimeDelta elapsed_time = UpdateTimeAndGetElapsed(now);
303     UpdateBudgetWithElapsedTime(elapsed_time);
304   }
305   packet_queue_.Push(priority, now, packet_counter_++, std::move(packet));
306 }
307 
UpdateTimeAndGetElapsed(Timestamp now)308 TimeDelta PacingController::UpdateTimeAndGetElapsed(Timestamp now) {
309   if (last_process_time_.IsMinusInfinity()) {
310     return TimeDelta::Zero();
311   }
312   RTC_DCHECK_GE(now, last_process_time_);
313   TimeDelta elapsed_time = now - last_process_time_;
314   last_process_time_ = now;
315   if (elapsed_time > kMaxElapsedTime) {
316     RTC_LOG(LS_WARNING) << "Elapsed time (" << elapsed_time.ms()
317                         << " ms) longer than expected, limiting to "
318                         << kMaxElapsedTime.ms();
319     elapsed_time = kMaxElapsedTime;
320   }
321   return elapsed_time;
322 }
323 
ShouldSendKeepalive(Timestamp now) const324 bool PacingController::ShouldSendKeepalive(Timestamp now) const {
325   if (send_padding_if_silent_ || paused_ || Congested() ||
326       packet_counter_ == 0) {
327     // We send a padding packet every 500 ms to ensure we won't get stuck in
328     // congested state due to no feedback being received.
329     TimeDelta elapsed_since_last_send = now - last_send_time_;
330     if (elapsed_since_last_send >= kCongestedPacketInterval) {
331       return true;
332     }
333   }
334   return false;
335 }
336 
NextSendTime() const337 Timestamp PacingController::NextSendTime() const {
338   const Timestamp now = CurrentTime();
339 
340   if (paused_) {
341     return last_send_time_ + kPausedProcessInterval;
342   }
343 
344   // If probing is active, that always takes priority.
345   if (prober_.is_probing()) {
346     Timestamp probe_time = prober_.NextProbeTime(now);
347     // |probe_time| == PlusInfinity indicates no probe scheduled.
348     if (probe_time != Timestamp::PlusInfinity() && !probing_send_failure_) {
349       return probe_time;
350     }
351   }
352 
353   if (mode_ == ProcessMode::kPeriodic) {
354     // In periodic non-probing mode, we just have a fixed interval.
355     return last_process_time_ + min_packet_limit_;
356   }
357 
358   // In dynamic mode, figure out when the next packet should be sent,
359   // given the current conditions.
360 
361   if (!pace_audio_) {
362     // Not pacing audio, if leading packet is audio its target send
363     // time is the time at which it was enqueued.
364     absl::optional<Timestamp> audio_enqueue_time =
365         packet_queue_.LeadingAudioPacketEnqueueTime();
366     if (audio_enqueue_time.has_value()) {
367       return *audio_enqueue_time;
368     }
369   }
370 
371   if (Congested() || packet_counter_ == 0) {
372     // We need to at least send keep-alive packets with some interval.
373     return last_send_time_ + kCongestedPacketInterval;
374   }
375 
376   // Check how long until we can send the next media packet.
377   if (media_rate_ > DataRate::Zero() && !packet_queue_.Empty()) {
378     return std::min(last_send_time_ + kPausedProcessInterval,
379                     last_process_time_ + media_debt_ / media_rate_);
380   }
381 
382   // If we _don't_ have pending packets, check how long until we have
383   // bandwidth for padding packets. Both media and padding debts must
384   // have been drained to do this.
385   if (padding_rate_ > DataRate::Zero() && packet_queue_.Empty()) {
386     TimeDelta drain_time =
387         std::max(media_debt_ / media_rate_, padding_debt_ / padding_rate_);
388     return std::min(last_send_time_ + kPausedProcessInterval,
389                     last_process_time_ + drain_time);
390   }
391 
392   if (send_padding_if_silent_) {
393     return last_send_time_ + kPausedProcessInterval;
394   }
395   return last_process_time_ + kPausedProcessInterval;
396 }
397 
ProcessPackets()398 void PacingController::ProcessPackets() {
399   Timestamp now = CurrentTime();
400   Timestamp target_send_time = now;
401   if (mode_ == ProcessMode::kDynamic) {
402     target_send_time = NextSendTime();
403     if (target_send_time.IsMinusInfinity()) {
404       target_send_time = now;
405     } else if (now < target_send_time) {
406       // We are too early, but if queue is empty still allow draining some debt.
407       TimeDelta elapsed_time = UpdateTimeAndGetElapsed(now);
408       UpdateBudgetWithElapsedTime(elapsed_time);
409       return;
410     }
411 
412     if (target_send_time < last_process_time_) {
413       // After the last process call, at time X, the target send time
414       // shifted to be earlier than X. This should normally not happen
415       // but we want to make sure rounding errors or erratic behavior
416       // of NextSendTime() does not cause issue. In particular, if the
417       // buffer reduction of
418       // rate * (target_send_time - previous_process_time)
419       // in the main loop doesn't clean up the existing debt we may not
420       // be able to send again. We don't want to check this reordering
421       // there as it is the normal exit condtion when the buffer is
422       // exhausted and there are packets in the queue.
423       UpdateBudgetWithElapsedTime(last_process_time_ - target_send_time);
424       target_send_time = last_process_time_;
425     }
426   }
427 
428   Timestamp previous_process_time = last_process_time_;
429   TimeDelta elapsed_time = UpdateTimeAndGetElapsed(now);
430 
431   if (ShouldSendKeepalive(now)) {
432     // We can not send padding unless a normal packet has first been sent. If
433     // we do, timestamps get messed up.
434     if (packet_counter_ == 0) {
435       last_send_time_ = now;
436     } else {
437       DataSize keepalive_data_sent = DataSize::Zero();
438       std::vector<std::unique_ptr<RtpPacketToSend>> keepalive_packets =
439           packet_sender_->GeneratePadding(DataSize::Bytes(1));
440       for (auto& packet : keepalive_packets) {
441         keepalive_data_sent +=
442             DataSize::Bytes(packet->payload_size() + packet->padding_size());
443         packet_sender_->SendPacket(std::move(packet), PacedPacketInfo());
444         for (auto& packet : packet_sender_->FetchFec()) {
445           EnqueuePacket(std::move(packet));
446         }
447       }
448       OnPaddingSent(keepalive_data_sent);
449     }
450   }
451 
452   if (paused_) {
453     return;
454   }
455 
456   if (elapsed_time > TimeDelta::Zero()) {
457     DataRate target_rate = pacing_bitrate_;
458     DataSize queue_size_data = packet_queue_.Size();
459     if (queue_size_data > DataSize::Zero()) {
460       // Assuming equal size packets and input/output rate, the average packet
461       // has avg_time_left_ms left to get queue_size_bytes out of the queue, if
462       // time constraint shall be met. Determine bitrate needed for that.
463       packet_queue_.UpdateQueueTime(now);
464       if (drain_large_queues_) {
465         TimeDelta avg_time_left =
466             std::max(TimeDelta::Millis(1),
467                      queue_time_limit - packet_queue_.AverageQueueTime());
468         DataRate min_rate_needed = queue_size_data / avg_time_left;
469         if (min_rate_needed > target_rate) {
470           target_rate = min_rate_needed;
471           RTC_LOG(LS_VERBOSE) << "bwe:large_pacing_queue pacing_rate_kbps="
472                               << target_rate.kbps();
473         }
474       }
475     }
476 
477     if (mode_ == ProcessMode::kPeriodic) {
478       // In periodic processing mode, the IntevalBudget allows positive budget
479       // up to (process interval duration) * (target rate), so we only need to
480       // update it once before the packet sending loop.
481       media_budget_.set_target_rate_kbps(target_rate.kbps());
482       UpdateBudgetWithElapsedTime(elapsed_time);
483     } else {
484       media_rate_ = target_rate;
485     }
486   }
487 
488   bool first_packet_in_probe = false;
489   PacedPacketInfo pacing_info;
490   DataSize recommended_probe_size = DataSize::Zero();
491   bool is_probing = prober_.is_probing();
492   if (is_probing) {
493     // Probe timing is sensitive, and handled explicitly by BitrateProber, so
494     // use actual send time rather than target.
495     pacing_info = prober_.CurrentCluster(now).value_or(PacedPacketInfo());
496     if (pacing_info.probe_cluster_id != PacedPacketInfo::kNotAProbe) {
497       first_packet_in_probe = pacing_info.probe_cluster_bytes_sent == 0;
498       recommended_probe_size = prober_.RecommendedMinProbeSize();
499       RTC_DCHECK_GT(recommended_probe_size, DataSize::Zero());
500     } else {
501       // No valid probe cluster returned, probe might have timed out.
502       is_probing = false;
503     }
504   }
505 
506   DataSize data_sent = DataSize::Zero();
507 
508   // The paused state is checked in the loop since it leaves the critical
509   // section allowing the paused state to be changed from other code.
510   while (!paused_) {
511     if (small_first_probe_packet_ && first_packet_in_probe) {
512       // If first packet in probe, insert a small padding packet so we have a
513       // more reliable start window for the rate estimation.
514       auto padding = packet_sender_->GeneratePadding(DataSize::Bytes(1));
515       // If no RTP modules sending media are registered, we may not get a
516       // padding packet back.
517       if (!padding.empty()) {
518         // Insert with high priority so larger media packets don't preempt it.
519         EnqueuePacketInternal(std::move(padding[0]), kFirstPriority);
520         // We should never get more than one padding packets with a requested
521         // size of 1 byte.
522         RTC_DCHECK_EQ(padding.size(), 1u);
523       }
524       first_packet_in_probe = false;
525     }
526 
527     if (mode_ == ProcessMode::kDynamic &&
528         previous_process_time < target_send_time) {
529       // Reduce buffer levels with amount corresponding to time between last
530       // process and target send time for the next packet.
531       // If the process call is late, that may be the time between the optimal
532       // send times for two packets we should already have sent.
533       UpdateBudgetWithElapsedTime(target_send_time - previous_process_time);
534       previous_process_time = target_send_time;
535     }
536 
537     // Fetch the next packet, so long as queue is not empty or budget is not
538     // exhausted.
539     std::unique_ptr<RtpPacketToSend> rtp_packet =
540         GetPendingPacket(pacing_info, target_send_time, now);
541 
542     if (rtp_packet == nullptr) {
543       // No packet available to send, check if we should send padding.
544       DataSize padding_to_add = PaddingToAdd(recommended_probe_size, data_sent);
545       if (padding_to_add > DataSize::Zero()) {
546         std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets =
547             packet_sender_->GeneratePadding(padding_to_add);
548         if (padding_packets.empty()) {
549           // No padding packets were generated, quite send loop.
550           break;
551         }
552         for (auto& packet : padding_packets) {
553           EnqueuePacket(std::move(packet));
554         }
555         // Continue loop to send the padding that was just added.
556         continue;
557       }
558 
559       // Can't fetch new packet and no padding to send, exit send loop.
560       break;
561     }
562 
563     RTC_DCHECK(rtp_packet);
564     RTC_DCHECK(rtp_packet->packet_type().has_value());
565     const RtpPacketMediaType packet_type = *rtp_packet->packet_type();
566     DataSize packet_size = DataSize::Bytes(rtp_packet->payload_size() +
567                                            rtp_packet->padding_size());
568 
569     if (include_overhead_) {
570       packet_size += DataSize::Bytes(rtp_packet->headers_size()) +
571                      transport_overhead_per_packet_;
572     }
573 
574     packet_sender_->SendPacket(std::move(rtp_packet), pacing_info);
575     for (auto& packet : packet_sender_->FetchFec()) {
576       EnqueuePacket(std::move(packet));
577     }
578     data_sent += packet_size;
579 
580     // Send done, update send/process time to the target send time.
581     OnPacketSent(packet_type, packet_size, target_send_time);
582 
583     // If we are currently probing, we need to stop the send loop when we have
584     // reached the send target.
585     if (is_probing && data_sent > recommended_probe_size) {
586       break;
587     }
588 
589     if (mode_ == ProcessMode::kDynamic) {
590       // Update target send time in case that are more packets that we are late
591       // in processing.
592       Timestamp next_send_time = NextSendTime();
593       if (next_send_time.IsMinusInfinity()) {
594         target_send_time = now;
595       } else {
596         target_send_time = std::min(now, next_send_time);
597       }
598     }
599   }
600 
601   last_process_time_ = std::max(last_process_time_, previous_process_time);
602 
603   if (is_probing) {
604     probing_send_failure_ = data_sent == DataSize::Zero();
605     if (!probing_send_failure_) {
606       prober_.ProbeSent(CurrentTime(), data_sent);
607     }
608   }
609 }
610 
PaddingToAdd(DataSize recommended_probe_size,DataSize data_sent) const611 DataSize PacingController::PaddingToAdd(DataSize recommended_probe_size,
612                                         DataSize data_sent) const {
613   if (!packet_queue_.Empty()) {
614     // Actual payload available, no need to add padding.
615     return DataSize::Zero();
616   }
617 
618   if (Congested()) {
619     // Don't add padding if congested, even if requested for probing.
620     return DataSize::Zero();
621   }
622 
623   if (packet_counter_ == 0) {
624     // We can not send padding unless a normal packet has first been sent. If we
625     // do, timestamps get messed up.
626     return DataSize::Zero();
627   }
628 
629   if (!recommended_probe_size.IsZero()) {
630     if (recommended_probe_size > data_sent) {
631       return recommended_probe_size - data_sent;
632     }
633     return DataSize::Zero();
634   }
635 
636   if (mode_ == ProcessMode::kPeriodic) {
637     return DataSize::Bytes(padding_budget_.bytes_remaining());
638   } else if (padding_rate_ > DataRate::Zero() &&
639              padding_debt_ == DataSize::Zero()) {
640     return padding_target_duration_ * padding_rate_;
641   }
642   return DataSize::Zero();
643 }
644 
GetPendingPacket(const PacedPacketInfo & pacing_info,Timestamp target_send_time,Timestamp now)645 std::unique_ptr<RtpPacketToSend> PacingController::GetPendingPacket(
646     const PacedPacketInfo& pacing_info,
647     Timestamp target_send_time,
648     Timestamp now) {
649   if (packet_queue_.Empty()) {
650     return nullptr;
651   }
652 
653   // First, check if there is any reason _not_ to send the next queued packet.
654 
655   // Unpaced audio packets and probes are exempted from send checks.
656   bool unpaced_audio_packet =
657       !pace_audio_ && packet_queue_.LeadingAudioPacketEnqueueTime().has_value();
658   bool is_probe = pacing_info.probe_cluster_id != PacedPacketInfo::kNotAProbe;
659   if (!unpaced_audio_packet && !is_probe) {
660     if (Congested()) {
661       // Don't send anything if congested.
662       return nullptr;
663     }
664 
665     if (mode_ == ProcessMode::kPeriodic) {
666       if (media_budget_.bytes_remaining() <= 0) {
667         // Not enough budget.
668         return nullptr;
669       }
670     } else {
671       // Dynamic processing mode.
672       if (now <= target_send_time) {
673         // We allow sending slightly early if we think that we would actually
674         // had been able to, had we been right on time - i.e. the current debt
675         // is not more than would be reduced to zero at the target sent time.
676         TimeDelta flush_time = media_debt_ / media_rate_;
677         if (now + flush_time > target_send_time) {
678           return nullptr;
679         }
680       }
681     }
682   }
683 
684   return packet_queue_.Pop();
685 }
686 
OnPacketSent(RtpPacketMediaType packet_type,DataSize packet_size,Timestamp send_time)687 void PacingController::OnPacketSent(RtpPacketMediaType packet_type,
688                                     DataSize packet_size,
689                                     Timestamp send_time) {
690   if (!first_sent_packet_time_) {
691     first_sent_packet_time_ = send_time;
692   }
693   bool audio_packet = packet_type == RtpPacketMediaType::kAudio;
694   if (!audio_packet || account_for_audio_) {
695     // Update media bytes sent.
696     UpdateBudgetWithSentData(packet_size);
697   }
698   last_send_time_ = send_time;
699   last_process_time_ = send_time;
700 }
701 
OnPaddingSent(DataSize data_sent)702 void PacingController::OnPaddingSent(DataSize data_sent) {
703   if (data_sent > DataSize::Zero()) {
704     UpdateBudgetWithSentData(data_sent);
705   }
706   last_send_time_ = CurrentTime();
707   last_process_time_ = CurrentTime();
708 }
709 
UpdateBudgetWithElapsedTime(TimeDelta delta)710 void PacingController::UpdateBudgetWithElapsedTime(TimeDelta delta) {
711   if (mode_ == ProcessMode::kPeriodic) {
712     delta = std::min(kMaxProcessingInterval, delta);
713     media_budget_.IncreaseBudget(delta.ms());
714     padding_budget_.IncreaseBudget(delta.ms());
715   } else {
716     media_debt_ -= std::min(media_debt_, media_rate_ * delta);
717     padding_debt_ -= std::min(padding_debt_, padding_rate_ * delta);
718   }
719 }
720 
UpdateBudgetWithSentData(DataSize size)721 void PacingController::UpdateBudgetWithSentData(DataSize size) {
722   outstanding_data_ += size;
723   if (mode_ == ProcessMode::kPeriodic) {
724     media_budget_.UseBudget(size.bytes());
725     padding_budget_.UseBudget(size.bytes());
726   } else {
727     media_debt_ += size;
728     media_debt_ = std::min(media_debt_, media_rate_ * kMaxDebtInTime);
729     padding_debt_ += size;
730     padding_debt_ = std::min(padding_debt_, padding_rate_ * kMaxDebtInTime);
731   }
732 }
733 
SetQueueTimeLimit(TimeDelta limit)734 void PacingController::SetQueueTimeLimit(TimeDelta limit) {
735   queue_time_limit = limit;
736 }
737 
738 }  // namespace webrtc
739