1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/core/util/util.h"
17 
18 #include "tensorflow/core/lib/gtl/inlined_vector.h"
19 #include "tensorflow/core/lib/strings/strcat.h"
20 #include "tensorflow/core/platform/logging.h"
21 
22 namespace tensorflow {
23 
NodeNamePrefix(const StringPiece & op_name)24 StringPiece NodeNamePrefix(const StringPiece& op_name) {
25   StringPiece sp(op_name);
26   auto p = sp.find('/');
27   if (p == StringPiece::npos || p == 0) {
28     return "";
29   } else {
30     return StringPiece(sp.data(), p);
31   }
32 }
33 
NodeNameFullPrefix(const StringPiece & op_name)34 StringPiece NodeNameFullPrefix(const StringPiece& op_name) {
35   StringPiece sp(op_name);
36   auto p = sp.rfind('/');
37   if (p == StringPiece::npos || p == 0) {
38     return "";
39   } else {
40     return StringPiece(sp.data(), p);
41   }
42 }
43 
MovingAverage(int window)44 MovingAverage::MovingAverage(int window)
45     : window_(window),
46       sum_(0.0),
47       data_(new double[window_]),
48       head_(0),
49       count_(0) {
50   CHECK_GE(window, 1);
51 }
52 
~MovingAverage()53 MovingAverage::~MovingAverage() { delete[] data_; }
54 
Clear()55 void MovingAverage::Clear() {
56   count_ = 0;
57   head_ = 0;
58   sum_ = 0;
59 }
60 
GetAverage() const61 double MovingAverage::GetAverage() const {
62   if (count_ == 0) {
63     return 0;
64   } else {
65     return static_cast<double>(sum_) / count_;
66   }
67 }
68 
AddValue(double v)69 void MovingAverage::AddValue(double v) {
70   if (count_ < window_) {
71     // This is the warmup phase. We don't have a full window's worth of data.
72     head_ = count_;
73     data_[count_++] = v;
74   } else {
75     if (window_ == ++head_) {
76       head_ = 0;
77     }
78     // Toss the oldest element
79     sum_ -= data_[head_];
80     // Add the newest element
81     data_[head_] = v;
82   }
83   sum_ += v;
84 }
85 
86 static char hex_char[] = "0123456789abcdef";
87 
PrintMemory(const char * ptr,size_t n)88 string PrintMemory(const char* ptr, size_t n) {
89   string ret;
90   ret.resize(n * 3);
91   for (int i = 0; i < n; ++i) {
92     ret[i * 3] = ' ';
93     ret[i * 3 + 1] = hex_char[ptr[i] >> 4];
94     ret[i * 3 + 2] = hex_char[ptr[i] & 0xf];
95   }
96   return ret;
97 }
98 
SliceDebugString(const TensorShape & shape,const int64 flat)99 string SliceDebugString(const TensorShape& shape, const int64 flat) {
100   // Special case rank 0 and 1
101   const int dims = shape.dims();
102   if (dims == 0) return "";
103   if (dims == 1) return strings::StrCat("[", flat, "]");
104 
105   // Compute strides
106   gtl::InlinedVector<int64, 32> strides(dims);
107   strides.back() = 1;
108   for (int i = dims - 2; i >= 0; i--) {
109     strides[i] = strides[i + 1] * shape.dim_size(i + 1);
110   }
111 
112   // Unflatten index
113   int64 left = flat;
114   string result;
115   for (int i = 0; i < dims; i++) {
116     strings::StrAppend(&result, i ? "," : "[", left / strides[i]);
117     left %= strides[i];
118   }
119   strings::StrAppend(&result, "]");
120   return result;
121 }
122 
123 #ifdef INTEL_MKL
DisableMKL()124 bool DisableMKL() {
125   enum MklStatus { MKL_DEFAULT = 0, MKL_ON = 1, MKL_OFF = 2 };
126   static MklStatus status = MKL_DEFAULT;
127   if (status == MKL_DEFAULT) {
128     char* tf_disable_mkl = getenv("TF_DISABLE_MKL");
129     if ((tf_disable_mkl != NULL) && (std::stoi(tf_disable_mkl) == 1)) {
130       VLOG(2) << "TF-MKL: Disabling MKL";
131       status = MKL_OFF;
132     } else {
133       status = MKL_ON;
134     }
135   }
136   return status == MKL_OFF ? true : false;
137 }
138 #endif  // INTEL_MKL
139 }  // namespace tensorflow
140