1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "WasmDump.h"
23 #include "XCOFFDump.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetOperations.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringSet.h"
31 #include "llvm/ADT/Triple.h"
32 #include "llvm/CodeGen/FaultMaps.h"
33 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
34 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
35 #include "llvm/Demangle/Demangle.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
39 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/MC/MCInstPrinter.h"
42 #include "llvm/MC/MCInstrAnalysis.h"
43 #include "llvm/MC/MCInstrInfo.h"
44 #include "llvm/MC/MCObjectFileInfo.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/MC/MCSubtargetInfo.h"
47 #include "llvm/MC/MCTargetOptions.h"
48 #include "llvm/Object/Archive.h"
49 #include "llvm/Object/COFF.h"
50 #include "llvm/Object/COFFImportFile.h"
51 #include "llvm/Object/ELFObjectFile.h"
52 #include "llvm/Object/MachO.h"
53 #include "llvm/Object/MachOUniversal.h"
54 #include "llvm/Object/ObjectFile.h"
55 #include "llvm/Object/Wasm.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/Errc.h"
60 #include "llvm/Support/FileSystem.h"
61 #include "llvm/Support/Format.h"
62 #include "llvm/Support/FormatVariadic.h"
63 #include "llvm/Support/GraphWriter.h"
64 #include "llvm/Support/Host.h"
65 #include "llvm/Support/InitLLVM.h"
66 #include "llvm/Support/MemoryBuffer.h"
67 #include "llvm/Support/SourceMgr.h"
68 #include "llvm/Support/StringSaver.h"
69 #include "llvm/Support/TargetRegistry.h"
70 #include "llvm/Support/TargetSelect.h"
71 #include "llvm/Support/WithColor.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cctype>
75 #include <cstring>
76 #include <system_error>
77 #include <unordered_map>
78 #include <utility>
79
80 using namespace llvm;
81 using namespace llvm::object;
82 using namespace llvm::objdump;
83
84 #define DEBUG_TYPE "objdump"
85
86 static cl::OptionCategory ObjdumpCat("llvm-objdump Options");
87
88 static cl::opt<uint64_t> AdjustVMA(
89 "adjust-vma",
90 cl::desc("Increase the displayed address by the specified offset"),
91 cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
92
93 static cl::opt<bool>
94 AllHeaders("all-headers",
95 cl::desc("Display all available header information"),
96 cl::cat(ObjdumpCat));
97 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
98 cl::NotHidden, cl::Grouping,
99 cl::aliasopt(AllHeaders));
100
101 static cl::opt<std::string>
102 ArchName("arch-name",
103 cl::desc("Target arch to disassemble for, "
104 "see -version for available targets"),
105 cl::cat(ObjdumpCat));
106
107 cl::opt<bool>
108 objdump::ArchiveHeaders("archive-headers",
109 cl::desc("Display archive header information"),
110 cl::cat(ObjdumpCat));
111 static cl::alias ArchiveHeadersShort("a",
112 cl::desc("Alias for --archive-headers"),
113 cl::NotHidden, cl::Grouping,
114 cl::aliasopt(ArchiveHeaders));
115
116 cl::opt<bool> objdump::Demangle("demangle", cl::desc("Demangle symbols names"),
117 cl::init(false), cl::cat(ObjdumpCat));
118 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
119 cl::NotHidden, cl::Grouping,
120 cl::aliasopt(Demangle));
121
122 cl::opt<bool> objdump::Disassemble(
123 "disassemble",
124 cl::desc("Display assembler mnemonics for the machine instructions"),
125 cl::cat(ObjdumpCat));
126 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
127 cl::NotHidden, cl::Grouping,
128 cl::aliasopt(Disassemble));
129
130 cl::opt<bool> objdump::DisassembleAll(
131 "disassemble-all",
132 cl::desc("Display assembler mnemonics for the machine instructions"),
133 cl::cat(ObjdumpCat));
134 static cl::alias DisassembleAllShort("D",
135 cl::desc("Alias for --disassemble-all"),
136 cl::NotHidden, cl::Grouping,
137 cl::aliasopt(DisassembleAll));
138
139 cl::opt<bool> objdump::SymbolDescription(
140 "symbol-description",
141 cl::desc("Add symbol description for disassembly. This "
142 "option is for XCOFF files only"),
143 cl::init(false), cl::cat(ObjdumpCat));
144
145 static cl::list<std::string>
146 DisassembleSymbols("disassemble-symbols", cl::CommaSeparated,
147 cl::desc("List of symbols to disassemble. "
148 "Accept demangled names when --demangle is "
149 "specified, otherwise accept mangled names"),
150 cl::cat(ObjdumpCat));
151
152 static cl::opt<bool> DisassembleZeroes(
153 "disassemble-zeroes",
154 cl::desc("Do not skip blocks of zeroes when disassembling"),
155 cl::cat(ObjdumpCat));
156 static cl::alias
157 DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
158 cl::NotHidden, cl::Grouping,
159 cl::aliasopt(DisassembleZeroes));
160
161 static cl::list<std::string>
162 DisassemblerOptions("disassembler-options",
163 cl::desc("Pass target specific disassembler options"),
164 cl::value_desc("options"), cl::CommaSeparated,
165 cl::cat(ObjdumpCat));
166 static cl::alias
167 DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
168 cl::NotHidden, cl::Grouping, cl::Prefix,
169 cl::CommaSeparated,
170 cl::aliasopt(DisassemblerOptions));
171
172 cl::opt<DIDumpType> objdump::DwarfDumpType(
173 "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
174 cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
175 cl::cat(ObjdumpCat));
176
177 static cl::opt<bool> DynamicRelocations(
178 "dynamic-reloc",
179 cl::desc("Display the dynamic relocation entries in the file"),
180 cl::cat(ObjdumpCat));
181 static cl::alias DynamicRelocationShort("R",
182 cl::desc("Alias for --dynamic-reloc"),
183 cl::NotHidden, cl::Grouping,
184 cl::aliasopt(DynamicRelocations));
185
186 static cl::opt<bool>
187 FaultMapSection("fault-map-section",
188 cl::desc("Display contents of faultmap section"),
189 cl::cat(ObjdumpCat));
190
191 static cl::opt<bool>
192 FileHeaders("file-headers",
193 cl::desc("Display the contents of the overall file header"),
194 cl::cat(ObjdumpCat));
195 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
196 cl::NotHidden, cl::Grouping,
197 cl::aliasopt(FileHeaders));
198
199 cl::opt<bool>
200 objdump::SectionContents("full-contents",
201 cl::desc("Display the content of each section"),
202 cl::cat(ObjdumpCat));
203 static cl::alias SectionContentsShort("s",
204 cl::desc("Alias for --full-contents"),
205 cl::NotHidden, cl::Grouping,
206 cl::aliasopt(SectionContents));
207
208 static cl::list<std::string> InputFilenames(cl::Positional,
209 cl::desc("<input object files>"),
210 cl::ZeroOrMore,
211 cl::cat(ObjdumpCat));
212
213 static cl::opt<bool>
214 PrintLines("line-numbers",
215 cl::desc("Display source line numbers with "
216 "disassembly. Implies disassemble object"),
217 cl::cat(ObjdumpCat));
218 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
219 cl::NotHidden, cl::Grouping,
220 cl::aliasopt(PrintLines));
221
222 static cl::opt<bool> MachOOpt("macho",
223 cl::desc("Use MachO specific object file parser"),
224 cl::cat(ObjdumpCat));
225 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
226 cl::Grouping, cl::aliasopt(MachOOpt));
227
228 cl::opt<std::string> objdump::MCPU(
229 "mcpu", cl::desc("Target a specific cpu type (--mcpu=help for details)"),
230 cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
231
232 cl::list<std::string> objdump::MAttrs(
233 "mattr", cl::CommaSeparated,
234 cl::desc("Target specific attributes (--mattr=help for details)"),
235 cl::value_desc("a1,+a2,-a3,..."), cl::cat(ObjdumpCat));
236
237 cl::opt<bool> objdump::NoShowRawInsn(
238 "no-show-raw-insn",
239 cl::desc(
240 "When disassembling instructions, do not print the instruction bytes."),
241 cl::cat(ObjdumpCat));
242
243 cl::opt<bool> objdump::NoLeadingAddr("no-leading-addr",
244 cl::desc("Print no leading address"),
245 cl::cat(ObjdumpCat));
246
247 static cl::opt<bool> RawClangAST(
248 "raw-clang-ast",
249 cl::desc("Dump the raw binary contents of the clang AST section"),
250 cl::cat(ObjdumpCat));
251
252 cl::opt<bool>
253 objdump::Relocations("reloc",
254 cl::desc("Display the relocation entries in the file"),
255 cl::cat(ObjdumpCat));
256 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
257 cl::NotHidden, cl::Grouping,
258 cl::aliasopt(Relocations));
259
260 cl::opt<bool>
261 objdump::PrintImmHex("print-imm-hex",
262 cl::desc("Use hex format for immediate values"),
263 cl::cat(ObjdumpCat));
264
265 cl::opt<bool>
266 objdump::PrivateHeaders("private-headers",
267 cl::desc("Display format specific file headers"),
268 cl::cat(ObjdumpCat));
269 static cl::alias PrivateHeadersShort("p",
270 cl::desc("Alias for --private-headers"),
271 cl::NotHidden, cl::Grouping,
272 cl::aliasopt(PrivateHeaders));
273
274 cl::list<std::string>
275 objdump::FilterSections("section",
276 cl::desc("Operate on the specified sections only. "
277 "With -macho dump segment,section"),
278 cl::cat(ObjdumpCat));
279 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
280 cl::NotHidden, cl::Grouping, cl::Prefix,
281 cl::aliasopt(FilterSections));
282
283 cl::opt<bool> objdump::SectionHeaders(
284 "section-headers",
285 cl::desc("Display summaries of the headers for each section."),
286 cl::cat(ObjdumpCat));
287 static cl::alias SectionHeadersShort("headers",
288 cl::desc("Alias for --section-headers"),
289 cl::NotHidden,
290 cl::aliasopt(SectionHeaders));
291 static cl::alias SectionHeadersShorter("h",
292 cl::desc("Alias for --section-headers"),
293 cl::NotHidden, cl::Grouping,
294 cl::aliasopt(SectionHeaders));
295
296 static cl::opt<bool>
297 ShowLMA("show-lma",
298 cl::desc("Display LMA column when dumping ELF section headers"),
299 cl::cat(ObjdumpCat));
300
301 static cl::opt<bool> PrintSource(
302 "source",
303 cl::desc(
304 "Display source inlined with disassembly. Implies disassemble object"),
305 cl::cat(ObjdumpCat));
306 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
307 cl::NotHidden, cl::Grouping,
308 cl::aliasopt(PrintSource));
309
310 static cl::opt<uint64_t>
311 StartAddress("start-address", cl::desc("Disassemble beginning at address"),
312 cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
313 static cl::opt<uint64_t> StopAddress("stop-address",
314 cl::desc("Stop disassembly at address"),
315 cl::value_desc("address"),
316 cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
317
318 cl::opt<bool> objdump::SymbolTable("syms", cl::desc("Display the symbol table"),
319 cl::cat(ObjdumpCat));
320 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
321 cl::NotHidden, cl::Grouping,
322 cl::aliasopt(SymbolTable));
323
324 static cl::opt<bool> SymbolizeOperands(
325 "symbolize-operands",
326 cl::desc("Symbolize instruction operands when disassembling"),
327 cl::cat(ObjdumpCat));
328
329 static cl::opt<bool> DynamicSymbolTable(
330 "dynamic-syms",
331 cl::desc("Display the contents of the dynamic symbol table"),
332 cl::cat(ObjdumpCat));
333 static cl::alias DynamicSymbolTableShort("T",
334 cl::desc("Alias for --dynamic-syms"),
335 cl::NotHidden, cl::Grouping,
336 cl::aliasopt(DynamicSymbolTable));
337
338 cl::opt<std::string> objdump::TripleName(
339 "triple",
340 cl::desc(
341 "Target triple to disassemble for, see -version for available targets"),
342 cl::cat(ObjdumpCat));
343
344 cl::opt<bool> objdump::UnwindInfo("unwind-info",
345 cl::desc("Display unwind information"),
346 cl::cat(ObjdumpCat));
347 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
348 cl::NotHidden, cl::Grouping,
349 cl::aliasopt(UnwindInfo));
350
351 static cl::opt<bool>
352 Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
353 cl::cat(ObjdumpCat));
354 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
355
356 cl::opt<std::string> objdump::Prefix("prefix",
357 cl::desc("Add prefix to absolute paths"),
358 cl::cat(ObjdumpCat));
359
360 enum DebugVarsFormat {
361 DVDisabled,
362 DVUnicode,
363 DVASCII,
364 };
365
366 static cl::opt<DebugVarsFormat> DbgVariables(
367 "debug-vars", cl::init(DVDisabled),
368 cl::desc("Print the locations (in registers or memory) of "
369 "source-level variables alongside disassembly"),
370 cl::ValueOptional,
371 cl::values(clEnumValN(DVUnicode, "", "unicode"),
372 clEnumValN(DVUnicode, "unicode", "unicode"),
373 clEnumValN(DVASCII, "ascii", "unicode")),
374 cl::cat(ObjdumpCat));
375
376 static cl::opt<int>
377 DbgIndent("debug-vars-indent", cl::init(40),
378 cl::desc("Distance to indent the source-level variable display, "
379 "relative to the start of the disassembly"),
380 cl::cat(ObjdumpCat));
381
382 static cl::extrahelp
383 HelpResponse("\nPass @FILE as argument to read options from FILE.\n");
384
385 static StringSet<> DisasmSymbolSet;
386 StringSet<> objdump::FoundSectionSet;
387 static StringRef ToolName;
388
389 namespace {
390 struct FilterResult {
391 // True if the section should not be skipped.
392 bool Keep;
393
394 // True if the index counter should be incremented, even if the section should
395 // be skipped. For example, sections may be skipped if they are not included
396 // in the --section flag, but we still want those to count toward the section
397 // count.
398 bool IncrementIndex;
399 };
400 } // namespace
401
checkSectionFilter(object::SectionRef S)402 static FilterResult checkSectionFilter(object::SectionRef S) {
403 if (FilterSections.empty())
404 return {/*Keep=*/true, /*IncrementIndex=*/true};
405
406 Expected<StringRef> SecNameOrErr = S.getName();
407 if (!SecNameOrErr) {
408 consumeError(SecNameOrErr.takeError());
409 return {/*Keep=*/false, /*IncrementIndex=*/false};
410 }
411 StringRef SecName = *SecNameOrErr;
412
413 // StringSet does not allow empty key so avoid adding sections with
414 // no name (such as the section with index 0) here.
415 if (!SecName.empty())
416 FoundSectionSet.insert(SecName);
417
418 // Only show the section if it's in the FilterSections list, but always
419 // increment so the indexing is stable.
420 return {/*Keep=*/is_contained(FilterSections, SecName),
421 /*IncrementIndex=*/true};
422 }
423
ToolSectionFilter(object::ObjectFile const & O,uint64_t * Idx)424 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
425 uint64_t *Idx) {
426 // Start at UINT64_MAX so that the first index returned after an increment is
427 // zero (after the unsigned wrap).
428 if (Idx)
429 *Idx = UINT64_MAX;
430 return SectionFilter(
431 [Idx](object::SectionRef S) {
432 FilterResult Result = checkSectionFilter(S);
433 if (Idx != nullptr && Result.IncrementIndex)
434 *Idx += 1;
435 return Result.Keep;
436 },
437 O);
438 }
439
getFileNameForError(const object::Archive::Child & C,unsigned Index)440 std::string objdump::getFileNameForError(const object::Archive::Child &C,
441 unsigned Index) {
442 Expected<StringRef> NameOrErr = C.getName();
443 if (NameOrErr)
444 return std::string(NameOrErr.get());
445 // If we have an error getting the name then we print the index of the archive
446 // member. Since we are already in an error state, we just ignore this error.
447 consumeError(NameOrErr.takeError());
448 return "<file index: " + std::to_string(Index) + ">";
449 }
450
reportWarning(Twine Message,StringRef File)451 void objdump::reportWarning(Twine Message, StringRef File) {
452 // Output order between errs() and outs() matters especially for archive
453 // files where the output is per member object.
454 outs().flush();
455 WithColor::warning(errs(), ToolName)
456 << "'" << File << "': " << Message << "\n";
457 }
458
reportError(StringRef File,Twine Message)459 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(StringRef File,
460 Twine Message) {
461 outs().flush();
462 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
463 exit(1);
464 }
465
reportError(Error E,StringRef FileName,StringRef ArchiveName,StringRef ArchitectureName)466 LLVM_ATTRIBUTE_NORETURN void objdump::reportError(Error E, StringRef FileName,
467 StringRef ArchiveName,
468 StringRef ArchitectureName) {
469 assert(E);
470 outs().flush();
471 WithColor::error(errs(), ToolName);
472 if (ArchiveName != "")
473 errs() << ArchiveName << "(" << FileName << ")";
474 else
475 errs() << "'" << FileName << "'";
476 if (!ArchitectureName.empty())
477 errs() << " (for architecture " << ArchitectureName << ")";
478 errs() << ": ";
479 logAllUnhandledErrors(std::move(E), errs());
480 exit(1);
481 }
482
reportCmdLineWarning(Twine Message)483 static void reportCmdLineWarning(Twine Message) {
484 WithColor::warning(errs(), ToolName) << Message << "\n";
485 }
486
reportCmdLineError(Twine Message)487 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) {
488 WithColor::error(errs(), ToolName) << Message << "\n";
489 exit(1);
490 }
491
warnOnNoMatchForSections()492 static void warnOnNoMatchForSections() {
493 SetVector<StringRef> MissingSections;
494 for (StringRef S : FilterSections) {
495 if (FoundSectionSet.count(S))
496 return;
497 // User may specify a unnamed section. Don't warn for it.
498 if (!S.empty())
499 MissingSections.insert(S);
500 }
501
502 // Warn only if no section in FilterSections is matched.
503 for (StringRef S : MissingSections)
504 reportCmdLineWarning("section '" + S +
505 "' mentioned in a -j/--section option, but not "
506 "found in any input file");
507 }
508
getTarget(const ObjectFile * Obj)509 static const Target *getTarget(const ObjectFile *Obj) {
510 // Figure out the target triple.
511 Triple TheTriple("unknown-unknown-unknown");
512 if (TripleName.empty()) {
513 TheTriple = Obj->makeTriple();
514 } else {
515 TheTriple.setTriple(Triple::normalize(TripleName));
516 auto Arch = Obj->getArch();
517 if (Arch == Triple::arm || Arch == Triple::armeb)
518 Obj->setARMSubArch(TheTriple);
519 }
520
521 // Get the target specific parser.
522 std::string Error;
523 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
524 Error);
525 if (!TheTarget)
526 reportError(Obj->getFileName(), "can't find target: " + Error);
527
528 // Update the triple name and return the found target.
529 TripleName = TheTriple.getTriple();
530 return TheTarget;
531 }
532
isRelocAddressLess(RelocationRef A,RelocationRef B)533 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
534 return A.getOffset() < B.getOffset();
535 }
536
getRelocationValueString(const RelocationRef & Rel,SmallVectorImpl<char> & Result)537 static Error getRelocationValueString(const RelocationRef &Rel,
538 SmallVectorImpl<char> &Result) {
539 const ObjectFile *Obj = Rel.getObject();
540 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
541 return getELFRelocationValueString(ELF, Rel, Result);
542 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
543 return getCOFFRelocationValueString(COFF, Rel, Result);
544 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
545 return getWasmRelocationValueString(Wasm, Rel, Result);
546 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
547 return getMachORelocationValueString(MachO, Rel, Result);
548 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
549 return getXCOFFRelocationValueString(XCOFF, Rel, Result);
550 llvm_unreachable("unknown object file format");
551 }
552
553 /// Indicates whether this relocation should hidden when listing
554 /// relocations, usually because it is the trailing part of a multipart
555 /// relocation that will be printed as part of the leading relocation.
getHidden(RelocationRef RelRef)556 static bool getHidden(RelocationRef RelRef) {
557 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
558 if (!MachO)
559 return false;
560
561 unsigned Arch = MachO->getArch();
562 DataRefImpl Rel = RelRef.getRawDataRefImpl();
563 uint64_t Type = MachO->getRelocationType(Rel);
564
565 // On arches that use the generic relocations, GENERIC_RELOC_PAIR
566 // is always hidden.
567 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
568 return Type == MachO::GENERIC_RELOC_PAIR;
569
570 if (Arch == Triple::x86_64) {
571 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
572 // an X86_64_RELOC_SUBTRACTOR.
573 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
574 DataRefImpl RelPrev = Rel;
575 RelPrev.d.a--;
576 uint64_t PrevType = MachO->getRelocationType(RelPrev);
577 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
578 return true;
579 }
580 }
581
582 return false;
583 }
584
585 namespace {
586
587 /// Get the column at which we want to start printing the instruction
588 /// disassembly, taking into account anything which appears to the left of it.
getInstStartColumn(const MCSubtargetInfo & STI)589 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
590 return NoShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
591 }
592
593 /// Stores a single expression representing the location of a source-level
594 /// variable, along with the PC range for which that expression is valid.
595 struct LiveVariable {
596 DWARFLocationExpression LocExpr;
597 const char *VarName;
598 DWARFUnit *Unit;
599 const DWARFDie FuncDie;
600
LiveVariable__anon9d94adbb0311::LiveVariable601 LiveVariable(const DWARFLocationExpression &LocExpr, const char *VarName,
602 DWARFUnit *Unit, const DWARFDie FuncDie)
603 : LocExpr(LocExpr), VarName(VarName), Unit(Unit), FuncDie(FuncDie) {}
604
liveAtAddress__anon9d94adbb0311::LiveVariable605 bool liveAtAddress(object::SectionedAddress Addr) {
606 if (LocExpr.Range == None)
607 return false;
608 return LocExpr.Range->SectionIndex == Addr.SectionIndex &&
609 LocExpr.Range->LowPC <= Addr.Address &&
610 LocExpr.Range->HighPC > Addr.Address;
611 }
612
print__anon9d94adbb0311::LiveVariable613 void print(raw_ostream &OS, const MCRegisterInfo &MRI) const {
614 DataExtractor Data({LocExpr.Expr.data(), LocExpr.Expr.size()},
615 Unit->getContext().isLittleEndian(), 0);
616 DWARFExpression Expression(Data, Unit->getAddressByteSize());
617 Expression.printCompact(OS, MRI);
618 }
619 };
620
621 /// Helper class for printing source variable locations alongside disassembly.
622 class LiveVariablePrinter {
623 // Information we want to track about one column in which we are printing a
624 // variable live range.
625 struct Column {
626 unsigned VarIdx = NullVarIdx;
627 bool LiveIn = false;
628 bool LiveOut = false;
629 bool MustDrawLabel = false;
630
isActive__anon9d94adbb0311::LiveVariablePrinter::Column631 bool isActive() const { return VarIdx != NullVarIdx; }
632
633 static constexpr unsigned NullVarIdx = std::numeric_limits<unsigned>::max();
634 };
635
636 // All live variables we know about in the object/image file.
637 std::vector<LiveVariable> LiveVariables;
638
639 // The columns we are currently drawing.
640 IndexedMap<Column> ActiveCols;
641
642 const MCRegisterInfo &MRI;
643 const MCSubtargetInfo &STI;
644
addVariable(DWARFDie FuncDie,DWARFDie VarDie)645 void addVariable(DWARFDie FuncDie, DWARFDie VarDie) {
646 uint64_t FuncLowPC, FuncHighPC, SectionIndex;
647 FuncDie.getLowAndHighPC(FuncLowPC, FuncHighPC, SectionIndex);
648 const char *VarName = VarDie.getName(DINameKind::ShortName);
649 DWARFUnit *U = VarDie.getDwarfUnit();
650
651 Expected<DWARFLocationExpressionsVector> Locs =
652 VarDie.getLocations(dwarf::DW_AT_location);
653 if (!Locs) {
654 // If the variable doesn't have any locations, just ignore it. We don't
655 // report an error or warning here as that could be noisy on optimised
656 // code.
657 consumeError(Locs.takeError());
658 return;
659 }
660
661 for (const DWARFLocationExpression &LocExpr : *Locs) {
662 if (LocExpr.Range) {
663 LiveVariables.emplace_back(LocExpr, VarName, U, FuncDie);
664 } else {
665 // If the LocExpr does not have an associated range, it is valid for
666 // the whole of the function.
667 // TODO: technically it is not valid for any range covered by another
668 // LocExpr, does that happen in reality?
669 DWARFLocationExpression WholeFuncExpr{
670 DWARFAddressRange(FuncLowPC, FuncHighPC, SectionIndex),
671 LocExpr.Expr};
672 LiveVariables.emplace_back(WholeFuncExpr, VarName, U, FuncDie);
673 }
674 }
675 }
676
addFunction(DWARFDie D)677 void addFunction(DWARFDie D) {
678 for (const DWARFDie &Child : D.children()) {
679 if (Child.getTag() == dwarf::DW_TAG_variable ||
680 Child.getTag() == dwarf::DW_TAG_formal_parameter)
681 addVariable(D, Child);
682 else
683 addFunction(Child);
684 }
685 }
686
687 // Get the column number (in characters) at which the first live variable
688 // line should be printed.
getIndentLevel() const689 unsigned getIndentLevel() const {
690 return DbgIndent + getInstStartColumn(STI);
691 }
692
693 // Indent to the first live-range column to the right of the currently
694 // printed line, and return the index of that column.
695 // TODO: formatted_raw_ostream uses "column" to mean a number of characters
696 // since the last \n, and we use it to mean the number of slots in which we
697 // put live variable lines. Pick a less overloaded word.
moveToFirstVarColumn(formatted_raw_ostream & OS)698 unsigned moveToFirstVarColumn(formatted_raw_ostream &OS) {
699 // Logical column number: column zero is the first column we print in, each
700 // logical column is 2 physical columns wide.
701 unsigned FirstUnprintedLogicalColumn =
702 std::max((int)(OS.getColumn() - getIndentLevel() + 1) / 2, 0);
703 // Physical column number: the actual column number in characters, with
704 // zero being the left-most side of the screen.
705 unsigned FirstUnprintedPhysicalColumn =
706 getIndentLevel() + FirstUnprintedLogicalColumn * 2;
707
708 if (FirstUnprintedPhysicalColumn > OS.getColumn())
709 OS.PadToColumn(FirstUnprintedPhysicalColumn);
710
711 return FirstUnprintedLogicalColumn;
712 }
713
findFreeColumn()714 unsigned findFreeColumn() {
715 for (unsigned ColIdx = 0; ColIdx < ActiveCols.size(); ++ColIdx)
716 if (!ActiveCols[ColIdx].isActive())
717 return ColIdx;
718
719 size_t OldSize = ActiveCols.size();
720 ActiveCols.grow(std::max<size_t>(OldSize * 2, 1));
721 return OldSize;
722 }
723
724 public:
LiveVariablePrinter(const MCRegisterInfo & MRI,const MCSubtargetInfo & STI)725 LiveVariablePrinter(const MCRegisterInfo &MRI, const MCSubtargetInfo &STI)
726 : LiveVariables(), ActiveCols(Column()), MRI(MRI), STI(STI) {}
727
dump() const728 void dump() const {
729 for (const LiveVariable &LV : LiveVariables) {
730 dbgs() << LV.VarName << " @ " << LV.LocExpr.Range << ": ";
731 LV.print(dbgs(), MRI);
732 dbgs() << "\n";
733 }
734 }
735
addCompileUnit(DWARFDie D)736 void addCompileUnit(DWARFDie D) {
737 if (D.getTag() == dwarf::DW_TAG_subprogram)
738 addFunction(D);
739 else
740 for (const DWARFDie &Child : D.children())
741 addFunction(Child);
742 }
743
744 /// Update to match the state of the instruction between ThisAddr and
745 /// NextAddr. In the common case, any live range active at ThisAddr is
746 /// live-in to the instruction, and any live range active at NextAddr is
747 /// live-out of the instruction. If IncludeDefinedVars is false, then live
748 /// ranges starting at NextAddr will be ignored.
update(object::SectionedAddress ThisAddr,object::SectionedAddress NextAddr,bool IncludeDefinedVars)749 void update(object::SectionedAddress ThisAddr,
750 object::SectionedAddress NextAddr, bool IncludeDefinedVars) {
751 // First, check variables which have already been assigned a column, so
752 // that we don't change their order.
753 SmallSet<unsigned, 8> CheckedVarIdxs;
754 for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) {
755 if (!ActiveCols[ColIdx].isActive())
756 continue;
757 CheckedVarIdxs.insert(ActiveCols[ColIdx].VarIdx);
758 LiveVariable &LV = LiveVariables[ActiveCols[ColIdx].VarIdx];
759 ActiveCols[ColIdx].LiveIn = LV.liveAtAddress(ThisAddr);
760 ActiveCols[ColIdx].LiveOut = LV.liveAtAddress(NextAddr);
761 LLVM_DEBUG(dbgs() << "pass 1, " << ThisAddr.Address << "-"
762 << NextAddr.Address << ", " << LV.VarName << ", Col "
763 << ColIdx << ": LiveIn=" << ActiveCols[ColIdx].LiveIn
764 << ", LiveOut=" << ActiveCols[ColIdx].LiveOut << "\n");
765
766 if (!ActiveCols[ColIdx].LiveIn && !ActiveCols[ColIdx].LiveOut)
767 ActiveCols[ColIdx].VarIdx = Column::NullVarIdx;
768 }
769
770 // Next, look for variables which don't already have a column, but which
771 // are now live.
772 if (IncludeDefinedVars) {
773 for (unsigned VarIdx = 0, End = LiveVariables.size(); VarIdx < End;
774 ++VarIdx) {
775 if (CheckedVarIdxs.count(VarIdx))
776 continue;
777 LiveVariable &LV = LiveVariables[VarIdx];
778 bool LiveIn = LV.liveAtAddress(ThisAddr);
779 bool LiveOut = LV.liveAtAddress(NextAddr);
780 if (!LiveIn && !LiveOut)
781 continue;
782
783 unsigned ColIdx = findFreeColumn();
784 LLVM_DEBUG(dbgs() << "pass 2, " << ThisAddr.Address << "-"
785 << NextAddr.Address << ", " << LV.VarName << ", Col "
786 << ColIdx << ": LiveIn=" << LiveIn
787 << ", LiveOut=" << LiveOut << "\n");
788 ActiveCols[ColIdx].VarIdx = VarIdx;
789 ActiveCols[ColIdx].LiveIn = LiveIn;
790 ActiveCols[ColIdx].LiveOut = LiveOut;
791 ActiveCols[ColIdx].MustDrawLabel = true;
792 }
793 }
794 }
795
796 enum class LineChar {
797 RangeStart,
798 RangeMid,
799 RangeEnd,
800 LabelVert,
801 LabelCornerNew,
802 LabelCornerActive,
803 LabelHoriz,
804 };
getLineChar(LineChar C) const805 const char *getLineChar(LineChar C) const {
806 bool IsASCII = DbgVariables == DVASCII;
807 switch (C) {
808 case LineChar::RangeStart:
809 return IsASCII ? "^" : u8"\u2548";
810 case LineChar::RangeMid:
811 return IsASCII ? "|" : u8"\u2503";
812 case LineChar::RangeEnd:
813 return IsASCII ? "v" : u8"\u253b";
814 case LineChar::LabelVert:
815 return IsASCII ? "|" : u8"\u2502";
816 case LineChar::LabelCornerNew:
817 return IsASCII ? "/" : u8"\u250c";
818 case LineChar::LabelCornerActive:
819 return IsASCII ? "|" : u8"\u2520";
820 case LineChar::LabelHoriz:
821 return IsASCII ? "-" : u8"\u2500";
822 }
823 llvm_unreachable("Unhandled LineChar enum");
824 }
825
826 /// Print live ranges to the right of an existing line. This assumes the
827 /// line is not an instruction, so doesn't start or end any live ranges, so
828 /// we only need to print active ranges or empty columns. If AfterInst is
829 /// true, this is being printed after the last instruction fed to update(),
830 /// otherwise this is being printed before it.
printAfterOtherLine(formatted_raw_ostream & OS,bool AfterInst)831 void printAfterOtherLine(formatted_raw_ostream &OS, bool AfterInst) {
832 if (ActiveCols.size()) {
833 unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
834 for (size_t ColIdx = FirstUnprintedColumn, End = ActiveCols.size();
835 ColIdx < End; ++ColIdx) {
836 if (ActiveCols[ColIdx].isActive()) {
837 if ((AfterInst && ActiveCols[ColIdx].LiveOut) ||
838 (!AfterInst && ActiveCols[ColIdx].LiveIn))
839 OS << getLineChar(LineChar::RangeMid);
840 else if (!AfterInst && ActiveCols[ColIdx].LiveOut)
841 OS << getLineChar(LineChar::LabelVert);
842 else
843 OS << " ";
844 }
845 OS << " ";
846 }
847 }
848 OS << "\n";
849 }
850
851 /// Print any live variable range info needed to the right of a
852 /// non-instruction line of disassembly. This is where we print the variable
853 /// names and expressions, with thin line-drawing characters connecting them
854 /// to the live range which starts at the next instruction. If MustPrint is
855 /// true, we have to print at least one line (with the continuation of any
856 /// already-active live ranges) because something has already been printed
857 /// earlier on this line.
printBetweenInsts(formatted_raw_ostream & OS,bool MustPrint)858 void printBetweenInsts(formatted_raw_ostream &OS, bool MustPrint) {
859 bool PrintedSomething = false;
860 for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) {
861 if (ActiveCols[ColIdx].isActive() && ActiveCols[ColIdx].MustDrawLabel) {
862 // First we need to print the live range markers for any active
863 // columns to the left of this one.
864 OS.PadToColumn(getIndentLevel());
865 for (unsigned ColIdx2 = 0; ColIdx2 < ColIdx; ++ColIdx2) {
866 if (ActiveCols[ColIdx2].isActive()) {
867 if (ActiveCols[ColIdx2].MustDrawLabel &&
868 !ActiveCols[ColIdx2].LiveIn)
869 OS << getLineChar(LineChar::LabelVert) << " ";
870 else
871 OS << getLineChar(LineChar::RangeMid) << " ";
872 } else
873 OS << " ";
874 }
875
876 // Then print the variable name and location of the new live range,
877 // with box drawing characters joining it to the live range line.
878 OS << getLineChar(ActiveCols[ColIdx].LiveIn
879 ? LineChar::LabelCornerActive
880 : LineChar::LabelCornerNew)
881 << getLineChar(LineChar::LabelHoriz) << " ";
882 WithColor(OS, raw_ostream::GREEN)
883 << LiveVariables[ActiveCols[ColIdx].VarIdx].VarName;
884 OS << " = ";
885 {
886 WithColor ExprColor(OS, raw_ostream::CYAN);
887 LiveVariables[ActiveCols[ColIdx].VarIdx].print(OS, MRI);
888 }
889
890 // If there are any columns to the right of the expression we just
891 // printed, then continue their live range lines.
892 unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
893 for (unsigned ColIdx2 = FirstUnprintedColumn, End = ActiveCols.size();
894 ColIdx2 < End; ++ColIdx2) {
895 if (ActiveCols[ColIdx2].isActive() && ActiveCols[ColIdx2].LiveIn)
896 OS << getLineChar(LineChar::RangeMid) << " ";
897 else
898 OS << " ";
899 }
900
901 OS << "\n";
902 PrintedSomething = true;
903 }
904 }
905
906 for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx)
907 if (ActiveCols[ColIdx].isActive())
908 ActiveCols[ColIdx].MustDrawLabel = false;
909
910 // If we must print something (because we printed a line/column number),
911 // but don't have any new variables to print, then print a line which
912 // just continues any existing live ranges.
913 if (MustPrint && !PrintedSomething)
914 printAfterOtherLine(OS, false);
915 }
916
917 /// Print the live variable ranges to the right of a disassembled instruction.
printAfterInst(formatted_raw_ostream & OS)918 void printAfterInst(formatted_raw_ostream &OS) {
919 if (!ActiveCols.size())
920 return;
921 unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
922 for (unsigned ColIdx = FirstUnprintedColumn, End = ActiveCols.size();
923 ColIdx < End; ++ColIdx) {
924 if (!ActiveCols[ColIdx].isActive())
925 OS << " ";
926 else if (ActiveCols[ColIdx].LiveIn && ActiveCols[ColIdx].LiveOut)
927 OS << getLineChar(LineChar::RangeMid) << " ";
928 else if (ActiveCols[ColIdx].LiveOut)
929 OS << getLineChar(LineChar::RangeStart) << " ";
930 else if (ActiveCols[ColIdx].LiveIn)
931 OS << getLineChar(LineChar::RangeEnd) << " ";
932 else
933 llvm_unreachable("var must be live in or out!");
934 }
935 }
936 };
937
938 class SourcePrinter {
939 protected:
940 DILineInfo OldLineInfo;
941 const ObjectFile *Obj = nullptr;
942 std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
943 // File name to file contents of source.
944 std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
945 // Mark the line endings of the cached source.
946 std::unordered_map<std::string, std::vector<StringRef>> LineCache;
947 // Keep track of missing sources.
948 StringSet<> MissingSources;
949 // Only emit 'no debug info' warning once.
950 bool WarnedNoDebugInfo;
951
952 private:
953 bool cacheSource(const DILineInfo& LineInfoFile);
954
955 void printLines(formatted_raw_ostream &OS, const DILineInfo &LineInfo,
956 StringRef Delimiter, LiveVariablePrinter &LVP);
957
958 void printSources(formatted_raw_ostream &OS, const DILineInfo &LineInfo,
959 StringRef ObjectFilename, StringRef Delimiter,
960 LiveVariablePrinter &LVP);
961
962 public:
963 SourcePrinter() = default;
SourcePrinter(const ObjectFile * Obj,StringRef DefaultArch)964 SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch)
965 : Obj(Obj), WarnedNoDebugInfo(false) {
966 symbolize::LLVMSymbolizer::Options SymbolizerOpts;
967 SymbolizerOpts.PrintFunctions =
968 DILineInfoSpecifier::FunctionNameKind::LinkageName;
969 SymbolizerOpts.Demangle = Demangle;
970 SymbolizerOpts.DefaultArch = std::string(DefaultArch);
971 Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
972 }
973 virtual ~SourcePrinter() = default;
974 virtual void printSourceLine(formatted_raw_ostream &OS,
975 object::SectionedAddress Address,
976 StringRef ObjectFilename,
977 LiveVariablePrinter &LVP,
978 StringRef Delimiter = "; ");
979 };
980
cacheSource(const DILineInfo & LineInfo)981 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
982 std::unique_ptr<MemoryBuffer> Buffer;
983 if (LineInfo.Source) {
984 Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
985 } else {
986 auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
987 if (!BufferOrError) {
988 if (MissingSources.insert(LineInfo.FileName).second)
989 reportWarning("failed to find source " + LineInfo.FileName,
990 Obj->getFileName());
991 return false;
992 }
993 Buffer = std::move(*BufferOrError);
994 }
995 // Chomp the file to get lines
996 const char *BufferStart = Buffer->getBufferStart(),
997 *BufferEnd = Buffer->getBufferEnd();
998 std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
999 const char *Start = BufferStart;
1000 for (const char *I = BufferStart; I != BufferEnd; ++I)
1001 if (*I == '\n') {
1002 Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
1003 Start = I + 1;
1004 }
1005 if (Start < BufferEnd)
1006 Lines.emplace_back(Start, BufferEnd - Start);
1007 SourceCache[LineInfo.FileName] = std::move(Buffer);
1008 return true;
1009 }
1010
printSourceLine(formatted_raw_ostream & OS,object::SectionedAddress Address,StringRef ObjectFilename,LiveVariablePrinter & LVP,StringRef Delimiter)1011 void SourcePrinter::printSourceLine(formatted_raw_ostream &OS,
1012 object::SectionedAddress Address,
1013 StringRef ObjectFilename,
1014 LiveVariablePrinter &LVP,
1015 StringRef Delimiter) {
1016 if (!Symbolizer)
1017 return;
1018
1019 DILineInfo LineInfo = DILineInfo();
1020 auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address);
1021 std::string ErrorMessage;
1022 if (!ExpectedLineInfo)
1023 ErrorMessage = toString(ExpectedLineInfo.takeError());
1024 else
1025 LineInfo = *ExpectedLineInfo;
1026
1027 if (LineInfo.FileName == DILineInfo::BadString) {
1028 if (!WarnedNoDebugInfo) {
1029 std::string Warning =
1030 "failed to parse debug information for " + ObjectFilename.str();
1031 if (!ErrorMessage.empty())
1032 Warning += ": " + ErrorMessage;
1033 reportWarning(Warning, ObjectFilename);
1034 WarnedNoDebugInfo = true;
1035 }
1036 }
1037
1038 if (!Prefix.empty() && sys::path::is_absolute_gnu(LineInfo.FileName)) {
1039 SmallString<128> FilePath;
1040 sys::path::append(FilePath, Prefix, LineInfo.FileName);
1041
1042 LineInfo.FileName = std::string(FilePath);
1043 }
1044
1045 if (PrintLines)
1046 printLines(OS, LineInfo, Delimiter, LVP);
1047 if (PrintSource)
1048 printSources(OS, LineInfo, ObjectFilename, Delimiter, LVP);
1049 OldLineInfo = LineInfo;
1050 }
1051
printLines(formatted_raw_ostream & OS,const DILineInfo & LineInfo,StringRef Delimiter,LiveVariablePrinter & LVP)1052 void SourcePrinter::printLines(formatted_raw_ostream &OS,
1053 const DILineInfo &LineInfo, StringRef Delimiter,
1054 LiveVariablePrinter &LVP) {
1055 bool PrintFunctionName = LineInfo.FunctionName != DILineInfo::BadString &&
1056 LineInfo.FunctionName != OldLineInfo.FunctionName;
1057 if (PrintFunctionName) {
1058 OS << Delimiter << LineInfo.FunctionName;
1059 // If demangling is successful, FunctionName will end with "()". Print it
1060 // only if demangling did not run or was unsuccessful.
1061 if (!StringRef(LineInfo.FunctionName).endswith("()"))
1062 OS << "()";
1063 OS << ":\n";
1064 }
1065 if (LineInfo.FileName != DILineInfo::BadString && LineInfo.Line != 0 &&
1066 (OldLineInfo.Line != LineInfo.Line ||
1067 OldLineInfo.FileName != LineInfo.FileName || PrintFunctionName)) {
1068 OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line;
1069 LVP.printBetweenInsts(OS, true);
1070 }
1071 }
1072
printSources(formatted_raw_ostream & OS,const DILineInfo & LineInfo,StringRef ObjectFilename,StringRef Delimiter,LiveVariablePrinter & LVP)1073 void SourcePrinter::printSources(formatted_raw_ostream &OS,
1074 const DILineInfo &LineInfo,
1075 StringRef ObjectFilename, StringRef Delimiter,
1076 LiveVariablePrinter &LVP) {
1077 if (LineInfo.FileName == DILineInfo::BadString || LineInfo.Line == 0 ||
1078 (OldLineInfo.Line == LineInfo.Line &&
1079 OldLineInfo.FileName == LineInfo.FileName))
1080 return;
1081
1082 if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
1083 if (!cacheSource(LineInfo))
1084 return;
1085 auto LineBuffer = LineCache.find(LineInfo.FileName);
1086 if (LineBuffer != LineCache.end()) {
1087 if (LineInfo.Line > LineBuffer->second.size()) {
1088 reportWarning(
1089 formatv(
1090 "debug info line number {0} exceeds the number of lines in {1}",
1091 LineInfo.Line, LineInfo.FileName),
1092 ObjectFilename);
1093 return;
1094 }
1095 // Vector begins at 0, line numbers are non-zero
1096 OS << Delimiter << LineBuffer->second[LineInfo.Line - 1];
1097 LVP.printBetweenInsts(OS, true);
1098 }
1099 }
1100
isAArch64Elf(const ObjectFile * Obj)1101 static bool isAArch64Elf(const ObjectFile *Obj) {
1102 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1103 return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
1104 }
1105
isArmElf(const ObjectFile * Obj)1106 static bool isArmElf(const ObjectFile *Obj) {
1107 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1108 return Elf && Elf->getEMachine() == ELF::EM_ARM;
1109 }
1110
hasMappingSymbols(const ObjectFile * Obj)1111 static bool hasMappingSymbols(const ObjectFile *Obj) {
1112 return isArmElf(Obj) || isAArch64Elf(Obj);
1113 }
1114
printRelocation(formatted_raw_ostream & OS,StringRef FileName,const RelocationRef & Rel,uint64_t Address,bool Is64Bits)1115 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
1116 const RelocationRef &Rel, uint64_t Address,
1117 bool Is64Bits) {
1118 StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": ";
1119 SmallString<16> Name;
1120 SmallString<32> Val;
1121 Rel.getTypeName(Name);
1122 if (Error E = getRelocationValueString(Rel, Val))
1123 reportError(std::move(E), FileName);
1124 OS << format(Fmt.data(), Address) << Name << "\t" << Val;
1125 }
1126
1127 class PrettyPrinter {
1128 public:
1129 virtual ~PrettyPrinter() = default;
1130 virtual void
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)1131 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1132 object::SectionedAddress Address, formatted_raw_ostream &OS,
1133 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1134 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1135 LiveVariablePrinter &LVP) {
1136 if (SP && (PrintSource || PrintLines))
1137 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
1138 LVP.printBetweenInsts(OS, false);
1139
1140 size_t Start = OS.tell();
1141 if (!NoLeadingAddr)
1142 OS << format("%8" PRIx64 ":", Address.Address);
1143 if (!NoShowRawInsn) {
1144 OS << ' ';
1145 dumpBytes(Bytes, OS);
1146 }
1147
1148 // The output of printInst starts with a tab. Print some spaces so that
1149 // the tab has 1 column and advances to the target tab stop.
1150 unsigned TabStop = getInstStartColumn(STI);
1151 unsigned Column = OS.tell() - Start;
1152 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
1153
1154 if (MI) {
1155 // See MCInstPrinter::printInst. On targets where a PC relative immediate
1156 // is relative to the next instruction and the length of a MCInst is
1157 // difficult to measure (x86), this is the address of the next
1158 // instruction.
1159 uint64_t Addr =
1160 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
1161 IP.printInst(MI, Addr, "", STI, OS);
1162 } else
1163 OS << "\t<unknown>";
1164 }
1165 };
1166 PrettyPrinter PrettyPrinterInst;
1167
1168 class HexagonPrettyPrinter : public PrettyPrinter {
1169 public:
printLead(ArrayRef<uint8_t> Bytes,uint64_t Address,formatted_raw_ostream & OS)1170 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
1171 formatted_raw_ostream &OS) {
1172 uint32_t opcode =
1173 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
1174 if (!NoLeadingAddr)
1175 OS << format("%8" PRIx64 ":", Address);
1176 if (!NoShowRawInsn) {
1177 OS << "\t";
1178 dumpBytes(Bytes.slice(0, 4), OS);
1179 OS << format("\t%08" PRIx32, opcode);
1180 }
1181 }
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)1182 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1183 object::SectionedAddress Address, formatted_raw_ostream &OS,
1184 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1185 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1186 LiveVariablePrinter &LVP) override {
1187 if (SP && (PrintSource || PrintLines))
1188 SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
1189 if (!MI) {
1190 printLead(Bytes, Address.Address, OS);
1191 OS << " <unknown>";
1192 return;
1193 }
1194 std::string Buffer;
1195 {
1196 raw_string_ostream TempStream(Buffer);
1197 IP.printInst(MI, Address.Address, "", STI, TempStream);
1198 }
1199 StringRef Contents(Buffer);
1200 // Split off bundle attributes
1201 auto PacketBundle = Contents.rsplit('\n');
1202 // Split off first instruction from the rest
1203 auto HeadTail = PacketBundle.first.split('\n');
1204 auto Preamble = " { ";
1205 auto Separator = "";
1206
1207 // Hexagon's packets require relocations to be inline rather than
1208 // clustered at the end of the packet.
1209 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
1210 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
1211 auto PrintReloc = [&]() -> void {
1212 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
1213 if (RelCur->getOffset() == Address.Address) {
1214 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
1215 return;
1216 }
1217 ++RelCur;
1218 }
1219 };
1220
1221 while (!HeadTail.first.empty()) {
1222 OS << Separator;
1223 Separator = "\n";
1224 if (SP && (PrintSource || PrintLines))
1225 SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
1226 printLead(Bytes, Address.Address, OS);
1227 OS << Preamble;
1228 Preamble = " ";
1229 StringRef Inst;
1230 auto Duplex = HeadTail.first.split('\v');
1231 if (!Duplex.second.empty()) {
1232 OS << Duplex.first;
1233 OS << "; ";
1234 Inst = Duplex.second;
1235 }
1236 else
1237 Inst = HeadTail.first;
1238 OS << Inst;
1239 HeadTail = HeadTail.second.split('\n');
1240 if (HeadTail.first.empty())
1241 OS << " } " << PacketBundle.second;
1242 PrintReloc();
1243 Bytes = Bytes.slice(4);
1244 Address.Address += 4;
1245 }
1246 }
1247 };
1248 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1249
1250 class AMDGCNPrettyPrinter : public PrettyPrinter {
1251 public:
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)1252 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1253 object::SectionedAddress Address, formatted_raw_ostream &OS,
1254 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1255 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1256 LiveVariablePrinter &LVP) override {
1257 if (SP && (PrintSource || PrintLines))
1258 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
1259
1260 if (MI) {
1261 SmallString<40> InstStr;
1262 raw_svector_ostream IS(InstStr);
1263
1264 IP.printInst(MI, Address.Address, "", STI, IS);
1265
1266 OS << left_justify(IS.str(), 60);
1267 } else {
1268 // an unrecognized encoding - this is probably data so represent it
1269 // using the .long directive, or .byte directive if fewer than 4 bytes
1270 // remaining
1271 if (Bytes.size() >= 4) {
1272 OS << format("\t.long 0x%08" PRIx32 " ",
1273 support::endian::read32<support::little>(Bytes.data()));
1274 OS.indent(42);
1275 } else {
1276 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1277 for (unsigned int i = 1; i < Bytes.size(); i++)
1278 OS << format(", 0x%02" PRIx8, Bytes[i]);
1279 OS.indent(55 - (6 * Bytes.size()));
1280 }
1281 }
1282
1283 OS << format("// %012" PRIX64 ":", Address.Address);
1284 if (Bytes.size() >= 4) {
1285 // D should be casted to uint32_t here as it is passed by format to
1286 // snprintf as vararg.
1287 for (uint32_t D : makeArrayRef(
1288 reinterpret_cast<const support::little32_t *>(Bytes.data()),
1289 Bytes.size() / 4))
1290 OS << format(" %08" PRIX32, D);
1291 } else {
1292 for (unsigned char B : Bytes)
1293 OS << format(" %02" PRIX8, B);
1294 }
1295
1296 if (!Annot.empty())
1297 OS << " // " << Annot;
1298 }
1299 };
1300 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1301
1302 class BPFPrettyPrinter : public PrettyPrinter {
1303 public:
printInst(MCInstPrinter & IP,const MCInst * MI,ArrayRef<uint8_t> Bytes,object::SectionedAddress Address,formatted_raw_ostream & OS,StringRef Annot,MCSubtargetInfo const & STI,SourcePrinter * SP,StringRef ObjectFilename,std::vector<RelocationRef> * Rels,LiveVariablePrinter & LVP)1304 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1305 object::SectionedAddress Address, formatted_raw_ostream &OS,
1306 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
1307 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
1308 LiveVariablePrinter &LVP) override {
1309 if (SP && (PrintSource || PrintLines))
1310 SP->printSourceLine(OS, Address, ObjectFilename, LVP);
1311 if (!NoLeadingAddr)
1312 OS << format("%8" PRId64 ":", Address.Address / 8);
1313 if (!NoShowRawInsn) {
1314 OS << "\t";
1315 dumpBytes(Bytes, OS);
1316 }
1317 if (MI)
1318 IP.printInst(MI, Address.Address, "", STI, OS);
1319 else
1320 OS << "\t<unknown>";
1321 }
1322 };
1323 BPFPrettyPrinter BPFPrettyPrinterInst;
1324
selectPrettyPrinter(Triple const & Triple)1325 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1326 switch(Triple.getArch()) {
1327 default:
1328 return PrettyPrinterInst;
1329 case Triple::hexagon:
1330 return HexagonPrettyPrinterInst;
1331 case Triple::amdgcn:
1332 return AMDGCNPrettyPrinterInst;
1333 case Triple::bpfel:
1334 case Triple::bpfeb:
1335 return BPFPrettyPrinterInst;
1336 }
1337 }
1338 }
1339
getElfSymbolType(const ObjectFile * Obj,const SymbolRef & Sym)1340 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1341 assert(Obj->isELF());
1342 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1343 return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1344 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1345 return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1346 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1347 return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1348 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1349 return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1350 llvm_unreachable("Unsupported binary format");
1351 }
1352
1353 template <class ELFT> static void
addDynamicElfSymbols(const ELFObjectFile<ELFT> * Obj,std::map<SectionRef,SectionSymbolsTy> & AllSymbols)1354 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1355 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1356 for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1357 uint8_t SymbolType = Symbol.getELFType();
1358 if (SymbolType == ELF::STT_SECTION)
1359 continue;
1360
1361 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
1362 // ELFSymbolRef::getAddress() returns size instead of value for common
1363 // symbols which is not desirable for disassembly output. Overriding.
1364 if (SymbolType == ELF::STT_COMMON)
1365 Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value;
1366
1367 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
1368 if (Name.empty())
1369 continue;
1370
1371 section_iterator SecI =
1372 unwrapOrError(Symbol.getSection(), Obj->getFileName());
1373 if (SecI == Obj->section_end())
1374 continue;
1375
1376 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1377 }
1378 }
1379
1380 static void
addDynamicElfSymbols(const ObjectFile * Obj,std::map<SectionRef,SectionSymbolsTy> & AllSymbols)1381 addDynamicElfSymbols(const ObjectFile *Obj,
1382 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1383 assert(Obj->isELF());
1384 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1385 addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1386 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1387 addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1388 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1389 addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1390 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1391 addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1392 else
1393 llvm_unreachable("Unsupported binary format");
1394 }
1395
addPltEntries(const ObjectFile * Obj,std::map<SectionRef,SectionSymbolsTy> & AllSymbols,StringSaver & Saver)1396 static void addPltEntries(const ObjectFile *Obj,
1397 std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1398 StringSaver &Saver) {
1399 Optional<SectionRef> Plt = None;
1400 for (const SectionRef &Section : Obj->sections()) {
1401 Expected<StringRef> SecNameOrErr = Section.getName();
1402 if (!SecNameOrErr) {
1403 consumeError(SecNameOrErr.takeError());
1404 continue;
1405 }
1406 if (*SecNameOrErr == ".plt")
1407 Plt = Section;
1408 }
1409 if (!Plt)
1410 return;
1411 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
1412 for (auto PltEntry : ElfObj->getPltAddresses()) {
1413 if (PltEntry.first) {
1414 SymbolRef Symbol(*PltEntry.first, ElfObj);
1415 uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1416 if (Expected<StringRef> NameOrErr = Symbol.getName()) {
1417 if (!NameOrErr->empty())
1418 AllSymbols[*Plt].emplace_back(
1419 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
1420 SymbolType);
1421 continue;
1422 } else {
1423 // The warning has been reported in disassembleObject().
1424 consumeError(NameOrErr.takeError());
1425 }
1426 }
1427 reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
1428 " references an invalid symbol",
1429 Obj->getFileName());
1430 }
1431 }
1432 }
1433
1434 // Normally the disassembly output will skip blocks of zeroes. This function
1435 // returns the number of zero bytes that can be skipped when dumping the
1436 // disassembly of the instructions in Buf.
countSkippableZeroBytes(ArrayRef<uint8_t> Buf)1437 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1438 // Find the number of leading zeroes.
1439 size_t N = 0;
1440 while (N < Buf.size() && !Buf[N])
1441 ++N;
1442
1443 // We may want to skip blocks of zero bytes, but unless we see
1444 // at least 8 of them in a row.
1445 if (N < 8)
1446 return 0;
1447
1448 // We skip zeroes in multiples of 4 because do not want to truncate an
1449 // instruction if it starts with a zero byte.
1450 return N & ~0x3;
1451 }
1452
1453 // Returns a map from sections to their relocations.
1454 static std::map<SectionRef, std::vector<RelocationRef>>
getRelocsMap(object::ObjectFile const & Obj)1455 getRelocsMap(object::ObjectFile const &Obj) {
1456 std::map<SectionRef, std::vector<RelocationRef>> Ret;
1457 uint64_t I = (uint64_t)-1;
1458 for (SectionRef Sec : Obj.sections()) {
1459 ++I;
1460 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1461 if (!RelocatedOrErr)
1462 reportError(Obj.getFileName(),
1463 "section (" + Twine(I) +
1464 "): failed to get a relocated section: " +
1465 toString(RelocatedOrErr.takeError()));
1466
1467 section_iterator Relocated = *RelocatedOrErr;
1468 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1469 continue;
1470 std::vector<RelocationRef> &V = Ret[*Relocated];
1471 for (const RelocationRef &R : Sec.relocations())
1472 V.push_back(R);
1473 // Sort relocations by address.
1474 llvm::stable_sort(V, isRelocAddressLess);
1475 }
1476 return Ret;
1477 }
1478
1479 // Used for --adjust-vma to check if address should be adjusted by the
1480 // specified value for a given section.
1481 // For ELF we do not adjust non-allocatable sections like debug ones,
1482 // because they are not loadable.
1483 // TODO: implement for other file formats.
shouldAdjustVA(const SectionRef & Section)1484 static bool shouldAdjustVA(const SectionRef &Section) {
1485 const ObjectFile *Obj = Section.getObject();
1486 if (Obj->isELF())
1487 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1488 return false;
1489 }
1490
1491
1492 typedef std::pair<uint64_t, char> MappingSymbolPair;
getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,uint64_t Address)1493 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1494 uint64_t Address) {
1495 auto It =
1496 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1497 return Val.first <= Address;
1498 });
1499 // Return zero for any address before the first mapping symbol; this means
1500 // we should use the default disassembly mode, depending on the target.
1501 if (It == MappingSymbols.begin())
1502 return '\x00';
1503 return (It - 1)->second;
1504 }
1505
dumpARMELFData(uint64_t SectionAddr,uint64_t Index,uint64_t End,const ObjectFile * Obj,ArrayRef<uint8_t> Bytes,ArrayRef<MappingSymbolPair> MappingSymbols,raw_ostream & OS)1506 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1507 uint64_t End, const ObjectFile *Obj,
1508 ArrayRef<uint8_t> Bytes,
1509 ArrayRef<MappingSymbolPair> MappingSymbols,
1510 raw_ostream &OS) {
1511 support::endianness Endian =
1512 Obj->isLittleEndian() ? support::little : support::big;
1513 OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
1514 if (Index + 4 <= End) {
1515 dumpBytes(Bytes.slice(Index, 4), OS);
1516 OS << "\t.word\t"
1517 << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1518 10);
1519 return 4;
1520 }
1521 if (Index + 2 <= End) {
1522 dumpBytes(Bytes.slice(Index, 2), OS);
1523 OS << "\t\t.short\t"
1524 << format_hex(support::endian::read16(Bytes.data() + Index, Endian),
1525 6);
1526 return 2;
1527 }
1528 dumpBytes(Bytes.slice(Index, 1), OS);
1529 OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1530 return 1;
1531 }
1532
dumpELFData(uint64_t SectionAddr,uint64_t Index,uint64_t End,ArrayRef<uint8_t> Bytes)1533 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1534 ArrayRef<uint8_t> Bytes) {
1535 // print out data up to 8 bytes at a time in hex and ascii
1536 uint8_t AsciiData[9] = {'\0'};
1537 uint8_t Byte;
1538 int NumBytes = 0;
1539
1540 for (; Index < End; ++Index) {
1541 if (NumBytes == 0)
1542 outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1543 Byte = Bytes.slice(Index)[0];
1544 outs() << format(" %02x", Byte);
1545 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1546
1547 uint8_t IndentOffset = 0;
1548 NumBytes++;
1549 if (Index == End - 1 || NumBytes > 8) {
1550 // Indent the space for less than 8 bytes data.
1551 // 2 spaces for byte and one for space between bytes
1552 IndentOffset = 3 * (8 - NumBytes);
1553 for (int Excess = NumBytes; Excess < 8; Excess++)
1554 AsciiData[Excess] = '\0';
1555 NumBytes = 8;
1556 }
1557 if (NumBytes == 8) {
1558 AsciiData[8] = '\0';
1559 outs() << std::string(IndentOffset, ' ') << " ";
1560 outs() << reinterpret_cast<char *>(AsciiData);
1561 outs() << '\n';
1562 NumBytes = 0;
1563 }
1564 }
1565 }
1566
createSymbolInfo(const ObjectFile * Obj,const SymbolRef & Symbol)1567 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
1568 const SymbolRef &Symbol) {
1569 const StringRef FileName = Obj->getFileName();
1570 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1571 const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1572
1573 if (Obj->isXCOFF() && SymbolDescription) {
1574 const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
1575 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1576
1577 const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
1578 Optional<XCOFF::StorageMappingClass> Smc =
1579 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1580 return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1581 isLabel(XCOFFObj, Symbol));
1582 } else
1583 return SymbolInfoTy(Addr, Name,
1584 Obj->isELF() ? getElfSymbolType(Obj, Symbol)
1585 : (uint8_t)ELF::STT_NOTYPE);
1586 }
1587
createDummySymbolInfo(const ObjectFile * Obj,const uint64_t Addr,StringRef & Name,uint8_t Type)1588 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
1589 const uint64_t Addr, StringRef &Name,
1590 uint8_t Type) {
1591 if (Obj->isXCOFF() && SymbolDescription)
1592 return SymbolInfoTy(Addr, Name, None, None, false);
1593 else
1594 return SymbolInfoTy(Addr, Name, Type);
1595 }
1596
1597 static void
collectLocalBranchTargets(ArrayRef<uint8_t> Bytes,const MCInstrAnalysis * MIA,MCDisassembler * DisAsm,MCInstPrinter * IP,const MCSubtargetInfo * STI,uint64_t SectionAddr,uint64_t Start,uint64_t End,std::unordered_map<uint64_t,std::string> & Labels)1598 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA,
1599 MCDisassembler *DisAsm, MCInstPrinter *IP,
1600 const MCSubtargetInfo *STI, uint64_t SectionAddr,
1601 uint64_t Start, uint64_t End,
1602 std::unordered_map<uint64_t, std::string> &Labels) {
1603 // So far only supports X86.
1604 if (!STI->getTargetTriple().isX86())
1605 return;
1606
1607 Labels.clear();
1608 unsigned LabelCount = 0;
1609 Start += SectionAddr;
1610 End += SectionAddr;
1611 uint64_t Index = Start;
1612 while (Index < End) {
1613 // Disassemble a real instruction and record function-local branch labels.
1614 MCInst Inst;
1615 uint64_t Size;
1616 bool Disassembled = DisAsm->getInstruction(
1617 Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
1618 if (Size == 0)
1619 Size = 1;
1620
1621 if (Disassembled && MIA) {
1622 uint64_t Target;
1623 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1624 if (TargetKnown && (Target >= Start && Target < End) &&
1625 !Labels.count(Target))
1626 Labels[Target] = ("L" + Twine(LabelCount++)).str();
1627 }
1628
1629 Index += Size;
1630 }
1631 }
1632
getSegmentName(const MachOObjectFile * MachO,const SectionRef & Section)1633 static StringRef getSegmentName(const MachOObjectFile *MachO,
1634 const SectionRef &Section) {
1635 if (MachO) {
1636 DataRefImpl DR = Section.getRawDataRefImpl();
1637 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1638 return SegmentName;
1639 }
1640 return "";
1641 }
1642
disassembleObject(const Target * TheTarget,const ObjectFile * Obj,MCContext & Ctx,MCDisassembler * PrimaryDisAsm,MCDisassembler * SecondaryDisAsm,const MCInstrAnalysis * MIA,MCInstPrinter * IP,const MCSubtargetInfo * PrimarySTI,const MCSubtargetInfo * SecondarySTI,PrettyPrinter & PIP,SourcePrinter & SP,bool InlineRelocs)1643 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1644 MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1645 MCDisassembler *SecondaryDisAsm,
1646 const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1647 const MCSubtargetInfo *PrimarySTI,
1648 const MCSubtargetInfo *SecondarySTI,
1649 PrettyPrinter &PIP,
1650 SourcePrinter &SP, bool InlineRelocs) {
1651 const MCSubtargetInfo *STI = PrimarySTI;
1652 MCDisassembler *DisAsm = PrimaryDisAsm;
1653 bool PrimaryIsThumb = false;
1654 if (isArmElf(Obj))
1655 PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1656
1657 std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1658 if (InlineRelocs)
1659 RelocMap = getRelocsMap(*Obj);
1660 bool Is64Bits = Obj->getBytesInAddress() > 4;
1661
1662 // Create a mapping from virtual address to symbol name. This is used to
1663 // pretty print the symbols while disassembling.
1664 std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1665 SectionSymbolsTy AbsoluteSymbols;
1666 const StringRef FileName = Obj->getFileName();
1667 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
1668 for (const SymbolRef &Symbol : Obj->symbols()) {
1669 Expected<StringRef> NameOrErr = Symbol.getName();
1670 if (!NameOrErr) {
1671 reportWarning(toString(NameOrErr.takeError()), FileName);
1672 continue;
1673 }
1674 if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription))
1675 continue;
1676
1677 if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1678 continue;
1679
1680 // Don't ask a Mach-O STAB symbol for its section unless you know that
1681 // STAB symbol's section field refers to a valid section index. Otherwise
1682 // the symbol may error trying to load a section that does not exist.
1683 if (MachO) {
1684 DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1685 uint8_t NType = (MachO->is64Bit() ?
1686 MachO->getSymbol64TableEntry(SymDRI).n_type:
1687 MachO->getSymbolTableEntry(SymDRI).n_type);
1688 if (NType & MachO::N_STAB)
1689 continue;
1690 }
1691
1692 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1693 if (SecI != Obj->section_end())
1694 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1695 else
1696 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1697 }
1698
1699 if (AllSymbols.empty() && Obj->isELF())
1700 addDynamicElfSymbols(Obj, AllSymbols);
1701
1702 BumpPtrAllocator A;
1703 StringSaver Saver(A);
1704 addPltEntries(Obj, AllSymbols, Saver);
1705
1706 // Create a mapping from virtual address to section. An empty section can
1707 // cause more than one section at the same address. Sort such sections to be
1708 // before same-addressed non-empty sections so that symbol lookups prefer the
1709 // non-empty section.
1710 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1711 for (SectionRef Sec : Obj->sections())
1712 SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1713 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1714 if (LHS.first != RHS.first)
1715 return LHS.first < RHS.first;
1716 return LHS.second.getSize() < RHS.second.getSize();
1717 });
1718
1719 // Linked executables (.exe and .dll files) typically don't include a real
1720 // symbol table but they might contain an export table.
1721 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1722 for (const auto &ExportEntry : COFFObj->export_directories()) {
1723 StringRef Name;
1724 if (Error E = ExportEntry.getSymbolName(Name))
1725 reportError(std::move(E), Obj->getFileName());
1726 if (Name.empty())
1727 continue;
1728
1729 uint32_t RVA;
1730 if (Error E = ExportEntry.getExportRVA(RVA))
1731 reportError(std::move(E), Obj->getFileName());
1732
1733 uint64_t VA = COFFObj->getImageBase() + RVA;
1734 auto Sec = partition_point(
1735 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1736 return O.first <= VA;
1737 });
1738 if (Sec != SectionAddresses.begin()) {
1739 --Sec;
1740 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1741 } else
1742 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1743 }
1744 }
1745
1746 // Sort all the symbols, this allows us to use a simple binary search to find
1747 // Multiple symbols can have the same address. Use a stable sort to stabilize
1748 // the output.
1749 StringSet<> FoundDisasmSymbolSet;
1750 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1751 llvm::stable_sort(SecSyms.second);
1752 llvm::stable_sort(AbsoluteSymbols);
1753
1754 std::unique_ptr<DWARFContext> DICtx;
1755 LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1756
1757 if (DbgVariables != DVDisabled) {
1758 DICtx = DWARFContext::create(*Obj);
1759 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1760 LVP.addCompileUnit(CU->getUnitDIE(false));
1761 }
1762
1763 LLVM_DEBUG(LVP.dump());
1764
1765 for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1766 if (FilterSections.empty() && !DisassembleAll &&
1767 (!Section.isText() || Section.isVirtual()))
1768 continue;
1769
1770 uint64_t SectionAddr = Section.getAddress();
1771 uint64_t SectSize = Section.getSize();
1772 if (!SectSize)
1773 continue;
1774
1775 // Get the list of all the symbols in this section.
1776 SectionSymbolsTy &Symbols = AllSymbols[Section];
1777 std::vector<MappingSymbolPair> MappingSymbols;
1778 if (hasMappingSymbols(Obj)) {
1779 for (const auto &Symb : Symbols) {
1780 uint64_t Address = Symb.Addr;
1781 StringRef Name = Symb.Name;
1782 if (Name.startswith("$d"))
1783 MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1784 if (Name.startswith("$x"))
1785 MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1786 if (Name.startswith("$a"))
1787 MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1788 if (Name.startswith("$t"))
1789 MappingSymbols.emplace_back(Address - SectionAddr, 't');
1790 }
1791 }
1792
1793 llvm::sort(MappingSymbols);
1794
1795 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1796 // AMDGPU disassembler uses symbolizer for printing labels
1797 std::unique_ptr<MCRelocationInfo> RelInfo(
1798 TheTarget->createMCRelocationInfo(TripleName, Ctx));
1799 if (RelInfo) {
1800 std::unique_ptr<MCSymbolizer> Symbolizer(
1801 TheTarget->createMCSymbolizer(
1802 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1803 DisAsm->setSymbolizer(std::move(Symbolizer));
1804 }
1805 }
1806
1807 StringRef SegmentName = getSegmentName(MachO, Section);
1808 StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
1809 // If the section has no symbol at the start, just insert a dummy one.
1810 if (Symbols.empty() || Symbols[0].Addr != 0) {
1811 Symbols.insert(Symbols.begin(),
1812 createDummySymbolInfo(Obj, SectionAddr, SectionName,
1813 Section.isText() ? ELF::STT_FUNC
1814 : ELF::STT_OBJECT));
1815 }
1816
1817 SmallString<40> Comments;
1818 raw_svector_ostream CommentStream(Comments);
1819
1820 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1821 unwrapOrError(Section.getContents(), Obj->getFileName()));
1822
1823 uint64_t VMAAdjustment = 0;
1824 if (shouldAdjustVA(Section))
1825 VMAAdjustment = AdjustVMA;
1826
1827 uint64_t Size;
1828 uint64_t Index;
1829 bool PrintedSection = false;
1830 std::vector<RelocationRef> Rels = RelocMap[Section];
1831 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1832 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1833 // Disassemble symbol by symbol.
1834 for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1835 std::string SymbolName = Symbols[SI].Name.str();
1836 if (Demangle)
1837 SymbolName = demangle(SymbolName);
1838
1839 // Skip if --disassemble-symbols is not empty and the symbol is not in
1840 // the list.
1841 if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1842 continue;
1843
1844 uint64_t Start = Symbols[SI].Addr;
1845 if (Start < SectionAddr || StopAddress <= Start)
1846 continue;
1847 else
1848 FoundDisasmSymbolSet.insert(SymbolName);
1849
1850 // The end is the section end, the beginning of the next symbol, or
1851 // --stop-address.
1852 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1853 if (SI + 1 < SE)
1854 End = std::min(End, Symbols[SI + 1].Addr);
1855 if (Start >= End || End <= StartAddress)
1856 continue;
1857 Start -= SectionAddr;
1858 End -= SectionAddr;
1859
1860 if (!PrintedSection) {
1861 PrintedSection = true;
1862 outs() << "\nDisassembly of section ";
1863 if (!SegmentName.empty())
1864 outs() << SegmentName << ",";
1865 outs() << SectionName << ":\n";
1866 }
1867
1868 outs() << '\n';
1869 if (!NoLeadingAddr)
1870 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1871 SectionAddr + Start + VMAAdjustment);
1872 if (Obj->isXCOFF() && SymbolDescription) {
1873 outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1874 } else
1875 outs() << '<' << SymbolName << ">:\n";
1876
1877 // Don't print raw contents of a virtual section. A virtual section
1878 // doesn't have any contents in the file.
1879 if (Section.isVirtual()) {
1880 outs() << "...\n";
1881 continue;
1882 }
1883
1884 auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1885 Bytes.slice(Start, End - Start),
1886 SectionAddr + Start, CommentStream);
1887 // To have round trippable disassembly, we fall back to decoding the
1888 // remaining bytes as instructions.
1889 //
1890 // If there is a failure, we disassemble the failed region as bytes before
1891 // falling back. The target is expected to print nothing in this case.
1892 //
1893 // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1894 // Size bytes before falling back.
1895 // So if the entire symbol is 'eaten' by the target:
1896 // Start += Size // Now Start = End and we will never decode as
1897 // // instructions
1898 //
1899 // Right now, most targets return None i.e ignore to treat a symbol
1900 // separately. But WebAssembly decodes preludes for some symbols.
1901 //
1902 if (Status.hasValue()) {
1903 if (Status.getValue() == MCDisassembler::Fail) {
1904 outs() << "// Error in decoding " << SymbolName
1905 << " : Decoding failed region as bytes.\n";
1906 for (uint64_t I = 0; I < Size; ++I) {
1907 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1908 << "\n";
1909 }
1910 }
1911 } else {
1912 Size = 0;
1913 }
1914
1915 Start += Size;
1916
1917 Index = Start;
1918 if (SectionAddr < StartAddress)
1919 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1920
1921 // If there is a data/common symbol inside an ELF text section and we are
1922 // only disassembling text (applicable all architectures), we are in a
1923 // situation where we must print the data and not disassemble it.
1924 if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1925 uint8_t SymTy = Symbols[SI].Type;
1926 if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1927 dumpELFData(SectionAddr, Index, End, Bytes);
1928 Index = End;
1929 }
1930 }
1931
1932 bool CheckARMELFData = hasMappingSymbols(Obj) &&
1933 Symbols[SI].Type != ELF::STT_OBJECT &&
1934 !DisassembleAll;
1935 bool DumpARMELFData = false;
1936 formatted_raw_ostream FOS(outs());
1937
1938 std::unordered_map<uint64_t, std::string> AllLabels;
1939 if (SymbolizeOperands)
1940 collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1941 SectionAddr, Index, End, AllLabels);
1942
1943 while (Index < End) {
1944 // ARM and AArch64 ELF binaries can interleave data and text in the
1945 // same section. We rely on the markers introduced to understand what
1946 // we need to dump. If the data marker is within a function, it is
1947 // denoted as a word/short etc.
1948 if (CheckARMELFData) {
1949 char Kind = getMappingSymbolKind(MappingSymbols, Index);
1950 DumpARMELFData = Kind == 'd';
1951 if (SecondarySTI) {
1952 if (Kind == 'a') {
1953 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1954 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1955 } else if (Kind == 't') {
1956 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1957 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1958 }
1959 }
1960 }
1961
1962 if (DumpARMELFData) {
1963 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1964 MappingSymbols, FOS);
1965 } else {
1966 // When -z or --disassemble-zeroes are given we always dissasemble
1967 // them. Otherwise we might want to skip zero bytes we see.
1968 if (!DisassembleZeroes) {
1969 uint64_t MaxOffset = End - Index;
1970 // For --reloc: print zero blocks patched by relocations, so that
1971 // relocations can be shown in the dump.
1972 if (RelCur != RelEnd)
1973 MaxOffset = RelCur->getOffset() - Index;
1974
1975 if (size_t N =
1976 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1977 FOS << "\t\t..." << '\n';
1978 Index += N;
1979 continue;
1980 }
1981 }
1982
1983 // Print local label if there's any.
1984 auto Iter = AllLabels.find(SectionAddr + Index);
1985 if (Iter != AllLabels.end())
1986 FOS << "<" << Iter->second << ">:\n";
1987
1988 // Disassemble a real instruction or a data when disassemble all is
1989 // provided
1990 MCInst Inst;
1991 bool Disassembled =
1992 DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1993 SectionAddr + Index, CommentStream);
1994 if (Size == 0)
1995 Size = 1;
1996
1997 LVP.update({Index, Section.getIndex()},
1998 {Index + Size, Section.getIndex()}, Index + Size != End);
1999
2000 PIP.printInst(
2001 *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
2002 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
2003 "", *STI, &SP, Obj->getFileName(), &Rels, LVP);
2004 FOS << CommentStream.str();
2005 Comments.clear();
2006
2007 // If disassembly has failed, avoid analysing invalid/incomplete
2008 // instruction information. Otherwise, try to resolve the target
2009 // address (jump target or memory operand address) and print it on the
2010 // right of the instruction.
2011 if (Disassembled && MIA) {
2012 uint64_t Target;
2013 bool PrintTarget =
2014 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
2015 if (!PrintTarget)
2016 if (Optional<uint64_t> MaybeTarget =
2017 MIA->evaluateMemoryOperandAddress(
2018 Inst, SectionAddr + Index, Size)) {
2019 Target = *MaybeTarget;
2020 PrintTarget = true;
2021 // Do not print real address when symbolizing.
2022 if (!SymbolizeOperands)
2023 FOS << " # " << Twine::utohexstr(Target);
2024 }
2025 if (PrintTarget) {
2026 // In a relocatable object, the target's section must reside in
2027 // the same section as the call instruction or it is accessed
2028 // through a relocation.
2029 //
2030 // In a non-relocatable object, the target may be in any section.
2031 // In that case, locate the section(s) containing the target
2032 // address and find the symbol in one of those, if possible.
2033 //
2034 // N.B. We don't walk the relocations in the relocatable case yet.
2035 std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
2036 if (!Obj->isRelocatableObject()) {
2037 auto It = llvm::partition_point(
2038 SectionAddresses,
2039 [=](const std::pair<uint64_t, SectionRef> &O) {
2040 return O.first <= Target;
2041 });
2042 uint64_t TargetSecAddr = 0;
2043 while (It != SectionAddresses.begin()) {
2044 --It;
2045 if (TargetSecAddr == 0)
2046 TargetSecAddr = It->first;
2047 if (It->first != TargetSecAddr)
2048 break;
2049 TargetSectionSymbols.push_back(&AllSymbols[It->second]);
2050 }
2051 } else {
2052 TargetSectionSymbols.push_back(&Symbols);
2053 }
2054 TargetSectionSymbols.push_back(&AbsoluteSymbols);
2055
2056 // Find the last symbol in the first candidate section whose
2057 // offset is less than or equal to the target. If there are no
2058 // such symbols, try in the next section and so on, before finally
2059 // using the nearest preceding absolute symbol (if any), if there
2060 // are no other valid symbols.
2061 const SymbolInfoTy *TargetSym = nullptr;
2062 for (const SectionSymbolsTy *TargetSymbols :
2063 TargetSectionSymbols) {
2064 auto It = llvm::partition_point(
2065 *TargetSymbols,
2066 [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
2067 if (It != TargetSymbols->begin()) {
2068 TargetSym = &*(It - 1);
2069 break;
2070 }
2071 }
2072
2073 // Print the labels corresponding to the target if there's any.
2074 bool LabelAvailable = AllLabels.count(Target);
2075 if (TargetSym != nullptr) {
2076 uint64_t TargetAddress = TargetSym->Addr;
2077 uint64_t Disp = Target - TargetAddress;
2078 std::string TargetName = TargetSym->Name.str();
2079 if (Demangle)
2080 TargetName = demangle(TargetName);
2081
2082 FOS << " <";
2083 if (!Disp) {
2084 // Always Print the binary symbol precisely corresponding to
2085 // the target address.
2086 FOS << TargetName;
2087 } else if (!LabelAvailable) {
2088 // Always Print the binary symbol plus an offset if there's no
2089 // local label corresponding to the target address.
2090 FOS << TargetName << "+0x" << Twine::utohexstr(Disp);
2091 } else {
2092 FOS << AllLabels[Target];
2093 }
2094 FOS << ">";
2095 } else if (LabelAvailable) {
2096 FOS << " <" << AllLabels[Target] << ">";
2097 }
2098 }
2099 }
2100 }
2101
2102 LVP.printAfterInst(FOS);
2103 FOS << "\n";
2104
2105 // Hexagon does this in pretty printer
2106 if (Obj->getArch() != Triple::hexagon) {
2107 // Print relocation for instruction and data.
2108 while (RelCur != RelEnd) {
2109 uint64_t Offset = RelCur->getOffset();
2110 // If this relocation is hidden, skip it.
2111 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
2112 ++RelCur;
2113 continue;
2114 }
2115
2116 // Stop when RelCur's offset is past the disassembled
2117 // instruction/data. Note that it's possible the disassembled data
2118 // is not the complete data: we might see the relocation printed in
2119 // the middle of the data, but this matches the binutils objdump
2120 // output.
2121 if (Offset >= Index + Size)
2122 break;
2123
2124 // When --adjust-vma is used, update the address printed.
2125 if (RelCur->getSymbol() != Obj->symbol_end()) {
2126 Expected<section_iterator> SymSI =
2127 RelCur->getSymbol()->getSection();
2128 if (SymSI && *SymSI != Obj->section_end() &&
2129 shouldAdjustVA(**SymSI))
2130 Offset += AdjustVMA;
2131 }
2132
2133 printRelocation(FOS, Obj->getFileName(), *RelCur,
2134 SectionAddr + Offset, Is64Bits);
2135 LVP.printAfterOtherLine(FOS, true);
2136 ++RelCur;
2137 }
2138 }
2139
2140 Index += Size;
2141 }
2142 }
2143 }
2144 StringSet<> MissingDisasmSymbolSet =
2145 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2146 for (StringRef Sym : MissingDisasmSymbolSet.keys())
2147 reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2148 }
2149
disassembleObject(const ObjectFile * Obj,bool InlineRelocs)2150 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
2151 const Target *TheTarget = getTarget(Obj);
2152
2153 // Package up features to be passed to target/subtarget
2154 SubtargetFeatures Features = Obj->getFeatures();
2155 if (!MAttrs.empty())
2156 for (unsigned I = 0; I != MAttrs.size(); ++I)
2157 Features.AddFeature(MAttrs[I]);
2158
2159 std::unique_ptr<const MCRegisterInfo> MRI(
2160 TheTarget->createMCRegInfo(TripleName));
2161 if (!MRI)
2162 reportError(Obj->getFileName(),
2163 "no register info for target " + TripleName);
2164
2165 // Set up disassembler.
2166 MCTargetOptions MCOptions;
2167 std::unique_ptr<const MCAsmInfo> AsmInfo(
2168 TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
2169 if (!AsmInfo)
2170 reportError(Obj->getFileName(),
2171 "no assembly info for target " + TripleName);
2172
2173 if (MCPU.empty())
2174 MCPU = Obj->tryGetCPUName().getValueOr("").str();
2175
2176 std::unique_ptr<const MCSubtargetInfo> STI(
2177 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
2178 if (!STI)
2179 reportError(Obj->getFileName(),
2180 "no subtarget info for target " + TripleName);
2181 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
2182 if (!MII)
2183 reportError(Obj->getFileName(),
2184 "no instruction info for target " + TripleName);
2185 MCObjectFileInfo MOFI;
2186 MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
2187 // FIXME: for now initialize MCObjectFileInfo with default values
2188 MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
2189
2190 std::unique_ptr<MCDisassembler> DisAsm(
2191 TheTarget->createMCDisassembler(*STI, Ctx));
2192 if (!DisAsm)
2193 reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
2194
2195 // If we have an ARM object file, we need a second disassembler, because
2196 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2197 // We use mapping symbols to switch between the two assemblers, where
2198 // appropriate.
2199 std::unique_ptr<MCDisassembler> SecondaryDisAsm;
2200 std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
2201 if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
2202 if (STI->checkFeatures("+thumb-mode"))
2203 Features.AddFeature("-thumb-mode");
2204 else
2205 Features.AddFeature("+thumb-mode");
2206 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
2207 Features.getString()));
2208 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
2209 }
2210
2211 std::unique_ptr<const MCInstrAnalysis> MIA(
2212 TheTarget->createMCInstrAnalysis(MII.get()));
2213
2214 int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
2215 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
2216 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
2217 if (!IP)
2218 reportError(Obj->getFileName(),
2219 "no instruction printer for target " + TripleName);
2220 IP->setPrintImmHex(PrintImmHex);
2221 IP->setPrintBranchImmAsAddress(true);
2222 IP->setSymbolizeOperands(SymbolizeOperands);
2223 IP->setMCInstrAnalysis(MIA.get());
2224
2225 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
2226 SourcePrinter SP(Obj, TheTarget->getName());
2227
2228 for (StringRef Opt : DisassemblerOptions)
2229 if (!IP->applyTargetSpecificCLOption(Opt))
2230 reportError(Obj->getFileName(),
2231 "Unrecognized disassembler option: " + Opt);
2232
2233 disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
2234 MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
2235 SP, InlineRelocs);
2236 }
2237
printRelocations(const ObjectFile * Obj)2238 void objdump::printRelocations(const ObjectFile *Obj) {
2239 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
2240 "%08" PRIx64;
2241 // Regular objdump doesn't print relocations in non-relocatable object
2242 // files.
2243 if (!Obj->isRelocatableObject())
2244 return;
2245
2246 // Build a mapping from relocation target to a vector of relocation
2247 // sections. Usually, there is an only one relocation section for
2248 // each relocated section.
2249 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2250 uint64_t Ndx;
2251 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
2252 if (Section.relocation_begin() == Section.relocation_end())
2253 continue;
2254 Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2255 if (!SecOrErr)
2256 reportError(Obj->getFileName(),
2257 "section (" + Twine(Ndx) +
2258 "): unable to get a relocation target: " +
2259 toString(SecOrErr.takeError()));
2260 SecToRelSec[**SecOrErr].push_back(Section);
2261 }
2262
2263 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2264 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
2265 outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
2266 uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2267 uint32_t TypePadding = 24;
2268 outs() << left_justify("OFFSET", OffsetPadding) << " "
2269 << left_justify("TYPE", TypePadding) << " "
2270 << "VALUE\n";
2271
2272 for (SectionRef Section : P.second) {
2273 for (const RelocationRef &Reloc : Section.relocations()) {
2274 uint64_t Address = Reloc.getOffset();
2275 SmallString<32> RelocName;
2276 SmallString<32> ValueStr;
2277 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2278 continue;
2279 Reloc.getTypeName(RelocName);
2280 if (Error E = getRelocationValueString(Reloc, ValueStr))
2281 reportError(std::move(E), Obj->getFileName());
2282
2283 outs() << format(Fmt.data(), Address) << " "
2284 << left_justify(RelocName, TypePadding) << " " << ValueStr
2285 << "\n";
2286 }
2287 }
2288 outs() << "\n";
2289 }
2290 }
2291
printDynamicRelocations(const ObjectFile * Obj)2292 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2293 // For the moment, this option is for ELF only
2294 if (!Obj->isELF())
2295 return;
2296
2297 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2298 if (!Elf || Elf->getEType() != ELF::ET_DYN) {
2299 reportError(Obj->getFileName(), "not a dynamic object");
2300 return;
2301 }
2302
2303 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2304 if (DynRelSec.empty())
2305 return;
2306
2307 outs() << "DYNAMIC RELOCATION RECORDS\n";
2308 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2309 for (const SectionRef &Section : DynRelSec)
2310 for (const RelocationRef &Reloc : Section.relocations()) {
2311 uint64_t Address = Reloc.getOffset();
2312 SmallString<32> RelocName;
2313 SmallString<32> ValueStr;
2314 Reloc.getTypeName(RelocName);
2315 if (Error E = getRelocationValueString(Reloc, ValueStr))
2316 reportError(std::move(E), Obj->getFileName());
2317 outs() << format(Fmt.data(), Address) << " " << RelocName << " "
2318 << ValueStr << "\n";
2319 }
2320 }
2321
2322 // Returns true if we need to show LMA column when dumping section headers. We
2323 // show it only when the platform is ELF and either we have at least one section
2324 // whose VMA and LMA are different and/or when --show-lma flag is used.
shouldDisplayLMA(const ObjectFile * Obj)2325 static bool shouldDisplayLMA(const ObjectFile *Obj) {
2326 if (!Obj->isELF())
2327 return false;
2328 for (const SectionRef &S : ToolSectionFilter(*Obj))
2329 if (S.getAddress() != getELFSectionLMA(S))
2330 return true;
2331 return ShowLMA;
2332 }
2333
getMaxSectionNameWidth(const ObjectFile * Obj)2334 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
2335 // Default column width for names is 13 even if no names are that long.
2336 size_t MaxWidth = 13;
2337 for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2338 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2339 MaxWidth = std::max(MaxWidth, Name.size());
2340 }
2341 return MaxWidth;
2342 }
2343
printSectionHeaders(const ObjectFile * Obj)2344 void objdump::printSectionHeaders(const ObjectFile *Obj) {
2345 size_t NameWidth = getMaxSectionNameWidth(Obj);
2346 size_t AddressWidth = 2 * Obj->getBytesInAddress();
2347 bool HasLMAColumn = shouldDisplayLMA(Obj);
2348 if (HasLMAColumn)
2349 outs() << "Sections:\n"
2350 "Idx "
2351 << left_justify("Name", NameWidth) << " Size "
2352 << left_justify("VMA", AddressWidth) << " "
2353 << left_justify("LMA", AddressWidth) << " Type\n";
2354 else
2355 outs() << "Sections:\n"
2356 "Idx "
2357 << left_justify("Name", NameWidth) << " Size "
2358 << left_justify("VMA", AddressWidth) << " Type\n";
2359
2360 uint64_t Idx;
2361 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
2362 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2363 uint64_t VMA = Section.getAddress();
2364 if (shouldAdjustVA(Section))
2365 VMA += AdjustVMA;
2366
2367 uint64_t Size = Section.getSize();
2368
2369 std::string Type = Section.isText() ? "TEXT" : "";
2370 if (Section.isData())
2371 Type += Type.empty() ? "DATA" : " DATA";
2372 if (Section.isBSS())
2373 Type += Type.empty() ? "BSS" : " BSS";
2374
2375 if (HasLMAColumn)
2376 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2377 Name.str().c_str(), Size)
2378 << format_hex_no_prefix(VMA, AddressWidth) << " "
2379 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2380 << " " << Type << "\n";
2381 else
2382 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2383 Name.str().c_str(), Size)
2384 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2385 }
2386 outs() << "\n";
2387 }
2388
printSectionContents(const ObjectFile * Obj)2389 void objdump::printSectionContents(const ObjectFile *Obj) {
2390 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2391
2392 for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2393 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2394 uint64_t BaseAddr = Section.getAddress();
2395 uint64_t Size = Section.getSize();
2396 if (!Size)
2397 continue;
2398
2399 outs() << "Contents of section ";
2400 StringRef SegmentName = getSegmentName(MachO, Section);
2401 if (!SegmentName.empty())
2402 outs() << SegmentName << ",";
2403 outs() << Name << ":\n";
2404 if (Section.isBSS()) {
2405 outs() << format("<skipping contents of bss section at [%04" PRIx64
2406 ", %04" PRIx64 ")>\n",
2407 BaseAddr, BaseAddr + Size);
2408 continue;
2409 }
2410
2411 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2412
2413 // Dump out the content as hex and printable ascii characters.
2414 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2415 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2416 // Dump line of hex.
2417 for (std::size_t I = 0; I < 16; ++I) {
2418 if (I != 0 && I % 4 == 0)
2419 outs() << ' ';
2420 if (Addr + I < End)
2421 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2422 << hexdigit(Contents[Addr + I] & 0xF, true);
2423 else
2424 outs() << " ";
2425 }
2426 // Print ascii.
2427 outs() << " ";
2428 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2429 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2430 outs() << Contents[Addr + I];
2431 else
2432 outs() << ".";
2433 }
2434 outs() << "\n";
2435 }
2436 }
2437 }
2438
printSymbolTable(const ObjectFile * O,StringRef ArchiveName,StringRef ArchitectureName,bool DumpDynamic)2439 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
2440 StringRef ArchitectureName, bool DumpDynamic) {
2441 if (O->isCOFF() && !DumpDynamic) {
2442 outs() << "SYMBOL TABLE:\n";
2443 printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2444 return;
2445 }
2446
2447 const StringRef FileName = O->getFileName();
2448
2449 if (!DumpDynamic) {
2450 outs() << "SYMBOL TABLE:\n";
2451 for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
2452 printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2453 return;
2454 }
2455
2456 outs() << "DYNAMIC SYMBOL TABLE:\n";
2457 if (!O->isELF()) {
2458 reportWarning(
2459 "this operation is not currently supported for this file format",
2460 FileName);
2461 return;
2462 }
2463
2464 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
2465 for (auto I = ELF->getDynamicSymbolIterators().begin();
2466 I != ELF->getDynamicSymbolIterators().end(); ++I)
2467 printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2468 }
2469
printSymbol(const ObjectFile * O,const SymbolRef & Symbol,StringRef FileName,StringRef ArchiveName,StringRef ArchitectureName,bool DumpDynamic)2470 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
2471 StringRef FileName, StringRef ArchiveName,
2472 StringRef ArchitectureName, bool DumpDynamic) {
2473 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
2474 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2475 ArchitectureName);
2476 if ((Address < StartAddress) || (Address > StopAddress))
2477 return;
2478 SymbolRef::Type Type =
2479 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2480 uint32_t Flags =
2481 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2482
2483 // Don't ask a Mach-O STAB symbol for its section unless you know that
2484 // STAB symbol's section field refers to a valid section index. Otherwise
2485 // the symbol may error trying to load a section that does not exist.
2486 bool IsSTAB = false;
2487 if (MachO) {
2488 DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2489 uint8_t NType =
2490 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2491 : MachO->getSymbolTableEntry(SymDRI).n_type);
2492 if (NType & MachO::N_STAB)
2493 IsSTAB = true;
2494 }
2495 section_iterator Section = IsSTAB
2496 ? O->section_end()
2497 : unwrapOrError(Symbol.getSection(), FileName,
2498 ArchiveName, ArchitectureName);
2499
2500 StringRef Name;
2501 if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
2502 if (Expected<StringRef> NameOrErr = Section->getName())
2503 Name = *NameOrErr;
2504 else
2505 consumeError(NameOrErr.takeError());
2506
2507 } else {
2508 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2509 ArchitectureName);
2510 }
2511
2512 bool Global = Flags & SymbolRef::SF_Global;
2513 bool Weak = Flags & SymbolRef::SF_Weak;
2514 bool Absolute = Flags & SymbolRef::SF_Absolute;
2515 bool Common = Flags & SymbolRef::SF_Common;
2516 bool Hidden = Flags & SymbolRef::SF_Hidden;
2517
2518 char GlobLoc = ' ';
2519 if ((Section != O->section_end() || Absolute) && !Weak)
2520 GlobLoc = Global ? 'g' : 'l';
2521 char IFunc = ' ';
2522 if (O->isELF()) {
2523 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2524 IFunc = 'i';
2525 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2526 GlobLoc = 'u';
2527 }
2528
2529 char Debug = ' ';
2530 if (DumpDynamic)
2531 Debug = 'D';
2532 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2533 Debug = 'd';
2534
2535 char FileFunc = ' ';
2536 if (Type == SymbolRef::ST_File)
2537 FileFunc = 'f';
2538 else if (Type == SymbolRef::ST_Function)
2539 FileFunc = 'F';
2540 else if (Type == SymbolRef::ST_Data)
2541 FileFunc = 'O';
2542
2543 const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2544
2545 outs() << format(Fmt, Address) << " "
2546 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
2547 << (Weak ? 'w' : ' ') // Weak?
2548 << ' ' // Constructor. Not supported yet.
2549 << ' ' // Warning. Not supported yet.
2550 << IFunc // Indirect reference to another symbol.
2551 << Debug // Debugging (d) or dynamic (D) symbol.
2552 << FileFunc // Name of function (F), file (f) or object (O).
2553 << ' ';
2554 if (Absolute) {
2555 outs() << "*ABS*";
2556 } else if (Common) {
2557 outs() << "*COM*";
2558 } else if (Section == O->section_end()) {
2559 outs() << "*UND*";
2560 } else {
2561 StringRef SegmentName = getSegmentName(MachO, *Section);
2562 if (!SegmentName.empty())
2563 outs() << SegmentName << ",";
2564 StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2565 outs() << SectionName;
2566 }
2567
2568 if (Common || O->isELF()) {
2569 uint64_t Val =
2570 Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2571 outs() << '\t' << format(Fmt, Val);
2572 }
2573
2574 if (O->isELF()) {
2575 uint8_t Other = ELFSymbolRef(Symbol).getOther();
2576 switch (Other) {
2577 case ELF::STV_DEFAULT:
2578 break;
2579 case ELF::STV_INTERNAL:
2580 outs() << " .internal";
2581 break;
2582 case ELF::STV_HIDDEN:
2583 outs() << " .hidden";
2584 break;
2585 case ELF::STV_PROTECTED:
2586 outs() << " .protected";
2587 break;
2588 default:
2589 outs() << format(" 0x%02x", Other);
2590 break;
2591 }
2592 } else if (Hidden) {
2593 outs() << " .hidden";
2594 }
2595
2596 if (Demangle)
2597 outs() << ' ' << demangle(std::string(Name)) << '\n';
2598 else
2599 outs() << ' ' << Name << '\n';
2600 }
2601
printUnwindInfo(const ObjectFile * O)2602 static void printUnwindInfo(const ObjectFile *O) {
2603 outs() << "Unwind info:\n\n";
2604
2605 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2606 printCOFFUnwindInfo(Coff);
2607 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2608 printMachOUnwindInfo(MachO);
2609 else
2610 // TODO: Extract DWARF dump tool to objdump.
2611 WithColor::error(errs(), ToolName)
2612 << "This operation is only currently supported "
2613 "for COFF and MachO object files.\n";
2614 }
2615
2616 /// Dump the raw contents of the __clangast section so the output can be piped
2617 /// into llvm-bcanalyzer.
printRawClangAST(const ObjectFile * Obj)2618 static void printRawClangAST(const ObjectFile *Obj) {
2619 if (outs().is_displayed()) {
2620 WithColor::error(errs(), ToolName)
2621 << "The -raw-clang-ast option will dump the raw binary contents of "
2622 "the clang ast section.\n"
2623 "Please redirect the output to a file or another program such as "
2624 "llvm-bcanalyzer.\n";
2625 return;
2626 }
2627
2628 StringRef ClangASTSectionName("__clangast");
2629 if (Obj->isCOFF()) {
2630 ClangASTSectionName = "clangast";
2631 }
2632
2633 Optional<object::SectionRef> ClangASTSection;
2634 for (auto Sec : ToolSectionFilter(*Obj)) {
2635 StringRef Name;
2636 if (Expected<StringRef> NameOrErr = Sec.getName())
2637 Name = *NameOrErr;
2638 else
2639 consumeError(NameOrErr.takeError());
2640
2641 if (Name == ClangASTSectionName) {
2642 ClangASTSection = Sec;
2643 break;
2644 }
2645 }
2646 if (!ClangASTSection)
2647 return;
2648
2649 StringRef ClangASTContents = unwrapOrError(
2650 ClangASTSection.getValue().getContents(), Obj->getFileName());
2651 outs().write(ClangASTContents.data(), ClangASTContents.size());
2652 }
2653
printFaultMaps(const ObjectFile * Obj)2654 static void printFaultMaps(const ObjectFile *Obj) {
2655 StringRef FaultMapSectionName;
2656
2657 if (Obj->isELF()) {
2658 FaultMapSectionName = ".llvm_faultmaps";
2659 } else if (Obj->isMachO()) {
2660 FaultMapSectionName = "__llvm_faultmaps";
2661 } else {
2662 WithColor::error(errs(), ToolName)
2663 << "This operation is only currently supported "
2664 "for ELF and Mach-O executable files.\n";
2665 return;
2666 }
2667
2668 Optional<object::SectionRef> FaultMapSection;
2669
2670 for (auto Sec : ToolSectionFilter(*Obj)) {
2671 StringRef Name;
2672 if (Expected<StringRef> NameOrErr = Sec.getName())
2673 Name = *NameOrErr;
2674 else
2675 consumeError(NameOrErr.takeError());
2676
2677 if (Name == FaultMapSectionName) {
2678 FaultMapSection = Sec;
2679 break;
2680 }
2681 }
2682
2683 outs() << "FaultMap table:\n";
2684
2685 if (!FaultMapSection.hasValue()) {
2686 outs() << "<not found>\n";
2687 return;
2688 }
2689
2690 StringRef FaultMapContents =
2691 unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
2692 FaultMapParser FMP(FaultMapContents.bytes_begin(),
2693 FaultMapContents.bytes_end());
2694
2695 outs() << FMP;
2696 }
2697
printPrivateFileHeaders(const ObjectFile * O,bool OnlyFirst)2698 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2699 if (O->isELF()) {
2700 printELFFileHeader(O);
2701 printELFDynamicSection(O);
2702 printELFSymbolVersionInfo(O);
2703 return;
2704 }
2705 if (O->isCOFF())
2706 return printCOFFFileHeader(O);
2707 if (O->isWasm())
2708 return printWasmFileHeader(O);
2709 if (O->isMachO()) {
2710 printMachOFileHeader(O);
2711 if (!OnlyFirst)
2712 printMachOLoadCommands(O);
2713 return;
2714 }
2715 reportError(O->getFileName(), "Invalid/Unsupported object file format");
2716 }
2717
printFileHeaders(const ObjectFile * O)2718 static void printFileHeaders(const ObjectFile *O) {
2719 if (!O->isELF() && !O->isCOFF())
2720 reportError(O->getFileName(), "Invalid/Unsupported object file format");
2721
2722 Triple::ArchType AT = O->getArch();
2723 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2724 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2725
2726 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2727 outs() << "start address: "
2728 << "0x" << format(Fmt.data(), Address) << "\n\n";
2729 }
2730
printArchiveChild(StringRef Filename,const Archive::Child & C)2731 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2732 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2733 if (!ModeOrErr) {
2734 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2735 consumeError(ModeOrErr.takeError());
2736 return;
2737 }
2738 sys::fs::perms Mode = ModeOrErr.get();
2739 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2740 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2741 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2742 outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2743 outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2744 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2745 outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2746 outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2747 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2748
2749 outs() << " ";
2750
2751 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2752 unwrapOrError(C.getGID(), Filename),
2753 unwrapOrError(C.getRawSize(), Filename));
2754
2755 StringRef RawLastModified = C.getRawLastModified();
2756 unsigned Seconds;
2757 if (RawLastModified.getAsInteger(10, Seconds))
2758 outs() << "(date: \"" << RawLastModified
2759 << "\" contains non-decimal chars) ";
2760 else {
2761 // Since ctime(3) returns a 26 character string of the form:
2762 // "Sun Sep 16 01:03:52 1973\n\0"
2763 // just print 24 characters.
2764 time_t t = Seconds;
2765 outs() << format("%.24s ", ctime(&t));
2766 }
2767
2768 StringRef Name = "";
2769 Expected<StringRef> NameOrErr = C.getName();
2770 if (!NameOrErr) {
2771 consumeError(NameOrErr.takeError());
2772 Name = unwrapOrError(C.getRawName(), Filename);
2773 } else {
2774 Name = NameOrErr.get();
2775 }
2776 outs() << Name << "\n";
2777 }
2778
2779 // For ELF only now.
shouldWarnForInvalidStartStopAddress(ObjectFile * Obj)2780 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2781 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2782 if (Elf->getEType() != ELF::ET_REL)
2783 return true;
2784 }
2785 return false;
2786 }
2787
checkForInvalidStartStopAddress(ObjectFile * Obj,uint64_t Start,uint64_t Stop)2788 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2789 uint64_t Start, uint64_t Stop) {
2790 if (!shouldWarnForInvalidStartStopAddress(Obj))
2791 return;
2792
2793 for (const SectionRef &Section : Obj->sections())
2794 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2795 uint64_t BaseAddr = Section.getAddress();
2796 uint64_t Size = Section.getSize();
2797 if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2798 return;
2799 }
2800
2801 if (StartAddress.getNumOccurrences() == 0)
2802 reportWarning("no section has address less than 0x" +
2803 Twine::utohexstr(Stop) + " specified by --stop-address",
2804 Obj->getFileName());
2805 else if (StopAddress.getNumOccurrences() == 0)
2806 reportWarning("no section has address greater than or equal to 0x" +
2807 Twine::utohexstr(Start) + " specified by --start-address",
2808 Obj->getFileName());
2809 else
2810 reportWarning("no section overlaps the range [0x" +
2811 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2812 ") specified by --start-address/--stop-address",
2813 Obj->getFileName());
2814 }
2815
dumpObject(ObjectFile * O,const Archive * A=nullptr,const Archive::Child * C=nullptr)2816 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2817 const Archive::Child *C = nullptr) {
2818 // Avoid other output when using a raw option.
2819 if (!RawClangAST) {
2820 outs() << '\n';
2821 if (A)
2822 outs() << A->getFileName() << "(" << O->getFileName() << ")";
2823 else
2824 outs() << O->getFileName();
2825 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n\n";
2826 }
2827
2828 if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences())
2829 checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2830
2831 // Note: the order here matches GNU objdump for compatability.
2832 StringRef ArchiveName = A ? A->getFileName() : "";
2833 if (ArchiveHeaders && !MachOOpt && C)
2834 printArchiveChild(ArchiveName, *C);
2835 if (FileHeaders)
2836 printFileHeaders(O);
2837 if (PrivateHeaders || FirstPrivateHeader)
2838 printPrivateFileHeaders(O, FirstPrivateHeader);
2839 if (SectionHeaders)
2840 printSectionHeaders(O);
2841 if (SymbolTable)
2842 printSymbolTable(O, ArchiveName);
2843 if (DynamicSymbolTable)
2844 printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
2845 /*DumpDynamic=*/true);
2846 if (DwarfDumpType != DIDT_Null) {
2847 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2848 // Dump the complete DWARF structure.
2849 DIDumpOptions DumpOpts;
2850 DumpOpts.DumpType = DwarfDumpType;
2851 DICtx->dump(outs(), DumpOpts);
2852 }
2853 if (Relocations && !Disassemble)
2854 printRelocations(O);
2855 if (DynamicRelocations)
2856 printDynamicRelocations(O);
2857 if (SectionContents)
2858 printSectionContents(O);
2859 if (Disassemble)
2860 disassembleObject(O, Relocations);
2861 if (UnwindInfo)
2862 printUnwindInfo(O);
2863
2864 // Mach-O specific options:
2865 if (ExportsTrie)
2866 printExportsTrie(O);
2867 if (Rebase)
2868 printRebaseTable(O);
2869 if (Bind)
2870 printBindTable(O);
2871 if (LazyBind)
2872 printLazyBindTable(O);
2873 if (WeakBind)
2874 printWeakBindTable(O);
2875
2876 // Other special sections:
2877 if (RawClangAST)
2878 printRawClangAST(O);
2879 if (FaultMapSection)
2880 printFaultMaps(O);
2881 }
2882
dumpObject(const COFFImportFile * I,const Archive * A,const Archive::Child * C=nullptr)2883 static void dumpObject(const COFFImportFile *I, const Archive *A,
2884 const Archive::Child *C = nullptr) {
2885 StringRef ArchiveName = A ? A->getFileName() : "";
2886
2887 // Avoid other output when using a raw option.
2888 if (!RawClangAST)
2889 outs() << '\n'
2890 << ArchiveName << "(" << I->getFileName() << ")"
2891 << ":\tfile format COFF-import-file"
2892 << "\n\n";
2893
2894 if (ArchiveHeaders && !MachOOpt && C)
2895 printArchiveChild(ArchiveName, *C);
2896 if (SymbolTable)
2897 printCOFFSymbolTable(I);
2898 }
2899
2900 /// Dump each object file in \a a;
dumpArchive(const Archive * A)2901 static void dumpArchive(const Archive *A) {
2902 Error Err = Error::success();
2903 unsigned I = -1;
2904 for (auto &C : A->children(Err)) {
2905 ++I;
2906 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2907 if (!ChildOrErr) {
2908 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2909 reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2910 continue;
2911 }
2912 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2913 dumpObject(O, A, &C);
2914 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2915 dumpObject(I, A, &C);
2916 else
2917 reportError(errorCodeToError(object_error::invalid_file_type),
2918 A->getFileName());
2919 }
2920 if (Err)
2921 reportError(std::move(Err), A->getFileName());
2922 }
2923
2924 /// Open file and figure out how to dump it.
dumpInput(StringRef file)2925 static void dumpInput(StringRef file) {
2926 // If we are using the Mach-O specific object file parser, then let it parse
2927 // the file and process the command line options. So the -arch flags can
2928 // be used to select specific slices, etc.
2929 if (MachOOpt) {
2930 parseInputMachO(file);
2931 return;
2932 }
2933
2934 // Attempt to open the binary.
2935 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2936 Binary &Binary = *OBinary.getBinary();
2937
2938 if (Archive *A = dyn_cast<Archive>(&Binary))
2939 dumpArchive(A);
2940 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2941 dumpObject(O);
2942 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2943 parseInputMachO(UB);
2944 else
2945 reportError(errorCodeToError(object_error::invalid_file_type), file);
2946 }
2947
main(int argc,char ** argv)2948 int main(int argc, char **argv) {
2949 using namespace llvm;
2950 InitLLVM X(argc, argv);
2951 const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
2952 cl::HideUnrelatedOptions(OptionFilters);
2953
2954 // Initialize targets and assembly printers/parsers.
2955 InitializeAllTargetInfos();
2956 InitializeAllTargetMCs();
2957 InitializeAllDisassemblers();
2958
2959 // Register the target printer for --version.
2960 cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2961
2962 cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n", nullptr,
2963 /*EnvVar=*/nullptr,
2964 /*LongOptionsUseDoubleDash=*/true);
2965
2966 if (StartAddress >= StopAddress)
2967 reportCmdLineError("start address should be less than stop address");
2968
2969 ToolName = argv[0];
2970
2971 // Defaults to a.out if no filenames specified.
2972 if (InputFilenames.empty())
2973 InputFilenames.push_back("a.out");
2974
2975 // Removes trailing separators from prefix.
2976 while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
2977 Prefix.pop_back();
2978
2979 if (AllHeaders)
2980 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2981 SectionHeaders = SymbolTable = true;
2982
2983 if (DisassembleAll || PrintSource || PrintLines ||
2984 !DisassembleSymbols.empty())
2985 Disassemble = true;
2986
2987 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2988 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2989 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2990 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection &&
2991 !(MachOOpt &&
2992 (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2993 FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind ||
2994 LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders ||
2995 WeakBind || !FilterSections.empty()))) {
2996 cl::PrintHelpMessage();
2997 return 2;
2998 }
2999
3000 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3001
3002 llvm::for_each(InputFilenames, dumpInput);
3003
3004 warnOnNoMatchForSections();
3005
3006 return EXIT_SUCCESS;
3007 }
3008