1 //===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_SUPPORT_PARALLEL_H
10 #define LLVM_SUPPORT_PARALLEL_H
11 
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/Config/llvm-config.h"
14 #include "llvm/Support/Error.h"
15 #include "llvm/Support/MathExtras.h"
16 #include "llvm/Support/Threading.h"
17 
18 #include <algorithm>
19 #include <condition_variable>
20 #include <functional>
21 #include <mutex>
22 
23 namespace llvm {
24 
25 namespace parallel {
26 
27 // Strategy for the default executor used by the parallel routines provided by
28 // this file. It defaults to using all hardware threads and should be
29 // initialized before the first use of parallel routines.
30 extern ThreadPoolStrategy strategy;
31 
32 namespace detail {
33 
34 #if LLVM_ENABLE_THREADS
35 
36 class Latch {
37   uint32_t Count;
38   mutable std::mutex Mutex;
39   mutable std::condition_variable Cond;
40 
41 public:
Count(Count)42   explicit Latch(uint32_t Count = 0) : Count(Count) {}
~Latch()43   ~Latch() { sync(); }
44 
inc()45   void inc() {
46     std::lock_guard<std::mutex> lock(Mutex);
47     ++Count;
48   }
49 
dec()50   void dec() {
51     std::lock_guard<std::mutex> lock(Mutex);
52     if (--Count == 0)
53       Cond.notify_all();
54   }
55 
sync()56   void sync() const {
57     std::unique_lock<std::mutex> lock(Mutex);
58     Cond.wait(lock, [&] { return Count == 0; });
59   }
60 };
61 
62 class TaskGroup {
63   Latch L;
64   bool Parallel;
65 
66 public:
67   TaskGroup();
68   ~TaskGroup();
69 
70   void spawn(std::function<void()> f);
71 
sync()72   void sync() const { L.sync(); }
73 };
74 
75 const ptrdiff_t MinParallelSize = 1024;
76 
77 /// Inclusive median.
78 template <class RandomAccessIterator, class Comparator>
medianOf3(RandomAccessIterator Start,RandomAccessIterator End,const Comparator & Comp)79 RandomAccessIterator medianOf3(RandomAccessIterator Start,
80                                RandomAccessIterator End,
81                                const Comparator &Comp) {
82   RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2);
83   return Comp(*Start, *(End - 1))
84              ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start)
85                                        : End - 1)
86              : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1)
87                                    : Start);
88 }
89 
90 template <class RandomAccessIterator, class Comparator>
parallel_quick_sort(RandomAccessIterator Start,RandomAccessIterator End,const Comparator & Comp,TaskGroup & TG,size_t Depth)91 void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End,
92                          const Comparator &Comp, TaskGroup &TG, size_t Depth) {
93   // Do a sequential sort for small inputs.
94   if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) {
95     llvm::sort(Start, End, Comp);
96     return;
97   }
98 
99   // Partition.
100   auto Pivot = medianOf3(Start, End, Comp);
101   // Move Pivot to End.
102   std::swap(*(End - 1), *Pivot);
103   Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) {
104     return Comp(V, *(End - 1));
105   });
106   // Move Pivot to middle of partition.
107   std::swap(*Pivot, *(End - 1));
108 
109   // Recurse.
110   TG.spawn([=, &Comp, &TG] {
111     parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1);
112   });
113   parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1);
114 }
115 
116 template <class RandomAccessIterator, class Comparator>
parallel_sort(RandomAccessIterator Start,RandomAccessIterator End,const Comparator & Comp)117 void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
118                    const Comparator &Comp) {
119   TaskGroup TG;
120   parallel_quick_sort(Start, End, Comp, TG,
121                       llvm::Log2_64(std::distance(Start, End)) + 1);
122 }
123 
124 // TaskGroup has a relatively high overhead, so we want to reduce
125 // the number of spawn() calls. We'll create up to 1024 tasks here.
126 // (Note that 1024 is an arbitrary number. This code probably needs
127 // improving to take the number of available cores into account.)
128 enum { MaxTasksPerGroup = 1024 };
129 
130 template <class IterTy, class FuncTy>
parallel_for_each(IterTy Begin,IterTy End,FuncTy Fn)131 void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) {
132   // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
133   // overhead on large inputs.
134   ptrdiff_t TaskSize = std::distance(Begin, End) / MaxTasksPerGroup;
135   if (TaskSize == 0)
136     TaskSize = 1;
137 
138   TaskGroup TG;
139   while (TaskSize < std::distance(Begin, End)) {
140     TG.spawn([=, &Fn] { std::for_each(Begin, Begin + TaskSize, Fn); });
141     Begin += TaskSize;
142   }
143   std::for_each(Begin, End, Fn);
144 }
145 
146 template <class IndexTy, class FuncTy>
parallel_for_each_n(IndexTy Begin,IndexTy End,FuncTy Fn)147 void parallel_for_each_n(IndexTy Begin, IndexTy End, FuncTy Fn) {
148   // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
149   // overhead on large inputs.
150   ptrdiff_t TaskSize = (End - Begin) / MaxTasksPerGroup;
151   if (TaskSize == 0)
152     TaskSize = 1;
153 
154   TaskGroup TG;
155   IndexTy I = Begin;
156   for (; I + TaskSize < End; I += TaskSize) {
157     TG.spawn([=, &Fn] {
158       for (IndexTy J = I, E = I + TaskSize; J != E; ++J)
159         Fn(J);
160     });
161   }
162   for (IndexTy J = I; J < End; ++J)
163     Fn(J);
164 }
165 
166 template <class IterTy, class ResultTy, class ReduceFuncTy,
167           class TransformFuncTy>
parallel_transform_reduce(IterTy Begin,IterTy End,ResultTy Init,ReduceFuncTy Reduce,TransformFuncTy Transform)168 ResultTy parallel_transform_reduce(IterTy Begin, IterTy End, ResultTy Init,
169                                    ReduceFuncTy Reduce,
170                                    TransformFuncTy Transform) {
171   // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
172   // overhead on large inputs.
173   size_t NumInputs = std::distance(Begin, End);
174   if (NumInputs == 0)
175     return std::move(Init);
176   size_t NumTasks = std::min(static_cast<size_t>(MaxTasksPerGroup), NumInputs);
177   std::vector<ResultTy> Results(NumTasks, Init);
178   {
179     // Each task processes either TaskSize or TaskSize+1 inputs. Any inputs
180     // remaining after dividing them equally amongst tasks are distributed as
181     // one extra input over the first tasks.
182     TaskGroup TG;
183     size_t TaskSize = NumInputs / NumTasks;
184     size_t RemainingInputs = NumInputs % NumTasks;
185     IterTy TBegin = Begin;
186     for (size_t TaskId = 0; TaskId < NumTasks; ++TaskId) {
187       IterTy TEnd = TBegin + TaskSize + (TaskId < RemainingInputs ? 1 : 0);
188       TG.spawn([=, &Transform, &Reduce, &Results] {
189         // Reduce the result of transformation eagerly within each task.
190         ResultTy R = Init;
191         for (IterTy It = TBegin; It != TEnd; ++It)
192           R = Reduce(R, Transform(*It));
193         Results[TaskId] = R;
194       });
195       TBegin = TEnd;
196     }
197     assert(TBegin == End);
198   }
199 
200   // Do a final reduction. There are at most 1024 tasks, so this only adds
201   // constant single-threaded overhead for large inputs. Hopefully most
202   // reductions are cheaper than the transformation.
203   ResultTy FinalResult = std::move(Results.front());
204   for (ResultTy &PartialResult :
205        makeMutableArrayRef(Results.data() + 1, Results.size() - 1))
206     FinalResult = Reduce(FinalResult, std::move(PartialResult));
207   return std::move(FinalResult);
208 }
209 
210 #endif
211 
212 } // namespace detail
213 } // namespace parallel
214 
215 template <class RandomAccessIterator,
216           class Comparator = std::less<
217               typename std::iterator_traits<RandomAccessIterator>::value_type>>
218 void parallelSort(RandomAccessIterator Start, RandomAccessIterator End,
219                   const Comparator &Comp = Comparator()) {
220 #if LLVM_ENABLE_THREADS
221   if (parallel::strategy.ThreadsRequested != 1) {
222     parallel::detail::parallel_sort(Start, End, Comp);
223     return;
224   }
225 #endif
226   llvm::sort(Start, End, Comp);
227 }
228 
229 template <class IterTy, class FuncTy>
parallelForEach(IterTy Begin,IterTy End,FuncTy Fn)230 void parallelForEach(IterTy Begin, IterTy End, FuncTy Fn) {
231 #if LLVM_ENABLE_THREADS
232   if (parallel::strategy.ThreadsRequested != 1) {
233     parallel::detail::parallel_for_each(Begin, End, Fn);
234     return;
235   }
236 #endif
237   std::for_each(Begin, End, Fn);
238 }
239 
240 template <class FuncTy>
parallelForEachN(size_t Begin,size_t End,FuncTy Fn)241 void parallelForEachN(size_t Begin, size_t End, FuncTy Fn) {
242 #if LLVM_ENABLE_THREADS
243   if (parallel::strategy.ThreadsRequested != 1) {
244     parallel::detail::parallel_for_each_n(Begin, End, Fn);
245     return;
246   }
247 #endif
248   for (size_t I = Begin; I != End; ++I)
249     Fn(I);
250 }
251 
252 template <class IterTy, class ResultTy, class ReduceFuncTy,
253           class TransformFuncTy>
parallelTransformReduce(IterTy Begin,IterTy End,ResultTy Init,ReduceFuncTy Reduce,TransformFuncTy Transform)254 ResultTy parallelTransformReduce(IterTy Begin, IterTy End, ResultTy Init,
255                                  ReduceFuncTy Reduce,
256                                  TransformFuncTy Transform) {
257 #if LLVM_ENABLE_THREADS
258   if (parallel::strategy.ThreadsRequested != 1) {
259     return parallel::detail::parallel_transform_reduce(Begin, End, Init, Reduce,
260                                                        Transform);
261   }
262 #endif
263   for (IterTy I = Begin; I != End; ++I)
264     Init = Reduce(std::move(Init), Transform(*I));
265   return std::move(Init);
266 }
267 
268 // Range wrappers.
269 template <class RangeTy,
270           class Comparator = std::less<decltype(*std::begin(RangeTy()))>>
271 void parallelSort(RangeTy &&R, const Comparator &Comp = Comparator()) {
272   parallelSort(std::begin(R), std::end(R), Comp);
273 }
274 
275 template <class RangeTy, class FuncTy>
parallelForEach(RangeTy && R,FuncTy Fn)276 void parallelForEach(RangeTy &&R, FuncTy Fn) {
277   parallelForEach(std::begin(R), std::end(R), Fn);
278 }
279 
280 template <class RangeTy, class ResultTy, class ReduceFuncTy,
281           class TransformFuncTy>
parallelTransformReduce(RangeTy && R,ResultTy Init,ReduceFuncTy Reduce,TransformFuncTy Transform)282 ResultTy parallelTransformReduce(RangeTy &&R, ResultTy Init,
283                                  ReduceFuncTy Reduce,
284                                  TransformFuncTy Transform) {
285   return parallelTransformReduce(std::begin(R), std::end(R), Init, Reduce,
286                                  Transform);
287 }
288 
289 // Parallel for-each, but with error handling.
290 template <class RangeTy, class FuncTy>
parallelForEachError(RangeTy && R,FuncTy Fn)291 Error parallelForEachError(RangeTy &&R, FuncTy Fn) {
292   // The transform_reduce algorithm requires that the initial value be copyable.
293   // Error objects are uncopyable. We only need to copy initial success values,
294   // so work around this mismatch via the C API. The C API represents success
295   // values with a null pointer. The joinErrors discards null values and joins
296   // multiple errors into an ErrorList.
297   return unwrap(parallelTransformReduce(
298       std::begin(R), std::end(R), wrap(Error::success()),
299       [](LLVMErrorRef Lhs, LLVMErrorRef Rhs) {
300         return wrap(joinErrors(unwrap(Lhs), unwrap(Rhs)));
301       },
302       [&Fn](auto &&V) { return wrap(Fn(V)); }));
303 }
304 
305 } // namespace llvm
306 
307 #endif // LLVM_SUPPORT_PARALLEL_H
308