1 //===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #ifndef LLVM_SUPPORT_PARALLEL_H
10 #define LLVM_SUPPORT_PARALLEL_H
11
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/Config/llvm-config.h"
14 #include "llvm/Support/Error.h"
15 #include "llvm/Support/MathExtras.h"
16 #include "llvm/Support/Threading.h"
17
18 #include <algorithm>
19 #include <condition_variable>
20 #include <functional>
21 #include <mutex>
22
23 namespace llvm {
24
25 namespace parallel {
26
27 // Strategy for the default executor used by the parallel routines provided by
28 // this file. It defaults to using all hardware threads and should be
29 // initialized before the first use of parallel routines.
30 extern ThreadPoolStrategy strategy;
31
32 namespace detail {
33
34 #if LLVM_ENABLE_THREADS
35
36 class Latch {
37 uint32_t Count;
38 mutable std::mutex Mutex;
39 mutable std::condition_variable Cond;
40
41 public:
Count(Count)42 explicit Latch(uint32_t Count = 0) : Count(Count) {}
~Latch()43 ~Latch() { sync(); }
44
inc()45 void inc() {
46 std::lock_guard<std::mutex> lock(Mutex);
47 ++Count;
48 }
49
dec()50 void dec() {
51 std::lock_guard<std::mutex> lock(Mutex);
52 if (--Count == 0)
53 Cond.notify_all();
54 }
55
sync()56 void sync() const {
57 std::unique_lock<std::mutex> lock(Mutex);
58 Cond.wait(lock, [&] { return Count == 0; });
59 }
60 };
61
62 class TaskGroup {
63 Latch L;
64 bool Parallel;
65
66 public:
67 TaskGroup();
68 ~TaskGroup();
69
70 void spawn(std::function<void()> f);
71
sync()72 void sync() const { L.sync(); }
73 };
74
75 const ptrdiff_t MinParallelSize = 1024;
76
77 /// Inclusive median.
78 template <class RandomAccessIterator, class Comparator>
medianOf3(RandomAccessIterator Start,RandomAccessIterator End,const Comparator & Comp)79 RandomAccessIterator medianOf3(RandomAccessIterator Start,
80 RandomAccessIterator End,
81 const Comparator &Comp) {
82 RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2);
83 return Comp(*Start, *(End - 1))
84 ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start)
85 : End - 1)
86 : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1)
87 : Start);
88 }
89
90 template <class RandomAccessIterator, class Comparator>
parallel_quick_sort(RandomAccessIterator Start,RandomAccessIterator End,const Comparator & Comp,TaskGroup & TG,size_t Depth)91 void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End,
92 const Comparator &Comp, TaskGroup &TG, size_t Depth) {
93 // Do a sequential sort for small inputs.
94 if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) {
95 llvm::sort(Start, End, Comp);
96 return;
97 }
98
99 // Partition.
100 auto Pivot = medianOf3(Start, End, Comp);
101 // Move Pivot to End.
102 std::swap(*(End - 1), *Pivot);
103 Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) {
104 return Comp(V, *(End - 1));
105 });
106 // Move Pivot to middle of partition.
107 std::swap(*Pivot, *(End - 1));
108
109 // Recurse.
110 TG.spawn([=, &Comp, &TG] {
111 parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1);
112 });
113 parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1);
114 }
115
116 template <class RandomAccessIterator, class Comparator>
parallel_sort(RandomAccessIterator Start,RandomAccessIterator End,const Comparator & Comp)117 void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
118 const Comparator &Comp) {
119 TaskGroup TG;
120 parallel_quick_sort(Start, End, Comp, TG,
121 llvm::Log2_64(std::distance(Start, End)) + 1);
122 }
123
124 // TaskGroup has a relatively high overhead, so we want to reduce
125 // the number of spawn() calls. We'll create up to 1024 tasks here.
126 // (Note that 1024 is an arbitrary number. This code probably needs
127 // improving to take the number of available cores into account.)
128 enum { MaxTasksPerGroup = 1024 };
129
130 template <class IterTy, class FuncTy>
parallel_for_each(IterTy Begin,IterTy End,FuncTy Fn)131 void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) {
132 // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
133 // overhead on large inputs.
134 ptrdiff_t TaskSize = std::distance(Begin, End) / MaxTasksPerGroup;
135 if (TaskSize == 0)
136 TaskSize = 1;
137
138 TaskGroup TG;
139 while (TaskSize < std::distance(Begin, End)) {
140 TG.spawn([=, &Fn] { std::for_each(Begin, Begin + TaskSize, Fn); });
141 Begin += TaskSize;
142 }
143 std::for_each(Begin, End, Fn);
144 }
145
146 template <class IndexTy, class FuncTy>
parallel_for_each_n(IndexTy Begin,IndexTy End,FuncTy Fn)147 void parallel_for_each_n(IndexTy Begin, IndexTy End, FuncTy Fn) {
148 // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
149 // overhead on large inputs.
150 ptrdiff_t TaskSize = (End - Begin) / MaxTasksPerGroup;
151 if (TaskSize == 0)
152 TaskSize = 1;
153
154 TaskGroup TG;
155 IndexTy I = Begin;
156 for (; I + TaskSize < End; I += TaskSize) {
157 TG.spawn([=, &Fn] {
158 for (IndexTy J = I, E = I + TaskSize; J != E; ++J)
159 Fn(J);
160 });
161 }
162 for (IndexTy J = I; J < End; ++J)
163 Fn(J);
164 }
165
166 template <class IterTy, class ResultTy, class ReduceFuncTy,
167 class TransformFuncTy>
parallel_transform_reduce(IterTy Begin,IterTy End,ResultTy Init,ReduceFuncTy Reduce,TransformFuncTy Transform)168 ResultTy parallel_transform_reduce(IterTy Begin, IterTy End, ResultTy Init,
169 ReduceFuncTy Reduce,
170 TransformFuncTy Transform) {
171 // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
172 // overhead on large inputs.
173 size_t NumInputs = std::distance(Begin, End);
174 if (NumInputs == 0)
175 return std::move(Init);
176 size_t NumTasks = std::min(static_cast<size_t>(MaxTasksPerGroup), NumInputs);
177 std::vector<ResultTy> Results(NumTasks, Init);
178 {
179 // Each task processes either TaskSize or TaskSize+1 inputs. Any inputs
180 // remaining after dividing them equally amongst tasks are distributed as
181 // one extra input over the first tasks.
182 TaskGroup TG;
183 size_t TaskSize = NumInputs / NumTasks;
184 size_t RemainingInputs = NumInputs % NumTasks;
185 IterTy TBegin = Begin;
186 for (size_t TaskId = 0; TaskId < NumTasks; ++TaskId) {
187 IterTy TEnd = TBegin + TaskSize + (TaskId < RemainingInputs ? 1 : 0);
188 TG.spawn([=, &Transform, &Reduce, &Results] {
189 // Reduce the result of transformation eagerly within each task.
190 ResultTy R = Init;
191 for (IterTy It = TBegin; It != TEnd; ++It)
192 R = Reduce(R, Transform(*It));
193 Results[TaskId] = R;
194 });
195 TBegin = TEnd;
196 }
197 assert(TBegin == End);
198 }
199
200 // Do a final reduction. There are at most 1024 tasks, so this only adds
201 // constant single-threaded overhead for large inputs. Hopefully most
202 // reductions are cheaper than the transformation.
203 ResultTy FinalResult = std::move(Results.front());
204 for (ResultTy &PartialResult :
205 makeMutableArrayRef(Results.data() + 1, Results.size() - 1))
206 FinalResult = Reduce(FinalResult, std::move(PartialResult));
207 return std::move(FinalResult);
208 }
209
210 #endif
211
212 } // namespace detail
213 } // namespace parallel
214
215 template <class RandomAccessIterator,
216 class Comparator = std::less<
217 typename std::iterator_traits<RandomAccessIterator>::value_type>>
218 void parallelSort(RandomAccessIterator Start, RandomAccessIterator End,
219 const Comparator &Comp = Comparator()) {
220 #if LLVM_ENABLE_THREADS
221 if (parallel::strategy.ThreadsRequested != 1) {
222 parallel::detail::parallel_sort(Start, End, Comp);
223 return;
224 }
225 #endif
226 llvm::sort(Start, End, Comp);
227 }
228
229 template <class IterTy, class FuncTy>
parallelForEach(IterTy Begin,IterTy End,FuncTy Fn)230 void parallelForEach(IterTy Begin, IterTy End, FuncTy Fn) {
231 #if LLVM_ENABLE_THREADS
232 if (parallel::strategy.ThreadsRequested != 1) {
233 parallel::detail::parallel_for_each(Begin, End, Fn);
234 return;
235 }
236 #endif
237 std::for_each(Begin, End, Fn);
238 }
239
240 template <class FuncTy>
parallelForEachN(size_t Begin,size_t End,FuncTy Fn)241 void parallelForEachN(size_t Begin, size_t End, FuncTy Fn) {
242 #if LLVM_ENABLE_THREADS
243 if (parallel::strategy.ThreadsRequested != 1) {
244 parallel::detail::parallel_for_each_n(Begin, End, Fn);
245 return;
246 }
247 #endif
248 for (size_t I = Begin; I != End; ++I)
249 Fn(I);
250 }
251
252 template <class IterTy, class ResultTy, class ReduceFuncTy,
253 class TransformFuncTy>
parallelTransformReduce(IterTy Begin,IterTy End,ResultTy Init,ReduceFuncTy Reduce,TransformFuncTy Transform)254 ResultTy parallelTransformReduce(IterTy Begin, IterTy End, ResultTy Init,
255 ReduceFuncTy Reduce,
256 TransformFuncTy Transform) {
257 #if LLVM_ENABLE_THREADS
258 if (parallel::strategy.ThreadsRequested != 1) {
259 return parallel::detail::parallel_transform_reduce(Begin, End, Init, Reduce,
260 Transform);
261 }
262 #endif
263 for (IterTy I = Begin; I != End; ++I)
264 Init = Reduce(std::move(Init), Transform(*I));
265 return std::move(Init);
266 }
267
268 // Range wrappers.
269 template <class RangeTy,
270 class Comparator = std::less<decltype(*std::begin(RangeTy()))>>
271 void parallelSort(RangeTy &&R, const Comparator &Comp = Comparator()) {
272 parallelSort(std::begin(R), std::end(R), Comp);
273 }
274
275 template <class RangeTy, class FuncTy>
parallelForEach(RangeTy && R,FuncTy Fn)276 void parallelForEach(RangeTy &&R, FuncTy Fn) {
277 parallelForEach(std::begin(R), std::end(R), Fn);
278 }
279
280 template <class RangeTy, class ResultTy, class ReduceFuncTy,
281 class TransformFuncTy>
parallelTransformReduce(RangeTy && R,ResultTy Init,ReduceFuncTy Reduce,TransformFuncTy Transform)282 ResultTy parallelTransformReduce(RangeTy &&R, ResultTy Init,
283 ReduceFuncTy Reduce,
284 TransformFuncTy Transform) {
285 return parallelTransformReduce(std::begin(R), std::end(R), Init, Reduce,
286 Transform);
287 }
288
289 // Parallel for-each, but with error handling.
290 template <class RangeTy, class FuncTy>
parallelForEachError(RangeTy && R,FuncTy Fn)291 Error parallelForEachError(RangeTy &&R, FuncTy Fn) {
292 // The transform_reduce algorithm requires that the initial value be copyable.
293 // Error objects are uncopyable. We only need to copy initial success values,
294 // so work around this mismatch via the C API. The C API represents success
295 // values with a null pointer. The joinErrors discards null values and joins
296 // multiple errors into an ErrorList.
297 return unwrap(parallelTransformReduce(
298 std::begin(R), std::end(R), wrap(Error::success()),
299 [](LLVMErrorRef Lhs, LLVMErrorRef Rhs) {
300 return wrap(joinErrors(unwrap(Lhs), unwrap(Rhs)));
301 },
302 [&Fn](auto &&V) { return wrap(Fn(V)); }));
303 }
304
305 } // namespace llvm
306
307 #endif // LLVM_SUPPORT_PARALLEL_H
308