1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/c/tf_tensor.h"
17 
18 #include <memory>
19 #include <vector>
20 
21 #include "tensorflow/c/tf_status.h"
22 #include "tensorflow/c/tf_status_helper.h"
23 #include "tensorflow/c/tf_tensor_internal.h"
24 #include "tensorflow/core/framework/allocation_description.pb.h"
25 #include "tensorflow/core/framework/log_memory.h"
26 #include "tensorflow/core/framework/tensor.h"
27 #include "tensorflow/core/framework/tensor_shape.pb.h"
28 #include "tensorflow/core/framework/types.pb.h"
29 #include "tensorflow/core/lib/core/coding.h"
30 #include "tensorflow/core/platform/casts.h"
31 
32 using tensorflow::Status;
33 using tensorflow::Tensor;
34 using tensorflow::TensorBuffer;
35 using tensorflow::errors::FailedPrecondition;
36 using tensorflow::errors::InvalidArgument;
37 
38 namespace tensorflow {
allocate_tensor(const char * operation,size_t len,Allocator * allocator)39 void* allocate_tensor(const char* operation, size_t len, Allocator* allocator) {
40   void* data = allocator->AllocateRaw(EIGEN_MAX_ALIGN_BYTES, len);
41   if (LogMemory::IsEnabled() && data != nullptr) {
42     LogMemory::RecordRawAllocation(
43         operation, LogMemory::EXTERNAL_TENSOR_ALLOCATION_STEP_ID, len, data,
44         allocator);
45   }
46   return data;
47 }
48 
allocate_tensor(const char * operation,size_t len)49 void* allocate_tensor(const char* operation, size_t len) {
50   return allocate_tensor(operation, len, cpu_allocator());
51 }
52 
deallocate_buffer(void * data,size_t len,void * arg)53 void deallocate_buffer(void* data, size_t len, void* arg) {
54   Allocator* allocator = nullptr;
55   if (arg == nullptr) {
56     allocator = cpu_allocator();
57   } else {
58     allocator = reinterpret_cast<Allocator*>(arg);
59   }
60   if (LogMemory::IsEnabled() && data != nullptr) {
61     LogMemory::RecordRawDeallocation(
62         "TensorFlow C Api", LogMemory::EXTERNAL_TENSOR_ALLOCATION_STEP_ID, data,
63         allocator, false);
64   }
65   allocator->DeallocateRaw(data);
66 }
67 }  // namespace tensorflow
68 
69 namespace {
CreateTensor(TF_ManagedBuffer * buf,TF_DataType dtype,const int64_t * dims,int num_dims,size_t len)70 TF_Tensor* CreateTensor(TF_ManagedBuffer* buf, TF_DataType dtype,
71                         const int64_t* dims, int num_dims, size_t len) {
72   std::vector<tensorflow::int64> dimvec(num_dims);
73   for (int i = 0; i < num_dims; ++i) {
74     dimvec[i] = static_cast<tensorflow::int64>(dims[i]);
75   }
76 
77   // TODO(gjn): Make the choice of interface a compile-time configuration.
78   tensorflow::TensorInterface ret(
79       Tensor(static_cast<tensorflow::DataType>(dtype),
80              tensorflow::TensorShape(dimvec), buf));
81   buf->Unref();
82   size_t elem_size = TF_DataTypeSize(dtype);
83   if (elem_size > 0 && len < (elem_size * ret.NumElements())) {
84     return nullptr;
85   }
86   return new TF_Tensor{new tensorflow::TensorInterface(ret)};
87 }
88 }  // namespace
89 
TF_AllocateTensor(TF_DataType dtype,const int64_t * dims,int num_dims,size_t len)90 TF_Tensor* TF_AllocateTensor(TF_DataType dtype, const int64_t* dims,
91                              int num_dims, size_t len) {
92   void* data = tensorflow::allocate_tensor("TF_AllocateTensor", len,
93                                            tensorflow::cpu_allocator());
94   TF_ManagedBuffer* buf =
95       new TF_ManagedBuffer(data, len, tensorflow::deallocate_buffer,
96                            tensorflow::cpu_allocator(), /*owns_memory=*/true);
97   return CreateTensor(buf, dtype, dims, num_dims, len);
98 }
99 
TF_NewTensor(TF_DataType dtype,const int64_t * dims,int num_dims,void * data,size_t len,void (* deallocator)(void * data,size_t len,void * arg),void * deallocator_arg)100 TF_Tensor* TF_NewTensor(TF_DataType dtype, const int64_t* dims, int num_dims,
101                         void* data, size_t len,
102                         void (*deallocator)(void* data, size_t len, void* arg),
103                         void* deallocator_arg) {
104   TF_ManagedBuffer* buf = nullptr;
105   if (dtype != TF_STRING && dtype != TF_RESOURCE &&
106       tensorflow::DataTypeCanUseMemcpy(
107           static_cast<tensorflow::DataType>(dtype)) &&
108       reinterpret_cast<intptr_t>(data) % std::max(1, EIGEN_MAX_ALIGN_BYTES) !=
109           0) {
110     // TF_STRING and TF_RESOURCE tensors have a different representation in
111     // TF_Tensor than they do in tensorflow::Tensor. So a copy here is a waste
112     // (any alignment requirements will be taken care of by TF_TensorToTensor
113     // and TF_TensorFromTensor).
114     //
115     // Other types have the same representation, so copy only if it is safe to
116     // do so.
117     buf = new TF_ManagedBuffer(tensorflow::allocate_tensor("TF_NewTensor", len),
118                                len, tensorflow::deallocate_buffer, nullptr,
119                                /*owns_memory=*/true);
120     std::memcpy(buf->data(), data, len);
121     // Free the original buffer.
122     deallocator(data, len, deallocator_arg);
123   } else {
124     buf = new TF_ManagedBuffer(data, len, deallocator, deallocator_arg,
125                                /*owns_memory=*/false);
126   }
127 
128   return CreateTensor(buf, dtype, dims, num_dims, len);
129 }
130 
TF_TensorMaybeMove(TF_Tensor * t)131 TF_Tensor* TF_TensorMaybeMove(TF_Tensor* t) {
132   return t->tensor->CanMove() ? t : nullptr;
133 }
134 
TF_DeleteTensor(TF_Tensor * t)135 void TF_DeleteTensor(TF_Tensor* t) {
136   if (t == nullptr) {
137     return;
138   }
139 
140   if (t->tensor) {
141     t->tensor->Release();
142   }
143 
144   delete t;
145 }
146 
TF_TensorType(const TF_Tensor * t)147 TF_DataType TF_TensorType(const TF_Tensor* t) {
148   return static_cast<TF_DataType>(t->tensor->Type());
149 }
150 
TF_NumDims(const TF_Tensor * t)151 int TF_NumDims(const TF_Tensor* t) { return t->tensor->NumDims(); }
152 
TF_Dim(const TF_Tensor * t,int dim_index)153 int64_t TF_Dim(const TF_Tensor* t, int dim_index) {
154   return t->tensor->Dim(dim_index);
155 }
156 
TF_TensorByteSize(const TF_Tensor * t)157 size_t TF_TensorByteSize(const TF_Tensor* t) { return t->tensor->ByteSize(); }
158 
TF_TensorData(const TF_Tensor * t)159 void* TF_TensorData(const TF_Tensor* t) { return t->tensor->Data(); }
160 
TF_TensorElementCount(const TF_Tensor * t)161 int64_t TF_TensorElementCount(const TF_Tensor* t) {
162   int64_t result = 1;
163   int rank = TF_NumDims(t);
164   for (int dim = 0; dim < rank; ++dim) {
165     result *= TF_Dim(t, dim);
166   }
167   return result;
168 }
169 
TF_TensorBitcastFrom(const TF_Tensor * from,TF_DataType type,TF_Tensor * to,const int64_t * new_dims,int num_new_dims,TF_Status * status)170 void TF_TensorBitcastFrom(const TF_Tensor* from, TF_DataType type,
171                           TF_Tensor* to, const int64_t* new_dims,
172                           int num_new_dims, TF_Status* status) {
173   TF_SetStatus(status, TF_OK, "");
174   Status cc_status(
175       tensorflow::down_cast<tensorflow::TensorInterface*>(to->tensor)
176           ->BitcastFrom(
177               *tensorflow::down_cast<const tensorflow::TensorInterface*>(
178                   from->tensor),
179               static_cast<tensorflow::DataType>(type), new_dims, num_new_dims));
180   Set_TF_Status_from_Status(status, cc_status);
181 }
182 
183 namespace tensorflow {
184 
Release()185 void TensorInterface::Release() { delete this; }
186 
CanMove() const187 bool TensorInterface::CanMove() const {
188   // It is safe to move the Tensor if and only if we own the unique reference to
189   // it. In that case, we might as well not delete and reallocate, but a future
190   // implementation might need to do so.
191   TensorBuffer* buf = tensorflow::TensorCApi::Buffer(tensor_);
192   if (buf->RefCountIsOne() && buf->root_buffer()->RefCountIsOne() &&
193       buf->OwnsMemory()) {
194     return true;
195   }
196   return false;
197 }
198 
Type() const199 DataType TensorInterface::Type() const { return tensor_.dtype(); }
200 
NumDims() const201 int TensorInterface::NumDims() const { return tensor_.dims(); }
202 
Dim(int dim_index) const203 int64_t TensorInterface::Dim(int dim_index) const {
204   return static_cast<int64_t>(tensor_.dim_size(dim_index));
205 }
206 
NumElements() const207 int64_t TensorInterface::NumElements() const {
208   return static_cast<int64_t>(tensor_.NumElements());
209 }
210 
ByteSize() const211 size_t TensorInterface::ByteSize() const {
212   return tensorflow::TensorCApi::Buffer(tensor_)->size();
213 }
214 
Data() const215 void* TensorInterface::Data() const {
216   return tensorflow::TensorCApi::Buffer(tensor_)->data();
217 }
218 
BitcastFrom(const TensorInterface & from,DataType type,const int64_t * new_dims,int num_new_dims)219 Status TensorInterface::BitcastFrom(const TensorInterface& from, DataType type,
220                                     const int64_t* new_dims, int num_new_dims) {
221   tensorflow::TensorShape s;
222   for (int i = 0; i < num_new_dims; ++i) {
223     s.AddDim(new_dims[i]);
224   }
225   return tensor_.BitcastFrom(from.tensor_, type, s);
226 }
227 
228 }  // namespace tensorflow
229 
230 // --------------------------------------------------------------------------
231 
DeleteArray(void * data,size_t size,void * arg)232 static void DeleteArray(void* data, size_t size, void* arg) {
233   DCHECK_EQ(data, arg);
234   delete[] reinterpret_cast<char*>(arg);
235 }
236 
237 // Create an empty tensor of type 'dtype'. 'shape' can be arbitrary, but has to
238 // result in a zero-sized tensor.
EmptyTensor(TF_DataType dtype,const tensorflow::TensorShape & shape)239 static TF_Tensor* EmptyTensor(TF_DataType dtype,
240                               const tensorflow::TensorShape& shape) {
241   static char empty;
242   tensorflow::int64 nelems = 1;
243   std::vector<tensorflow::int64> dims;
244   for (int i = 0; i < shape.dims(); ++i) {
245     dims.push_back(shape.dim_size(i));
246     nelems *= shape.dim_size(i);
247   }
248   CHECK_EQ(nelems, 0);
249   static_assert(sizeof(int64_t) == sizeof(tensorflow::int64),
250                 "64-bit int types should match in size");
251   return TF_NewTensor(
252       dtype, reinterpret_cast<const int64_t*>(dims.data()), shape.dims(),
253       reinterpret_cast<void*>(&empty), 0, [](void*, size_t, void*) {}, nullptr);
254 }
255 
256 namespace tensorflow {
257 
258 // Non-static for testing.
TF_TensorFromTensor(const tensorflow::Tensor & src,Status * status)259 TF_Tensor* TF_TensorFromTensor(const tensorflow::Tensor& src, Status* status) {
260   *status = tensorflow::Status::OK();
261   if (!src.IsInitialized()) {
262     *status = FailedPrecondition(
263         "attempt to use a tensor with an uninitialized value");
264     return nullptr;
265   }
266   if (src.NumElements() == 0) {
267     return EmptyTensor(static_cast<TF_DataType>(src.dtype()), src.shape());
268   }
269   if (src.dtype() == tensorflow::DT_RESOURCE) {
270     if (src.shape().dims() != 0) {
271       *status = InvalidArgument(
272           "Unexpected non-scalar DT_RESOURCE tensor seen (shape: ",
273           src.shape().DebugString(),
274           "). Please file a bug at "
275           "https://github.com/tensorflow/tensorflow/issues/new, "
276           "ideally with a "
277           "short code snippet that reproduces this error.");
278       return nullptr;
279     }
280     const string str =
281         src.scalar<tensorflow::ResourceHandle>()().SerializeAsString();
282     TF_Tensor* t = TF_AllocateTensor(TF_RESOURCE, {}, 0, str.size());
283     std::memcpy(TF_TensorData(t), str.c_str(), str.size());
284     return t;
285   }
286 
287   Tensor tensor;
288   if (!tensor.CopyFrom(src, src.shape())) {
289     return nullptr;
290   }
291   return new TF_Tensor{new tensorflow::TensorInterface(std::move(tensor))};
292 }
293 
TF_TensorToTensor(const TF_Tensor * src,Tensor * dst)294 Status TF_TensorToTensor(const TF_Tensor* src, Tensor* dst) {
295   return tensorflow::down_cast<const tensorflow::TensorInterface*>(src->tensor)
296       ->ToTensor(dst);
297 }
298 
ToTensor(tensorflow::Tensor * dst) const299 Status TensorInterface::ToTensor(tensorflow::Tensor* dst) const {
300   if (tensor_.dtype() == DT_RESOURCE) {
301     if (tensor_.dims() != 0) {
302       return InvalidArgument(
303           "Malformed TF_RESOURCE tensor: expected a scalar, got a tensor with "
304           "shape ",
305           tensor_.shape().DebugString());
306     }
307     *dst = tensorflow::Tensor(tensorflow::DT_RESOURCE, tensor_.shape());
308     if (!dst->scalar<tensorflow::ResourceHandle>()().ParseFromString(
309             string(static_cast<const char*>(Data()), ByteSize()))) {
310       return InvalidArgument(
311           "Malformed TF_RESOURCE tensor: unable to parse resource handle");
312     }
313     return Status::OK();
314   }
315   *dst = tensor_;
316   return Status::OK();
317 }
318 
IsAligned() const319 bool TensorInterface::IsAligned() const { return tensor_.IsAligned(); }
320 
321 }  // namespace tensorflow
322 
TF_TensorIsAligned(const TF_Tensor * t)323 bool TF_TensorIsAligned(const TF_Tensor* t) { return t->tensor->IsAligned(); }
324