1 //
2 // Copyright (c) 2017 The Khronos Group Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //    http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 
17 #include "function_list.h"
18 #include "test_functions.h"
19 #include "utility.h"
20 
21 #include <cstring>
22 
BuildKernel(const char * name,int vectorSize,cl_kernel * k,cl_program * p,bool relaxedMode)23 static int BuildKernel(const char *name, int vectorSize, cl_kernel *k,
24                        cl_program *p, bool relaxedMode)
25 {
26     const char *c[] = { "__kernel void math_kernel",
27                         sizeNames[vectorSize],
28                         "( __global float",
29                         sizeNames[vectorSize],
30                         "* out, __global float",
31                         sizeNames[vectorSize],
32                         "* out2, __global float",
33                         sizeNames[vectorSize],
34                         "* in )\n"
35                         "{\n"
36                         "   size_t i = get_global_id(0);\n"
37                         "   out[i] = ",
38                         name,
39                         "( in[i], out2 + i );\n"
40                         "}\n" };
41 
42     const char *c3[] = {
43         "__kernel void math_kernel",
44         sizeNames[vectorSize],
45         "( __global float* out, __global float* out2, __global float* in)\n"
46         "{\n"
47         "   size_t i = get_global_id(0);\n"
48         "   if( i + 1 < get_global_size(0) )\n"
49         "   {\n"
50         "       float3 f0 = vload3( 0, in + 3 * i );\n"
51         "       float3 iout = NAN;\n"
52         "       f0 = ",
53         name,
54         "( f0, &iout );\n"
55         "       vstore3( f0, 0, out + 3*i );\n"
56         "       vstore3( iout, 0, out2 + 3*i );\n"
57         "   }\n"
58         "   else\n"
59         "   {\n"
60         "       size_t parity = i & 1;   // Figure out how many elements are "
61         "left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
62         "buffer size \n"
63         "       float3 iout = NAN;\n"
64         "       float3 f0;\n"
65         "       switch( parity )\n"
66         "       {\n"
67         "           case 1:\n"
68         "               f0 = (float3)( in[3*i], NAN, NAN ); \n"
69         "               break;\n"
70         "           case 0:\n"
71         "               f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n"
72         "               break;\n"
73         "       }\n"
74         "       f0 = ",
75         name,
76         "( f0, &iout );\n"
77         "       switch( parity )\n"
78         "       {\n"
79         "           case 0:\n"
80         "               out[3*i+1] = f0.y; \n"
81         "               out2[3*i+1] = iout.y; \n"
82         "               // fall through\n"
83         "           case 1:\n"
84         "               out[3*i] = f0.x; \n"
85         "               out2[3*i] = iout.x; \n"
86         "               break;\n"
87         "       }\n"
88         "   }\n"
89         "}\n"
90     };
91 
92     const char **kern = c;
93     size_t kernSize = sizeof(c) / sizeof(c[0]);
94 
95     if (sizeValues[vectorSize] == 3)
96     {
97         kern = c3;
98         kernSize = sizeof(c3) / sizeof(c3[0]);
99     }
100 
101     char testName[32];
102     snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
103              sizeNames[vectorSize]);
104 
105     return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
106 }
107 
108 typedef struct BuildKernelInfo
109 {
110     cl_uint offset; // the first vector size to build
111     cl_kernel *kernels;
112     cl_program *programs;
113     const char *nameInCode;
114     bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
115 } BuildKernelInfo;
116 
BuildKernelFn(cl_uint job_id,cl_uint thread_id UNUSED,void * p)117 static cl_int BuildKernelFn(cl_uint job_id, cl_uint thread_id UNUSED, void *p)
118 {
119     BuildKernelInfo *info = (BuildKernelInfo *)p;
120     cl_uint i = info->offset + job_id;
121     return BuildKernel(info->nameInCode, i, info->kernels + i,
122                        info->programs + i, info->relaxedMode);
123 }
124 
TestFunc_Float2_Float(const Func * f,MTdata d,bool relaxedMode)125 int TestFunc_Float2_Float(const Func *f, MTdata d, bool relaxedMode)
126 {
127     int error;
128     cl_program programs[VECTOR_SIZE_COUNT];
129     cl_kernel kernels[VECTOR_SIZE_COUNT];
130     float maxError0 = 0.0f;
131     float maxError1 = 0.0f;
132     int ftz = f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities);
133     float maxErrorVal0 = 0.0f;
134     float maxErrorVal1 = 0.0f;
135     uint64_t step = getTestStep(sizeof(float), BUFFER_SIZE);
136     int scale = (int)((1ULL << 32) / (16 * BUFFER_SIZE / sizeof(float)) + 1);
137     cl_uchar overflow[BUFFER_SIZE / sizeof(float)];
138     int isFract = 0 == strcmp("fract", f->nameInCode);
139     int skipNanInf = isFract && !gInfNanSupport;
140 
141     logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);
142 
143     float float_ulps = getAllowedUlpError(f, relaxedMode);
144     // Init the kernels
145     {
146         BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs,
147                                        f->nameInCode, relaxedMode };
148         if ((error = ThreadPool_Do(BuildKernelFn,
149                                    gMaxVectorSizeIndex - gMinVectorSizeIndex,
150                                    &build_info)))
151             return error;
152     }
153 
154     for (uint64_t i = 0; i < (1ULL << 32); i += step)
155     {
156         // Init input array
157         uint32_t *p = (uint32_t *)gIn;
158         if (gWimpyMode)
159         {
160             for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
161             {
162                 p[j] = (uint32_t)i + j * scale;
163                 if (relaxedMode && strcmp(f->name, "sincos") == 0)
164                 {
165                     float pj = *(float *)&p[j];
166                     if (fabs(pj) > M_PI) ((float *)p)[j] = NAN;
167                 }
168             }
169         }
170         else
171         {
172             for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
173             {
174                 p[j] = (uint32_t)i + j;
175                 if (relaxedMode && strcmp(f->name, "sincos") == 0)
176                 {
177                     float pj = *(float *)&p[j];
178                     if (fabs(pj) > M_PI) ((float *)p)[j] = NAN;
179                 }
180             }
181         }
182 
183         if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
184                                           BUFFER_SIZE, gIn, 0, NULL, NULL)))
185         {
186             vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
187             return error;
188         }
189 
190         // write garbage into output arrays
191         for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
192         {
193             uint32_t pattern = 0xffffdead;
194             memset_pattern4(gOut[j], &pattern, BUFFER_SIZE);
195             if ((error =
196                      clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0,
197                                           BUFFER_SIZE, gOut[j], 0, NULL, NULL)))
198             {
199                 vlog_error("\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n",
200                            error, j);
201                 goto exit;
202             }
203 
204             memset_pattern4(gOut2[j], &pattern, BUFFER_SIZE);
205             if ((error = clEnqueueWriteBuffer(gQueue, gOutBuffer2[j], CL_FALSE,
206                                               0, BUFFER_SIZE, gOut2[j], 0, NULL,
207                                               NULL)))
208             {
209                 vlog_error("\n*** Error %d in clEnqueueWriteBuffer2b(%d) ***\n",
210                            error, j);
211                 goto exit;
212             }
213         }
214 
215         // Run the kernels
216         for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
217         {
218             size_t vectorSize = sizeValues[j] * sizeof(cl_float);
219             size_t localCount = (BUFFER_SIZE + vectorSize - 1) / vectorSize;
220             if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
221                                         &gOutBuffer[j])))
222             {
223                 LogBuildError(programs[j]);
224                 goto exit;
225             }
226             if ((error = clSetKernelArg(kernels[j], 1, sizeof(gOutBuffer2[j]),
227                                         &gOutBuffer2[j])))
228             {
229                 LogBuildError(programs[j]);
230                 goto exit;
231             }
232             if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer),
233                                         &gInBuffer)))
234             {
235                 LogBuildError(programs[j]);
236                 goto exit;
237             }
238 
239             if ((error =
240                      clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
241                                             &localCount, NULL, 0, NULL, NULL)))
242             {
243                 vlog_error("FAILED -- could not execute kernel\n");
244                 goto exit;
245             }
246         }
247 
248         // Get that moving
249         if ((error = clFlush(gQueue))) vlog("clFlush failed\n");
250 
251         FPU_mode_type oldMode;
252         RoundingMode oldRoundMode = kRoundToNearestEven;
253         if (isFract)
254         {
255             // Calculate the correctly rounded reference result
256             memset(&oldMode, 0, sizeof(oldMode));
257             if (ftz) ForceFTZ(&oldMode);
258 
259             // Set the rounding mode to match the device
260             if (gIsInRTZMode)
261                 oldRoundMode = set_round(kRoundTowardZero, kfloat);
262         }
263 
264         // Calculate the correctly rounded reference result
265         float *r = (float *)gOut_Ref;
266         float *r2 = (float *)gOut_Ref2;
267         float *s = (float *)gIn;
268 
269         if (skipNanInf)
270         {
271             for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
272             {
273                 double dd;
274                 feclearexcept(FE_OVERFLOW);
275 
276                 if (relaxedMode)
277                     r[j] = (float)f->rfunc.f_fpf(s[j], &dd);
278                 else
279                     r[j] = (float)f->func.f_fpf(s[j], &dd);
280 
281                 r2[j] = (float)dd;
282                 overflow[j] =
283                     FE_OVERFLOW == (FE_OVERFLOW & fetestexcept(FE_OVERFLOW));
284             }
285         }
286         else
287         {
288             for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
289             {
290                 double dd;
291                 if (relaxedMode)
292                     r[j] = (float)f->rfunc.f_fpf(s[j], &dd);
293                 else
294                     r[j] = (float)f->func.f_fpf(s[j], &dd);
295 
296                 r2[j] = (float)dd;
297             }
298         }
299 
300         if (isFract && ftz) RestoreFPState(&oldMode);
301 
302         // Read the data back
303         for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
304         {
305             if ((error =
306                      clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0,
307                                          BUFFER_SIZE, gOut[j], 0, NULL, NULL)))
308             {
309                 vlog_error("ReadArray failed %d\n", error);
310                 goto exit;
311             }
312             if ((error =
313                      clEnqueueReadBuffer(gQueue, gOutBuffer2[j], CL_TRUE, 0,
314                                          BUFFER_SIZE, gOut2[j], 0, NULL, NULL)))
315             {
316                 vlog_error("ReadArray2 failed %d\n", error);
317                 goto exit;
318             }
319         }
320 
321         if (gSkipCorrectnessTesting)
322         {
323             if (isFract && gIsInRTZMode) (void)set_round(oldRoundMode, kfloat);
324             break;
325         }
326 
327         // Verify data
328         uint32_t *t = (uint32_t *)gOut_Ref;
329         uint32_t *t2 = (uint32_t *)gOut_Ref2;
330         for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
331         {
332             for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
333             {
334                 uint32_t *q = (uint32_t *)gOut[k];
335                 uint32_t *q2 = (uint32_t *)gOut2[k];
336 
337                 // If we aren't getting the correctly rounded result
338                 if (t[j] != q[j] || t2[j] != q2[j])
339                 {
340                     double correct, correct2;
341                     float err, err2;
342                     float test = ((float *)q)[j];
343                     float test2 = ((float *)q2)[j];
344 
345                     if (relaxedMode)
346                         correct = f->rfunc.f_fpf(s[j], &correct2);
347                     else
348                         correct = f->func.f_fpf(s[j], &correct2);
349 
350                     // Per section 10 paragraph 6, accept any result if an input
351                     // or output is a infinity or NaN or overflow
352                     if (relaxedMode || skipNanInf)
353                     {
354                         if (skipNanInf && overflow[j]) continue;
355                         // Note: no double rounding here.  Reference functions
356                         // calculate in single precision.
357                         if (IsFloatInfinity(correct) || IsFloatNaN(correct)
358                             || IsFloatInfinity(correct2) || IsFloatNaN(correct2)
359                             || IsFloatInfinity(s[j]) || IsFloatNaN(s[j]))
360                             continue;
361                     }
362 
363                     typedef int (*CheckForSubnormal)(
364                         double, float); // If we are in fast relaxed math, we
365                                         // have a different calculation for the
366                                         // subnormal threshold.
367                     CheckForSubnormal isFloatResultSubnormalPtr;
368                     if (relaxedMode)
369                     {
370                         err = Abs_Error(test, correct);
371                         err2 = Abs_Error(test2, correct2);
372                         isFloatResultSubnormalPtr =
373                             &IsFloatResultSubnormalAbsError;
374                     }
375                     else
376                     {
377                         err = Ulp_Error(test, correct);
378                         err2 = Ulp_Error(test2, correct2);
379                         isFloatResultSubnormalPtr = &IsFloatResultSubnormal;
380                     }
381                     int fail = !(fabsf(err) <= float_ulps
382                                  && fabsf(err2) <= float_ulps);
383 
384                     if (ftz)
385                     {
386                         // retry per section 6.5.3.2
387                         if ((*isFloatResultSubnormalPtr)(correct, float_ulps))
388                         {
389                             if ((*isFloatResultSubnormalPtr)(correct2,
390                                                              float_ulps))
391                             {
392                                 fail = fail && !(test == 0.0f && test2 == 0.0f);
393                                 if (!fail)
394                                 {
395                                     err = 0.0f;
396                                     err2 = 0.0f;
397                                 }
398                             }
399                             else
400                             {
401                                 fail = fail
402                                     && !(test == 0.0f
403                                          && fabsf(err2) <= float_ulps);
404                                 if (!fail) err = 0.0f;
405                             }
406                         }
407                         else if ((*isFloatResultSubnormalPtr)(correct2,
408                                                               float_ulps))
409                         {
410                             fail = fail
411                                 && !(test2 == 0.0f && fabsf(err) <= float_ulps);
412                             if (!fail) err2 = 0.0f;
413                         }
414 
415 
416                         // retry per section 6.5.3.3
417                         if (IsFloatSubnormal(s[j]))
418                         {
419                             double correctp, correctn;
420                             double correct2p, correct2n;
421                             float errp, err2p, errn, err2n;
422 
423                             if (skipNanInf) feclearexcept(FE_OVERFLOW);
424                             if (relaxedMode)
425                             {
426                                 correctp = f->rfunc.f_fpf(0.0, &correct2p);
427                                 correctn = f->rfunc.f_fpf(-0.0, &correct2n);
428                             }
429                             else
430                             {
431                                 correctp = f->func.f_fpf(0.0, &correct2p);
432                                 correctn = f->func.f_fpf(-0.0, &correct2n);
433                             }
434 
435                             // Per section 10 paragraph 6, accept any result if
436                             // an input or output is a infinity or NaN or
437                             // overflow
438                             if (skipNanInf)
439                             {
440                                 if (fetestexcept(FE_OVERFLOW)) continue;
441 
442                                 // Note: no double rounding here.  Reference
443                                 // functions calculate in single precision.
444                                 if (IsFloatInfinity(correctp)
445                                     || IsFloatNaN(correctp)
446                                     || IsFloatInfinity(correctn)
447                                     || IsFloatNaN(correctn)
448                                     || IsFloatInfinity(correct2p)
449                                     || IsFloatNaN(correct2p)
450                                     || IsFloatInfinity(correct2n)
451                                     || IsFloatNaN(correct2n))
452                                     continue;
453                             }
454 
455                             if (relaxedMode)
456                             {
457                                 errp = Abs_Error(test, correctp);
458                                 err2p = Abs_Error(test, correct2p);
459                                 errn = Abs_Error(test, correctn);
460                                 err2n = Abs_Error(test, correct2n);
461                             }
462                             else
463                             {
464                                 errp = Ulp_Error(test, correctp);
465                                 err2p = Ulp_Error(test, correct2p);
466                                 errn = Ulp_Error(test, correctn);
467                                 err2n = Ulp_Error(test, correct2n);
468                             }
469 
470                             fail = fail
471                                 && ((!(fabsf(errp) <= float_ulps))
472                                     && (!(fabsf(err2p) <= float_ulps))
473                                     && ((!(fabsf(errn) <= float_ulps))
474                                         && (!(fabsf(err2n) <= float_ulps))));
475                             if (fabsf(errp) < fabsf(err)) err = errp;
476                             if (fabsf(errn) < fabsf(err)) err = errn;
477                             if (fabsf(err2p) < fabsf(err2)) err2 = err2p;
478                             if (fabsf(err2n) < fabsf(err2)) err2 = err2n;
479 
480                             // retry per section 6.5.3.4
481                             if ((*isFloatResultSubnormalPtr)(correctp,
482                                                              float_ulps)
483                                 || (*isFloatResultSubnormalPtr)(correctn,
484                                                                 float_ulps))
485                             {
486                                 if ((*isFloatResultSubnormalPtr)(correct2p,
487                                                                  float_ulps)
488                                     || (*isFloatResultSubnormalPtr)(correct2n,
489                                                                     float_ulps))
490                                 {
491                                     fail = fail
492                                         && !(test == 0.0f && test2 == 0.0f);
493                                     if (!fail) err = err2 = 0.0f;
494                                 }
495                                 else
496                                 {
497                                     fail = fail
498                                         && !(test == 0.0f
499                                              && fabsf(err2) <= float_ulps);
500                                     if (!fail) err = 0.0f;
501                                 }
502                             }
503                             else if ((*isFloatResultSubnormalPtr)(correct2p,
504                                                                   float_ulps)
505                                      || (*isFloatResultSubnormalPtr)(
506                                          correct2n, float_ulps))
507                             {
508                                 fail = fail
509                                     && !(test2 == 0.0f
510                                          && (fabsf(err) <= float_ulps));
511                                 if (!fail) err2 = 0.0f;
512                             }
513                         }
514                     }
515                     if (fabsf(err) > maxError0)
516                     {
517                         maxError0 = fabsf(err);
518                         maxErrorVal0 = s[j];
519                     }
520                     if (fabsf(err2) > maxError1)
521                     {
522                         maxError1 = fabsf(err2);
523                         maxErrorVal1 = s[j];
524                     }
525                     if (fail)
526                     {
527                         vlog_error("\nERROR: %s%s: {%f, %f} ulp error at %a: "
528                                    "*{%a, %a} vs. {%a, %a}\n",
529                                    f->name, sizeNames[k], err, err2,
530                                    ((float *)gIn)[j], ((float *)gOut_Ref)[j],
531                                    ((float *)gOut_Ref2)[j], test, test2);
532                         error = -1;
533                         goto exit;
534                     }
535                 }
536             }
537         }
538 
539         if (isFract && gIsInRTZMode) (void)set_round(oldRoundMode, kfloat);
540 
541         if (0 == (i & 0x0fffffff))
542         {
543             if (gVerboseBruteForce)
544             {
545                 vlog("base:%14u step:%10zu  bufferSize:%10zd \n", i, step,
546                      BUFFER_SIZE);
547             }
548             else
549             {
550                 vlog(".");
551             }
552             fflush(stdout);
553         }
554     }
555 
556     if (!gSkipCorrectnessTesting)
557     {
558         if (gWimpyMode)
559             vlog("Wimp pass");
560         else
561             vlog("passed");
562 
563         vlog("\t{%8.2f, %8.2f} @ {%a, %a}", maxError0, maxError1, maxErrorVal0,
564              maxErrorVal1);
565     }
566 
567     vlog("\n");
568 
569 exit:
570     // Release
571     for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
572     {
573         clReleaseKernel(kernels[k]);
574         clReleaseProgram(programs[k]);
575     }
576 
577     return error;
578 }
579