1 //
2 // Copyright (c) 2017 The Khronos Group Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //    http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 
17 #include "function_list.h"
18 #include "test_functions.h"
19 #include "utility.h"
20 
21 #include <cstring>
22 
BuildKernel(const char * name,int vectorSize,cl_uint kernel_count,cl_kernel * k,cl_program * p,bool relaxedMode)23 static int BuildKernel(const char *name, int vectorSize, cl_uint kernel_count,
24                        cl_kernel *k, cl_program *p, bool relaxedMode)
25 {
26     const char *c[] = { "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
27                         "__kernel void math_kernel",
28                         sizeNames[vectorSize],
29                         "( __global long",
30                         sizeNames[vectorSize],
31                         "* out, __global double",
32                         sizeNames[vectorSize],
33                         "* in )\n"
34                         "{\n"
35                         "   size_t i = get_global_id(0);\n"
36                         "   out[i] = ",
37                         name,
38                         "( in[i] );\n"
39                         "}\n" };
40 
41     const char *c3[] = {
42         "#pragma OPENCL EXTENSION cl_khr_fp64 : enable\n",
43         "__kernel void math_kernel",
44         sizeNames[vectorSize],
45         "( __global long* out, __global double* in)\n"
46         "{\n"
47         "   size_t i = get_global_id(0);\n"
48         "   if( i + 1 < get_global_size(0) )\n"
49         "   {\n"
50         "       double3 d0 = vload3( 0, in + 3 * i );\n"
51         "       long3 l0 = ",
52         name,
53         "( d0 );\n"
54         "       vstore3( l0, 0, out + 3*i );\n"
55         "   }\n"
56         "   else\n"
57         "   {\n"
58         "       size_t parity = i & 1;   // Figure out how many elements are "
59         "left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
60         "buffer size \n"
61         "       double3 d0;\n"
62         "       switch( parity )\n"
63         "       {\n"
64         "           case 1:\n"
65         "               d0 = (double3)( in[3*i], NAN, NAN ); \n"
66         "               break;\n"
67         "           case 0:\n"
68         "               d0 = (double3)( in[3*i], in[3*i+1], NAN ); \n"
69         "               break;\n"
70         "       }\n"
71         "       long3 l0 = ",
72         name,
73         "( d0 );\n"
74         "       switch( parity )\n"
75         "       {\n"
76         "           case 0:\n"
77         "               out[3*i+1] = l0.y; \n"
78         "               // fall through\n"
79         "           case 1:\n"
80         "               out[3*i] = l0.x; \n"
81         "               break;\n"
82         "       }\n"
83         "   }\n"
84         "}\n"
85     };
86 
87     const char **kern = c;
88     size_t kernSize = sizeof(c) / sizeof(c[0]);
89 
90     if (sizeValues[vectorSize] == 3)
91     {
92         kern = c3;
93         kernSize = sizeof(c3) / sizeof(c3[0]);
94     }
95 
96     char testName[32];
97     snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
98              sizeNames[vectorSize]);
99 
100     return MakeKernels(kern, (cl_uint)kernSize, testName, kernel_count, k, p,
101                        relaxedMode);
102 }
103 
104 typedef struct BuildKernelInfo
105 {
106     cl_uint offset; // the first vector size to build
107     cl_uint kernel_count;
108     cl_kernel **kernels;
109     cl_program *programs;
110     const char *nameInCode;
111     bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
112 } BuildKernelInfo;
113 
BuildKernelFn(cl_uint job_id,cl_uint thread_id UNUSED,void * p)114 static cl_int BuildKernelFn(cl_uint job_id, cl_uint thread_id UNUSED, void *p)
115 {
116     BuildKernelInfo *info = (BuildKernelInfo *)p;
117     cl_uint i = info->offset + job_id;
118     return BuildKernel(info->nameInCode, i, info->kernel_count,
119                        info->kernels[i], info->programs + i, info->relaxedMode);
120 }
121 
122 // Thread specific data for a worker thread
123 typedef struct ThreadInfo
124 {
125     cl_mem inBuf; // input buffer for the thread
126     cl_mem outBuf[VECTOR_SIZE_COUNT]; // output buffers for the thread
127     cl_command_queue tQueue; // per thread command queue to improve performance
128 } ThreadInfo;
129 
130 typedef struct TestInfo
131 {
132     size_t subBufferSize; // Size of the sub-buffer in elements
133     const Func *f; // A pointer to the function info
134     cl_program programs[VECTOR_SIZE_COUNT]; // programs for various vector sizes
135     cl_kernel
136         *k[VECTOR_SIZE_COUNT]; // arrays of thread-specific kernels for each
137                                // worker thread:  k[vector_size][thread_id]
138     ThreadInfo *
139         tinfo; // An array of thread specific information for each worker thread
140     cl_uint threadCount; // Number of worker threads
141     cl_uint jobCount; // Number of jobs
142     cl_uint step; // step between each chunk and the next.
143     cl_uint scale; // stride between individual test values
144     int ftz; // non-zero if running in flush to zero mode
145 
146 } TestInfo;
147 
148 static cl_int Test(cl_uint job_id, cl_uint thread_id, void *data);
149 
TestMacro_Int_Double(const Func * f,MTdata d,bool relaxedMode)150 int TestMacro_Int_Double(const Func *f, MTdata d, bool relaxedMode)
151 {
152     TestInfo test_info;
153     cl_int error;
154 
155     logFunctionInfo(f->name, sizeof(cl_double), relaxedMode);
156 
157     // Init test_info
158     memset(&test_info, 0, sizeof(test_info));
159     test_info.threadCount = GetThreadCount();
160     test_info.subBufferSize = BUFFER_SIZE
161         / (sizeof(cl_double) * RoundUpToNextPowerOfTwo(test_info.threadCount));
162     test_info.scale = getTestScale(sizeof(cl_double));
163 
164     test_info.step = (cl_uint)test_info.subBufferSize * test_info.scale;
165     if (test_info.step / test_info.subBufferSize != test_info.scale)
166     {
167         // there was overflow
168         test_info.jobCount = 1;
169     }
170     else
171     {
172         test_info.jobCount = (cl_uint)((1ULL << 32) / test_info.step);
173     }
174 
175     test_info.f = f;
176     test_info.ftz = f->ftz || gForceFTZ;
177 
178     // cl_kernels aren't thread safe, so we make one for each vector size for
179     // every thread
180     for (auto i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
181     {
182         size_t array_size = test_info.threadCount * sizeof(cl_kernel);
183         test_info.k[i] = (cl_kernel *)malloc(array_size);
184         if (NULL == test_info.k[i])
185         {
186             vlog_error("Error: Unable to allocate storage for kernels!\n");
187             error = CL_OUT_OF_HOST_MEMORY;
188             goto exit;
189         }
190         memset(test_info.k[i], 0, array_size);
191     }
192     test_info.tinfo =
193         (ThreadInfo *)malloc(test_info.threadCount * sizeof(*test_info.tinfo));
194     if (NULL == test_info.tinfo)
195     {
196         vlog_error(
197             "Error: Unable to allocate storage for thread specific data.\n");
198         error = CL_OUT_OF_HOST_MEMORY;
199         goto exit;
200     }
201     memset(test_info.tinfo, 0,
202            test_info.threadCount * sizeof(*test_info.tinfo));
203     for (cl_uint i = 0; i < test_info.threadCount; i++)
204     {
205         cl_buffer_region region = {
206             i * test_info.subBufferSize * sizeof(cl_double),
207             test_info.subBufferSize * sizeof(cl_double)
208         };
209         test_info.tinfo[i].inBuf =
210             clCreateSubBuffer(gInBuffer, CL_MEM_READ_ONLY,
211                               CL_BUFFER_CREATE_TYPE_REGION, &region, &error);
212         if (error || NULL == test_info.tinfo[i].inBuf)
213         {
214             vlog_error("Error: Unable to create sub-buffer of gInBuffer for "
215                        "region {%zd, %zd}\n",
216                        region.origin, region.size);
217             goto exit;
218         }
219 
220         for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
221         {
222             test_info.tinfo[i].outBuf[j] = clCreateSubBuffer(
223                 gOutBuffer[j], CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION,
224                 &region, &error);
225             if (error || NULL == test_info.tinfo[i].outBuf[j])
226             {
227                 vlog_error("Error: Unable to create sub-buffer of "
228                            "gOutBuffer[%d] for region {%zd, %zd}\n",
229                            (int)j, region.origin, region.size);
230                 goto exit;
231             }
232         }
233         test_info.tinfo[i].tQueue =
234             clCreateCommandQueue(gContext, gDevice, 0, &error);
235         if (NULL == test_info.tinfo[i].tQueue || error)
236         {
237             vlog_error("clCreateCommandQueue failed. (%d)\n", error);
238             goto exit;
239         }
240     }
241 
242     // Init the kernels
243     {
244         BuildKernelInfo build_info = {
245             gMinVectorSizeIndex, test_info.threadCount, test_info.k,
246             test_info.programs,  f->nameInCode,         relaxedMode
247         };
248         if ((error = ThreadPool_Do(BuildKernelFn,
249                                    gMaxVectorSizeIndex - gMinVectorSizeIndex,
250                                    &build_info)))
251             goto exit;
252     }
253 
254     // Run the kernels
255     if (!gSkipCorrectnessTesting)
256     {
257         error = ThreadPool_Do(Test, test_info.jobCount, &test_info);
258 
259         if (error) goto exit;
260 
261         if (gWimpyMode)
262             vlog("Wimp pass");
263         else
264             vlog("passed");
265     }
266 
267     vlog("\n");
268 
269 exit:
270     // Release
271     for (auto i = gMinVectorSizeIndex; i < gMaxVectorSizeIndex; i++)
272     {
273         clReleaseProgram(test_info.programs[i]);
274         if (test_info.k[i])
275         {
276             for (cl_uint j = 0; j < test_info.threadCount; j++)
277                 clReleaseKernel(test_info.k[i][j]);
278 
279             free(test_info.k[i]);
280         }
281     }
282     if (test_info.tinfo)
283     {
284         for (cl_uint i = 0; i < test_info.threadCount; i++)
285         {
286             clReleaseMemObject(test_info.tinfo[i].inBuf);
287             for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
288                 clReleaseMemObject(test_info.tinfo[i].outBuf[j]);
289             clReleaseCommandQueue(test_info.tinfo[i].tQueue);
290         }
291 
292         free(test_info.tinfo);
293     }
294 
295     return error;
296 }
297 
Test(cl_uint job_id,cl_uint thread_id,void * data)298 static cl_int Test(cl_uint job_id, cl_uint thread_id, void *data)
299 {
300     const TestInfo *job = (const TestInfo *)data;
301     size_t buffer_elements = job->subBufferSize;
302     size_t buffer_size = buffer_elements * sizeof(cl_double);
303     cl_uint scale = job->scale;
304     cl_uint base = job_id * (cl_uint)job->step;
305     ThreadInfo *tinfo = job->tinfo + thread_id;
306     dptr dfunc = job->f->dfunc;
307     int ftz = job->ftz;
308     cl_int error;
309     const char *name = job->f->name;
310 
311     Force64BitFPUPrecision();
312 
313     // start the map of the output arrays
314     cl_event e[VECTOR_SIZE_COUNT];
315     cl_long *out[VECTOR_SIZE_COUNT];
316     for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
317     {
318         out[j] = (cl_long *)clEnqueueMapBuffer(
319             tinfo->tQueue, tinfo->outBuf[j], CL_FALSE, CL_MAP_WRITE, 0,
320             buffer_size, 0, NULL, e + j, &error);
321         if (error || NULL == out[j])
322         {
323             vlog_error("Error: clEnqueueMapBuffer %d failed! err: %d\n", j,
324                        error);
325             return error;
326         }
327     }
328 
329     // Get that moving
330     if ((error = clFlush(tinfo->tQueue))) vlog("clFlush failed\n");
331 
332     // Write the new values to the input array
333     cl_double *p = (cl_double *)gIn + thread_id * buffer_elements;
334     for (size_t j = 0; j < buffer_elements; j++)
335         p[j] = DoubleFromUInt32(base + j * scale);
336 
337     if ((error = clEnqueueWriteBuffer(tinfo->tQueue, tinfo->inBuf, CL_FALSE, 0,
338                                       buffer_size, p, 0, NULL, NULL)))
339     {
340         vlog_error("Error: clEnqueueWriteBuffer failed! err: %d\n", error);
341         return error;
342     }
343 
344     for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
345     {
346         // Wait for the map to finish
347         if ((error = clWaitForEvents(1, e + j)))
348         {
349             vlog_error("Error: clWaitForEvents failed! err: %d\n", error);
350             return error;
351         }
352         if ((error = clReleaseEvent(e[j])))
353         {
354             vlog_error("Error: clReleaseEvent failed! err: %d\n", error);
355             return error;
356         }
357 
358         // Fill the result buffer with garbage, so that old results don't carry
359         // over
360         uint32_t pattern = 0xffffdead;
361         memset_pattern4(out[j], &pattern, buffer_size);
362         if ((error = clEnqueueUnmapMemObject(tinfo->tQueue, tinfo->outBuf[j],
363                                              out[j], 0, NULL, NULL)))
364         {
365             vlog_error("Error: clEnqueueMapBuffer failed! err: %d\n", error);
366             return error;
367         }
368 
369         // run the kernel
370         size_t vectorCount =
371             (buffer_elements + sizeValues[j] - 1) / sizeValues[j];
372         cl_kernel kernel = job->k[j][thread_id]; // each worker thread has its
373                                                  // own copy of the cl_kernel
374         cl_program program = job->programs[j];
375 
376         if ((error = clSetKernelArg(kernel, 0, sizeof(tinfo->outBuf[j]),
377                                     &tinfo->outBuf[j])))
378         {
379             LogBuildError(program);
380             return error;
381         }
382         if ((error = clSetKernelArg(kernel, 1, sizeof(tinfo->inBuf),
383                                     &tinfo->inBuf)))
384         {
385             LogBuildError(program);
386             return error;
387         }
388 
389         if ((error = clEnqueueNDRangeKernel(tinfo->tQueue, kernel, 1, NULL,
390                                             &vectorCount, NULL, 0, NULL, NULL)))
391         {
392             vlog_error("FAILED -- could not execute kernel\n");
393             return error;
394         }
395     }
396 
397     // Get that moving
398     if ((error = clFlush(tinfo->tQueue))) vlog("clFlush 2 failed\n");
399 
400     if (gSkipCorrectnessTesting) return CL_SUCCESS;
401 
402     // Calculate the correctly rounded reference result
403     cl_long *r = (cl_long *)gOut_Ref + thread_id * buffer_elements;
404     cl_double *s = (cl_double *)p;
405     for (size_t j = 0; j < buffer_elements; j++) r[j] = dfunc.i_f(s[j]);
406 
407     // Read the data back -- no need to wait for the first N-1 buffers but wait
408     // for the last buffer. This is an in order queue.
409     for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
410     {
411         cl_bool blocking = (j + 1 < gMaxVectorSizeIndex) ? CL_FALSE : CL_TRUE;
412         out[j] = (cl_long *)clEnqueueMapBuffer(
413             tinfo->tQueue, tinfo->outBuf[j], blocking, CL_MAP_READ, 0,
414             buffer_size, 0, NULL, NULL, &error);
415         if (error || NULL == out[j])
416         {
417             vlog_error("Error: clEnqueueMapBuffer %d failed! err: %d\n", j,
418                        error);
419             return error;
420         }
421     }
422 
423     // Verify data
424     cl_long *t = (cl_long *)r;
425     for (size_t j = 0; j < buffer_elements; j++)
426     {
427         cl_long *q = out[0];
428 
429         // If we aren't getting the correctly rounded result
430         if (gMinVectorSizeIndex == 0 && t[j] != q[j])
431         {
432             // If we aren't getting the correctly rounded result
433             if (ftz)
434             {
435                 if (IsDoubleSubnormal(s[j]))
436                 {
437                     cl_long correct = dfunc.i_f(+0.0f);
438                     cl_long correct2 = dfunc.i_f(-0.0f);
439                     if (correct == q[j] || correct2 == q[j]) continue;
440                 }
441             }
442 
443             cl_ulong err = t[j] - q[j];
444             if (q[j] > t[j]) err = q[j] - t[j];
445             vlog_error("\nERROR: %sD: %zd ulp error at %.13la: *%zd vs. %zd\n",
446                        name, err, ((double *)gIn)[j], t[j], q[j]);
447             return -1;
448         }
449 
450 
451         for (auto k = MAX(1, gMinVectorSizeIndex); k < gMaxVectorSizeIndex; k++)
452         {
453             q = out[k];
454             // If we aren't getting the correctly rounded result
455             if (-t[j] != q[j])
456             {
457                 if (ftz)
458                 {
459                     if (IsDoubleSubnormal(s[j]))
460                     {
461                         int64_t correct = -dfunc.i_f(+0.0f);
462                         int64_t correct2 = -dfunc.i_f(-0.0f);
463                         if (correct == q[j] || correct2 == q[j]) continue;
464                     }
465                 }
466 
467                 cl_ulong err = -t[j] - q[j];
468                 if (q[j] > -t[j]) err = q[j] + t[j];
469                 vlog_error(
470                     "\nERROR: %sD%s: %zd ulp error at %.13la: *%zd vs. %zd\n",
471                     name, sizeNames[k], err, ((double *)gIn)[j], -t[j], q[j]);
472                 return -1;
473             }
474         }
475     }
476 
477     for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
478     {
479         if ((error = clEnqueueUnmapMemObject(tinfo->tQueue, tinfo->outBuf[j],
480                                              out[j], 0, NULL, NULL)))
481         {
482             vlog_error("Error: clEnqueueUnmapMemObject %d failed 2! err: %d\n",
483                        j, error);
484             return error;
485         }
486     }
487 
488     if ((error = clFlush(tinfo->tQueue))) vlog("clFlush 3 failed\n");
489 
490 
491     if (0 == (base & 0x0fffffff))
492     {
493         if (gVerboseBruteForce)
494         {
495             vlog("base:%14u step:%10u scale:%10u buf_elements:%10zd "
496                  "ThreadCount:%2u\n",
497                  base, job->step, job->scale, buffer_elements,
498                  job->threadCount);
499         }
500         else
501         {
502             vlog(".");
503         }
504         fflush(stdout);
505     }
506 
507     return CL_SUCCESS;
508 }
509