1 /*
2 * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/audio_processing/transient/transient_suppressor_impl.h"
12
13 #include <string.h>
14
15 #include <algorithm>
16 #include <cmath>
17 #include <complex>
18 #include <deque>
19 #include <limits>
20 #include <set>
21
22 #include "common_audio/include/audio_util.h"
23 #include "common_audio/signal_processing/include/signal_processing_library.h"
24 #include "common_audio/third_party/ooura/fft_size_256/fft4g.h"
25 #include "modules/audio_processing/transient/common.h"
26 #include "modules/audio_processing/transient/transient_detector.h"
27 #include "modules/audio_processing/transient/transient_suppressor.h"
28 #include "modules/audio_processing/transient/windows_private.h"
29 #include "rtc_base/checks.h"
30 #include "rtc_base/logging.h"
31
32 namespace webrtc {
33
34 static const float kMeanIIRCoefficient = 0.5f;
35 static const float kVoiceThreshold = 0.02f;
36
37 // TODO(aluebs): Check if these values work also for 48kHz.
38 static const size_t kMinVoiceBin = 3;
39 static const size_t kMaxVoiceBin = 60;
40
41 namespace {
42
ComplexMagnitude(float a,float b)43 float ComplexMagnitude(float a, float b) {
44 return std::abs(a) + std::abs(b);
45 }
46
47 } // namespace
48
TransientSuppressorImpl()49 TransientSuppressorImpl::TransientSuppressorImpl()
50 : data_length_(0),
51 detection_length_(0),
52 analysis_length_(0),
53 buffer_delay_(0),
54 complex_analysis_length_(0),
55 num_channels_(0),
56 window_(NULL),
57 detector_smoothed_(0.f),
58 keypress_counter_(0),
59 chunks_since_keypress_(0),
60 detection_enabled_(false),
61 suppression_enabled_(false),
62 use_hard_restoration_(false),
63 chunks_since_voice_change_(0),
64 seed_(182),
65 using_reference_(false) {}
66
~TransientSuppressorImpl()67 TransientSuppressorImpl::~TransientSuppressorImpl() {}
68
Initialize(int sample_rate_hz,int detection_rate_hz,int num_channels)69 int TransientSuppressorImpl::Initialize(int sample_rate_hz,
70 int detection_rate_hz,
71 int num_channels) {
72 switch (sample_rate_hz) {
73 case ts::kSampleRate8kHz:
74 analysis_length_ = 128u;
75 window_ = kBlocks80w128;
76 break;
77 case ts::kSampleRate16kHz:
78 analysis_length_ = 256u;
79 window_ = kBlocks160w256;
80 break;
81 case ts::kSampleRate32kHz:
82 analysis_length_ = 512u;
83 window_ = kBlocks320w512;
84 break;
85 case ts::kSampleRate48kHz:
86 analysis_length_ = 1024u;
87 window_ = kBlocks480w1024;
88 break;
89 default:
90 return -1;
91 }
92 if (detection_rate_hz != ts::kSampleRate8kHz &&
93 detection_rate_hz != ts::kSampleRate16kHz &&
94 detection_rate_hz != ts::kSampleRate32kHz &&
95 detection_rate_hz != ts::kSampleRate48kHz) {
96 return -1;
97 }
98 if (num_channels <= 0) {
99 return -1;
100 }
101
102 detector_.reset(new TransientDetector(detection_rate_hz));
103 data_length_ = sample_rate_hz * ts::kChunkSizeMs / 1000;
104 if (data_length_ > analysis_length_) {
105 RTC_NOTREACHED();
106 return -1;
107 }
108 buffer_delay_ = analysis_length_ - data_length_;
109
110 complex_analysis_length_ = analysis_length_ / 2 + 1;
111 RTC_DCHECK_GE(complex_analysis_length_, kMaxVoiceBin);
112 num_channels_ = num_channels;
113 in_buffer_.reset(new float[analysis_length_ * num_channels_]);
114 memset(in_buffer_.get(), 0,
115 analysis_length_ * num_channels_ * sizeof(in_buffer_[0]));
116 detection_length_ = detection_rate_hz * ts::kChunkSizeMs / 1000;
117 detection_buffer_.reset(new float[detection_length_]);
118 memset(detection_buffer_.get(), 0,
119 detection_length_ * sizeof(detection_buffer_[0]));
120 out_buffer_.reset(new float[analysis_length_ * num_channels_]);
121 memset(out_buffer_.get(), 0,
122 analysis_length_ * num_channels_ * sizeof(out_buffer_[0]));
123 // ip[0] must be zero to trigger initialization using rdft().
124 size_t ip_length = 2 + sqrtf(analysis_length_);
125 ip_.reset(new size_t[ip_length]());
126 memset(ip_.get(), 0, ip_length * sizeof(ip_[0]));
127 wfft_.reset(new float[complex_analysis_length_ - 1]);
128 memset(wfft_.get(), 0, (complex_analysis_length_ - 1) * sizeof(wfft_[0]));
129 spectral_mean_.reset(new float[complex_analysis_length_ * num_channels_]);
130 memset(spectral_mean_.get(), 0,
131 complex_analysis_length_ * num_channels_ * sizeof(spectral_mean_[0]));
132 fft_buffer_.reset(new float[analysis_length_ + 2]);
133 memset(fft_buffer_.get(), 0, (analysis_length_ + 2) * sizeof(fft_buffer_[0]));
134 magnitudes_.reset(new float[complex_analysis_length_]);
135 memset(magnitudes_.get(), 0,
136 complex_analysis_length_ * sizeof(magnitudes_[0]));
137 mean_factor_.reset(new float[complex_analysis_length_]);
138
139 static const float kFactorHeight = 10.f;
140 static const float kLowSlope = 1.f;
141 static const float kHighSlope = 0.3f;
142 for (size_t i = 0; i < complex_analysis_length_; ++i) {
143 mean_factor_[i] =
144 kFactorHeight /
145 (1.f + std::exp(kLowSlope * static_cast<int>(i - kMinVoiceBin))) +
146 kFactorHeight /
147 (1.f + std::exp(kHighSlope * static_cast<int>(kMaxVoiceBin - i)));
148 }
149 detector_smoothed_ = 0.f;
150 keypress_counter_ = 0;
151 chunks_since_keypress_ = 0;
152 detection_enabled_ = false;
153 suppression_enabled_ = false;
154 use_hard_restoration_ = false;
155 chunks_since_voice_change_ = 0;
156 seed_ = 182;
157 using_reference_ = false;
158 return 0;
159 }
160
Suppress(float * data,size_t data_length,int num_channels,const float * detection_data,size_t detection_length,const float * reference_data,size_t reference_length,float voice_probability,bool key_pressed)161 int TransientSuppressorImpl::Suppress(float* data,
162 size_t data_length,
163 int num_channels,
164 const float* detection_data,
165 size_t detection_length,
166 const float* reference_data,
167 size_t reference_length,
168 float voice_probability,
169 bool key_pressed) {
170 if (!data || data_length != data_length_ || num_channels != num_channels_ ||
171 detection_length != detection_length_ || voice_probability < 0 ||
172 voice_probability > 1) {
173 return -1;
174 }
175
176 UpdateKeypress(key_pressed);
177 UpdateBuffers(data);
178
179 int result = 0;
180 if (detection_enabled_) {
181 UpdateRestoration(voice_probability);
182
183 if (!detection_data) {
184 // Use the input data of the first channel if special detection data is
185 // not supplied.
186 detection_data = &in_buffer_[buffer_delay_];
187 }
188
189 float detector_result = detector_->Detect(detection_data, detection_length,
190 reference_data, reference_length);
191 if (detector_result < 0) {
192 return -1;
193 }
194
195 using_reference_ = detector_->using_reference();
196
197 // |detector_smoothed_| follows the |detector_result| when this last one is
198 // increasing, but has an exponential decaying tail to be able to suppress
199 // the ringing of keyclicks.
200 float smooth_factor = using_reference_ ? 0.6 : 0.1;
201 detector_smoothed_ = detector_result >= detector_smoothed_
202 ? detector_result
203 : smooth_factor * detector_smoothed_ +
204 (1 - smooth_factor) * detector_result;
205
206 for (int i = 0; i < num_channels_; ++i) {
207 Suppress(&in_buffer_[i * analysis_length_],
208 &spectral_mean_[i * complex_analysis_length_],
209 &out_buffer_[i * analysis_length_]);
210 }
211 }
212
213 // If the suppression isn't enabled, we use the in buffer to delay the signal
214 // appropriately. This also gives time for the out buffer to be refreshed with
215 // new data between detection and suppression getting enabled.
216 for (int i = 0; i < num_channels_; ++i) {
217 memcpy(&data[i * data_length_],
218 suppression_enabled_ ? &out_buffer_[i * analysis_length_]
219 : &in_buffer_[i * analysis_length_],
220 data_length_ * sizeof(*data));
221 }
222 return result;
223 }
224
225 // This should only be called when detection is enabled. UpdateBuffers() must
226 // have been called. At return, |out_buffer_| will be filled with the
227 // processed output.
Suppress(float * in_ptr,float * spectral_mean,float * out_ptr)228 void TransientSuppressorImpl::Suppress(float* in_ptr,
229 float* spectral_mean,
230 float* out_ptr) {
231 // Go to frequency domain.
232 for (size_t i = 0; i < analysis_length_; ++i) {
233 // TODO(aluebs): Rename windows
234 fft_buffer_[i] = in_ptr[i] * window_[i];
235 }
236
237 WebRtc_rdft(analysis_length_, 1, fft_buffer_.get(), ip_.get(), wfft_.get());
238
239 // Since WebRtc_rdft puts R[n/2] in fft_buffer_[1], we move it to the end
240 // for convenience.
241 fft_buffer_[analysis_length_] = fft_buffer_[1];
242 fft_buffer_[analysis_length_ + 1] = 0.f;
243 fft_buffer_[1] = 0.f;
244
245 for (size_t i = 0; i < complex_analysis_length_; ++i) {
246 magnitudes_[i] =
247 ComplexMagnitude(fft_buffer_[i * 2], fft_buffer_[i * 2 + 1]);
248 }
249 // Restore audio if necessary.
250 if (suppression_enabled_) {
251 if (use_hard_restoration_) {
252 HardRestoration(spectral_mean);
253 } else {
254 SoftRestoration(spectral_mean);
255 }
256 }
257
258 // Update the spectral mean.
259 for (size_t i = 0; i < complex_analysis_length_; ++i) {
260 spectral_mean[i] = (1 - kMeanIIRCoefficient) * spectral_mean[i] +
261 kMeanIIRCoefficient * magnitudes_[i];
262 }
263
264 // Back to time domain.
265 // Put R[n/2] back in fft_buffer_[1].
266 fft_buffer_[1] = fft_buffer_[analysis_length_];
267
268 WebRtc_rdft(analysis_length_, -1, fft_buffer_.get(), ip_.get(), wfft_.get());
269 const float fft_scaling = 2.f / analysis_length_;
270
271 for (size_t i = 0; i < analysis_length_; ++i) {
272 out_ptr[i] += fft_buffer_[i] * window_[i] * fft_scaling;
273 }
274 }
275
UpdateKeypress(bool key_pressed)276 void TransientSuppressorImpl::UpdateKeypress(bool key_pressed) {
277 const int kKeypressPenalty = 1000 / ts::kChunkSizeMs;
278 const int kIsTypingThreshold = 1000 / ts::kChunkSizeMs;
279 const int kChunksUntilNotTyping = 4000 / ts::kChunkSizeMs; // 4 seconds.
280
281 if (key_pressed) {
282 keypress_counter_ += kKeypressPenalty;
283 chunks_since_keypress_ = 0;
284 detection_enabled_ = true;
285 }
286 keypress_counter_ = std::max(0, keypress_counter_ - 1);
287
288 if (keypress_counter_ > kIsTypingThreshold) {
289 if (!suppression_enabled_) {
290 RTC_LOG(LS_INFO) << "[ts] Transient suppression is now enabled.";
291 }
292 suppression_enabled_ = true;
293 keypress_counter_ = 0;
294 }
295
296 if (detection_enabled_ && ++chunks_since_keypress_ > kChunksUntilNotTyping) {
297 if (suppression_enabled_) {
298 RTC_LOG(LS_INFO) << "[ts] Transient suppression is now disabled.";
299 }
300 detection_enabled_ = false;
301 suppression_enabled_ = false;
302 keypress_counter_ = 0;
303 }
304 }
305
UpdateRestoration(float voice_probability)306 void TransientSuppressorImpl::UpdateRestoration(float voice_probability) {
307 const int kHardRestorationOffsetDelay = 3;
308 const int kHardRestorationOnsetDelay = 80;
309
310 bool not_voiced = voice_probability < kVoiceThreshold;
311
312 if (not_voiced == use_hard_restoration_) {
313 chunks_since_voice_change_ = 0;
314 } else {
315 ++chunks_since_voice_change_;
316
317 if ((use_hard_restoration_ &&
318 chunks_since_voice_change_ > kHardRestorationOffsetDelay) ||
319 (!use_hard_restoration_ &&
320 chunks_since_voice_change_ > kHardRestorationOnsetDelay)) {
321 use_hard_restoration_ = not_voiced;
322 chunks_since_voice_change_ = 0;
323 }
324 }
325 }
326
327 // Shift buffers to make way for new data. Must be called after
328 // |detection_enabled_| is updated by UpdateKeypress().
UpdateBuffers(float * data)329 void TransientSuppressorImpl::UpdateBuffers(float* data) {
330 // TODO(aluebs): Change to ring buffer.
331 memmove(in_buffer_.get(), &in_buffer_[data_length_],
332 (buffer_delay_ + (num_channels_ - 1) * analysis_length_) *
333 sizeof(in_buffer_[0]));
334 // Copy new chunk to buffer.
335 for (int i = 0; i < num_channels_; ++i) {
336 memcpy(&in_buffer_[buffer_delay_ + i * analysis_length_],
337 &data[i * data_length_], data_length_ * sizeof(*data));
338 }
339 if (detection_enabled_) {
340 // Shift previous chunk in out buffer.
341 memmove(out_buffer_.get(), &out_buffer_[data_length_],
342 (buffer_delay_ + (num_channels_ - 1) * analysis_length_) *
343 sizeof(out_buffer_[0]));
344 // Initialize new chunk in out buffer.
345 for (int i = 0; i < num_channels_; ++i) {
346 memset(&out_buffer_[buffer_delay_ + i * analysis_length_], 0,
347 data_length_ * sizeof(out_buffer_[0]));
348 }
349 }
350 }
351
352 // Restores the unvoiced signal if a click is present.
353 // Attenuates by a certain factor every peak in the |fft_buffer_| that exceeds
354 // the spectral mean. The attenuation depends on |detector_smoothed_|.
355 // If a restoration takes place, the |magnitudes_| are updated to the new value.
HardRestoration(float * spectral_mean)356 void TransientSuppressorImpl::HardRestoration(float* spectral_mean) {
357 const float detector_result =
358 1.f - std::pow(1.f - detector_smoothed_, using_reference_ ? 200.f : 50.f);
359 // To restore, we get the peaks in the spectrum. If higher than the previous
360 // spectral mean we adjust them.
361 for (size_t i = 0; i < complex_analysis_length_; ++i) {
362 if (magnitudes_[i] > spectral_mean[i] && magnitudes_[i] > 0) {
363 // RandU() generates values on [0, int16::max()]
364 const float phase = 2 * ts::kPi * WebRtcSpl_RandU(&seed_) /
365 std::numeric_limits<int16_t>::max();
366 const float scaled_mean = detector_result * spectral_mean[i];
367
368 fft_buffer_[i * 2] = (1 - detector_result) * fft_buffer_[i * 2] +
369 scaled_mean * cosf(phase);
370 fft_buffer_[i * 2 + 1] = (1 - detector_result) * fft_buffer_[i * 2 + 1] +
371 scaled_mean * sinf(phase);
372 magnitudes_[i] = magnitudes_[i] -
373 detector_result * (magnitudes_[i] - spectral_mean[i]);
374 }
375 }
376 }
377
378 // Restores the voiced signal if a click is present.
379 // Attenuates by a certain factor every peak in the |fft_buffer_| that exceeds
380 // the spectral mean and that is lower than some function of the current block
381 // frequency mean. The attenuation depends on |detector_smoothed_|.
382 // If a restoration takes place, the |magnitudes_| are updated to the new value.
SoftRestoration(float * spectral_mean)383 void TransientSuppressorImpl::SoftRestoration(float* spectral_mean) {
384 // Get the spectral magnitude mean of the current block.
385 float block_frequency_mean = 0;
386 for (size_t i = kMinVoiceBin; i < kMaxVoiceBin; ++i) {
387 block_frequency_mean += magnitudes_[i];
388 }
389 block_frequency_mean /= (kMaxVoiceBin - kMinVoiceBin);
390
391 // To restore, we get the peaks in the spectrum. If higher than the
392 // previous spectral mean and lower than a factor of the block mean
393 // we adjust them. The factor is a double sigmoid that has a minimum in the
394 // voice frequency range (300Hz - 3kHz).
395 for (size_t i = 0; i < complex_analysis_length_; ++i) {
396 if (magnitudes_[i] > spectral_mean[i] && magnitudes_[i] > 0 &&
397 (using_reference_ ||
398 magnitudes_[i] < block_frequency_mean * mean_factor_[i])) {
399 const float new_magnitude =
400 magnitudes_[i] -
401 detector_smoothed_ * (magnitudes_[i] - spectral_mean[i]);
402 const float magnitude_ratio = new_magnitude / magnitudes_[i];
403
404 fft_buffer_[i * 2] *= magnitude_ratio;
405 fft_buffer_[i * 2 + 1] *= magnitude_ratio;
406 magnitudes_[i] = new_magnitude;
407 }
408 }
409 }
410
411 } // namespace webrtc
412