1 /*
2  *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "modules/audio_processing/ns/wiener_filter.h"
12 
13 #include <math.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <algorithm>
17 
18 #include "modules/audio_processing/ns/fast_math.h"
19 #include "rtc_base/checks.h"
20 
21 namespace webrtc {
22 
WienerFilter(const SuppressionParams & suppression_params)23 WienerFilter::WienerFilter(const SuppressionParams& suppression_params)
24     : suppression_params_(suppression_params) {
25   filter_.fill(1.f);
26   initial_spectral_estimate_.fill(0.f);
27   spectrum_prev_process_.fill(0.f);
28 }
29 
Update(int32_t num_analyzed_frames,rtc::ArrayView<const float,kFftSizeBy2Plus1> noise_spectrum,rtc::ArrayView<const float,kFftSizeBy2Plus1> prev_noise_spectrum,rtc::ArrayView<const float,kFftSizeBy2Plus1> parametric_noise_spectrum,rtc::ArrayView<const float,kFftSizeBy2Plus1> signal_spectrum)30 void WienerFilter::Update(
31     int32_t num_analyzed_frames,
32     rtc::ArrayView<const float, kFftSizeBy2Plus1> noise_spectrum,
33     rtc::ArrayView<const float, kFftSizeBy2Plus1> prev_noise_spectrum,
34     rtc::ArrayView<const float, kFftSizeBy2Plus1> parametric_noise_spectrum,
35     rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum) {
36   for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
37     // Previous estimate based on previous frame with gain filter.
38     float prev_tsa = spectrum_prev_process_[i] /
39                      (prev_noise_spectrum[i] + 0.0001f) * filter_[i];
40 
41     // Current estimate.
42     float current_tsa;
43     if (signal_spectrum[i] > noise_spectrum[i]) {
44       current_tsa = signal_spectrum[i] / (noise_spectrum[i] + 0.0001f) - 1.f;
45     } else {
46       current_tsa = 0.f;
47     }
48 
49     // Directed decision estimate is sum of two terms: current estimate and
50     // previous estimate.
51     float snr_prior = 0.98f * prev_tsa + (1.f - 0.98f) * current_tsa;
52     filter_[i] =
53         snr_prior / (suppression_params_.over_subtraction_factor + snr_prior);
54     filter_[i] = std::max(std::min(filter_[i], 1.f),
55                           suppression_params_.minimum_attenuating_gain);
56   }
57 
58   if (num_analyzed_frames < kShortStartupPhaseBlocks) {
59     for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
60       initial_spectral_estimate_[i] += signal_spectrum[i];
61       float filter_initial = initial_spectral_estimate_[i] -
62                              suppression_params_.over_subtraction_factor *
63                                  parametric_noise_spectrum[i];
64       filter_initial /= initial_spectral_estimate_[i] + 0.0001f;
65 
66       filter_initial = std::max(std::min(filter_initial, 1.f),
67                                 suppression_params_.minimum_attenuating_gain);
68 
69       // Weight the two suppression filters.
70       constexpr float kOnyByShortStartupPhaseBlocks =
71           1.f / kShortStartupPhaseBlocks;
72       filter_initial *= kShortStartupPhaseBlocks - num_analyzed_frames;
73       filter_[i] *= num_analyzed_frames;
74       filter_[i] += filter_initial;
75       filter_[i] *= kOnyByShortStartupPhaseBlocks;
76     }
77   }
78 
79   std::copy(signal_spectrum.begin(), signal_spectrum.end(),
80             spectrum_prev_process_.begin());
81 }
82 
ComputeOverallScalingFactor(int32_t num_analyzed_frames,float prior_speech_probability,float energy_before_filtering,float energy_after_filtering) const83 float WienerFilter::ComputeOverallScalingFactor(
84     int32_t num_analyzed_frames,
85     float prior_speech_probability,
86     float energy_before_filtering,
87     float energy_after_filtering) const {
88   if (!suppression_params_.use_attenuation_adjustment ||
89       num_analyzed_frames <= kLongStartupPhaseBlocks) {
90     return 1.f;
91   }
92 
93   float gain = SqrtFastApproximation(energy_after_filtering /
94                                      (energy_before_filtering + 1.f));
95 
96   // Scaling for new version. Threshold in final energy gain factor calculation.
97   constexpr float kBLim = 0.5f;
98   float scale_factor1 = 1.f;
99   if (gain > kBLim) {
100     scale_factor1 = 1.f + 1.3f * (gain - kBLim);
101     if (gain * scale_factor1 > 1.f) {
102       scale_factor1 = 1.f / gain;
103     }
104   }
105 
106   float scale_factor2 = 1.f;
107   if (gain < kBLim) {
108     // Do not reduce scale too much for pause regions: attenuation here should
109     // be controlled by flooring.
110     gain = std::max(gain, suppression_params_.minimum_attenuating_gain);
111     scale_factor2 = 1.f - 0.3f * (kBLim - gain);
112   }
113 
114   // Combine both scales with speech/noise prob: note prior
115   // (prior_speech_probability) is not frequency dependent.
116   return prior_speech_probability * scale_factor1 +
117          (1.f - prior_speech_probability) * scale_factor2;
118 }
119 
120 }  // namespace webrtc
121