1# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""SavedModel builder implementation."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21import functools
22import os
23
24from google.protobuf.any_pb2 import Any
25
26from tensorflow.core.framework import types_pb2
27from tensorflow.core.protobuf import meta_graph_pb2
28from tensorflow.core.protobuf import saved_model_pb2
29from tensorflow.core.protobuf import saver_pb2
30from tensorflow.python.framework import dtypes
31from tensorflow.python.framework import ops
32from tensorflow.python.lib.io import file_io
33from tensorflow.python.ops import variables
34from tensorflow.python.platform import tf_logging
35from tensorflow.python.saved_model import constants
36from tensorflow.python.saved_model import signature_def_utils
37from tensorflow.python.saved_model import utils_impl as saved_model_utils
38from tensorflow.python.training import saver as tf_saver
39from tensorflow.python.util import compat
40from tensorflow.python.util.deprecation import deprecated_args
41from tensorflow.python.util.tf_export import tf_export
42
43
44# Base class for the SavedModelBuilder that is only used by Tensorflow
45# internally. Please use tf.compat.v1.saved_model.SavedModelBuilder instead.
46class _SavedModelBuilder(object):
47  """Builds the `SavedModel` protocol buffer and saves variables and assets.
48
49  The `SavedModelBuilder` class provides the functionality to build a
50  `SavedModel` protocol buffer. Specifically, this allows multiple meta
51  graphs to be saved as part of a single language-neutral `SavedModel`,
52  while sharing variables and assets.
53
54  To build a SavedModel, the first meta graph must be saved with variables.
55  Subsequent meta graphs will simply be saved with their graph definitions. If
56  assets need to be saved and written or copied to disk, they can be provided
57  when the meta graph def is added. If multiple meta graph defs are associated
58  an asset of the same name, only the first version is retained.
59
60  Each meta graph added to the SavedModel must be annotated with tags. The tags
61  provide a means to identify the specific meta graph to load and restore, along
62  with the shared set of variables and assets.
63
64  Typical usage for the `SavedModelBuilder`:
65
66  ```python
67  ...
68  builder = tf.compat.v1.saved_model.Builder(export_dir)
69
70  with tf.compat.v1.Session(graph=tf.Graph()) as sess:
71    ...
72    builder.add_meta_graph_and_variables(sess,
73                                    ["foo-tag"],
74                                    signature_def_map=foo_signatures,
75                                    assets_list=foo_assets)
76  ...
77
78  with tf.compat.v1.Session(graph=tf.Graph()) as sess:
79    ...
80    builder.add_meta_graph(["bar-tag", "baz-tag"])
81  ...
82
83  builder.save()
84  ```
85
86  Note: This function will only be available through the v1 compatibility
87  library as tf.compat.v1.saved_model.builder.SavedModelBuilder or
88  tf.compat.v1.saved_model.Builder. Tensorflow 2.0 will introduce a new
89  object-based method of creating SavedModels.
90  """
91
92  def __init__(self, export_dir):
93    self._saved_model = saved_model_pb2.SavedModel()
94    self._saved_model.saved_model_schema_version = (
95        constants.SAVED_MODEL_SCHEMA_VERSION)
96
97    self._export_dir = export_dir
98    if file_io.file_exists(export_dir):
99      if file_io.list_directory(export_dir):
100        raise AssertionError(
101            "Export directory already exists, and isn't empty. Please choose "
102            "a different export directory, or delete all the contents of the "
103            "specified directory: %s" % export_dir)
104    else:
105      file_io.recursive_create_dir(self._export_dir)
106
107    # Boolean to track whether variables and assets corresponding to the
108    # SavedModel have been saved. Specifically, the first meta graph to be added
109    # MUST use the add_meta_graph_and_variables() API. Subsequent add operations
110    # on the SavedModel MUST use the add_meta_graph() API which does not save
111    # weights.
112    self._has_saved_variables = False
113
114  def _save_and_write_assets(self, meta_graph_def, assets_list=None):
115    """Saves asset to the meta graph and writes asset files to disk.
116
117    Args:
118      meta_graph_def: The meta graph def to which the assets will be added.
119      assets_list: The list where the asset paths are setup.
120    """
121    # Creates a function that adds assets into the meta graph def.
122    write_fn = functools.partial(_add_asset_to_metagraph, meta_graph_def)
123    asset_filename_map = _maybe_save_assets(write_fn, assets_list)
124
125    # Return if there are no assets to write.
126    if not asset_filename_map:
127      tf_logging.info("No assets to write.")
128      return
129
130    # Copy assets from source path to destination path.
131    copy_assets_to_destination_dir(asset_filename_map, self._export_dir)
132
133  def _tag_and_add_meta_graph(self, meta_graph_def, tags, signature_def_map):
134    """Tags the meta graph def and adds it to the SavedModel.
135
136    Tags the meta graph def with the supplied tags, adds signature defs to it if
137    provided and appends the meta graph def to the SavedModel proto.
138
139    Args:
140      meta_graph_def: The meta graph def to add to the SavedModel.
141      tags: The set of tags to annotate the meta graph def with.
142      signature_def_map: The map of signature defs to be added to the meta graph
143          def.
144    """
145    for tag in tags:
146      meta_graph_def.meta_info_def.tags.append(tag)
147
148    if signature_def_map is not None:
149      for key in signature_def_map:
150        meta_graph_def.signature_def[key].CopyFrom(signature_def_map[key])
151
152    proto_meta_graph_def = self._saved_model.meta_graphs.add()
153    proto_meta_graph_def.CopyFrom(meta_graph_def)
154
155  def _validate_tensor_info(self, tensor_info):
156    """Validates the `TensorInfo` proto.
157
158    Checks if the `encoding` (`name` or `coo_sparse` or `type_spec`) and
159    `dtype` fields exist and are non-empty.
160
161    Args:
162      tensor_info: `TensorInfo` protocol buffer to validate.
163
164    Raises:
165      AssertionError: If the `encoding` or `dtype` fields of the supplied
166          `TensorInfo` proto are not populated.
167    """
168    if tensor_info is None:
169      raise AssertionError(
170          "All TensorInfo protos used in the SignatureDefs must have the name "
171          "and dtype fields set.")
172    if tensor_info.WhichOneof("encoding") is None:
173      # TODO(soergel) validate each of the fields of coo_sparse
174      raise AssertionError(
175          "All TensorInfo protos used in the SignatureDefs must have one of "
176          "the 'encoding' fields (e.g., name or coo_sparse) set: %s"
177          % tensor_info)
178    if tensor_info.WhichOneof("encoding") == "composite_tensor":
179      for component in tensor_info.composite_tensor.components:
180        self._validate_tensor_info(component)
181    elif tensor_info.dtype == types_pb2.DT_INVALID:
182      raise AssertionError(
183          "All TensorInfo protos used in the SignatureDefs must have the dtype "
184          "field set: %s" % tensor_info)
185
186  def _validate_signature_def_map(self, signature_def_map):
187    """Validates the `SignatureDef` entries in the signature def map.
188
189    Validation of entries in the signature def map includes ensuring that the
190    `name` and `dtype` fields of the TensorInfo protos of the `inputs` and
191    `outputs` of each `SignatureDef` are populated. Also ensures that reserved
192    SignatureDef keys for the initialization and train ops are not used.
193
194    Args:
195      signature_def_map: The map of signature defs to be validated.
196
197    Raises:
198      AssertionError: If a TensorInfo is not valid.
199      KeyError: If a reserved signature key is used in the map.
200    """
201    for signature_def_key in signature_def_map:
202      signature_def = signature_def_map[signature_def_key]
203      inputs = signature_def.inputs
204      outputs = signature_def.outputs
205      for inputs_key in inputs:
206        self._validate_tensor_info(inputs[inputs_key])
207      for outputs_key in outputs:
208        self._validate_tensor_info(outputs[outputs_key])
209    if constants.INIT_OP_SIGNATURE_KEY in signature_def_map:
210      raise KeyError(
211          "SignatureDef map key \"{}\" is reserved for initialization. Please "
212          "use a different key.".format(constants.INIT_OP_SIGNATURE_KEY))
213    if constants.TRAIN_OP_SIGNATURE_KEY in signature_def_map:
214      raise KeyError(
215          "SignatureDef map key \"{}\" is reserved for the train op. Please "
216          "use a different key.".format(constants.TRAIN_OP_SIGNATURE_KEY))
217
218  def _maybe_create_saver(self, saver=None):
219    """Creates a sharded saver if one does not already exist."""
220    if not saver:
221      # Initialize a saver to generate a sharded output for all saveables in the
222      # current scope.
223      saver = tf_saver.Saver(
224          variables._all_saveable_objects(),  # pylint: disable=protected-access
225          sharded=True,
226          write_version=saver_pb2.SaverDef.V2,
227          allow_empty=True)
228    return saver
229
230  def add_meta_graph(self,
231                     tags,
232                     signature_def_map=None,
233                     assets_list=None,
234                     clear_devices=False,
235                     init_op=None,
236                     train_op=None,
237                     saver=None):
238    """Adds the current meta graph to the SavedModel.
239
240    Creates a Saver in the current scope and uses the Saver to export the meta
241    graph def. Invoking this API requires the `add_meta_graph_and_variables()`
242    API to have been invoked before.
243
244    Args:
245      tags: The set of tags to annotate the meta graph def with.
246      signature_def_map: The map of signature defs to be added to the meta graph
247          def.
248      assets_list: Assets to be saved with SavedModel. Note
249          that this list should be a subset of the assets saved as part of
250          the first meta graph in the SavedModel.
251      clear_devices: Set to true if the device info on the default graph should
252          be cleared.
253      init_op: Op or group of ops to execute when the graph is loaded. Note
254          that when the init_op is specified it is run after the restore op at
255          load-time.
256      train_op: Op or group of opts that trains the model when run. This will
257        not be run automatically when the graph is loaded, instead saved in
258        a SignatureDef accessible through the exported MetaGraph.
259      saver: An instance of tf.compat.v1.train.Saver that will be used to export
260        the metagraph. If None, a sharded Saver that restores all variables will
261        be used.
262
263    Raises:
264      AssertionError: If the variables for the SavedModel have not been saved
265          yet, or if the graph already contains one or more legacy init ops.
266    """
267    if not self._has_saved_variables:
268      raise AssertionError(
269          "Graph state including variables and assets has not been saved yet. "
270          "Please invoke `add_meta_graph_and_variables()` first.")
271
272    # Validate the signature def map to ensure all included TensorInfos are
273    # properly populated.
274    signature_def_map = signature_def_map or {}
275    self._validate_signature_def_map(signature_def_map)
276
277    # Create a SignatureDef pointing to the graph initialization op, which will
278    # be added to the MetaGraphDef.
279    _add_op_to_signature_def_map(signature_def_map, init_op,
280                                 constants.INIT_OP_SIGNATURE_KEY)
281    _add_op_to_signature_def_map(signature_def_map, train_op,
282                                 constants.TRAIN_OP_SIGNATURE_KEY)
283
284    saver = self._maybe_create_saver(saver)
285
286    # The graph almost certainly previously contained at least one Saver, and
287    # possibly several (e.g. one for loading a pretrained embedding, and another
288    # for the model weights).  Removing the preexisting ones was the
289    # motivation for the clear_extraneous_savers option, but it turns out that
290    # there are edge cases where that option breaks the graph.  Until that is
291    # resolved, we just leave the option set to False for now.
292    # TODO(soergel): Reinstate clear_extraneous_savers=True when possible.
293    meta_graph_def = saver.export_meta_graph(
294        clear_devices=clear_devices, strip_default_attrs=True)
295
296    # Save asset files and write them to disk, if any.
297    self._save_and_write_assets(meta_graph_def, assets_list)
298
299    # Tag the meta graph def and add it to the SavedModel.
300    self._tag_and_add_meta_graph(meta_graph_def, tags, signature_def_map)
301
302  def add_meta_graph_and_variables(self,
303                                   sess,
304                                   tags,
305                                   signature_def_map=None,
306                                   assets_list=None,
307                                   clear_devices=False,
308                                   init_op=None,
309                                   train_op=None,
310                                   strip_default_attrs=False,
311                                   saver=None):
312    # pylint: disable=line-too-long
313    """Adds the current meta graph to the SavedModel and saves variables.
314
315    Creates a Saver to save the variables from the provided session. Exports the
316    corresponding meta graph def. This function assumes that the variables to be
317    saved have been initialized. For a given `SavedModelBuilder`, this API must
318    be called exactly once and for the first meta graph to save. For subsequent
319    meta graph defs to be added, the `add_meta_graph()` API must be used.
320
321    Args:
322      sess: The TensorFlow session from which to save the meta graph and
323        variables.
324      tags: The set of tags with which to save the meta graph.
325      signature_def_map: The map of signature def map to add to the meta graph
326        def.
327      assets_list: Assets to be saved with SavedModel.
328      clear_devices: Set to true if the device info on the default graph should
329          be cleared.
330      init_op: Op or group of ops to execute when the graph is loaded. Note
331          that when the init_op is specified it is run after the restore op at
332          load-time.
333      train_op: Op or group of ops that trains the model when run. This will
334        not be run automatically when the graph is loaded, instead saved in
335        a SignatureDef accessible through the exported MetaGraph.
336      strip_default_attrs: Boolean. If `True`, default-valued attributes will be
337        removed from the NodeDefs. For a detailed guide, see
338        [Stripping Default-Valued Attributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes).
339      saver: An instance of tf.compat.v1.train.Saver that will be used to export the
340        metagraph and save variables. If None, a sharded Saver that restores
341        all variables will be used.
342
343    """
344    # pylint: enable=line-too-long
345    if self._has_saved_variables:
346      raise AssertionError("Graph state including variables and assets has "
347                           "already been saved. Please invoke "
348                           "`add_meta_graph()` instead.")
349
350    # Validate the signature def map to ensure all included TensorInfos are
351    # properly populated.
352    signature_def_map = signature_def_map or {}
353    self._validate_signature_def_map(signature_def_map)
354
355    # Create a SignatureDef pointing to the graph initialization op, which will
356    # be added to the MetaGraphDef.
357    _add_op_to_signature_def_map(signature_def_map, init_op,
358                                 constants.INIT_OP_SIGNATURE_KEY)
359    _add_op_to_signature_def_map(signature_def_map, train_op,
360                                 constants.TRAIN_OP_SIGNATURE_KEY)
361
362    saved_model_utils.get_or_create_variables_dir(self._export_dir)
363    variables_path = saved_model_utils.get_variables_path(self._export_dir)
364
365    saver = self._maybe_create_saver(saver)
366
367    # Save the variables. Also, disable writing the checkpoint state proto. The
368    # file is not used during SavedModel loading. In addition, since a
369    # SavedModel can be copied or moved, this avoids the checkpoint state to
370    # become outdated.
371    saver.save(sess, variables_path, write_meta_graph=False, write_state=False)
372
373    # Export the meta graph def.
374
375    # The graph almost certainly previously contained at least one Saver, and
376    # possibly several (e.g. one for loading a pretrained embedding, and another
377    # for the model weights).  Removing the preexisting ones was the
378    # motivation for the clear_extraneous_savers option, but it turns out that
379    # there are edge cases where that option breaks the graph.  Until that is
380    # resolved, we just leave the option set to False for now.
381    # TODO(soergel): Reinstate clear_extraneous_savers=True when possible.
382    meta_graph_def = saver.export_meta_graph(
383        clear_devices=clear_devices, strip_default_attrs=strip_default_attrs)
384
385    # Save asset files and write them to disk, if any.
386    self._save_and_write_assets(meta_graph_def, assets_list)
387
388    # Tag the meta graph def and add it to the SavedModel.
389    self._tag_and_add_meta_graph(meta_graph_def, tags, signature_def_map)
390
391    # Mark this instance of SavedModel as having saved variables, such that
392    # subsequent attempts to save variables will fail.
393    self._has_saved_variables = True
394
395  def save(self, as_text=False):
396    """Writes a `SavedModel` protocol buffer to disk.
397
398    The function writes the SavedModel protocol buffer to the export directory
399    in a serialized format.
400
401    Args:
402      as_text: Writes the SavedModel protocol buffer in text format to
403        disk. Protocol buffers in text format are useful for debugging, but
404        parsing fails when it encounters an unknown field and so is not forward
405        compatible. This means changes to TensorFlow may prevent deployment of
406        new text format SavedModels to existing serving binaries. Do not deploy
407        `as_text` SavedModels to production.
408
409    Returns:
410      The path to which the SavedModel protocol buffer was written.
411    """
412    if not file_io.file_exists(self._export_dir):
413      file_io.recursive_create_dir(self._export_dir)
414
415    if as_text:
416      path = os.path.join(
417          compat.as_bytes(self._export_dir),
418          compat.as_bytes(constants.SAVED_MODEL_FILENAME_PBTXT))
419      file_io.write_string_to_file(path, str(self._saved_model))
420    else:
421      path = os.path.join(
422          compat.as_bytes(self._export_dir),
423          compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB))
424      file_io.write_string_to_file(
425          path, self._saved_model.SerializeToString(deterministic=True))
426    tf_logging.info("SavedModel written to: %s", compat.as_text(path))
427
428    return path
429
430
431@tf_export(v1=["saved_model.Builder", "saved_model.builder.SavedModelBuilder"])  # pylint: disable=missing-docstring
432class SavedModelBuilder(_SavedModelBuilder):
433  __doc__ = _SavedModelBuilder.__doc__.replace("assets_list",
434                                               "assets_collection")
435
436  def __init__(self, export_dir):
437    super(SavedModelBuilder, self).__init__(export_dir=export_dir)
438
439  def _add_collections(self, assets_collection, main_op, train_op):
440    """Add asset and op collections to be saved."""
441    # Save asset files and write them to disk, if any.
442    self._save_and_write_assets(assets_collection)
443
444    self._maybe_add_main_op(main_op)
445
446    self._add_train_op(train_op)
447
448  def _save_and_write_assets(self, assets_collection_to_add=None):
449    """Saves asset to the meta graph and writes asset files to disk.
450
451    Args:
452      assets_collection_to_add: The collection where the asset paths are setup.
453    """
454    # Add assets to the collection with key `saved_model.ASSETS_KEY`, in the
455    # graph.
456    asset_filename_map = _maybe_save_assets(_add_asset_to_collection,
457                                            assets_collection_to_add)
458
459    # Return if there are no assets to write.
460    if not asset_filename_map:
461      tf_logging.info("No assets to write.")
462      return
463
464    # Copy assets from source path to destination path.
465    copy_assets_to_destination_dir(asset_filename_map, self._export_dir)
466
467  def _maybe_add_main_op(self, main_op):
468    """Adds main op to the SavedModel.
469
470    Args:
471      main_op: Main op to run as part of graph initialization. If None, no main
472        op will be added to the graph.
473
474    Raises:
475      TypeError: If the main op is provided but is not of type `Operation`.
476      ValueError: if the Graph already contains an init op.
477    """
478    if main_op is None:
479      return
480
481    if not isinstance(main_op, ops.Operation):
482      raise TypeError("main_op needs to be an Operation: %r" % main_op)
483
484    # Validate that no other init ops have been added to this graph already.
485    # We check main_op and legacy_init_op for thoroughness and explicitness.
486    for init_op_key in (constants.MAIN_OP_KEY, constants.LEGACY_INIT_OP_KEY):
487      if ops.get_collection(init_op_key):
488        raise ValueError(
489            "Graph already contains one or more main ops under the "
490            "collection {}.".format(init_op_key))
491
492    ops.add_to_collection(constants.MAIN_OP_KEY, main_op)
493
494  def _add_train_op(self, train_op):
495    """Add train op to the SavedModel.
496
497    Note that this functionality is in development, and liable to be
498    moved elsewhere.
499
500    Args:
501      train_op: Op or group of ops that are used for training. These are stored
502        as a collection with key TRAIN_OP_KEY, but not executed.
503
504    Raises:
505      TypeError if Train op is not of type `Operation`.
506    """
507    if train_op is not None:
508      if (not isinstance(train_op, ops.Tensor) and
509          not isinstance(train_op, ops.Operation)):
510        raise TypeError("train_op needs to be a Tensor or Op: %r" % train_op)
511      ops.add_to_collection(constants.TRAIN_OP_KEY, train_op)
512
513  @deprecated_args(None,
514                   "Pass your op to the equivalent parameter main_op instead.",
515                   "legacy_init_op")
516  def add_meta_graph(self,
517                     tags,
518                     signature_def_map=None,
519                     assets_collection=None,
520                     legacy_init_op=None,
521                     clear_devices=False,
522                     main_op=None,
523                     strip_default_attrs=False,
524                     saver=None):
525    if not self._has_saved_variables:
526      raise AssertionError(
527          "Graph state including variables and assets has not been saved yet. "
528          "Please invoke `add_meta_graph_and_variables()` first.")
529
530    # Validate the signature def map to ensure all included TensorInfos are
531    # properly populated.
532    signature_def_map = signature_def_map or {}
533    self._validate_signature_def_map(signature_def_map)
534
535    # legacy_init_op is deprecated, and going away in TF 2.0.
536    # Re-mapping to main_op, as treatment is identical regardless.
537    main_op = main_op if main_op is not None else legacy_init_op
538
539    # Add assets and ops
540    self._add_collections(assets_collection, main_op, None)
541
542    saver = self._maybe_create_saver(saver)
543
544    # The graph almost certainly previously contained at least one Saver, and
545    # possibly several (e.g. one for loading a pretrained embedding, and another
546    # for the model weights).  Removing the preexisting ones was the
547    # motivation for the clear_extraneous_savers option, but it turns out that
548    # there are edge cases where that option breaks the graph.  Until that is
549    # resolved, we just leave the option set to False for now.
550    # TODO(soergel): Reinstate clear_extraneous_savers=True when possible.
551    meta_graph_def = saver.export_meta_graph(
552        clear_devices=clear_devices, strip_default_attrs=strip_default_attrs)
553
554    # Tag the meta graph def and add it to the SavedModel.
555    self._tag_and_add_meta_graph(meta_graph_def, tags, signature_def_map)
556
557  @deprecated_args(None,
558                   "Pass your op to the equivalent parameter main_op instead.",
559                   "legacy_init_op")
560  def add_meta_graph_and_variables(self,
561                                   sess,
562                                   tags,
563                                   signature_def_map=None,
564                                   assets_collection=None,
565                                   legacy_init_op=None,
566                                   clear_devices=False,
567                                   main_op=None,
568                                   strip_default_attrs=False,
569                                   saver=None):
570    if self._has_saved_variables:
571      raise AssertionError("Graph state including variables and assets has "
572                           "already been saved. Please invoke "
573                           "`add_meta_graph()` instead.")
574
575    # Validate the signature def map to ensure all included TensorInfos are
576    # properly populated.
577    signature_def_map = signature_def_map or {}
578    self._validate_signature_def_map(signature_def_map)
579
580    # legacy_init_op is deprecated, and going away in TF 2.0.
581    # Re-mapping to main_op, as treatment is identical regardless.
582    main_op = main_op or legacy_init_op
583
584    # Add assets and ops
585    self._add_collections(assets_collection, main_op, None)
586
587    saved_model_utils.get_or_create_variables_dir(self._export_dir)
588    variables_path = saved_model_utils.get_variables_path(self._export_dir)
589
590    saver = self._maybe_create_saver(saver)
591
592    # Save the variables. Also, disable writing the checkpoint state proto. The
593    # file is not used during SavedModel loading. In addition, since a
594    # SavedModel can be copied or moved, this avoids the checkpoint state to
595    # become outdated.
596    saver.save(sess, variables_path, write_meta_graph=False, write_state=False)
597
598    # Export the meta graph def.
599
600    # The graph almost certainly previously contained at least one Saver, and
601    # possibly several (e.g. one for loading a pretrained embedding, and another
602    # for the model weights).  Removing the preexisting ones was the
603    # motivation for the clear_extraneous_savers option, but it turns out that
604    # there are edge cases where that option breaks the graph.  Until that is
605    # resolved, we just leave the option set to False for now.
606    # TODO(soergel): Reinstate clear_extraneous_savers=True when possible.
607    meta_graph_def = saver.export_meta_graph(
608        clear_devices=clear_devices, strip_default_attrs=strip_default_attrs)
609
610    # Tag the meta graph def and add it to the SavedModel.
611    self._tag_and_add_meta_graph(meta_graph_def, tags, signature_def_map)
612
613    # Mark this instance of SavedModel as having saved variables, such that
614    # subsequent attempts to save variables will fail.
615    self._has_saved_variables = True
616
617  add_meta_graph.__doc__ = _SavedModelBuilder.add_meta_graph.__doc__.replace(
618      "assets_list", "assets_collection")
619  add_meta_graph_and_variables.__doc__ = \
620      _SavedModelBuilder.add_meta_graph_and_variables.__doc__.replace(
621          "assets_list", "assets_collection")
622
623
624def _maybe_save_assets(write_fn, assets_to_add=None):
625  """Saves assets to the meta graph.
626
627  Args:
628    write_fn: A function callback that writes assets into meta graph.
629    assets_to_add: The list where the asset paths are setup.
630
631  Returns:
632    A dict of asset basenames for saving to the original full path to the asset.
633
634  Raises:
635    ValueError: Indicating an invalid filepath tensor.
636  """
637  # Map of target file names to original filenames
638  asset_filename_map = {}
639
640  if assets_to_add is None:
641    tf_logging.info("No assets to save.")
642    return asset_filename_map
643
644  # Iterate over the supplied assets, build the `AssetFile` proto and add them
645  # to the meta graph.
646  for asset_tensor in assets_to_add:
647    asset_source_filepath = _asset_path_from_tensor(asset_tensor)
648    if not asset_source_filepath:
649      raise ValueError("Invalid asset filepath tensor %s" % asset_tensor)
650
651    asset_filename = get_asset_filename_to_add(
652        asset_source_filepath, asset_filename_map)
653
654    # Call the passed-in function that builds AssetFileDef proto and adds it
655    # to either the collection or asset_file_def field of the meta graph.
656    # Note that this should be done even when the file is a duplicate of an
657    # already-added file, as the tensor reference should still exist.
658    write_fn(asset_filename, asset_tensor)
659
660    # In the cases where we are adding a duplicate, this will result in the
661    # last of the filepaths being the one used for copying the file to the
662    # SavedModel. Since the files in question are the same, it doesn't matter
663    # either way.
664    asset_filename_map[asset_filename] = asset_source_filepath
665
666  tf_logging.info("Assets added to graph.")
667  return asset_filename_map
668
669
670def get_asset_filename_to_add(asset_filepath, asset_filename_map):
671  """Get a unique basename to add to the SavedModel if this file is unseen.
672
673  Assets come from users as full paths, and we save them out to the
674  SavedModel as basenames. In some cases, the basenames collide. Here,
675  we dedupe asset basenames by first checking if the file is the same,
676  and, if different, generate and return an index-suffixed basename
677  that can be used to add the asset to the SavedModel.
678
679  Args:
680    asset_filepath: the full path to the asset that is being saved
681    asset_filename_map: a dict of filenames used for saving the asset in
682      the SavedModel to full paths from which the filenames were derived.
683
684  Returns:
685    Uniquified filename string if the file is not a duplicate, or the original
686    filename if the file has already been seen and saved.
687  """
688  asset_filename = os.path.basename(asset_filepath)
689
690  if asset_filename not in asset_filename_map:
691    # This is an unseen asset. Safe to add.
692    return asset_filename
693
694  other_asset_filepath = asset_filename_map[asset_filename]
695  if other_asset_filepath == asset_filepath:
696    # This is the same file, stored twice in the list. No need
697    # to make unique.
698    return asset_filename
699
700  # Else, asset_filename is in the map, and the filepath is different. Dedupe.
701  if not file_io.filecmp(asset_filepath, other_asset_filepath):
702    # Files are different; dedupe filenames.
703    return _get_unique_asset_filename(asset_filename, asset_filename_map)
704
705  # Files are the same; don't make unique.
706  return asset_filename
707
708
709def _get_unique_asset_filename(asset_filename, asset_filename_map):
710  i = 1
711  unique_filename = asset_filename
712  while unique_filename in asset_filename_map:
713    unique_filename = compat.as_bytes("_").join(
714        [compat.as_bytes(asset_filename), compat.as_bytes(str(i))])
715    i += 1
716  return unique_filename
717
718
719def _asset_path_from_tensor(path_tensor):
720  """Returns the filepath value stored in constant `path_tensor`.
721
722  Args:
723    path_tensor: Tensor of a file-path.
724
725  Returns:
726    The string value i.e. path of the tensor, if valid.
727
728  Raises:
729    TypeError if tensor does not match expected op type, dtype or value.
730  """
731  if not isinstance(path_tensor, ops.Tensor):
732    raise TypeError("Asset path tensor must be a Tensor.")
733  if path_tensor.op.type != "Const":
734    raise TypeError("Asset path tensor must be of type constant.")
735  if path_tensor.dtype != dtypes.string:
736    raise TypeError("Asset path tensor must be of dtype string.")
737  str_values = path_tensor.op.get_attr("value").string_val
738  if len(str_values) != 1:
739    raise TypeError("Asset path tensor must be a scalar.")
740  return str_values[0]
741
742
743def _add_asset_to_metagraph(meta_graph_def, asset_filename, asset_tensor):
744  """Builds an asset proto and adds it to the meta graph def.
745
746  Args:
747    meta_graph_def: The meta graph def to which the asset will be added.
748    asset_filename: The filename of the asset to be added.
749    asset_tensor: The asset tensor used to populate the tensor info of the asset
750      proto.
751  """
752  asset_proto = meta_graph_def.asset_file_def.add()
753  asset_proto.filename = asset_filename
754  asset_proto.tensor_info.name = asset_tensor.name
755
756
757def copy_assets_to_destination_dir(asset_filename_map, destination_dir):
758  """Copy all assets from source path to destination path."""
759  assets_destination_dir = saved_model_utils.get_or_create_assets_dir(
760      destination_dir)
761
762  # Copy each asset from source path to destination path.
763  for asset_basename, asset_source_filepath in asset_filename_map.items():
764    asset_destination_filepath = os.path.join(
765        compat.as_bytes(assets_destination_dir),
766        compat.as_bytes(asset_basename))
767
768    # Only copy the asset file to the destination if it does not already
769    # exist. This is to ensure that an asset with the same name defined as
770    # part of multiple graphs is only copied the first time.
771    if not file_io.file_exists(asset_destination_filepath):
772      file_io.copy(asset_source_filepath, asset_destination_filepath)
773
774  tf_logging.info("Assets written to: %s",
775                  compat.as_text(assets_destination_dir))
776
777
778def _add_asset_to_collection(asset_filename, asset_tensor):
779  """Builds an asset proto and adds it to the asset collection of the graph.
780
781  Args:
782    asset_filename: The filename of the asset to be added.
783    asset_tensor: The asset tensor used to populate the tensor info of the
784        asset proto.
785  """
786  asset_proto = meta_graph_pb2.AssetFileDef()
787  asset_proto.filename = asset_filename
788  asset_proto.tensor_info.name = asset_tensor.name
789
790  asset_any_proto = Any()
791  asset_any_proto.Pack(asset_proto)
792  ops.add_to_collection(constants.ASSETS_KEY, asset_any_proto)
793
794
795def _add_op_to_signature_def_map(signature_def_map, op, key):
796  if op is not None:
797    signature_def_map[key] = signature_def_utils.op_signature_def(op, key)
798