1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3 
4 © Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6 
7  1.    INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18 
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28 
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33 
34 2.    COPYRIGHT LICENSE
35 
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39 
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42 
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48 
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51 
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54 
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60 
61 3.    NO PATENT LICENSE
62 
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67 
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70 
71 4.    DISCLAIMER
72 
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83 
84 5.    CONTACT INFORMATION
85 
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90 
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94 
95 /******************* Library for basic calculation routines ********************
96 
97    Author(s):   M. Lohwasser, M. Gayer
98 
99    Description:
100 
101 *******************************************************************************/
102 
103 #include "fft_rad2.h"
104 
105 #include "scramble.h"
106 
107 #define __FFT_RAD2_CPP__
108 
109 #if defined(__arm__)
110 #include "arm/fft_rad2_arm.cpp"
111 
112 #elif defined(__GNUC__) && defined(__mips__) && defined(__mips_dsp)
113 #include "mips/fft_rad2_mips.cpp"
114 
115 #endif
116 
117 /*****************************************************************************
118 
119     functionname: dit_fft (analysis)
120     description:  dit-tukey-algorithm
121                   scrambles data at entry
122                   i.e. loop is made with scrambled data
123     returns:
124     input:
125     output:
126 
127 *****************************************************************************/
128 
129 #ifndef FUNCTION_dit_fft
130 
dit_fft(FIXP_DBL * x,const INT ldn,const FIXP_STP * trigdata,const INT trigDataSize)131 void dit_fft(FIXP_DBL *x, const INT ldn, const FIXP_STP *trigdata,
132              const INT trigDataSize) {
133   const INT n = 1 << ldn;
134   INT trigstep, i, ldm;
135 
136   C_ALLOC_ALIGNED_CHECK(x);
137 
138   scramble(x, n);
139   /*
140    * 1+2 stage radix 4
141    */
142 
143   for (i = 0; i < n * 2; i += 8) {
144     FIXP_DBL a00, a10, a20, a30;
145     a00 = (x[i + 0] + x[i + 2]) >> 1; /* Re A + Re B */
146     a10 = (x[i + 4] + x[i + 6]) >> 1; /* Re C + Re D */
147     a20 = (x[i + 1] + x[i + 3]) >> 1; /* Im A + Im B */
148     a30 = (x[i + 5] + x[i + 7]) >> 1; /* Im C + Im D */
149 
150     x[i + 0] = a00 + a10; /* Re A' = Re A + Re B + Re C + Re D */
151     x[i + 4] = a00 - a10; /* Re C' = Re A + Re B - Re C - Re D */
152     x[i + 1] = a20 + a30; /* Im A' = Im A + Im B + Im C + Im D */
153     x[i + 5] = a20 - a30; /* Im C' = Im A + Im B - Im C - Im D */
154 
155     a00 = a00 - x[i + 2]; /* Re A - Re B */
156     a10 = a10 - x[i + 6]; /* Re C - Re D */
157     a20 = a20 - x[i + 3]; /* Im A - Im B */
158     a30 = a30 - x[i + 7]; /* Im C - Im D */
159 
160     x[i + 2] = a00 + a30; /* Re B' = Re A - Re B + Im C - Im D */
161     x[i + 6] = a00 - a30; /* Re D' = Re A - Re B - Im C + Im D */
162     x[i + 3] = a20 - a10; /* Im B' = Im A - Im B - Re C + Re D */
163     x[i + 7] = a20 + a10; /* Im D' = Im A - Im B + Re C - Re D */
164   }
165 
166   for (ldm = 3; ldm <= ldn; ++ldm) {
167     INT m = (1 << ldm);
168     INT mh = (m >> 1);
169     INT j, r;
170 
171     trigstep = ((trigDataSize << 2) >> ldm);
172 
173     FDK_ASSERT(trigstep > 0);
174 
175     /* Do first iteration with c=1.0 and s=0.0 separately to avoid loosing to
176        much precision. Beware: The impact on the overal FFT precision is rather
177        large. */
178     { /* block 1 */
179 
180       j = 0;
181 
182       for (r = 0; r < n; r += m) {
183         INT t1 = (r + j) << 1;
184         INT t2 = t1 + (mh << 1);
185         FIXP_DBL vr, vi, ur, ui;
186 
187         // cplxMultDiv2(&vi, &vr, x[t2+1], x[t2], (FIXP_SGL)1.0, (FIXP_SGL)0.0);
188         vi = x[t2 + 1] >> 1;
189         vr = x[t2] >> 1;
190 
191         ur = x[t1] >> 1;
192         ui = x[t1 + 1] >> 1;
193 
194         x[t1] = ur + vr;
195         x[t1 + 1] = ui + vi;
196 
197         x[t2] = ur - vr;
198         x[t2 + 1] = ui - vi;
199 
200         t1 += mh;
201         t2 = t1 + (mh << 1);
202 
203         // cplxMultDiv2(&vr, &vi, x[t2+1], x[t2], (FIXP_SGL)1.0, (FIXP_SGL)0.0);
204         vr = x[t2 + 1] >> 1;
205         vi = x[t2] >> 1;
206 
207         ur = x[t1] >> 1;
208         ui = x[t1 + 1] >> 1;
209 
210         x[t1] = ur + vr;
211         x[t1 + 1] = ui - vi;
212 
213         x[t2] = ur - vr;
214         x[t2 + 1] = ui + vi;
215       }
216 
217     } /* end of  block 1 */
218 
219     for (j = 1; j < mh / 4; ++j) {
220       FIXP_STP cs;
221 
222       cs = trigdata[j * trigstep];
223 
224       for (r = 0; r < n; r += m) {
225         INT t1 = (r + j) << 1;
226         INT t2 = t1 + (mh << 1);
227         FIXP_DBL vr, vi, ur, ui;
228 
229         cplxMultDiv2(&vi, &vr, x[t2 + 1], x[t2], cs);
230 
231         ur = x[t1] >> 1;
232         ui = x[t1 + 1] >> 1;
233 
234         x[t1] = ur + vr;
235         x[t1 + 1] = ui + vi;
236 
237         x[t2] = ur - vr;
238         x[t2 + 1] = ui - vi;
239 
240         t1 += mh;
241         t2 = t1 + (mh << 1);
242 
243         cplxMultDiv2(&vr, &vi, x[t2 + 1], x[t2], cs);
244 
245         ur = x[t1] >> 1;
246         ui = x[t1 + 1] >> 1;
247 
248         x[t1] = ur + vr;
249         x[t1 + 1] = ui - vi;
250 
251         x[t2] = ur - vr;
252         x[t2 + 1] = ui + vi;
253 
254         /* Same as above but for t1,t2 with j>mh/4 and thus cs swapped */
255         t1 = (r + mh / 2 - j) << 1;
256         t2 = t1 + (mh << 1);
257 
258         cplxMultDiv2(&vi, &vr, x[t2], x[t2 + 1], cs);
259 
260         ur = x[t1] >> 1;
261         ui = x[t1 + 1] >> 1;
262 
263         x[t1] = ur + vr;
264         x[t1 + 1] = ui - vi;
265 
266         x[t2] = ur - vr;
267         x[t2 + 1] = ui + vi;
268 
269         t1 += mh;
270         t2 = t1 + (mh << 1);
271 
272         cplxMultDiv2(&vr, &vi, x[t2], x[t2 + 1], cs);
273 
274         ur = x[t1] >> 1;
275         ui = x[t1 + 1] >> 1;
276 
277         x[t1] = ur - vr;
278         x[t1 + 1] = ui - vi;
279 
280         x[t2] = ur + vr;
281         x[t2 + 1] = ui + vi;
282       }
283     }
284 
285     { /* block 2 */
286       j = mh / 4;
287 
288       for (r = 0; r < n; r += m) {
289         INT t1 = (r + j) << 1;
290         INT t2 = t1 + (mh << 1);
291         FIXP_DBL vr, vi, ur, ui;
292 
293         cplxMultDiv2(&vi, &vr, x[t2 + 1], x[t2], STC(0x5a82799a),
294                      STC(0x5a82799a));
295 
296         ur = x[t1] >> 1;
297         ui = x[t1 + 1] >> 1;
298 
299         x[t1] = ur + vr;
300         x[t1 + 1] = ui + vi;
301 
302         x[t2] = ur - vr;
303         x[t2 + 1] = ui - vi;
304 
305         t1 += mh;
306         t2 = t1 + (mh << 1);
307 
308         cplxMultDiv2(&vr, &vi, x[t2 + 1], x[t2], STC(0x5a82799a),
309                      STC(0x5a82799a));
310 
311         ur = x[t1] >> 1;
312         ui = x[t1 + 1] >> 1;
313 
314         x[t1] = ur + vr;
315         x[t1 + 1] = ui - vi;
316 
317         x[t2] = ur - vr;
318         x[t2 + 1] = ui + vi;
319       }
320     } /* end of block 2 */
321   }
322 }
323 
324 #endif
325