1 //===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
11 /// FreeBSD-specific code.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "sanitizer_common/sanitizer_platform.h"
16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
17 
18 #include "hwasan.h"
19 #include "hwasan_dynamic_shadow.h"
20 #include "hwasan_interface_internal.h"
21 #include "hwasan_mapping.h"
22 #include "hwasan_report.h"
23 #include "hwasan_thread.h"
24 #include "hwasan_thread_list.h"
25 
26 #include <dlfcn.h>
27 #include <elf.h>
28 #include <link.h>
29 #include <pthread.h>
30 #include <signal.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <sys/resource.h>
34 #include <sys/time.h>
35 #include <unistd.h>
36 #include <unwind.h>
37 #include <sys/prctl.h>
38 #include <errno.h>
39 
40 #include "sanitizer_common/sanitizer_common.h"
41 #include "sanitizer_common/sanitizer_procmaps.h"
42 
43 // Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
44 //
45 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
46 //   Not currently tested.
47 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
48 //   Integration tests downstream exist.
49 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
50 //    Tested with check-hwasan on x86_64-linux.
51 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
52 //    Tested with check-hwasan on aarch64-linux-android.
53 #if !SANITIZER_ANDROID
54 SANITIZER_INTERFACE_ATTRIBUTE
55 THREADLOCAL uptr __hwasan_tls;
56 #endif
57 
58 namespace __hwasan {
59 
60 // With the zero shadow base we can not actually map pages starting from 0.
61 // This constant is somewhat arbitrary.
62 constexpr uptr kZeroBaseShadowStart = 0;
63 constexpr uptr kZeroBaseMaxShadowStart = 1 << 18;
64 
ProtectGap(uptr addr,uptr size)65 static void ProtectGap(uptr addr, uptr size) {
66   __sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart,
67                           kZeroBaseMaxShadowStart);
68 }
69 
70 uptr kLowMemStart;
71 uptr kLowMemEnd;
72 uptr kLowShadowEnd;
73 uptr kLowShadowStart;
74 uptr kHighShadowStart;
75 uptr kHighShadowEnd;
76 uptr kHighMemStart;
77 uptr kHighMemEnd;
78 
PrintRange(uptr start,uptr end,const char * name)79 static void PrintRange(uptr start, uptr end, const char *name) {
80   Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
81 }
82 
PrintAddressSpaceLayout()83 static void PrintAddressSpaceLayout() {
84   PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
85   if (kHighShadowEnd + 1 < kHighMemStart)
86     PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
87   else
88     CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
89   PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
90   if (kLowShadowEnd + 1 < kHighShadowStart)
91     PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
92   else
93     CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
94   PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
95   if (kLowMemEnd + 1 < kLowShadowStart)
96     PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
97   else
98     CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
99   PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
100   CHECK_EQ(0, kLowMemStart);
101 }
102 
GetHighMemEnd()103 static uptr GetHighMemEnd() {
104   // HighMem covers the upper part of the address space.
105   uptr max_address = GetMaxUserVirtualAddress();
106   // Adjust max address to make sure that kHighMemEnd and kHighMemStart are
107   // properly aligned:
108   max_address |= (GetMmapGranularity() << kShadowScale) - 1;
109   return max_address;
110 }
111 
InitializeShadowBaseAddress(uptr shadow_size_bytes)112 static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
113   __hwasan_shadow_memory_dynamic_address =
114       FindDynamicShadowStart(shadow_size_bytes);
115 }
116 
InitPrctl()117 void InitPrctl() {
118 #define PR_SET_TAGGED_ADDR_CTRL 55
119 #define PR_GET_TAGGED_ADDR_CTRL 56
120 #define PR_TAGGED_ADDR_ENABLE (1UL << 0)
121   // Check we're running on a kernel that can use the tagged address ABI.
122   if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) == (uptr)-1 &&
123       errno == EINVAL) {
124 #if SANITIZER_ANDROID
125     // Some older Android kernels have the tagged pointer ABI on
126     // unconditionally, and hence don't have the tagged-addr prctl while still
127     // allow the ABI.
128     // If targeting Android and the prctl is not around we assume this is the
129     // case.
130     return;
131 #else
132     Printf(
133         "FATAL: "
134         "HWAddressSanitizer requires a kernel with tagged address ABI.\n");
135     Die();
136 #endif
137   }
138 
139   // Turn on the tagged address ABI.
140   if (internal_prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE, 0, 0, 0) ==
141           (uptr)-1 ||
142       !internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0)) {
143     Printf(
144         "FATAL: HWAddressSanitizer failed to enable tagged address syscall "
145         "ABI.\nSuggest check `sysctl abi.tagged_addr_disabled` "
146         "configuration.\n");
147     Die();
148   }
149 #undef PR_SET_TAGGED_ADDR_CTRL
150 #undef PR_GET_TAGGED_ADDR_CTRL
151 #undef PR_TAGGED_ADDR_ENABLE
152 }
153 
InitShadow()154 bool InitShadow() {
155   // Define the entire memory range.
156   kHighMemEnd = GetHighMemEnd();
157 
158   // Determine shadow memory base offset.
159   InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));
160 
161   // Place the low memory first.
162   kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
163   kLowMemStart = 0;
164 
165   // Define the low shadow based on the already placed low memory.
166   kLowShadowEnd = MemToShadow(kLowMemEnd);
167   kLowShadowStart = __hwasan_shadow_memory_dynamic_address;
168 
169   // High shadow takes whatever memory is left up there (making sure it is not
170   // interfering with low memory in the fixed case).
171   kHighShadowEnd = MemToShadow(kHighMemEnd);
172   kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;
173 
174   // High memory starts where allocated shadow allows.
175   kHighMemStart = ShadowToMem(kHighShadowStart);
176 
177   // Check the sanity of the defined memory ranges (there might be gaps).
178   CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
179   CHECK_GT(kHighMemStart, kHighShadowEnd);
180   CHECK_GT(kHighShadowEnd, kHighShadowStart);
181   CHECK_GT(kHighShadowStart, kLowMemEnd);
182   CHECK_GT(kLowMemEnd, kLowMemStart);
183   CHECK_GT(kLowShadowEnd, kLowShadowStart);
184   CHECK_GT(kLowShadowStart, kLowMemEnd);
185 
186   if (Verbosity())
187     PrintAddressSpaceLayout();
188 
189   // Reserve shadow memory.
190   ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
191   ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
192 
193   // Protect all the gaps.
194   ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
195   if (kLowMemEnd + 1 < kLowShadowStart)
196     ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
197   if (kLowShadowEnd + 1 < kHighShadowStart)
198     ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
199   if (kHighShadowEnd + 1 < kHighMemStart)
200     ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
201 
202   return true;
203 }
204 
InitThreads()205 void InitThreads() {
206   CHECK(__hwasan_shadow_memory_dynamic_address);
207   uptr guard_page_size = GetMmapGranularity();
208   uptr thread_space_start =
209       __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
210   uptr thread_space_end =
211       __hwasan_shadow_memory_dynamic_address - guard_page_size;
212   ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
213                            "hwasan threads", /*madvise_shadow*/ false);
214   ProtectGap(thread_space_end,
215              __hwasan_shadow_memory_dynamic_address - thread_space_end);
216   InitThreadList(thread_space_start, thread_space_end - thread_space_start);
217 }
218 
MemIsApp(uptr p)219 bool MemIsApp(uptr p) {
220   CHECK(GetTagFromPointer(p) == 0);
221   return p >= kHighMemStart || (p >= kLowMemStart && p <= kLowMemEnd);
222 }
223 
HwasanAtExit(void)224 static void HwasanAtExit(void) {
225   if (common_flags()->print_module_map)
226     DumpProcessMap();
227   if (flags()->print_stats && (flags()->atexit || hwasan_report_count > 0))
228     ReportStats();
229   if (hwasan_report_count > 0) {
230     // ReportAtExitStatistics();
231     if (common_flags()->exitcode)
232       internal__exit(common_flags()->exitcode);
233   }
234 }
235 
InstallAtExitHandler()236 void InstallAtExitHandler() {
237   atexit(HwasanAtExit);
238 }
239 
240 // ---------------------- TSD ---------------- {{{1
241 
__hwasan_thread_enter()242 extern "C" void __hwasan_thread_enter() {
243   hwasanThreadList().CreateCurrentThread()->InitRandomState();
244 }
245 
__hwasan_thread_exit()246 extern "C" void __hwasan_thread_exit() {
247   Thread *t = GetCurrentThread();
248   // Make sure that signal handler can not see a stale current thread pointer.
249   atomic_signal_fence(memory_order_seq_cst);
250   if (t)
251     hwasanThreadList().ReleaseThread(t);
252 }
253 
254 #if HWASAN_WITH_INTERCEPTORS
255 static pthread_key_t tsd_key;
256 static bool tsd_key_inited = false;
257 
HwasanTSDThreadInit()258 void HwasanTSDThreadInit() {
259   if (tsd_key_inited)
260     CHECK_EQ(0, pthread_setspecific(tsd_key,
261                                     (void *)GetPthreadDestructorIterations()));
262 }
263 
HwasanTSDDtor(void * tsd)264 void HwasanTSDDtor(void *tsd) {
265   uptr iterations = (uptr)tsd;
266   if (iterations > 1) {
267     CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
268     return;
269   }
270   __hwasan_thread_exit();
271 }
272 
HwasanTSDInit()273 void HwasanTSDInit() {
274   CHECK(!tsd_key_inited);
275   tsd_key_inited = true;
276   CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
277 }
278 #else
HwasanTSDInit()279 void HwasanTSDInit() {}
HwasanTSDThreadInit()280 void HwasanTSDThreadInit() {}
281 #endif
282 
283 #if SANITIZER_ANDROID
GetCurrentThreadLongPtr()284 uptr *GetCurrentThreadLongPtr() {
285   return (uptr *)get_android_tls_ptr();
286 }
287 #else
GetCurrentThreadLongPtr()288 uptr *GetCurrentThreadLongPtr() {
289   return &__hwasan_tls;
290 }
291 #endif
292 
293 #if SANITIZER_ANDROID
AndroidTestTlsSlot()294 void AndroidTestTlsSlot() {
295   uptr kMagicValue = 0x010203040A0B0C0D;
296   uptr *tls_ptr = GetCurrentThreadLongPtr();
297   uptr old_value = *tls_ptr;
298   *tls_ptr = kMagicValue;
299   dlerror();
300   if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
301     Printf(
302         "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
303         "for dlerror().\n");
304     Die();
305   }
306   *tls_ptr = old_value;
307 }
308 #else
AndroidTestTlsSlot()309 void AndroidTestTlsSlot() {}
310 #endif
311 
GetCurrentThread()312 Thread *GetCurrentThread() {
313   uptr *ThreadLongPtr = GetCurrentThreadLongPtr();
314   if (UNLIKELY(*ThreadLongPtr == 0))
315     return nullptr;
316   auto *R = (StackAllocationsRingBuffer *)ThreadLongPtr;
317   return hwasanThreadList().GetThreadByBufferAddress((uptr)R->Next());
318 }
319 
320 struct AccessInfo {
321   uptr addr;
322   uptr size;
323   bool is_store;
324   bool is_load;
325   bool recover;
326 };
327 
GetAccessInfo(siginfo_t * info,ucontext_t * uc)328 static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
329   // Access type is passed in a platform dependent way (see below) and encoded
330   // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
331   // recoverable. Valid values of Y are 0 to 4, which are interpreted as
332   // log2(access_size), and 0xF, which means that access size is passed via
333   // platform dependent register (see below).
334 #if defined(__aarch64__)
335   // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
336   // access size is stored in X1 register. Access address is always in X0
337   // register.
338   uptr pc = (uptr)info->si_addr;
339   const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
340   if ((code & 0xff00) != 0x900)
341     return AccessInfo{}; // Not ours.
342 
343   const bool is_store = code & 0x10;
344   const bool recover = code & 0x20;
345   const uptr addr = uc->uc_mcontext.regs[0];
346   const unsigned size_log = code & 0xf;
347   if (size_log > 4 && size_log != 0xf)
348     return AccessInfo{}; // Not ours.
349   const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
350 
351 #elif defined(__x86_64__)
352   // Access type is encoded in the instruction following INT3 as
353   // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
354   // RSI register. Access address is always in RDI register.
355   uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
356   uint8_t *nop = (uint8_t*)pc;
357   if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40  ||
358       *(nop + 3) < 0x40)
359     return AccessInfo{}; // Not ours.
360   const unsigned code = *(nop + 3);
361 
362   const bool is_store = code & 0x10;
363   const bool recover = code & 0x20;
364   const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
365   const unsigned size_log = code & 0xf;
366   if (size_log > 4 && size_log != 0xf)
367     return AccessInfo{}; // Not ours.
368   const uptr size =
369       size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
370 
371 #else
372 # error Unsupported architecture
373 #endif
374 
375   return AccessInfo{addr, size, is_store, !is_store, recover};
376 }
377 
HandleTagMismatch(AccessInfo ai,uptr pc,uptr frame,ucontext_t * uc,uptr * registers_frame=nullptr)378 static void HandleTagMismatch(AccessInfo ai, uptr pc, uptr frame,
379                               ucontext_t *uc, uptr *registers_frame = nullptr) {
380   InternalMmapVector<BufferedStackTrace> stack_buffer(1);
381   BufferedStackTrace *stack = stack_buffer.data();
382   stack->Reset();
383   stack->Unwind(pc, frame, uc, common_flags()->fast_unwind_on_fatal);
384 
385   // The second stack frame contains the failure __hwasan_check function, as
386   // we have a stack frame for the registers saved in __hwasan_tag_mismatch that
387   // we wish to ignore. This (currently) only occurs on AArch64, as x64
388   // implementations use SIGTRAP to implement the failure, and thus do not go
389   // through the stack saver.
390   if (registers_frame && stack->trace && stack->size > 0) {
391     stack->trace++;
392     stack->size--;
393   }
394 
395   bool fatal = flags()->halt_on_error || !ai.recover;
396   ReportTagMismatch(stack, ai.addr, ai.size, ai.is_store, fatal,
397                     registers_frame);
398 }
399 
HwasanOnSIGTRAP(int signo,siginfo_t * info,ucontext_t * uc)400 static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
401   AccessInfo ai = GetAccessInfo(info, uc);
402   if (!ai.is_store && !ai.is_load)
403     return false;
404 
405   SignalContext sig{info, uc};
406   HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
407 
408 #if defined(__aarch64__)
409   uc->uc_mcontext.pc += 4;
410 #elif defined(__x86_64__)
411 #else
412 # error Unsupported architecture
413 #endif
414   return true;
415 }
416 
OnStackUnwind(const SignalContext & sig,const void *,BufferedStackTrace * stack)417 static void OnStackUnwind(const SignalContext &sig, const void *,
418                           BufferedStackTrace *stack) {
419   stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
420                 common_flags()->fast_unwind_on_fatal);
421 }
422 
HwasanOnDeadlySignal(int signo,void * info,void * context)423 void HwasanOnDeadlySignal(int signo, void *info, void *context) {
424   // Probably a tag mismatch.
425   if (signo == SIGTRAP)
426     if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t*)context))
427       return;
428 
429   HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
430 }
431 
432 
433 } // namespace __hwasan
434 
435 // Entry point for interoperability between __hwasan_tag_mismatch (ASM) and the
436 // rest of the mismatch handling code (C++).
__hwasan_tag_mismatch4(uptr addr,uptr access_info,uptr * registers_frame,size_t outsize)437 void __hwasan_tag_mismatch4(uptr addr, uptr access_info, uptr *registers_frame,
438                             size_t outsize) {
439   __hwasan::AccessInfo ai;
440   ai.is_store = access_info & 0x10;
441   ai.is_load = !ai.is_store;
442   ai.recover = access_info & 0x20;
443   ai.addr = addr;
444   if ((access_info & 0xf) == 0xf)
445     ai.size = outsize;
446   else
447     ai.size = 1 << (access_info & 0xf);
448 
449   __hwasan::HandleTagMismatch(ai, (uptr)__builtin_return_address(0),
450                               (uptr)__builtin_frame_address(0), nullptr,
451                               registers_frame);
452   __builtin_unreachable();
453 }
454 
455 #endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
456