1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included
14  * in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 
26 /**
27  * \file mipmap.c  mipmap generation and teximage resizing functions.
28  */
29 
30 #include "errors.h"
31 
32 #include "formats.h"
33 #include "glformats.h"
34 #include "mipmap.h"
35 #include "mtypes.h"
36 #include "teximage.h"
37 #include "texobj.h"
38 #include "texstore.h"
39 #include "image.h"
40 #include "macros.h"
41 #include "util/half_float.h"
42 #include "util/format_rgb9e5.h"
43 #include "util/format_r11g11b10f.h"
44 
45 
46 /**
47  * Compute the expected number of mipmap levels in the texture given
48  * the width/height/depth of the base image and the GL_TEXTURE_BASE_LEVEL/
49  * GL_TEXTURE_MAX_LEVEL settings.  This will tell us how many mipmap
50  * levels should be generated.
51  */
52 unsigned
_mesa_compute_num_levels(struct gl_context * ctx,struct gl_texture_object * texObj,GLenum target)53 _mesa_compute_num_levels(struct gl_context *ctx,
54                          struct gl_texture_object *texObj,
55                          GLenum target)
56 {
57    const struct gl_texture_image *baseImage;
58    GLuint numLevels;
59 
60    baseImage = _mesa_get_tex_image(ctx, texObj, target, texObj->BaseLevel);
61 
62    numLevels = texObj->BaseLevel + baseImage->MaxNumLevels;
63    numLevels = MIN2(numLevels, (GLuint) texObj->MaxLevel + 1);
64    if (texObj->Immutable)
65       numLevels = MIN2(numLevels, texObj->NumLevels);
66    assert(numLevels >= 1);
67 
68    return numLevels;
69 }
70 
71 static GLint
bytes_per_pixel(GLenum datatype,GLuint comps)72 bytes_per_pixel(GLenum datatype, GLuint comps)
73 {
74    GLint b;
75 
76    if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA ||
77        datatype == GL_UNSIGNED_INT_24_8_MESA)
78       return 4;
79 
80    b = _mesa_sizeof_packed_type(datatype);
81    assert(b >= 0);
82 
83    if (_mesa_type_is_packed(datatype))
84       return b;
85    else
86       return b * comps;
87 }
88 
89 
90 /**
91  * \name Support macros for do_row and do_row_3d
92  *
93  * The macro madness is here for two reasons.  First, it compacts the code
94  * slightly.  Second, it makes it much easier to adjust the specifics of the
95  * filter to tune the rounding characteristics.
96  */
97 /*@{*/
98 #define DECLARE_ROW_POINTERS(t, e) \
99       const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
100       const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
101       const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
102       const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
103       t(*dst)[e] = (t(*)[e]) dstRow
104 
105 #define DECLARE_ROW_POINTERS0(t) \
106       const t *rowA = (const t *) srcRowA; \
107       const t *rowB = (const t *) srcRowB; \
108       const t *rowC = (const t *) srcRowC; \
109       const t *rowD = (const t *) srcRowD; \
110       t *dst = (t *) dstRow
111 
112 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
113    ((unsigned) Aj + (unsigned) Ak \
114     + (unsigned) Bj + (unsigned) Bk \
115     + (unsigned) Cj + (unsigned) Ck \
116     + (unsigned) Dj + (unsigned) Dk \
117     + 4) >> 3
118 
119 #define FILTER_3D(e) \
120    do { \
121       dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
122                                 rowB[j][e], rowB[k][e], \
123                                 rowC[j][e], rowC[k][e], \
124                                 rowD[j][e], rowD[k][e]); \
125    } while(0)
126 
127 #define FILTER_SUM_3D_SIGNED(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
128    (Aj + Ak \
129     + Bj + Bk \
130     + Cj + Ck \
131     + Dj + Dk \
132     + 4) / 8
133 
134 #define FILTER_3D_SIGNED(e) \
135    do { \
136       dst[i][e] = FILTER_SUM_3D_SIGNED(rowA[j][e], rowA[k][e], \
137                                        rowB[j][e], rowB[k][e], \
138                                        rowC[j][e], rowC[k][e], \
139                                        rowD[j][e], rowD[k][e]); \
140    } while(0)
141 
142 #define FILTER_F_3D(e) \
143    do { \
144       dst[i][e] = (rowA[j][e] + rowA[k][e] \
145                    + rowB[j][e] + rowB[k][e] \
146                    + rowC[j][e] + rowC[k][e] \
147                    + rowD[j][e] + rowD[k][e]) * 0.125F; \
148    } while(0)
149 
150 #define FILTER_HF_3D(e) \
151    do { \
152       const GLfloat aj = _mesa_half_to_float(rowA[j][e]); \
153       const GLfloat ak = _mesa_half_to_float(rowA[k][e]); \
154       const GLfloat bj = _mesa_half_to_float(rowB[j][e]); \
155       const GLfloat bk = _mesa_half_to_float(rowB[k][e]); \
156       const GLfloat cj = _mesa_half_to_float(rowC[j][e]); \
157       const GLfloat ck = _mesa_half_to_float(rowC[k][e]); \
158       const GLfloat dj = _mesa_half_to_float(rowD[j][e]); \
159       const GLfloat dk = _mesa_half_to_float(rowD[k][e]); \
160       dst[i][e] = _mesa_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
161                                       * 0.125F); \
162    } while(0)
163 /*@}*/
164 
165 
166 /**
167  * Average together two rows of a source image to produce a single new
168  * row in the dest image.  It's legal for the two source rows to point
169  * to the same data.  The source width must be equal to either the
170  * dest width or two times the dest width.
171  * \param datatype  GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
172  * \param comps  number of components per pixel (1..4)
173  */
174 static void
do_row(GLenum datatype,GLuint comps,GLint srcWidth,const GLvoid * srcRowA,const GLvoid * srcRowB,GLint dstWidth,GLvoid * dstRow)175 do_row(GLenum datatype, GLuint comps, GLint srcWidth,
176        const GLvoid *srcRowA, const GLvoid *srcRowB,
177        GLint dstWidth, GLvoid *dstRow)
178 {
179    const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
180    const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
181 
182    assert(comps >= 1);
183    assert(comps <= 4);
184 
185    /* This assertion is no longer valid with non-power-of-2 textures
186    assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
187    */
188 
189    if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
190       GLuint i, j, k;
191       const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
192       const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
193       GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
194       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
195            i++, j += colStride, k += colStride) {
196          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
197          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
198          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
199          dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
200       }
201    }
202    else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
203       GLuint i, j, k;
204       const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
205       const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
206       GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
207       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
208            i++, j += colStride, k += colStride) {
209          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
210          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
211          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
212       }
213    }
214    else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
215       GLuint i, j, k;
216       const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
217       const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
218       GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
219       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
220            i++, j += colStride, k += colStride) {
221          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
222          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
223       }
224    }
225    else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
226       GLuint i, j, k;
227       const GLubyte *rowA = (const GLubyte *) srcRowA;
228       const GLubyte *rowB = (const GLubyte *) srcRowB;
229       GLubyte *dst = (GLubyte *) dstRow;
230       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
231            i++, j += colStride, k += colStride) {
232          dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
233       }
234    }
235 
236    else if (datatype == GL_BYTE && comps == 4) {
237       GLuint i, j, k;
238       const GLbyte(*rowA)[4] = (const GLbyte(*)[4]) srcRowA;
239       const GLbyte(*rowB)[4] = (const GLbyte(*)[4]) srcRowB;
240       GLbyte(*dst)[4] = (GLbyte(*)[4]) dstRow;
241       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
242            i++, j += colStride, k += colStride) {
243          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
244          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
245          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
246          dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
247       }
248    }
249    else if (datatype == GL_BYTE && comps == 3) {
250       GLuint i, j, k;
251       const GLbyte(*rowA)[3] = (const GLbyte(*)[3]) srcRowA;
252       const GLbyte(*rowB)[3] = (const GLbyte(*)[3]) srcRowB;
253       GLbyte(*dst)[3] = (GLbyte(*)[3]) dstRow;
254       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
255            i++, j += colStride, k += colStride) {
256          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
257          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
258          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
259       }
260    }
261    else if (datatype == GL_BYTE && comps == 2) {
262       GLuint i, j, k;
263       const GLbyte(*rowA)[2] = (const GLbyte(*)[2]) srcRowA;
264       const GLbyte(*rowB)[2] = (const GLbyte(*)[2]) srcRowB;
265       GLbyte(*dst)[2] = (GLbyte(*)[2]) dstRow;
266       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
267            i++, j += colStride, k += colStride) {
268          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
269          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
270       }
271    }
272    else if (datatype == GL_BYTE && comps == 1) {
273       GLuint i, j, k;
274       const GLbyte *rowA = (const GLbyte *) srcRowA;
275       const GLbyte *rowB = (const GLbyte *) srcRowB;
276       GLbyte *dst = (GLbyte *) dstRow;
277       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
278            i++, j += colStride, k += colStride) {
279          dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
280       }
281    }
282 
283    else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
284       GLuint i, j, k;
285       const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
286       const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
287       GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
288       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
289            i++, j += colStride, k += colStride) {
290          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
291          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
292          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
293          dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
294       }
295    }
296    else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
297       GLuint i, j, k;
298       const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
299       const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
300       GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
301       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
302            i++, j += colStride, k += colStride) {
303          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
304          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
305          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
306       }
307    }
308    else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
309       GLuint i, j, k;
310       const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
311       const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
312       GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
313       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
314            i++, j += colStride, k += colStride) {
315          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
316          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
317       }
318    }
319    else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
320       GLuint i, j, k;
321       const GLushort *rowA = (const GLushort *) srcRowA;
322       const GLushort *rowB = (const GLushort *) srcRowB;
323       GLushort *dst = (GLushort *) dstRow;
324       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
325            i++, j += colStride, k += colStride) {
326          dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
327       }
328    }
329 
330    else if (datatype == GL_SHORT && comps == 4) {
331       GLuint i, j, k;
332       const GLshort(*rowA)[4] = (const GLshort(*)[4]) srcRowA;
333       const GLshort(*rowB)[4] = (const GLshort(*)[4]) srcRowB;
334       GLshort(*dst)[4] = (GLshort(*)[4]) dstRow;
335       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
336            i++, j += colStride, k += colStride) {
337          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
338          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
339          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
340          dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
341       }
342    }
343    else if (datatype == GL_SHORT && comps == 3) {
344       GLuint i, j, k;
345       const GLshort(*rowA)[3] = (const GLshort(*)[3]) srcRowA;
346       const GLshort(*rowB)[3] = (const GLshort(*)[3]) srcRowB;
347       GLshort(*dst)[3] = (GLshort(*)[3]) dstRow;
348       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
349            i++, j += colStride, k += colStride) {
350          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
351          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
352          dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
353       }
354    }
355    else if (datatype == GL_SHORT && comps == 2) {
356       GLuint i, j, k;
357       const GLshort(*rowA)[2] = (const GLshort(*)[2]) srcRowA;
358       const GLshort(*rowB)[2] = (const GLshort(*)[2]) srcRowB;
359       GLshort(*dst)[2] = (GLshort(*)[2]) dstRow;
360       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
361            i++, j += colStride, k += colStride) {
362          dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
363          dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
364       }
365    }
366    else if (datatype == GL_SHORT && comps == 1) {
367       GLuint i, j, k;
368       const GLshort *rowA = (const GLshort *) srcRowA;
369       const GLshort *rowB = (const GLshort *) srcRowB;
370       GLshort *dst = (GLshort *) dstRow;
371       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
372            i++, j += colStride, k += colStride) {
373          dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
374       }
375    }
376 
377    else if (datatype == GL_FLOAT && comps == 4) {
378       GLuint i, j, k;
379       const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
380       const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
381       GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
382       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
383            i++, j += colStride, k += colStride) {
384          dst[i][0] = (rowA[j][0] + rowA[k][0] +
385                       rowB[j][0] + rowB[k][0]) * 0.25F;
386          dst[i][1] = (rowA[j][1] + rowA[k][1] +
387                       rowB[j][1] + rowB[k][1]) * 0.25F;
388          dst[i][2] = (rowA[j][2] + rowA[k][2] +
389                       rowB[j][2] + rowB[k][2]) * 0.25F;
390          dst[i][3] = (rowA[j][3] + rowA[k][3] +
391                       rowB[j][3] + rowB[k][3]) * 0.25F;
392       }
393    }
394    else if (datatype == GL_FLOAT && comps == 3) {
395       GLuint i, j, k;
396       const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
397       const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
398       GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
399       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
400            i++, j += colStride, k += colStride) {
401          dst[i][0] = (rowA[j][0] + rowA[k][0] +
402                       rowB[j][0] + rowB[k][0]) * 0.25F;
403          dst[i][1] = (rowA[j][1] + rowA[k][1] +
404                       rowB[j][1] + rowB[k][1]) * 0.25F;
405          dst[i][2] = (rowA[j][2] + rowA[k][2] +
406                       rowB[j][2] + rowB[k][2]) * 0.25F;
407       }
408    }
409    else if (datatype == GL_FLOAT && comps == 2) {
410       GLuint i, j, k;
411       const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
412       const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
413       GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
414       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
415            i++, j += colStride, k += colStride) {
416          dst[i][0] = (rowA[j][0] + rowA[k][0] +
417                       rowB[j][0] + rowB[k][0]) * 0.25F;
418          dst[i][1] = (rowA[j][1] + rowA[k][1] +
419                       rowB[j][1] + rowB[k][1]) * 0.25F;
420       }
421    }
422    else if (datatype == GL_FLOAT && comps == 1) {
423       GLuint i, j, k;
424       const GLfloat *rowA = (const GLfloat *) srcRowA;
425       const GLfloat *rowB = (const GLfloat *) srcRowB;
426       GLfloat *dst = (GLfloat *) dstRow;
427       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
428            i++, j += colStride, k += colStride) {
429          dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
430       }
431    }
432 
433    else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
434       GLuint i, j, k, comp;
435       const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
436       const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
437       GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
438       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
439            i++, j += colStride, k += colStride) {
440          for (comp = 0; comp < 4; comp++) {
441             GLfloat aj, ak, bj, bk;
442             aj = _mesa_half_to_float(rowA[j][comp]);
443             ak = _mesa_half_to_float(rowA[k][comp]);
444             bj = _mesa_half_to_float(rowB[j][comp]);
445             bk = _mesa_half_to_float(rowB[k][comp]);
446             dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
447          }
448       }
449    }
450    else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
451       GLuint i, j, k, comp;
452       const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
453       const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
454       GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
455       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
456            i++, j += colStride, k += colStride) {
457          for (comp = 0; comp < 3; comp++) {
458             GLfloat aj, ak, bj, bk;
459             aj = _mesa_half_to_float(rowA[j][comp]);
460             ak = _mesa_half_to_float(rowA[k][comp]);
461             bj = _mesa_half_to_float(rowB[j][comp]);
462             bk = _mesa_half_to_float(rowB[k][comp]);
463             dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
464          }
465       }
466    }
467    else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
468       GLuint i, j, k, comp;
469       const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
470       const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
471       GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
472       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
473            i++, j += colStride, k += colStride) {
474          for (comp = 0; comp < 2; comp++) {
475             GLfloat aj, ak, bj, bk;
476             aj = _mesa_half_to_float(rowA[j][comp]);
477             ak = _mesa_half_to_float(rowA[k][comp]);
478             bj = _mesa_half_to_float(rowB[j][comp]);
479             bk = _mesa_half_to_float(rowB[k][comp]);
480             dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
481          }
482       }
483    }
484    else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
485       GLuint i, j, k;
486       const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
487       const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
488       GLhalfARB *dst = (GLhalfARB *) dstRow;
489       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
490            i++, j += colStride, k += colStride) {
491          GLfloat aj, ak, bj, bk;
492          aj = _mesa_half_to_float(rowA[j]);
493          ak = _mesa_half_to_float(rowA[k]);
494          bj = _mesa_half_to_float(rowB[j]);
495          bk = _mesa_half_to_float(rowB[k]);
496          dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
497       }
498    }
499 
500    else if (datatype == GL_UNSIGNED_INT && comps == 1) {
501       GLuint i, j, k;
502       const GLuint *rowA = (const GLuint *) srcRowA;
503       const GLuint *rowB = (const GLuint *) srcRowB;
504       GLuint *dst = (GLuint *) dstRow;
505       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
506            i++, j += colStride, k += colStride) {
507          dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
508       }
509    }
510 
511    else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
512       GLuint i, j, k;
513       const GLushort *rowA = (const GLushort *) srcRowA;
514       const GLushort *rowB = (const GLushort *) srcRowB;
515       GLushort *dst = (GLushort *) dstRow;
516       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
517            i++, j += colStride, k += colStride) {
518          const GLint rowAr0 = rowA[j] & 0x1f;
519          const GLint rowAr1 = rowA[k] & 0x1f;
520          const GLint rowBr0 = rowB[j] & 0x1f;
521          const GLint rowBr1 = rowB[k] & 0x1f;
522          const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
523          const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
524          const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
525          const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
526          const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
527          const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
528          const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
529          const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
530          const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
531          const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
532          const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
533          dst[i] = (blue << 11) | (green << 5) | red;
534       }
535    }
536    else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
537       GLuint i, j, k;
538       const GLushort *rowA = (const GLushort *) srcRowA;
539       const GLushort *rowB = (const GLushort *) srcRowB;
540       GLushort *dst = (GLushort *) dstRow;
541       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
542            i++, j += colStride, k += colStride) {
543          const GLint rowAr0 = rowA[j] & 0xf;
544          const GLint rowAr1 = rowA[k] & 0xf;
545          const GLint rowBr0 = rowB[j] & 0xf;
546          const GLint rowBr1 = rowB[k] & 0xf;
547          const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
548          const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
549          const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
550          const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
551          const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
552          const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
553          const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
554          const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
555          const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
556          const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
557          const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
558          const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
559          const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
560          const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
561          const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
562          const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
563          dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
564       }
565    }
566    else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
567       GLuint i, j, k;
568       const GLushort *rowA = (const GLushort *) srcRowA;
569       const GLushort *rowB = (const GLushort *) srcRowB;
570       GLushort *dst = (GLushort *) dstRow;
571       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
572            i++, j += colStride, k += colStride) {
573          const GLint rowAr0 = rowA[j] & 0x1f;
574          const GLint rowAr1 = rowA[k] & 0x1f;
575          const GLint rowBr0 = rowB[j] & 0x1f;
576          const GLint rowBr1 = rowB[k] & 0x1f;
577          const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
578          const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
579          const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
580          const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
581          const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
582          const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
583          const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
584          const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
585          const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
586          const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
587          const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
588          const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
589          const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
590          const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
591          const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
592          const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
593          dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
594       }
595    }
596    else if (datatype == GL_UNSIGNED_SHORT_5_5_5_1 && comps == 4) {
597       GLuint i, j, k;
598       const GLushort *rowA = (const GLushort *) srcRowA;
599       const GLushort *rowB = (const GLushort *) srcRowB;
600       GLushort *dst = (GLushort *) dstRow;
601       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
602            i++, j += colStride, k += colStride) {
603          const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
604          const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
605          const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
606          const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
607          const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
608          const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
609          const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
610          const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
611          const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
612          const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
613          const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
614          const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
615          const GLint rowAa0 = (rowA[j] & 0x1);
616          const GLint rowAa1 = (rowA[k] & 0x1);
617          const GLint rowBa0 = (rowB[j] & 0x1);
618          const GLint rowBa1 = (rowB[k] & 0x1);
619          const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
620          const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
621          const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
622          const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
623          dst[i] = (red << 11) | (green << 6) | (blue << 1) | alpha;
624       }
625    }
626 
627    else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
628       GLuint i, j, k;
629       const GLubyte *rowA = (const GLubyte *) srcRowA;
630       const GLubyte *rowB = (const GLubyte *) srcRowB;
631       GLubyte *dst = (GLubyte *) dstRow;
632       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
633            i++, j += colStride, k += colStride) {
634          const GLint rowAr0 = rowA[j] & 0x3;
635          const GLint rowAr1 = rowA[k] & 0x3;
636          const GLint rowBr0 = rowB[j] & 0x3;
637          const GLint rowBr1 = rowB[k] & 0x3;
638          const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
639          const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
640          const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
641          const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
642          const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
643          const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
644          const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
645          const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
646          const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
647          const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
648          const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
649          dst[i] = (blue << 5) | (green << 2) | red;
650       }
651    }
652 
653    else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) {
654       GLuint i, j, k;
655       const GLubyte *rowA = (const GLubyte *) srcRowA;
656       const GLubyte *rowB = (const GLubyte *) srcRowB;
657       GLubyte *dst = (GLubyte *) dstRow;
658       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
659            i++, j += colStride, k += colStride) {
660          const GLint rowAr0 = rowA[j] & 0xf;
661          const GLint rowAr1 = rowA[k] & 0xf;
662          const GLint rowBr0 = rowB[j] & 0xf;
663          const GLint rowBr1 = rowB[k] & 0xf;
664          const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
665          const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
666          const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
667          const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
668          const GLint r = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
669          const GLint g = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
670          dst[i] = (g << 4) | r;
671       }
672    }
673 
674    else if (datatype == GL_UNSIGNED_INT_2_10_10_10_REV && comps == 4) {
675       GLuint i, j, k;
676       const GLuint *rowA = (const GLuint *) srcRowA;
677       const GLuint *rowB = (const GLuint *) srcRowB;
678       GLuint *dst = (GLuint *) dstRow;
679       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
680            i++, j += colStride, k += colStride) {
681          const GLint rowAr0 = rowA[j] & 0x3ff;
682          const GLint rowAr1 = rowA[k] & 0x3ff;
683          const GLint rowBr0 = rowB[j] & 0x3ff;
684          const GLint rowBr1 = rowB[k] & 0x3ff;
685          const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff;
686          const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff;
687          const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff;
688          const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff;
689          const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff;
690          const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff;
691          const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff;
692          const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff;
693          const GLint rowAa0 = (rowA[j] >> 30) & 0x3;
694          const GLint rowAa1 = (rowA[k] >> 30) & 0x3;
695          const GLint rowBa0 = (rowB[j] >> 30) & 0x3;
696          const GLint rowBa1 = (rowB[k] >> 30) & 0x3;
697          const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
698          const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
699          const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
700          const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
701          dst[i] = (alpha << 30) | (blue << 20) | (green << 10) | red;
702       }
703    }
704 
705    else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) {
706       GLuint i, j, k;
707       const GLuint *rowA = (const GLuint*) srcRowA;
708       const GLuint *rowB = (const GLuint*) srcRowB;
709       GLuint *dst = (GLuint*)dstRow;
710       GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3];
711       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
712            i++, j += colStride, k += colStride) {
713          rgb9e5_to_float3(rowA[j], rowAj);
714          rgb9e5_to_float3(rowB[j], rowBj);
715          rgb9e5_to_float3(rowA[k], rowAk);
716          rgb9e5_to_float3(rowB[k], rowBk);
717          res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F;
718          res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F;
719          res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F;
720          dst[i] = float3_to_rgb9e5(res);
721       }
722    }
723 
724    else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) {
725       GLuint i, j, k;
726       const GLuint *rowA = (const GLuint*) srcRowA;
727       const GLuint *rowB = (const GLuint*) srcRowB;
728       GLuint *dst = (GLuint*)dstRow;
729       GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3];
730       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
731            i++, j += colStride, k += colStride) {
732          r11g11b10f_to_float3(rowA[j], rowAj);
733          r11g11b10f_to_float3(rowB[j], rowBj);
734          r11g11b10f_to_float3(rowA[k], rowAk);
735          r11g11b10f_to_float3(rowB[k], rowBk);
736          res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F;
737          res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F;
738          res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F;
739          dst[i] = float3_to_r11g11b10f(res);
740       }
741    }
742 
743    else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) {
744       GLuint i, j, k;
745       const GLfloat *rowA = (const GLfloat *) srcRowA;
746       const GLfloat *rowB = (const GLfloat *) srcRowB;
747       GLfloat *dst = (GLfloat *) dstRow;
748       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
749            i++, j += colStride, k += colStride) {
750          dst[i*2] = (rowA[j*2] + rowA[k*2] + rowB[j*2] + rowB[k*2]) * 0.25F;
751       }
752    }
753 
754    else if (datatype == GL_UNSIGNED_INT_24_8_MESA && comps == 2) {
755       GLuint i, j, k;
756       const GLuint *rowA = (const GLuint *) srcRowA;
757       const GLuint *rowB = (const GLuint *) srcRowB;
758       GLuint *dst = (GLuint *) dstRow;
759       /* note: averaging stencil values seems weird, but what else? */
760       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
761            i++, j += colStride, k += colStride) {
762          GLuint z = (((rowA[j] >> 8) + (rowA[k] >> 8) +
763                       (rowB[j] >> 8) + (rowB[k] >> 8)) / 4) << 8;
764          GLuint s = ((rowA[j] & 0xff) + (rowA[k] & 0xff) +
765                      (rowB[j] & 0xff) + (rowB[k] & 0xff)) / 4;
766          dst[i] = z | s;
767       }
768    }
769    else if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA && comps == 2) {
770       GLuint i, j, k;
771       const GLuint *rowA = (const GLuint *) srcRowA;
772       const GLuint *rowB = (const GLuint *) srcRowB;
773       GLuint *dst = (GLuint *) dstRow;
774       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
775            i++, j += colStride, k += colStride) {
776          GLuint z = ((rowA[j] & 0xffffff) + (rowA[k] & 0xffffff) +
777                      (rowB[j] & 0xffffff) + (rowB[k] & 0xffffff)) / 4;
778          GLuint s = (((rowA[j] >> 24) + (rowA[k] >> 24) +
779                       (rowB[j] >> 24) + (rowB[k] >> 24)) / 4) << 24;
780          dst[i] = z | s;
781       }
782    }
783 
784    else {
785       unreachable("bad format in do_row()");
786    }
787 }
788 
789 
790 /**
791  * Average together four rows of a source image to produce a single new
792  * row in the dest image.  It's legal for the two source rows to point
793  * to the same data.  The source width must be equal to either the
794  * dest width or two times the dest width.
795  *
796  * \param datatype  GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
797  *                  \c GL_FLOAT, etc.
798  * \param comps     number of components per pixel (1..4)
799  * \param srcWidth  Width of a row in the source data
800  * \param srcRowA   Pointer to one of the rows of source data
801  * \param srcRowB   Pointer to one of the rows of source data
802  * \param srcRowC   Pointer to one of the rows of source data
803  * \param srcRowD   Pointer to one of the rows of source data
804  * \param dstWidth  Width of a row in the destination data
805  * \param srcRowA   Pointer to the row of destination data
806  */
807 static void
do_row_3D(GLenum datatype,GLuint comps,GLint srcWidth,const GLvoid * srcRowA,const GLvoid * srcRowB,const GLvoid * srcRowC,const GLvoid * srcRowD,GLint dstWidth,GLvoid * dstRow)808 do_row_3D(GLenum datatype, GLuint comps, GLint srcWidth,
809           const GLvoid *srcRowA, const GLvoid *srcRowB,
810           const GLvoid *srcRowC, const GLvoid *srcRowD,
811           GLint dstWidth, GLvoid *dstRow)
812 {
813    const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
814    const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
815    GLuint i, j, k;
816 
817    assert(comps >= 1);
818    assert(comps <= 4);
819 
820    if ((datatype == GL_UNSIGNED_BYTE) && (comps == 4)) {
821       DECLARE_ROW_POINTERS(GLubyte, 4);
822 
823       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
824            i++, j += colStride, k += colStride) {
825          FILTER_3D(0);
826          FILTER_3D(1);
827          FILTER_3D(2);
828          FILTER_3D(3);
829       }
830    }
831    else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 3)) {
832       DECLARE_ROW_POINTERS(GLubyte, 3);
833 
834       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
835            i++, j += colStride, k += colStride) {
836          FILTER_3D(0);
837          FILTER_3D(1);
838          FILTER_3D(2);
839       }
840    }
841    else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 2)) {
842       DECLARE_ROW_POINTERS(GLubyte, 2);
843 
844       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
845            i++, j += colStride, k += colStride) {
846          FILTER_3D(0);
847          FILTER_3D(1);
848       }
849    }
850    else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 1)) {
851       DECLARE_ROW_POINTERS(GLubyte, 1);
852 
853       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
854            i++, j += colStride, k += colStride) {
855          FILTER_3D(0);
856       }
857    }
858    else if ((datatype == GL_BYTE) && (comps == 4)) {
859       DECLARE_ROW_POINTERS(GLbyte, 4);
860 
861       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
862            i++, j += colStride, k += colStride) {
863          FILTER_3D_SIGNED(0);
864          FILTER_3D_SIGNED(1);
865          FILTER_3D_SIGNED(2);
866          FILTER_3D_SIGNED(3);
867       }
868    }
869    else if ((datatype == GL_BYTE) && (comps == 3)) {
870       DECLARE_ROW_POINTERS(GLbyte, 3);
871 
872       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
873            i++, j += colStride, k += colStride) {
874          FILTER_3D_SIGNED(0);
875          FILTER_3D_SIGNED(1);
876          FILTER_3D_SIGNED(2);
877       }
878    }
879    else if ((datatype == GL_BYTE) && (comps == 2)) {
880       DECLARE_ROW_POINTERS(GLbyte, 2);
881 
882       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
883            i++, j += colStride, k += colStride) {
884          FILTER_3D_SIGNED(0);
885          FILTER_3D_SIGNED(1);
886        }
887    }
888    else if ((datatype == GL_BYTE) && (comps == 1)) {
889       DECLARE_ROW_POINTERS(GLbyte, 1);
890 
891       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
892            i++, j += colStride, k += colStride) {
893          FILTER_3D_SIGNED(0);
894       }
895    }
896    else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 4)) {
897       DECLARE_ROW_POINTERS(GLushort, 4);
898 
899       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
900            i++, j += colStride, k += colStride) {
901          FILTER_3D(0);
902          FILTER_3D(1);
903          FILTER_3D(2);
904          FILTER_3D(3);
905       }
906    }
907    else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 3)) {
908       DECLARE_ROW_POINTERS(GLushort, 3);
909 
910       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
911            i++, j += colStride, k += colStride) {
912          FILTER_3D(0);
913          FILTER_3D(1);
914          FILTER_3D(2);
915       }
916    }
917    else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 2)) {
918       DECLARE_ROW_POINTERS(GLushort, 2);
919 
920       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
921            i++, j += colStride, k += colStride) {
922          FILTER_3D(0);
923          FILTER_3D(1);
924       }
925    }
926    else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 1)) {
927       DECLARE_ROW_POINTERS(GLushort, 1);
928 
929       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
930            i++, j += colStride, k += colStride) {
931          FILTER_3D(0);
932       }
933    }
934    else if ((datatype == GL_SHORT) && (comps == 4)) {
935       DECLARE_ROW_POINTERS(GLshort, 4);
936 
937       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
938            i++, j += colStride, k += colStride) {
939          FILTER_3D(0);
940          FILTER_3D(1);
941          FILTER_3D(2);
942          FILTER_3D(3);
943       }
944    }
945    else if ((datatype == GL_SHORT) && (comps == 3)) {
946       DECLARE_ROW_POINTERS(GLshort, 3);
947 
948       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
949            i++, j += colStride, k += colStride) {
950          FILTER_3D(0);
951          FILTER_3D(1);
952          FILTER_3D(2);
953       }
954    }
955    else if ((datatype == GL_SHORT) && (comps == 2)) {
956       DECLARE_ROW_POINTERS(GLshort, 2);
957 
958       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
959            i++, j += colStride, k += colStride) {
960          FILTER_3D(0);
961          FILTER_3D(1);
962       }
963    }
964    else if ((datatype == GL_SHORT) && (comps == 1)) {
965       DECLARE_ROW_POINTERS(GLshort, 1);
966 
967       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
968            i++, j += colStride, k += colStride) {
969          FILTER_3D(0);
970       }
971    }
972    else if ((datatype == GL_FLOAT) && (comps == 4)) {
973       DECLARE_ROW_POINTERS(GLfloat, 4);
974 
975       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
976            i++, j += colStride, k += colStride) {
977          FILTER_F_3D(0);
978          FILTER_F_3D(1);
979          FILTER_F_3D(2);
980          FILTER_F_3D(3);
981       }
982    }
983    else if ((datatype == GL_FLOAT) && (comps == 3)) {
984       DECLARE_ROW_POINTERS(GLfloat, 3);
985 
986       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
987            i++, j += colStride, k += colStride) {
988          FILTER_F_3D(0);
989          FILTER_F_3D(1);
990          FILTER_F_3D(2);
991       }
992    }
993    else if ((datatype == GL_FLOAT) && (comps == 2)) {
994       DECLARE_ROW_POINTERS(GLfloat, 2);
995 
996       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
997            i++, j += colStride, k += colStride) {
998          FILTER_F_3D(0);
999          FILTER_F_3D(1);
1000       }
1001    }
1002    else if ((datatype == GL_FLOAT) && (comps == 1)) {
1003       DECLARE_ROW_POINTERS(GLfloat, 1);
1004 
1005       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1006            i++, j += colStride, k += colStride) {
1007          FILTER_F_3D(0);
1008       }
1009    }
1010    else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 4)) {
1011       DECLARE_ROW_POINTERS(GLhalfARB, 4);
1012 
1013       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1014            i++, j += colStride, k += colStride) {
1015          FILTER_HF_3D(0);
1016          FILTER_HF_3D(1);
1017          FILTER_HF_3D(2);
1018          FILTER_HF_3D(3);
1019       }
1020    }
1021    else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 3)) {
1022       DECLARE_ROW_POINTERS(GLhalfARB, 3);
1023 
1024       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1025            i++, j += colStride, k += colStride) {
1026          FILTER_HF_3D(0);
1027          FILTER_HF_3D(1);
1028          FILTER_HF_3D(2);
1029       }
1030    }
1031    else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 2)) {
1032       DECLARE_ROW_POINTERS(GLhalfARB, 2);
1033 
1034       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1035            i++, j += colStride, k += colStride) {
1036          FILTER_HF_3D(0);
1037          FILTER_HF_3D(1);
1038       }
1039    }
1040    else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 1)) {
1041       DECLARE_ROW_POINTERS(GLhalfARB, 1);
1042 
1043       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1044            i++, j += colStride, k += colStride) {
1045          FILTER_HF_3D(0);
1046       }
1047    }
1048    else if ((datatype == GL_UNSIGNED_INT) && (comps == 1)) {
1049       const GLuint *rowA = (const GLuint *) srcRowA;
1050       const GLuint *rowB = (const GLuint *) srcRowB;
1051       const GLuint *rowC = (const GLuint *) srcRowC;
1052       const GLuint *rowD = (const GLuint *) srcRowD;
1053       GLfloat *dst = (GLfloat *) dstRow;
1054 
1055       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1056            i++, j += colStride, k += colStride) {
1057          const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
1058                                + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
1059                                + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
1060                                + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
1061          dst[i] = (GLfloat)((double) tmp * 0.125);
1062       }
1063    }
1064    else if ((datatype == GL_UNSIGNED_SHORT_5_6_5) && (comps == 3)) {
1065       DECLARE_ROW_POINTERS0(GLushort);
1066 
1067       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1068            i++, j += colStride, k += colStride) {
1069          const GLint rowAr0 = rowA[j] & 0x1f;
1070          const GLint rowAr1 = rowA[k] & 0x1f;
1071          const GLint rowBr0 = rowB[j] & 0x1f;
1072          const GLint rowBr1 = rowB[k] & 0x1f;
1073          const GLint rowCr0 = rowC[j] & 0x1f;
1074          const GLint rowCr1 = rowC[k] & 0x1f;
1075          const GLint rowDr0 = rowD[j] & 0x1f;
1076          const GLint rowDr1 = rowD[k] & 0x1f;
1077          const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
1078          const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
1079          const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
1080          const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
1081          const GLint rowCg0 = (rowC[j] >> 5) & 0x3f;
1082          const GLint rowCg1 = (rowC[k] >> 5) & 0x3f;
1083          const GLint rowDg0 = (rowD[j] >> 5) & 0x3f;
1084          const GLint rowDg1 = (rowD[k] >> 5) & 0x3f;
1085          const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
1086          const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
1087          const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
1088          const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
1089          const GLint rowCb0 = (rowC[j] >> 11) & 0x1f;
1090          const GLint rowCb1 = (rowC[k] >> 11) & 0x1f;
1091          const GLint rowDb0 = (rowD[j] >> 11) & 0x1f;
1092          const GLint rowDb1 = (rowD[k] >> 11) & 0x1f;
1093          const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1094                                        rowCr0, rowCr1, rowDr0, rowDr1);
1095          const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1096                                        rowCg0, rowCg1, rowDg0, rowDg1);
1097          const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1098                                        rowCb0, rowCb1, rowDb0, rowDb1);
1099          dst[i] = (b << 11) | (g << 5) | r;
1100       }
1101    }
1102    else if ((datatype == GL_UNSIGNED_SHORT_4_4_4_4) && (comps == 4)) {
1103       DECLARE_ROW_POINTERS0(GLushort);
1104 
1105       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1106            i++, j += colStride, k += colStride) {
1107          const GLint rowAr0 = rowA[j] & 0xf;
1108          const GLint rowAr1 = rowA[k] & 0xf;
1109          const GLint rowBr0 = rowB[j] & 0xf;
1110          const GLint rowBr1 = rowB[k] & 0xf;
1111          const GLint rowCr0 = rowC[j] & 0xf;
1112          const GLint rowCr1 = rowC[k] & 0xf;
1113          const GLint rowDr0 = rowD[j] & 0xf;
1114          const GLint rowDr1 = rowD[k] & 0xf;
1115          const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
1116          const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
1117          const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
1118          const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
1119          const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
1120          const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
1121          const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
1122          const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
1123          const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
1124          const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
1125          const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
1126          const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
1127          const GLint rowCb0 = (rowC[j] >> 8) & 0xf;
1128          const GLint rowCb1 = (rowC[k] >> 8) & 0xf;
1129          const GLint rowDb0 = (rowD[j] >> 8) & 0xf;
1130          const GLint rowDb1 = (rowD[k] >> 8) & 0xf;
1131          const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
1132          const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
1133          const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
1134          const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
1135          const GLint rowCa0 = (rowC[j] >> 12) & 0xf;
1136          const GLint rowCa1 = (rowC[k] >> 12) & 0xf;
1137          const GLint rowDa0 = (rowD[j] >> 12) & 0xf;
1138          const GLint rowDa1 = (rowD[k] >> 12) & 0xf;
1139          const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1140                                        rowCr0, rowCr1, rowDr0, rowDr1);
1141          const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1142                                        rowCg0, rowCg1, rowDg0, rowDg1);
1143          const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1144                                        rowCb0, rowCb1, rowDb0, rowDb1);
1145          const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1146                                        rowCa0, rowCa1, rowDa0, rowDa1);
1147 
1148          dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
1149       }
1150    }
1151    else if ((datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV) && (comps == 4)) {
1152       DECLARE_ROW_POINTERS0(GLushort);
1153 
1154       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1155            i++, j += colStride, k += colStride) {
1156          const GLint rowAr0 = rowA[j] & 0x1f;
1157          const GLint rowAr1 = rowA[k] & 0x1f;
1158          const GLint rowBr0 = rowB[j] & 0x1f;
1159          const GLint rowBr1 = rowB[k] & 0x1f;
1160          const GLint rowCr0 = rowC[j] & 0x1f;
1161          const GLint rowCr1 = rowC[k] & 0x1f;
1162          const GLint rowDr0 = rowD[j] & 0x1f;
1163          const GLint rowDr1 = rowD[k] & 0x1f;
1164          const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
1165          const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
1166          const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
1167          const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
1168          const GLint rowCg0 = (rowC[j] >> 5) & 0x1f;
1169          const GLint rowCg1 = (rowC[k] >> 5) & 0x1f;
1170          const GLint rowDg0 = (rowD[j] >> 5) & 0x1f;
1171          const GLint rowDg1 = (rowD[k] >> 5) & 0x1f;
1172          const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
1173          const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
1174          const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
1175          const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
1176          const GLint rowCb0 = (rowC[j] >> 10) & 0x1f;
1177          const GLint rowCb1 = (rowC[k] >> 10) & 0x1f;
1178          const GLint rowDb0 = (rowD[j] >> 10) & 0x1f;
1179          const GLint rowDb1 = (rowD[k] >> 10) & 0x1f;
1180          const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
1181          const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
1182          const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
1183          const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
1184          const GLint rowCa0 = (rowC[j] >> 15) & 0x1;
1185          const GLint rowCa1 = (rowC[k] >> 15) & 0x1;
1186          const GLint rowDa0 = (rowD[j] >> 15) & 0x1;
1187          const GLint rowDa1 = (rowD[k] >> 15) & 0x1;
1188          const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1189                                        rowCr0, rowCr1, rowDr0, rowDr1);
1190          const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1191                                        rowCg0, rowCg1, rowDg0, rowDg1);
1192          const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1193                                        rowCb0, rowCb1, rowDb0, rowDb1);
1194          const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1195                                        rowCa0, rowCa1, rowDa0, rowDa1);
1196 
1197          dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
1198       }
1199    }
1200    else if ((datatype == GL_UNSIGNED_SHORT_5_5_5_1) && (comps == 4)) {
1201       DECLARE_ROW_POINTERS0(GLushort);
1202 
1203       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1204            i++, j += colStride, k += colStride) {
1205          const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
1206          const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
1207          const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
1208          const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
1209          const GLint rowCr0 = (rowC[j] >> 11) & 0x1f;
1210          const GLint rowCr1 = (rowC[k] >> 11) & 0x1f;
1211          const GLint rowDr0 = (rowD[j] >> 11) & 0x1f;
1212          const GLint rowDr1 = (rowD[k] >> 11) & 0x1f;
1213          const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
1214          const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
1215          const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
1216          const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
1217          const GLint rowCg0 = (rowC[j] >> 6) & 0x1f;
1218          const GLint rowCg1 = (rowC[k] >> 6) & 0x1f;
1219          const GLint rowDg0 = (rowD[j] >> 6) & 0x1f;
1220          const GLint rowDg1 = (rowD[k] >> 6) & 0x1f;
1221          const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
1222          const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
1223          const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
1224          const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
1225          const GLint rowCb0 = (rowC[j] >> 1) & 0x1f;
1226          const GLint rowCb1 = (rowC[k] >> 1) & 0x1f;
1227          const GLint rowDb0 = (rowD[j] >> 1) & 0x1f;
1228          const GLint rowDb1 = (rowD[k] >> 1) & 0x1f;
1229          const GLint rowAa0 = (rowA[j] & 0x1);
1230          const GLint rowAa1 = (rowA[k] & 0x1);
1231          const GLint rowBa0 = (rowB[j] & 0x1);
1232          const GLint rowBa1 = (rowB[k] & 0x1);
1233          const GLint rowCa0 = (rowC[j] & 0x1);
1234          const GLint rowCa1 = (rowC[k] & 0x1);
1235          const GLint rowDa0 = (rowD[j] & 0x1);
1236          const GLint rowDa1 = (rowD[k] & 0x1);
1237          const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1238                                        rowCr0, rowCr1, rowDr0, rowDr1);
1239          const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1240                                        rowCg0, rowCg1, rowDg0, rowDg1);
1241          const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1242                                        rowCb0, rowCb1, rowDb0, rowDb1);
1243          const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1244                                        rowCa0, rowCa1, rowDa0, rowDa1);
1245 
1246          dst[i] = (r << 11) | (g << 6) | (b << 1) | a;
1247       }
1248    }
1249    else if ((datatype == GL_UNSIGNED_BYTE_3_3_2) && (comps == 3)) {
1250       DECLARE_ROW_POINTERS0(GLubyte);
1251 
1252       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1253            i++, j += colStride, k += colStride) {
1254          const GLint rowAr0 = rowA[j] & 0x3;
1255          const GLint rowAr1 = rowA[k] & 0x3;
1256          const GLint rowBr0 = rowB[j] & 0x3;
1257          const GLint rowBr1 = rowB[k] & 0x3;
1258          const GLint rowCr0 = rowC[j] & 0x3;
1259          const GLint rowCr1 = rowC[k] & 0x3;
1260          const GLint rowDr0 = rowD[j] & 0x3;
1261          const GLint rowDr1 = rowD[k] & 0x3;
1262          const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
1263          const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
1264          const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
1265          const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
1266          const GLint rowCg0 = (rowC[j] >> 2) & 0x7;
1267          const GLint rowCg1 = (rowC[k] >> 2) & 0x7;
1268          const GLint rowDg0 = (rowD[j] >> 2) & 0x7;
1269          const GLint rowDg1 = (rowD[k] >> 2) & 0x7;
1270          const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
1271          const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
1272          const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
1273          const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
1274          const GLint rowCb0 = (rowC[j] >> 5) & 0x7;
1275          const GLint rowCb1 = (rowC[k] >> 5) & 0x7;
1276          const GLint rowDb0 = (rowD[j] >> 5) & 0x7;
1277          const GLint rowDb1 = (rowD[k] >> 5) & 0x7;
1278          const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1279                                        rowCr0, rowCr1, rowDr0, rowDr1);
1280          const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1281                                        rowCg0, rowCg1, rowDg0, rowDg1);
1282          const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1283                                        rowCb0, rowCb1, rowDb0, rowDb1);
1284          dst[i] = (b << 5) | (g << 2) | r;
1285       }
1286    }
1287    else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) {
1288       DECLARE_ROW_POINTERS0(GLubyte);
1289 
1290       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1291            i++, j += colStride, k += colStride) {
1292          const GLint rowAr0 = rowA[j] & 0xf;
1293          const GLint rowAr1 = rowA[k] & 0xf;
1294          const GLint rowBr0 = rowB[j] & 0xf;
1295          const GLint rowBr1 = rowB[k] & 0xf;
1296          const GLint rowCr0 = rowC[j] & 0xf;
1297          const GLint rowCr1 = rowC[k] & 0xf;
1298          const GLint rowDr0 = rowD[j] & 0xf;
1299          const GLint rowDr1 = rowD[k] & 0xf;
1300          const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
1301          const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
1302          const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
1303          const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
1304          const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
1305          const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
1306          const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
1307          const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
1308          const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1309                                        rowCr0, rowCr1, rowDr0, rowDr1);
1310          const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1311                                        rowCg0, rowCg1, rowDg0, rowDg1);
1312          dst[i] = (g << 4) | r;
1313       }
1314    }
1315    else if ((datatype == GL_UNSIGNED_INT_2_10_10_10_REV) && (comps == 4)) {
1316       DECLARE_ROW_POINTERS0(GLuint);
1317 
1318       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1319            i++, j += colStride, k += colStride) {
1320          const GLint rowAr0 = rowA[j] & 0x3ff;
1321          const GLint rowAr1 = rowA[k] & 0x3ff;
1322          const GLint rowBr0 = rowB[j] & 0x3ff;
1323          const GLint rowBr1 = rowB[k] & 0x3ff;
1324          const GLint rowCr0 = rowC[j] & 0x3ff;
1325          const GLint rowCr1 = rowC[k] & 0x3ff;
1326          const GLint rowDr0 = rowD[j] & 0x3ff;
1327          const GLint rowDr1 = rowD[k] & 0x3ff;
1328          const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff;
1329          const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff;
1330          const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff;
1331          const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff;
1332          const GLint rowCg0 = (rowC[j] >> 10) & 0x3ff;
1333          const GLint rowCg1 = (rowC[k] >> 10) & 0x3ff;
1334          const GLint rowDg0 = (rowD[j] >> 10) & 0x3ff;
1335          const GLint rowDg1 = (rowD[k] >> 10) & 0x3ff;
1336          const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff;
1337          const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff;
1338          const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff;
1339          const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff;
1340          const GLint rowCb0 = (rowC[j] >> 20) & 0x3ff;
1341          const GLint rowCb1 = (rowC[k] >> 20) & 0x3ff;
1342          const GLint rowDb0 = (rowD[j] >> 20) & 0x3ff;
1343          const GLint rowDb1 = (rowD[k] >> 20) & 0x3ff;
1344          const GLint rowAa0 = (rowA[j] >> 30) & 0x3;
1345          const GLint rowAa1 = (rowA[k] >> 30) & 0x3;
1346          const GLint rowBa0 = (rowB[j] >> 30) & 0x3;
1347          const GLint rowBa1 = (rowB[k] >> 30) & 0x3;
1348          const GLint rowCa0 = (rowC[j] >> 30) & 0x3;
1349          const GLint rowCa1 = (rowC[k] >> 30) & 0x3;
1350          const GLint rowDa0 = (rowD[j] >> 30) & 0x3;
1351          const GLint rowDa1 = (rowD[k] >> 30) & 0x3;
1352          const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1353                                        rowCr0, rowCr1, rowDr0, rowDr1);
1354          const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1355                                        rowCg0, rowCg1, rowDg0, rowDg1);
1356          const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1357                                        rowCb0, rowCb1, rowDb0, rowDb1);
1358          const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1359                                        rowCa0, rowCa1, rowDa0, rowDa1);
1360 
1361          dst[i] = (a << 30) | (b << 20) | (g << 10) | r;
1362       }
1363    }
1364 
1365    else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) {
1366       DECLARE_ROW_POINTERS0(GLuint);
1367 
1368       GLfloat res[3];
1369       GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3];
1370       GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3];
1371 
1372       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1373            i++, j += colStride, k += colStride) {
1374          rgb9e5_to_float3(rowA[j], rowAj);
1375          rgb9e5_to_float3(rowB[j], rowBj);
1376          rgb9e5_to_float3(rowC[j], rowCj);
1377          rgb9e5_to_float3(rowD[j], rowDj);
1378          rgb9e5_to_float3(rowA[k], rowAk);
1379          rgb9e5_to_float3(rowB[k], rowBk);
1380          rgb9e5_to_float3(rowC[k], rowCk);
1381          rgb9e5_to_float3(rowD[k], rowDk);
1382          res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] +
1383                    rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F;
1384          res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] +
1385                    rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F;
1386          res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] +
1387                    rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F;
1388          dst[i] = float3_to_rgb9e5(res);
1389       }
1390    }
1391 
1392    else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) {
1393       DECLARE_ROW_POINTERS0(GLuint);
1394 
1395       GLfloat res[3];
1396       GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3];
1397       GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3];
1398 
1399       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1400            i++, j += colStride, k += colStride) {
1401          r11g11b10f_to_float3(rowA[j], rowAj);
1402          r11g11b10f_to_float3(rowB[j], rowBj);
1403          r11g11b10f_to_float3(rowC[j], rowCj);
1404          r11g11b10f_to_float3(rowD[j], rowDj);
1405          r11g11b10f_to_float3(rowA[k], rowAk);
1406          r11g11b10f_to_float3(rowB[k], rowBk);
1407          r11g11b10f_to_float3(rowC[k], rowCk);
1408          r11g11b10f_to_float3(rowD[k], rowDk);
1409          res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] +
1410                    rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F;
1411          res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] +
1412                    rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F;
1413          res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] +
1414                    rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F;
1415          dst[i] = float3_to_r11g11b10f(res);
1416       }
1417    }
1418 
1419    else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) {
1420       DECLARE_ROW_POINTERS(GLfloat, 2);
1421 
1422       for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1423            i++, j += colStride, k += colStride) {
1424          FILTER_F_3D(0);
1425       }
1426    }
1427 
1428    else {
1429       unreachable("bad format in do_row()");
1430    }
1431 }
1432 
1433 
1434 /*
1435  * These functions generate a 1/2-size mipmap image from a source image.
1436  * Texture borders are handled by copying or averaging the source image's
1437  * border texels, depending on the scale-down factor.
1438  */
1439 
1440 static void
make_1d_mipmap(GLenum datatype,GLuint comps,GLint border,GLint srcWidth,const GLubyte * srcPtr,GLint dstWidth,GLubyte * dstPtr)1441 make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
1442                GLint srcWidth, const GLubyte *srcPtr,
1443                GLint dstWidth, GLubyte *dstPtr)
1444 {
1445    const GLint bpt = bytes_per_pixel(datatype, comps);
1446    const GLubyte *src;
1447    GLubyte *dst;
1448 
1449    /* skip the border pixel, if any */
1450    src = srcPtr + border * bpt;
1451    dst = dstPtr + border * bpt;
1452 
1453    /* we just duplicate the input row, kind of hack, saves code */
1454    do_row(datatype, comps, srcWidth - 2 * border, src, src,
1455           dstWidth - 2 * border, dst);
1456 
1457    if (border) {
1458       /* copy left-most pixel from source */
1459       assert(dstPtr);
1460       assert(srcPtr);
1461       memcpy(dstPtr, srcPtr, bpt);
1462       /* copy right-most pixel from source */
1463       memcpy(dstPtr + (dstWidth - 1) * bpt,
1464              srcPtr + (srcWidth - 1) * bpt,
1465              bpt);
1466    }
1467 }
1468 
1469 
1470 static void
make_2d_mipmap(GLenum datatype,GLuint comps,GLint border,GLint srcWidth,GLint srcHeight,const GLubyte * srcPtr,GLint srcRowStride,GLint dstWidth,GLint dstHeight,GLubyte * dstPtr,GLint dstRowStride)1471 make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
1472                GLint srcWidth, GLint srcHeight,
1473                const GLubyte *srcPtr, GLint srcRowStride,
1474                GLint dstWidth, GLint dstHeight,
1475                GLubyte *dstPtr, GLint dstRowStride)
1476 {
1477    const GLint bpt = bytes_per_pixel(datatype, comps);
1478    const GLint srcWidthNB = srcWidth - 2 * border;  /* sizes w/out border */
1479    const GLint dstWidthNB = dstWidth - 2 * border;
1480    const GLint dstHeightNB = dstHeight - 2 * border;
1481    const GLubyte *srcA, *srcB;
1482    GLubyte *dst;
1483    GLint row, srcRowStep;
1484 
1485    /* Compute src and dst pointers, skipping any border */
1486    srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1487    if (srcHeight > 1 && srcHeight > dstHeight) {
1488       /* sample from two source rows */
1489       srcB = srcA + srcRowStride;
1490       srcRowStep = 2;
1491    }
1492    else {
1493       /* sample from one source row */
1494       srcB = srcA;
1495       srcRowStep = 1;
1496    }
1497 
1498    dst = dstPtr + border * ((dstWidth + 1) * bpt);
1499 
1500    for (row = 0; row < dstHeightNB; row++) {
1501       do_row(datatype, comps, srcWidthNB, srcA, srcB,
1502              dstWidthNB, dst);
1503       srcA += srcRowStep * srcRowStride;
1504       srcB += srcRowStep * srcRowStride;
1505       dst += dstRowStride;
1506    }
1507 
1508    /* This is ugly but probably won't be used much */
1509    if (border > 0) {
1510       /* fill in dest border */
1511       /* lower-left border pixel */
1512       assert(dstPtr);
1513       assert(srcPtr);
1514       memcpy(dstPtr, srcPtr, bpt);
1515       /* lower-right border pixel */
1516       memcpy(dstPtr + (dstWidth - 1) * bpt,
1517              srcPtr + (srcWidth - 1) * bpt, bpt);
1518       /* upper-left border pixel */
1519       memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1520              srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1521       /* upper-right border pixel */
1522       memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1523              srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1524       /* lower border */
1525       do_row(datatype, comps, srcWidthNB,
1526              srcPtr + bpt,
1527              srcPtr + bpt,
1528              dstWidthNB, dstPtr + bpt);
1529       /* upper border */
1530       do_row(datatype, comps, srcWidthNB,
1531              srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1532              srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1533              dstWidthNB,
1534              dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1535       /* left and right borders */
1536       if (srcHeight == dstHeight) {
1537          /* copy border pixel from src to dst */
1538          for (row = 1; row < srcHeight; row++) {
1539             memcpy(dstPtr + dstWidth * row * bpt,
1540                    srcPtr + srcWidth * row * bpt, bpt);
1541             memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1542                    srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1543          }
1544       }
1545       else {
1546          /* average two src pixels each dest pixel */
1547          for (row = 0; row < dstHeightNB; row += 2) {
1548             do_row(datatype, comps, 1,
1549                    srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1550                    srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1551                    1, dstPtr + (dstWidth * row + 1) * bpt);
1552             do_row(datatype, comps, 1,
1553                    srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1554                    srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1555                    1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1556          }
1557       }
1558    }
1559 }
1560 
1561 
1562 static void
make_3d_mipmap(GLenum datatype,GLuint comps,GLint border,GLint srcWidth,GLint srcHeight,GLint srcDepth,const GLubyte ** srcPtr,GLint srcRowStride,GLint dstWidth,GLint dstHeight,GLint dstDepth,GLubyte ** dstPtr,GLint dstRowStride)1563 make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
1564                GLint srcWidth, GLint srcHeight, GLint srcDepth,
1565                const GLubyte **srcPtr, GLint srcRowStride,
1566                GLint dstWidth, GLint dstHeight, GLint dstDepth,
1567                GLubyte **dstPtr, GLint dstRowStride)
1568 {
1569    const GLint bpt = bytes_per_pixel(datatype, comps);
1570    const GLint srcWidthNB = srcWidth - 2 * border;  /* sizes w/out border */
1571    const GLint srcDepthNB = srcDepth - 2 * border;
1572    const GLint dstWidthNB = dstWidth - 2 * border;
1573    const GLint dstHeightNB = dstHeight - 2 * border;
1574    const GLint dstDepthNB = dstDepth - 2 * border;
1575    GLint img, row;
1576    GLint bytesPerSrcImage, bytesPerDstImage;
1577    GLint srcImageOffset, srcRowOffset;
1578 
1579    (void) srcDepthNB; /* silence warnings */
1580 
1581    bytesPerSrcImage = srcRowStride * srcHeight * bpt;
1582    bytesPerDstImage = dstRowStride * dstHeight * bpt;
1583 
1584    /* Offset between adjacent src images to be averaged together */
1585    srcImageOffset = (srcDepth == dstDepth) ? 0 : 1;
1586 
1587    /* Offset between adjacent src rows to be averaged together */
1588    srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride;
1589 
1590    /*
1591     * Need to average together up to 8 src pixels for each dest pixel.
1592     * Break that down into 3 operations:
1593     *   1. take two rows from source image and average them together.
1594     *   2. take two rows from next source image and average them together.
1595     *   3. take the two averaged rows and average them for the final dst row.
1596     */
1597 
1598    /*
1599    printf("mip3d %d x %d x %d  ->  %d x %d x %d\n",
1600           srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1601    */
1602 
1603    for (img = 0; img < dstDepthNB; img++) {
1604       /* first source image pointer, skipping border */
1605       const GLubyte *imgSrcA = srcPtr[img * 2 + border]
1606          + srcRowStride * border + bpt * border;
1607       /* second source image pointer, skipping border */
1608       const GLubyte *imgSrcB = srcPtr[img * 2 + srcImageOffset + border]
1609          + srcRowStride * border + bpt * border;
1610 
1611       /* address of the dest image, skipping border */
1612       GLubyte *imgDst = dstPtr[img + border]
1613          + dstRowStride * border + bpt * border;
1614 
1615       /* setup the four source row pointers and the dest row pointer */
1616       const GLubyte *srcImgARowA = imgSrcA;
1617       const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
1618       const GLubyte *srcImgBRowA = imgSrcB;
1619       const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1620       GLubyte *dstImgRow = imgDst;
1621 
1622       for (row = 0; row < dstHeightNB; row++) {
1623          do_row_3D(datatype, comps, srcWidthNB,
1624                    srcImgARowA, srcImgARowB,
1625                    srcImgBRowA, srcImgBRowB,
1626                    dstWidthNB, dstImgRow);
1627 
1628          /* advance to next rows */
1629          srcImgARowA += srcRowStride + srcRowOffset;
1630          srcImgARowB += srcRowStride + srcRowOffset;
1631          srcImgBRowA += srcRowStride + srcRowOffset;
1632          srcImgBRowB += srcRowStride + srcRowOffset;
1633          dstImgRow += dstRowStride;
1634       }
1635    }
1636 
1637 
1638    /* Luckily we can leverage the make_2d_mipmap() function here! */
1639    if (border > 0) {
1640       /* do front border image */
1641       make_2d_mipmap(datatype, comps, 1,
1642                      srcWidth, srcHeight, srcPtr[0], srcRowStride,
1643                      dstWidth, dstHeight, dstPtr[0], dstRowStride);
1644       /* do back border image */
1645       make_2d_mipmap(datatype, comps, 1,
1646                      srcWidth, srcHeight, srcPtr[srcDepth - 1], srcRowStride,
1647                      dstWidth, dstHeight, dstPtr[dstDepth - 1], dstRowStride);
1648 
1649       /* do four remaining border edges that span the image slices */
1650       if (srcDepth == dstDepth) {
1651          /* just copy border pixels from src to dst */
1652          for (img = 0; img < dstDepthNB; img++) {
1653             const GLubyte *src;
1654             GLubyte *dst;
1655 
1656             /* do border along [img][row=0][col=0] */
1657             src = srcPtr[img * 2];
1658             dst = dstPtr[img];
1659             memcpy(dst, src, bpt);
1660 
1661             /* do border along [img][row=dstHeight-1][col=0] */
1662             src = srcPtr[img * 2] + (srcHeight - 1) * srcRowStride;
1663             dst = dstPtr[img] + (dstHeight - 1) * dstRowStride;
1664             memcpy(dst, src, bpt);
1665 
1666             /* do border along [img][row=0][col=dstWidth-1] */
1667             src = srcPtr[img * 2] + (srcWidth - 1) * bpt;
1668             dst = dstPtr[img] + (dstWidth - 1) * bpt;
1669             memcpy(dst, src, bpt);
1670 
1671             /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1672             src = srcPtr[img * 2] + (bytesPerSrcImage - bpt);
1673             dst = dstPtr[img] + (bytesPerDstImage - bpt);
1674             memcpy(dst, src, bpt);
1675          }
1676       }
1677       else {
1678          /* average border pixels from adjacent src image pairs */
1679          assert(srcDepthNB == 2 * dstDepthNB);
1680          for (img = 0; img < dstDepthNB; img++) {
1681             const GLubyte *srcA, *srcB;
1682             GLubyte *dst;
1683 
1684             /* do border along [img][row=0][col=0] */
1685             srcA = srcPtr[img * 2 + 0];
1686             srcB = srcPtr[img * 2 + srcImageOffset];
1687             dst = dstPtr[img];
1688             do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1689 
1690             /* do border along [img][row=dstHeight-1][col=0] */
1691             srcA = srcPtr[img * 2 + 0]
1692                + (srcHeight - 1) * srcRowStride;
1693             srcB = srcPtr[img * 2 + srcImageOffset]
1694                + (srcHeight - 1) * srcRowStride;
1695             dst = dstPtr[img] + (dstHeight - 1) * dstRowStride;
1696             do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1697 
1698             /* do border along [img][row=0][col=dstWidth-1] */
1699             srcA = srcPtr[img * 2 + 0] + (srcWidth - 1) * bpt;
1700             srcB = srcPtr[img * 2 + srcImageOffset] + (srcWidth - 1) * bpt;
1701             dst = dstPtr[img] + (dstWidth - 1) * bpt;
1702             do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1703 
1704             /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1705             srcA = srcPtr[img * 2 + 0] + (bytesPerSrcImage - bpt);
1706             srcB = srcPtr[img * 2 + srcImageOffset] + (bytesPerSrcImage - bpt);
1707             dst = dstPtr[img] + (bytesPerDstImage - bpt);
1708             do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1709          }
1710       }
1711    }
1712 }
1713 
1714 
1715 /**
1716  * Down-sample a texture image to produce the next lower mipmap level.
1717  * \param comps  components per texel (1, 2, 3 or 4)
1718  * \param srcData  array[slice] of pointers to source image slices
1719  * \param dstData  array[slice] of pointers to dest image slices
1720  * \param srcRowStride  stride between source rows, in bytes
1721  * \param dstRowStride  stride between destination rows, in bytes
1722  */
1723 void
_mesa_generate_mipmap_level(GLenum target,GLenum datatype,GLuint comps,GLint border,GLint srcWidth,GLint srcHeight,GLint srcDepth,const GLubyte ** srcData,GLint srcRowStride,GLint dstWidth,GLint dstHeight,GLint dstDepth,GLubyte ** dstData,GLint dstRowStride)1724 _mesa_generate_mipmap_level(GLenum target,
1725                             GLenum datatype, GLuint comps,
1726                             GLint border,
1727                             GLint srcWidth, GLint srcHeight, GLint srcDepth,
1728                             const GLubyte **srcData,
1729                             GLint srcRowStride,
1730                             GLint dstWidth, GLint dstHeight, GLint dstDepth,
1731                             GLubyte **dstData,
1732                             GLint dstRowStride)
1733 {
1734    int i;
1735 
1736    switch (target) {
1737    case GL_TEXTURE_1D:
1738       make_1d_mipmap(datatype, comps, border,
1739                      srcWidth, srcData[0],
1740                      dstWidth, dstData[0]);
1741       break;
1742    case GL_TEXTURE_2D:
1743    case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
1744    case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
1745    case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
1746    case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
1747    case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
1748    case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
1749       make_2d_mipmap(datatype, comps, border,
1750                      srcWidth, srcHeight, srcData[0], srcRowStride,
1751                      dstWidth, dstHeight, dstData[0], dstRowStride);
1752       break;
1753    case GL_TEXTURE_3D:
1754       make_3d_mipmap(datatype, comps, border,
1755                      srcWidth, srcHeight, srcDepth,
1756                      srcData, srcRowStride,
1757                      dstWidth, dstHeight, dstDepth,
1758                      dstData, dstRowStride);
1759       break;
1760    case GL_TEXTURE_1D_ARRAY_EXT:
1761       assert(srcHeight == 1);
1762       assert(dstHeight == 1);
1763       for (i = 0; i < dstDepth; i++) {
1764          make_1d_mipmap(datatype, comps, border,
1765                         srcWidth, srcData[i],
1766                         dstWidth, dstData[i]);
1767       }
1768       break;
1769    case GL_TEXTURE_2D_ARRAY_EXT:
1770    case GL_TEXTURE_CUBE_MAP_ARRAY:
1771       for (i = 0; i < dstDepth; i++) {
1772          make_2d_mipmap(datatype, comps, border,
1773                         srcWidth, srcHeight, srcData[i], srcRowStride,
1774                         dstWidth, dstHeight, dstData[i], dstRowStride);
1775       }
1776       break;
1777    case GL_TEXTURE_RECTANGLE_NV:
1778    case GL_TEXTURE_EXTERNAL_OES:
1779       /* no mipmaps, do nothing */
1780       break;
1781    default:
1782       unreachable("bad tex target in _mesa_generate_mipmaps");
1783    }
1784 }
1785 
1786 
1787 /**
1788  * compute next (level+1) image size
1789  * \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size)
1790  */
1791 GLboolean
_mesa_next_mipmap_level_size(GLenum target,GLint border,GLint srcWidth,GLint srcHeight,GLint srcDepth,GLint * dstWidth,GLint * dstHeight,GLint * dstDepth)1792 _mesa_next_mipmap_level_size(GLenum target, GLint border,
1793                        GLint srcWidth, GLint srcHeight, GLint srcDepth,
1794                        GLint *dstWidth, GLint *dstHeight, GLint *dstDepth)
1795 {
1796    if (srcWidth - 2 * border > 1) {
1797       *dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
1798    }
1799    else {
1800       *dstWidth = srcWidth; /* can't go smaller */
1801    }
1802 
1803    if ((srcHeight - 2 * border > 1) &&
1804        target != GL_TEXTURE_1D_ARRAY_EXT &&
1805        target != GL_PROXY_TEXTURE_1D_ARRAY_EXT) {
1806       *dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
1807    }
1808    else {
1809       *dstHeight = srcHeight; /* can't go smaller */
1810    }
1811 
1812    if ((srcDepth - 2 * border > 1) &&
1813        target != GL_TEXTURE_2D_ARRAY_EXT &&
1814        target != GL_PROXY_TEXTURE_2D_ARRAY_EXT &&
1815        target != GL_TEXTURE_CUBE_MAP_ARRAY &&
1816        target != GL_PROXY_TEXTURE_CUBE_MAP_ARRAY) {
1817       *dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
1818    }
1819    else {
1820       *dstDepth = srcDepth; /* can't go smaller */
1821    }
1822 
1823    if (*dstWidth == srcWidth &&
1824        *dstHeight == srcHeight &&
1825        *dstDepth == srcDepth) {
1826       return GL_FALSE;
1827    }
1828    else {
1829       return GL_TRUE;
1830    }
1831 }
1832 
1833 
1834 /**
1835  * Helper function for mipmap generation.
1836  * Make sure the specified destination mipmap level is the right size/format
1837  * for mipmap generation.  If not, (re) allocate it.
1838  * \return GL_TRUE if successful, GL_FALSE if mipmap generation should stop
1839  */
1840 static GLboolean
prepare_mipmap_level(struct gl_context * ctx,struct gl_texture_object * texObj,GLuint level,GLsizei width,GLsizei height,GLsizei depth,GLsizei border,GLenum intFormat,mesa_format format)1841 prepare_mipmap_level(struct gl_context *ctx,
1842                      struct gl_texture_object *texObj, GLuint level,
1843                      GLsizei width, GLsizei height, GLsizei depth,
1844                      GLsizei border, GLenum intFormat, mesa_format format)
1845 {
1846    const GLuint numFaces = _mesa_num_tex_faces(texObj->Target);
1847    GLuint face;
1848 
1849    if (texObj->Immutable) {
1850       /* The texture was created with glTexStorage() so the number/size of
1851        * mipmap levels is fixed and the storage for all images is already
1852        * allocated.
1853        */
1854       if (!texObj->Image[0][level]) {
1855          /* No more levels to create - we're done */
1856          return GL_FALSE;
1857       }
1858       else {
1859          /* Nothing to do - the texture memory must have already been
1860           * allocated to the right size so we're all set.
1861           */
1862          return GL_TRUE;
1863       }
1864    }
1865 
1866    for (face = 0; face < numFaces; face++) {
1867       struct gl_texture_image *dstImage;
1868       const GLenum target = _mesa_cube_face_target(texObj->Target, face);
1869 
1870       dstImage = _mesa_get_tex_image(ctx, texObj, target, level);
1871       if (!dstImage) {
1872          /* out of memory */
1873          return GL_FALSE;
1874       }
1875 
1876       if (dstImage->Width != width ||
1877           dstImage->Height != height ||
1878           dstImage->Depth != depth ||
1879           dstImage->Border != border ||
1880           dstImage->InternalFormat != intFormat ||
1881           dstImage->TexFormat != format) {
1882          /* need to (re)allocate image */
1883          ctx->Driver.FreeTextureImageBuffer(ctx, dstImage);
1884 
1885          _mesa_init_teximage_fields(ctx, dstImage,
1886                                     width, height, depth,
1887                                     border, intFormat, format);
1888 
1889          ctx->Driver.AllocTextureImageBuffer(ctx, dstImage);
1890 
1891          /* in case the mipmap level is part of an FBO: */
1892          _mesa_update_fbo_texture(ctx, texObj, face, level);
1893 
1894          ctx->NewState |= _NEW_TEXTURE_OBJECT;
1895       }
1896    }
1897 
1898    return GL_TRUE;
1899 }
1900 
1901 
1902 /**
1903  * Prepare all mipmap levels beyond 'baseLevel' for mipmap generation.
1904  * When finished, all the gl_texture_image structures for the smaller
1905  * mipmap levels will be consistent with the base level (in terms of
1906  * dimensions, format, etc).
1907  */
1908 void
_mesa_prepare_mipmap_levels(struct gl_context * ctx,struct gl_texture_object * texObj,unsigned baseLevel,unsigned maxLevel)1909 _mesa_prepare_mipmap_levels(struct gl_context *ctx,
1910                             struct gl_texture_object *texObj,
1911                             unsigned baseLevel, unsigned maxLevel)
1912 {
1913    const struct gl_texture_image *baseImage =
1914       _mesa_select_tex_image(texObj, texObj->Target, baseLevel);
1915    const GLint border = 0;
1916    GLint width = baseImage->Width;
1917    GLint height = baseImage->Height;
1918    GLint depth = baseImage->Depth;
1919    const GLenum intFormat = baseImage->InternalFormat;
1920    const mesa_format texFormat = baseImage->TexFormat;
1921    GLint newWidth, newHeight, newDepth;
1922 
1923    /* Prepare baseLevel + 1, baseLevel + 2, ... */
1924    for (unsigned level = baseLevel + 1; level <= maxLevel; level++) {
1925       if (!_mesa_next_mipmap_level_size(texObj->Target, border,
1926                                         width, height, depth,
1927                                         &newWidth, &newHeight, &newDepth)) {
1928          /* all done */
1929          break;
1930       }
1931 
1932       if (!prepare_mipmap_level(ctx, texObj, level,
1933                                 newWidth, newHeight, newDepth,
1934                                 border, intFormat, texFormat)) {
1935          break;
1936       }
1937 
1938       width = newWidth;
1939       height = newHeight;
1940       depth = newDepth;
1941    }
1942 }
1943 
1944 
1945 static void
generate_mipmap_uncompressed(struct gl_context * ctx,GLenum target,struct gl_texture_object * texObj,const struct gl_texture_image * srcImage,GLuint maxLevel)1946 generate_mipmap_uncompressed(struct gl_context *ctx, GLenum target,
1947                              struct gl_texture_object *texObj,
1948                              const struct gl_texture_image *srcImage,
1949                              GLuint maxLevel)
1950 {
1951    GLuint level;
1952    GLenum datatype;
1953    GLuint comps;
1954 
1955    _mesa_uncompressed_format_to_type_and_comps(srcImage->TexFormat, &datatype, &comps);
1956 
1957    for (level = texObj->BaseLevel; level < maxLevel; level++) {
1958       /* generate image[level+1] from image[level] */
1959       struct gl_texture_image *srcImage, *dstImage;
1960       GLint srcRowStride, dstRowStride;
1961       GLint srcWidth, srcHeight, srcDepth;
1962       GLint dstWidth, dstHeight, dstDepth;
1963       GLint border;
1964       GLint slice;
1965       GLubyte **srcMaps, **dstMaps;
1966       GLboolean success = GL_TRUE;
1967 
1968       /* get src image parameters */
1969       srcImage = _mesa_select_tex_image(texObj, target, level);
1970       assert(srcImage);
1971       srcWidth = srcImage->Width;
1972       srcHeight = srcImage->Height;
1973       srcDepth = srcImage->Depth;
1974       border = srcImage->Border;
1975 
1976       /* get dest gl_texture_image */
1977       dstImage = _mesa_select_tex_image(texObj, target, level + 1);
1978       if (!dstImage) {
1979          break;
1980       }
1981       dstWidth = dstImage->Width;
1982       dstHeight = dstImage->Height;
1983       dstDepth = dstImage->Depth;
1984 
1985       if (target == GL_TEXTURE_1D_ARRAY) {
1986          srcDepth = srcHeight;
1987          dstDepth = dstHeight;
1988          srcHeight = 1;
1989          dstHeight = 1;
1990       }
1991 
1992       /* Map src texture image slices */
1993       srcMaps = calloc(srcDepth, sizeof(GLubyte *));
1994       if (srcMaps) {
1995          for (slice = 0; slice < srcDepth; slice++) {
1996             ctx->Driver.MapTextureImage(ctx, srcImage, slice,
1997                                         0, 0, srcWidth, srcHeight,
1998                                         GL_MAP_READ_BIT,
1999                                         &srcMaps[slice], &srcRowStride);
2000             if (!srcMaps[slice]) {
2001                success = GL_FALSE;
2002                break;
2003             }
2004          }
2005       }
2006       else {
2007          success = GL_FALSE;
2008       }
2009 
2010       /* Map dst texture image slices */
2011       dstMaps = calloc(dstDepth, sizeof(GLubyte *));
2012       if (dstMaps) {
2013          for (slice = 0; slice < dstDepth; slice++) {
2014             ctx->Driver.MapTextureImage(ctx, dstImage, slice,
2015                                         0, 0, dstWidth, dstHeight,
2016                                         GL_MAP_WRITE_BIT,
2017                                         &dstMaps[slice], &dstRowStride);
2018             if (!dstMaps[slice]) {
2019                success = GL_FALSE;
2020                break;
2021             }
2022          }
2023       }
2024       else {
2025          success = GL_FALSE;
2026       }
2027 
2028       if (success) {
2029          /* generate one mipmap level (for 1D/2D/3D/array/etc texture) */
2030          _mesa_generate_mipmap_level(target, datatype, comps, border,
2031                                      srcWidth, srcHeight, srcDepth,
2032                                      (const GLubyte **) srcMaps, srcRowStride,
2033                                      dstWidth, dstHeight, dstDepth,
2034                                      dstMaps, dstRowStride);
2035       }
2036 
2037       /* Unmap src image slices */
2038       if (srcMaps) {
2039          for (slice = 0; slice < srcDepth; slice++) {
2040             if (srcMaps[slice]) {
2041                ctx->Driver.UnmapTextureImage(ctx, srcImage, slice);
2042             }
2043          }
2044          free(srcMaps);
2045       }
2046 
2047       /* Unmap dst image slices */
2048       if (dstMaps) {
2049          for (slice = 0; slice < dstDepth; slice++) {
2050             if (dstMaps[slice]) {
2051                ctx->Driver.UnmapTextureImage(ctx, dstImage, slice);
2052             }
2053          }
2054          free(dstMaps);
2055       }
2056 
2057       if (!success) {
2058          _mesa_error(ctx, GL_OUT_OF_MEMORY, "mipmap generation");
2059          break;
2060       }
2061    } /* loop over mipmap levels */
2062 }
2063 
2064 
2065 static void
generate_mipmap_compressed(struct gl_context * ctx,GLenum target,struct gl_texture_object * texObj,struct gl_texture_image * srcImage,GLuint maxLevel)2066 generate_mipmap_compressed(struct gl_context *ctx, GLenum target,
2067                            struct gl_texture_object *texObj,
2068                            struct gl_texture_image *srcImage,
2069                            GLuint maxLevel)
2070 {
2071    GLuint level;
2072    mesa_format temp_format;
2073    GLint components;
2074    GLuint temp_src_row_stride, temp_src_img_stride; /* in bytes */
2075    GLubyte *temp_src = NULL, *temp_dst = NULL;
2076    GLenum temp_datatype;
2077    GLenum temp_base_format;
2078    GLubyte **temp_src_slices = NULL, **temp_dst_slices = NULL;
2079 
2080    /* only two types of compressed textures at this time */
2081    assert(texObj->Target == GL_TEXTURE_2D ||
2082           texObj->Target == GL_TEXTURE_2D_ARRAY ||
2083           texObj->Target == GL_TEXTURE_CUBE_MAP ||
2084           texObj->Target == GL_TEXTURE_CUBE_MAP_ARRAY);
2085 
2086    /*
2087     * Choose a format for the temporary, uncompressed base image.
2088     * Then, get number of components, choose temporary image datatype,
2089     * and get base format.
2090     */
2091    temp_format = _mesa_get_uncompressed_format(srcImage->TexFormat);
2092 
2093    components = _mesa_format_num_components(temp_format);
2094 
2095    switch (_mesa_get_format_datatype(srcImage->TexFormat)) {
2096    case GL_FLOAT:
2097       temp_datatype = GL_FLOAT;
2098       break;
2099    case GL_SIGNED_NORMALIZED:
2100       /* Revisit this if we get compressed formats with >8 bits per component */
2101       temp_datatype = GL_BYTE;
2102       break;
2103    default:
2104       temp_datatype = GL_UNSIGNED_BYTE;
2105    }
2106 
2107    temp_base_format = _mesa_get_format_base_format(temp_format);
2108 
2109 
2110    /* allocate storage for the temporary, uncompressed image */
2111    temp_src_row_stride = _mesa_format_row_stride(temp_format, srcImage->Width);
2112    temp_src_img_stride = _mesa_format_image_size(temp_format, srcImage->Width,
2113                                                  srcImage->Height, 1);
2114    temp_src = malloc(temp_src_img_stride * srcImage->Depth);
2115 
2116    /* Allocate storage for arrays of slice pointers */
2117    temp_src_slices = malloc(srcImage->Depth * sizeof(GLubyte *));
2118    temp_dst_slices = malloc(srcImage->Depth * sizeof(GLubyte *));
2119 
2120    if (!temp_src || !temp_src_slices || !temp_dst_slices) {
2121       _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
2122       goto end;
2123    }
2124 
2125    /* decompress base image to the temporary src buffer */
2126    {
2127       /* save pixel packing mode */
2128       struct gl_pixelstore_attrib save = ctx->Pack;
2129       /* use default/tight packing parameters */
2130       ctx->Pack = ctx->DefaultPacking;
2131 
2132       /* Get the uncompressed image */
2133       assert(srcImage->Level == texObj->BaseLevel);
2134       ctx->Driver.GetTexSubImage(ctx,
2135                                  0, 0, 0,
2136                                  srcImage->Width, srcImage->Height,
2137                                  srcImage->Depth,
2138                                  temp_base_format, temp_datatype,
2139                                  temp_src, srcImage);
2140       /* restore packing mode */
2141       ctx->Pack = save;
2142    }
2143 
2144    for (level = texObj->BaseLevel; level < maxLevel; level++) {
2145       /* generate image[level+1] from image[level] */
2146       const struct gl_texture_image *srcImage;
2147       struct gl_texture_image *dstImage;
2148       GLint srcWidth, srcHeight, srcDepth;
2149       GLint dstWidth, dstHeight, dstDepth;
2150       GLint border;
2151       GLuint temp_dst_row_stride, temp_dst_img_stride; /* in bytes */
2152       GLint i;
2153 
2154       /* get src image parameters */
2155       srcImage = _mesa_select_tex_image(texObj, target, level);
2156       assert(srcImage);
2157       srcWidth = srcImage->Width;
2158       srcHeight = srcImage->Height;
2159       srcDepth = srcImage->Depth;
2160       border = srcImage->Border;
2161 
2162       /* get dest gl_texture_image */
2163       dstImage = _mesa_select_tex_image(texObj, target, level + 1);
2164       if (!dstImage) {
2165          break;
2166       }
2167       dstWidth = dstImage->Width;
2168       dstHeight = dstImage->Height;
2169       dstDepth = dstImage->Depth;
2170 
2171       /* Compute dst image strides and alloc memory on first iteration */
2172       temp_dst_row_stride = _mesa_format_row_stride(temp_format, dstWidth);
2173       temp_dst_img_stride = _mesa_format_image_size(temp_format, dstWidth,
2174                                                     dstHeight, 1);
2175       if (!temp_dst) {
2176          temp_dst = malloc(temp_dst_img_stride * dstDepth);
2177          if (!temp_dst) {
2178             _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
2179             goto end;
2180          }
2181       }
2182 
2183       /* for 2D arrays, setup array[depth] of slice pointers */
2184       for (i = 0; i < srcDepth; i++) {
2185          temp_src_slices[i] = temp_src + temp_src_img_stride * i;
2186       }
2187       for (i = 0; i < dstDepth; i++) {
2188          temp_dst_slices[i] = temp_dst + temp_dst_img_stride * i;
2189       }
2190 
2191       /* Rescale src image to dest image.
2192        * This will loop over the slices of a 2D array.
2193        */
2194       _mesa_generate_mipmap_level(target, temp_datatype, components, border,
2195                                   srcWidth, srcHeight, srcDepth,
2196                                   (const GLubyte **) temp_src_slices,
2197                                   temp_src_row_stride,
2198                                   dstWidth, dstHeight, dstDepth,
2199                                   temp_dst_slices, temp_dst_row_stride);
2200 
2201       /* The image space was allocated above so use glTexSubImage now */
2202       ctx->Driver.TexSubImage(ctx, 2, dstImage,
2203                               0, 0, 0, dstWidth, dstHeight, dstDepth,
2204                               temp_base_format, temp_datatype,
2205                               temp_dst, &ctx->DefaultPacking);
2206 
2207       /* swap src and dest pointers */
2208       {
2209          GLubyte *temp = temp_src;
2210          temp_src = temp_dst;
2211          temp_dst = temp;
2212          temp_src_row_stride = temp_dst_row_stride;
2213          temp_src_img_stride = temp_dst_img_stride;
2214       }
2215    } /* loop over mipmap levels */
2216 
2217 end:
2218    free(temp_src);
2219    free(temp_dst);
2220    free(temp_src_slices);
2221    free(temp_dst_slices);
2222 }
2223 
2224 /**
2225  * Automatic mipmap generation.
2226  * This is the fallback/default function for ctx->Driver.GenerateMipmap().
2227  * Generate a complete set of mipmaps from texObj's BaseLevel image.
2228  * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
2229  * For cube maps, target will be one of
2230  * GL_TEXTURE_CUBE_MAP_POSITIVE/NEGATIVE_X/Y/Z; never GL_TEXTURE_CUBE_MAP.
2231  */
2232 void
_mesa_generate_mipmap(struct gl_context * ctx,GLenum target,struct gl_texture_object * texObj)2233 _mesa_generate_mipmap(struct gl_context *ctx, GLenum target,
2234                       struct gl_texture_object *texObj)
2235 {
2236    struct gl_texture_image *srcImage;
2237    GLint maxLevel;
2238 
2239    assert(texObj);
2240    srcImage = _mesa_select_tex_image(texObj, target, texObj->BaseLevel);
2241    assert(srcImage);
2242 
2243    maxLevel = _mesa_max_texture_levels(ctx, texObj->Target) - 1;
2244    assert(maxLevel >= 0);  /* bad target */
2245 
2246    maxLevel = MIN2(maxLevel, texObj->MaxLevel);
2247 
2248    _mesa_prepare_mipmap_levels(ctx, texObj, texObj->BaseLevel, maxLevel);
2249 
2250    if (_mesa_is_format_compressed(srcImage->TexFormat)) {
2251       generate_mipmap_compressed(ctx, target, texObj, srcImage, maxLevel);
2252    } else {
2253       generate_mipmap_uncompressed(ctx, target, texObj, srcImage, maxLevel);
2254    }
2255 }
2256