1 /*
2  * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3  * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4  * Copyright © 2010 Intel Corporation
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23  * DEALINGS IN THE SOFTWARE.
24  */
25 
26 /**
27  * \file ir_to_mesa.cpp
28  *
29  * Translate GLSL IR to Mesa's gl_program representation.
30  */
31 
32 #include <stdio.h>
33 #include "main/macros.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "main/glspirv.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "compiler/glsl/shader_cache.h"
50 #include "compiler/glsl/string_to_uint_map.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56 
57 
58 static int swizzle_for_size(int size);
59 
60 namespace {
61 
62 class src_reg;
63 class dst_reg;
64 
65 /**
66  * This struct is a corresponding struct to Mesa prog_src_register, with
67  * wider fields.
68  */
69 class src_reg {
70 public:
src_reg(gl_register_file file,int index,const glsl_type * type)71    src_reg(gl_register_file file, int index, const glsl_type *type)
72    {
73       this->file = file;
74       this->index = index;
75       if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 	 this->swizzle = swizzle_for_size(type->vector_elements);
77       else
78 	 this->swizzle = SWIZZLE_XYZW;
79       this->negate = 0;
80       this->reladdr = NULL;
81    }
82 
src_reg()83    src_reg()
84    {
85       this->file = PROGRAM_UNDEFINED;
86       this->index = 0;
87       this->swizzle = 0;
88       this->negate = 0;
89       this->reladdr = NULL;
90    }
91 
92    explicit src_reg(dst_reg reg);
93 
94    gl_register_file file; /**< PROGRAM_* from Mesa */
95    int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96    GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97    int negate; /**< NEGATE_XYZW mask from mesa */
98    /** Register index should be offset by the integer in this reg. */
99    src_reg *reladdr;
100 };
101 
102 class dst_reg {
103 public:
dst_reg(gl_register_file file,int writemask)104    dst_reg(gl_register_file file, int writemask)
105    {
106       this->file = file;
107       this->index = 0;
108       this->writemask = writemask;
109       this->reladdr = NULL;
110    }
111 
dst_reg()112    dst_reg()
113    {
114       this->file = PROGRAM_UNDEFINED;
115       this->index = 0;
116       this->writemask = 0;
117       this->reladdr = NULL;
118    }
119 
120    explicit dst_reg(src_reg reg);
121 
122    gl_register_file file; /**< PROGRAM_* from Mesa */
123    int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124    int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125    /** Register index should be offset by the integer in this reg. */
126    src_reg *reladdr;
127 };
128 
129 } /* anonymous namespace */
130 
src_reg(dst_reg reg)131 src_reg::src_reg(dst_reg reg)
132 {
133    this->file = reg.file;
134    this->index = reg.index;
135    this->swizzle = SWIZZLE_XYZW;
136    this->negate = 0;
137    this->reladdr = reg.reladdr;
138 }
139 
dst_reg(src_reg reg)140 dst_reg::dst_reg(src_reg reg)
141 {
142    this->file = reg.file;
143    this->index = reg.index;
144    this->writemask = WRITEMASK_XYZW;
145    this->reladdr = reg.reladdr;
146 }
147 
148 namespace {
149 
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152    DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
153 
154    enum prog_opcode op;
155    dst_reg dst;
156    src_reg src[3];
157    /** Pointer to the ir source this tree came from for debugging */
158    ir_instruction *ir;
159    bool saturate;
160    int sampler; /**< sampler index */
161    int tex_target; /**< One of TEXTURE_*_INDEX */
162    GLboolean tex_shadow;
163 };
164 
165 class variable_storage : public exec_node {
166 public:
variable_storage(ir_variable * var,gl_register_file file,int index)167    variable_storage(ir_variable *var, gl_register_file file, int index)
168       : file(file), index(index), var(var)
169    {
170       /* empty */
171    }
172 
173    gl_register_file file;
174    int index;
175    ir_variable *var; /* variable that maps to this, if any */
176 };
177 
178 class function_entry : public exec_node {
179 public:
180    ir_function_signature *sig;
181 
182    /**
183     * identifier of this function signature used by the program.
184     *
185     * At the point that Mesa instructions for function calls are
186     * generated, we don't know the address of the first instruction of
187     * the function body.  So we make the BranchTarget that is called a
188     * small integer and rewrite them during set_branchtargets().
189     */
190    int sig_id;
191 
192    /**
193     * Pointer to first instruction of the function body.
194     *
195     * Set during function body emits after main() is processed.
196     */
197    ir_to_mesa_instruction *bgn_inst;
198 
199    /**
200     * Index of the first instruction of the function body in actual
201     * Mesa IR.
202     *
203     * Set after convertion from ir_to_mesa_instruction to prog_instruction.
204     */
205    int inst;
206 
207    /** Storage for the return value. */
208    src_reg return_reg;
209 };
210 
211 class ir_to_mesa_visitor : public ir_visitor {
212 public:
213    ir_to_mesa_visitor();
214    ~ir_to_mesa_visitor();
215 
216    function_entry *current_function;
217 
218    struct gl_context *ctx;
219    struct gl_program *prog;
220    struct gl_shader_program *shader_program;
221    struct gl_shader_compiler_options *options;
222 
223    int next_temp;
224 
225    variable_storage *find_variable_storage(const ir_variable *var);
226 
227    src_reg get_temp(const glsl_type *type);
228    void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
229 
230    src_reg src_reg_for_float(float val);
231 
232    /**
233     * \name Visit methods
234     *
235     * As typical for the visitor pattern, there must be one \c visit method for
236     * each concrete subclass of \c ir_instruction.  Virtual base classes within
237     * the hierarchy should not have \c visit methods.
238     */
239    /*@{*/
240    virtual void visit(ir_variable *);
241    virtual void visit(ir_loop *);
242    virtual void visit(ir_loop_jump *);
243    virtual void visit(ir_function_signature *);
244    virtual void visit(ir_function *);
245    virtual void visit(ir_expression *);
246    virtual void visit(ir_swizzle *);
247    virtual void visit(ir_dereference_variable  *);
248    virtual void visit(ir_dereference_array *);
249    virtual void visit(ir_dereference_record *);
250    virtual void visit(ir_assignment *);
251    virtual void visit(ir_constant *);
252    virtual void visit(ir_call *);
253    virtual void visit(ir_return *);
254    virtual void visit(ir_discard *);
255    virtual void visit(ir_demote *);
256    virtual void visit(ir_texture *);
257    virtual void visit(ir_if *);
258    virtual void visit(ir_emit_vertex *);
259    virtual void visit(ir_end_primitive *);
260    virtual void visit(ir_barrier *);
261    /*@}*/
262 
263    src_reg result;
264 
265    /** List of variable_storage */
266    exec_list variables;
267 
268    /** List of function_entry */
269    exec_list function_signatures;
270    int next_signature_id;
271 
272    /** List of ir_to_mesa_instruction */
273    exec_list instructions;
274 
275    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
276 
277    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
278 			        dst_reg dst, src_reg src0);
279 
280    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
281 			        dst_reg dst, src_reg src0, src_reg src1);
282 
283    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
284 			        dst_reg dst,
285 			        src_reg src0, src_reg src1, src_reg src2);
286 
287    /**
288     * Emit the correct dot-product instruction for the type of arguments
289     */
290    ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
291 				    dst_reg dst,
292 				    src_reg src0,
293 				    src_reg src1,
294 				    unsigned elements);
295 
296    void emit_scalar(ir_instruction *ir, enum prog_opcode op,
297 		    dst_reg dst, src_reg src0);
298 
299    void emit_scalar(ir_instruction *ir, enum prog_opcode op,
300 		    dst_reg dst, src_reg src0, src_reg src1);
301 
302    bool try_emit_mad(ir_expression *ir,
303 			  int mul_operand);
304    bool try_emit_mad_for_and_not(ir_expression *ir,
305 				 int mul_operand);
306 
307    void emit_swz(ir_expression *ir);
308 
309    void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
310                                  dst_reg dst,
311                                  const src_reg &src0, const src_reg &src1);
312 
emit_sne(ir_expression * ir,dst_reg dst,const src_reg & src0,const src_reg & src1)313    inline void emit_sne(ir_expression *ir, dst_reg dst,
314                         const src_reg &src0, const src_reg &src1)
315    {
316       emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
317    }
318 
emit_seq(ir_expression * ir,dst_reg dst,const src_reg & src0,const src_reg & src1)319    inline void emit_seq(ir_expression *ir, dst_reg dst,
320                         const src_reg &src0, const src_reg &src1)
321    {
322       emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
323    }
324 
325    bool process_move_condition(ir_rvalue *ir);
326 
327    void copy_propagate(void);
328 
329    void *mem_ctx;
330 };
331 
332 } /* anonymous namespace */
333 
334 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
335 
336 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
337 
338 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
339 
340 static int
swizzle_for_size(int size)341 swizzle_for_size(int size)
342 {
343    static const int size_swizzles[4] = {
344       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
345       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
346       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
347       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
348    };
349 
350    assert((size >= 1) && (size <= 4));
351    return size_swizzles[size - 1];
352 }
353 
354 ir_to_mesa_instruction *
emit(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg src0,src_reg src1,src_reg src2)355 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
356 			 dst_reg dst,
357 			 src_reg src0, src_reg src1, src_reg src2)
358 {
359    ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
360    int num_reladdr = 0;
361 
362    /* If we have to do relative addressing, we want to load the ARL
363     * reg directly for one of the regs, and preload the other reladdr
364     * sources into temps.
365     */
366    num_reladdr += dst.reladdr != NULL;
367    num_reladdr += src0.reladdr != NULL;
368    num_reladdr += src1.reladdr != NULL;
369    num_reladdr += src2.reladdr != NULL;
370 
371    reladdr_to_temp(ir, &src2, &num_reladdr);
372    reladdr_to_temp(ir, &src1, &num_reladdr);
373    reladdr_to_temp(ir, &src0, &num_reladdr);
374 
375    if (dst.reladdr) {
376       emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
377       num_reladdr--;
378    }
379    assert(num_reladdr == 0);
380 
381    inst->op = op;
382    inst->dst = dst;
383    inst->src[0] = src0;
384    inst->src[1] = src1;
385    inst->src[2] = src2;
386    inst->ir = ir;
387 
388    this->instructions.push_tail(inst);
389 
390    return inst;
391 }
392 
393 
394 ir_to_mesa_instruction *
emit(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg src0,src_reg src1)395 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396 			 dst_reg dst, src_reg src0, src_reg src1)
397 {
398    return emit(ir, op, dst, src0, src1, undef_src);
399 }
400 
401 ir_to_mesa_instruction *
emit(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg src0)402 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
403 			 dst_reg dst, src_reg src0)
404 {
405    assert(dst.writemask != 0);
406    return emit(ir, op, dst, src0, undef_src, undef_src);
407 }
408 
409 ir_to_mesa_instruction *
emit(ir_instruction * ir,enum prog_opcode op)410 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
411 {
412    return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
413 }
414 
415 ir_to_mesa_instruction *
emit_dp(ir_instruction * ir,dst_reg dst,src_reg src0,src_reg src1,unsigned elements)416 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
417 			    dst_reg dst, src_reg src0, src_reg src1,
418 			    unsigned elements)
419 {
420    static const enum prog_opcode dot_opcodes[] = {
421       OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
422    };
423 
424    return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
425 }
426 
427 /**
428  * Emits Mesa scalar opcodes to produce unique answers across channels.
429  *
430  * Some Mesa opcodes are scalar-only, like ARB_fp/vp.  The src X
431  * channel determines the result across all channels.  So to do a vec4
432  * of this operation, we want to emit a scalar per source channel used
433  * to produce dest channels.
434  */
435 void
emit_scalar(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg orig_src0,src_reg orig_src1)436 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
437 			        dst_reg dst,
438 				src_reg orig_src0, src_reg orig_src1)
439 {
440    int i, j;
441    int done_mask = ~dst.writemask;
442 
443    /* Mesa RCP is a scalar operation splatting results to all channels,
444     * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
445     * dst channels.
446     */
447    for (i = 0; i < 4; i++) {
448       GLuint this_mask = (1 << i);
449       ir_to_mesa_instruction *inst;
450       src_reg src0 = orig_src0;
451       src_reg src1 = orig_src1;
452 
453       if (done_mask & this_mask)
454 	 continue;
455 
456       GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
457       GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
458       for (j = i + 1; j < 4; j++) {
459 	 /* If there is another enabled component in the destination that is
460 	  * derived from the same inputs, generate its value on this pass as
461 	  * well.
462 	  */
463 	 if (!(done_mask & (1 << j)) &&
464 	     GET_SWZ(src0.swizzle, j) == src0_swiz &&
465 	     GET_SWZ(src1.swizzle, j) == src1_swiz) {
466 	    this_mask |= (1 << j);
467 	 }
468       }
469       src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
470 				   src0_swiz, src0_swiz);
471       src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
472 				  src1_swiz, src1_swiz);
473 
474       inst = emit(ir, op, dst, src0, src1);
475       inst->dst.writemask = this_mask;
476       done_mask |= this_mask;
477    }
478 }
479 
480 void
emit_scalar(ir_instruction * ir,enum prog_opcode op,dst_reg dst,src_reg src0)481 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
482 			        dst_reg dst, src_reg src0)
483 {
484    src_reg undef = undef_src;
485 
486    undef.swizzle = SWIZZLE_XXXX;
487 
488    emit_scalar(ir, op, dst, src0, undef);
489 }
490 
491 src_reg
src_reg_for_float(float val)492 ir_to_mesa_visitor::src_reg_for_float(float val)
493 {
494    src_reg src(PROGRAM_CONSTANT, -1, NULL);
495 
496    src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
497 					  (const gl_constant_value *)&val, 1, &src.swizzle);
498 
499    return src;
500 }
501 
502 static int
type_size(const struct glsl_type * type)503 type_size(const struct glsl_type *type)
504 {
505    return type->count_vec4_slots(false, false);
506 }
507 
508 /**
509  * In the initial pass of codegen, we assign temporary numbers to
510  * intermediate results.  (not SSA -- variable assignments will reuse
511  * storage).  Actual register allocation for the Mesa VM occurs in a
512  * pass over the Mesa IR later.
513  */
514 src_reg
get_temp(const glsl_type * type)515 ir_to_mesa_visitor::get_temp(const glsl_type *type)
516 {
517    src_reg src;
518 
519    src.file = PROGRAM_TEMPORARY;
520    src.index = next_temp;
521    src.reladdr = NULL;
522    next_temp += type_size(type);
523 
524    if (type->is_array() || type->is_struct()) {
525       src.swizzle = SWIZZLE_NOOP;
526    } else {
527       src.swizzle = swizzle_for_size(type->vector_elements);
528    }
529    src.negate = 0;
530 
531    return src;
532 }
533 
534 variable_storage *
find_variable_storage(const ir_variable * var)535 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
536 {
537    foreach_in_list(variable_storage, entry, &this->variables) {
538       if (entry->var == var)
539 	 return entry;
540    }
541 
542    return NULL;
543 }
544 
545 void
visit(ir_variable * ir)546 ir_to_mesa_visitor::visit(ir_variable *ir)
547 {
548    if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
549       unsigned int i;
550       const ir_state_slot *const slots = ir->get_state_slots();
551       assert(slots != NULL);
552 
553       /* Check if this statevar's setup in the STATE file exactly
554        * matches how we'll want to reference it as a
555        * struct/array/whatever.  If not, then we need to move it into
556        * temporary storage and hope that it'll get copy-propagated
557        * out.
558        */
559       for (i = 0; i < ir->get_num_state_slots(); i++) {
560 	 if (slots[i].swizzle != SWIZZLE_XYZW) {
561 	    break;
562 	 }
563       }
564 
565       variable_storage *storage;
566       dst_reg dst;
567       if (i == ir->get_num_state_slots()) {
568 	 /* We'll set the index later. */
569 	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
570 	 this->variables.push_tail(storage);
571 
572 	 dst = undef_dst;
573       } else {
574 	 /* The variable_storage constructor allocates slots based on the size
575 	  * of the type.  However, this had better match the number of state
576 	  * elements that we're going to copy into the new temporary.
577 	  */
578 	 assert((int) ir->get_num_state_slots() == type_size(ir->type));
579 
580 	 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
581 						 this->next_temp);
582 	 this->variables.push_tail(storage);
583 	 this->next_temp += type_size(ir->type);
584 
585 	 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
586       }
587 
588 
589       for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
590 	 int index = _mesa_add_state_reference(this->prog->Parameters,
591 					       slots[i].tokens);
592 
593 	 if (storage->file == PROGRAM_STATE_VAR) {
594 	    if (storage->index == -1) {
595 	       storage->index = index;
596 	    } else {
597 	       assert(index == storage->index + (int)i);
598 	    }
599 	 } else {
600 	    src_reg src(PROGRAM_STATE_VAR, index, NULL);
601 	    src.swizzle = slots[i].swizzle;
602 	    emit(ir, OPCODE_MOV, dst, src);
603 	    /* even a float takes up a whole vec4 reg in a struct/array. */
604 	    dst.index++;
605 	 }
606       }
607 
608       if (storage->file == PROGRAM_TEMPORARY &&
609 	  dst.index != storage->index + (int) ir->get_num_state_slots()) {
610 	 linker_error(this->shader_program,
611 		      "failed to load builtin uniform `%s' "
612 		      "(%d/%d regs loaded)\n",
613 		      ir->name, dst.index - storage->index,
614 		      type_size(ir->type));
615       }
616    }
617 }
618 
619 void
visit(ir_loop * ir)620 ir_to_mesa_visitor::visit(ir_loop *ir)
621 {
622    emit(NULL, OPCODE_BGNLOOP);
623 
624    visit_exec_list(&ir->body_instructions, this);
625 
626    emit(NULL, OPCODE_ENDLOOP);
627 }
628 
629 void
visit(ir_loop_jump * ir)630 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
631 {
632    switch (ir->mode) {
633    case ir_loop_jump::jump_break:
634       emit(NULL, OPCODE_BRK);
635       break;
636    case ir_loop_jump::jump_continue:
637       emit(NULL, OPCODE_CONT);
638       break;
639    }
640 }
641 
642 
643 void
visit(ir_function_signature * ir)644 ir_to_mesa_visitor::visit(ir_function_signature *ir)
645 {
646    assert(0);
647    (void)ir;
648 }
649 
650 void
visit(ir_function * ir)651 ir_to_mesa_visitor::visit(ir_function *ir)
652 {
653    /* Ignore function bodies other than main() -- we shouldn't see calls to
654     * them since they should all be inlined before we get to ir_to_mesa.
655     */
656    if (strcmp(ir->name, "main") == 0) {
657       const ir_function_signature *sig;
658       exec_list empty;
659 
660       sig = ir->matching_signature(NULL, &empty, false);
661 
662       assert(sig);
663 
664       foreach_in_list(ir_instruction, ir, &sig->body) {
665 	 ir->accept(this);
666       }
667    }
668 }
669 
670 bool
try_emit_mad(ir_expression * ir,int mul_operand)671 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
672 {
673    int nonmul_operand = 1 - mul_operand;
674    src_reg a, b, c;
675 
676    ir_expression *expr = ir->operands[mul_operand]->as_expression();
677    if (!expr || expr->operation != ir_binop_mul)
678       return false;
679 
680    expr->operands[0]->accept(this);
681    a = this->result;
682    expr->operands[1]->accept(this);
683    b = this->result;
684    ir->operands[nonmul_operand]->accept(this);
685    c = this->result;
686 
687    this->result = get_temp(ir->type);
688    emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
689 
690    return true;
691 }
692 
693 /**
694  * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
695  *
696  * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
697  * implemented using multiplication, and logical-or is implemented using
698  * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
699  * As result, the logical expression (a & !b) can be rewritten as:
700  *
701  *     - a * !b
702  *     - a * (1 - b)
703  *     - (a * 1) - (a * b)
704  *     - a + -(a * b)
705  *     - a + (a * -b)
706  *
707  * This final expression can be implemented as a single MAD(a, -b, a)
708  * instruction.
709  */
710 bool
try_emit_mad_for_and_not(ir_expression * ir,int try_operand)711 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
712 {
713    const int other_operand = 1 - try_operand;
714    src_reg a, b;
715 
716    ir_expression *expr = ir->operands[try_operand]->as_expression();
717    if (!expr || expr->operation != ir_unop_logic_not)
718       return false;
719 
720    ir->operands[other_operand]->accept(this);
721    a = this->result;
722    expr->operands[0]->accept(this);
723    b = this->result;
724 
725    b.negate = ~b.negate;
726 
727    this->result = get_temp(ir->type);
728    emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
729 
730    return true;
731 }
732 
733 void
reladdr_to_temp(ir_instruction * ir,src_reg * reg,int * num_reladdr)734 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
735 				    src_reg *reg, int *num_reladdr)
736 {
737    if (!reg->reladdr)
738       return;
739 
740    emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
741 
742    if (*num_reladdr != 1) {
743       src_reg temp = get_temp(glsl_type::vec4_type);
744 
745       emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
746       *reg = temp;
747    }
748 
749    (*num_reladdr)--;
750 }
751 
752 void
emit_swz(ir_expression * ir)753 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
754 {
755    /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
756     * This means that each of the operands is either an immediate value of -1,
757     * 0, or 1, or is a component from one source register (possibly with
758     * negation).
759     */
760    uint8_t components[4] = { 0 };
761    bool negate[4] = { false };
762    ir_variable *var = NULL;
763 
764    for (unsigned i = 0; i < ir->type->vector_elements; i++) {
765       ir_rvalue *op = ir->operands[i];
766 
767       assert(op->type->is_scalar());
768 
769       while (op != NULL) {
770 	 switch (op->ir_type) {
771 	 case ir_type_constant: {
772 
773 	    assert(op->type->is_scalar());
774 
775 	    const ir_constant *const c = op->as_constant();
776 	    if (c->is_one()) {
777 	       components[i] = SWIZZLE_ONE;
778 	    } else if (c->is_zero()) {
779 	       components[i] = SWIZZLE_ZERO;
780 	    } else if (c->is_negative_one()) {
781 	       components[i] = SWIZZLE_ONE;
782 	       negate[i] = true;
783 	    } else {
784 	       assert(!"SWZ constant must be 0.0 or 1.0.");
785 	    }
786 
787 	    op = NULL;
788 	    break;
789 	 }
790 
791 	 case ir_type_dereference_variable: {
792 	    ir_dereference_variable *const deref =
793 	       (ir_dereference_variable *) op;
794 
795 	    assert((var == NULL) || (deref->var == var));
796 	    components[i] = SWIZZLE_X;
797 	    var = deref->var;
798 	    op = NULL;
799 	    break;
800 	 }
801 
802 	 case ir_type_expression: {
803 	    ir_expression *const expr = (ir_expression *) op;
804 
805 	    assert(expr->operation == ir_unop_neg);
806 	    negate[i] = true;
807 
808 	    op = expr->operands[0];
809 	    break;
810 	 }
811 
812 	 case ir_type_swizzle: {
813 	    ir_swizzle *const swiz = (ir_swizzle *) op;
814 
815 	    components[i] = swiz->mask.x;
816 	    op = swiz->val;
817 	    break;
818 	 }
819 
820 	 default:
821 	    assert(!"Should not get here.");
822 	    return;
823 	 }
824       }
825    }
826 
827    assert(var != NULL);
828 
829    ir_dereference_variable *const deref =
830       new(mem_ctx) ir_dereference_variable(var);
831 
832    this->result.file = PROGRAM_UNDEFINED;
833    deref->accept(this);
834    if (this->result.file == PROGRAM_UNDEFINED) {
835       printf("Failed to get tree for expression operand:\n");
836       deref->print();
837       printf("\n");
838       exit(1);
839    }
840 
841    src_reg src;
842 
843    src = this->result;
844    src.swizzle = MAKE_SWIZZLE4(components[0],
845 			       components[1],
846 			       components[2],
847 			       components[3]);
848    src.negate = ((unsigned(negate[0]) << 0)
849 		 | (unsigned(negate[1]) << 1)
850 		 | (unsigned(negate[2]) << 2)
851 		 | (unsigned(negate[3]) << 3));
852 
853    /* Storage for our result.  Ideally for an assignment we'd be using the
854     * actual storage for the result here, instead.
855     */
856    const src_reg result_src = get_temp(ir->type);
857    dst_reg result_dst = dst_reg(result_src);
858 
859    /* Limit writes to the channels that will be used by result_src later.
860     * This does limit this temp's use as a temporary for multi-instruction
861     * sequences.
862     */
863    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
864 
865    emit(ir, OPCODE_SWZ, result_dst, src);
866    this->result = result_src;
867 }
868 
869 void
emit_equality_comparison(ir_expression * ir,enum prog_opcode op,dst_reg dst,const src_reg & src0,const src_reg & src1)870 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
871                                              enum prog_opcode op,
872                                              dst_reg dst,
873                                              const src_reg &src0,
874                                              const src_reg &src1)
875 {
876    src_reg difference;
877    src_reg abs_difference = get_temp(glsl_type::vec4_type);
878    const src_reg zero = src_reg_for_float(0.0);
879 
880    /* x == y is equivalent to -abs(x-y) >= 0.  Since all of the code that
881     * consumes the generated IR is pretty dumb, take special care when one
882     * of the operands is zero.
883     *
884     * Similarly, x != y is equivalent to -abs(x-y) < 0.
885     */
886    if (src0.file == zero.file &&
887        src0.index == zero.index &&
888        src0.swizzle == zero.swizzle) {
889       difference = src1;
890    } else if (src1.file == zero.file &&
891               src1.index == zero.index &&
892               src1.swizzle == zero.swizzle) {
893       difference = src0;
894    } else {
895       difference = get_temp(glsl_type::vec4_type);
896 
897       src_reg tmp_src = src0;
898       tmp_src.negate = ~tmp_src.negate;
899 
900       emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
901    }
902 
903    emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
904 
905    abs_difference.negate = ~abs_difference.negate;
906    emit(ir, op, dst, abs_difference, zero);
907 }
908 
909 void
visit(ir_expression * ir)910 ir_to_mesa_visitor::visit(ir_expression *ir)
911 {
912    unsigned int operand;
913    src_reg op[ARRAY_SIZE(ir->operands)];
914    src_reg result_src;
915    dst_reg result_dst;
916 
917    /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
918     */
919    if (ir->operation == ir_binop_add) {
920       if (try_emit_mad(ir, 1))
921 	 return;
922       if (try_emit_mad(ir, 0))
923 	 return;
924    }
925 
926    /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
927     */
928    if (ir->operation == ir_binop_logic_and) {
929       if (try_emit_mad_for_and_not(ir, 1))
930 	 return;
931       if (try_emit_mad_for_and_not(ir, 0))
932 	 return;
933    }
934 
935    if (ir->operation == ir_quadop_vector) {
936       this->emit_swz(ir);
937       return;
938    }
939 
940    for (operand = 0; operand < ir->num_operands; operand++) {
941       this->result.file = PROGRAM_UNDEFINED;
942       ir->operands[operand]->accept(this);
943       if (this->result.file == PROGRAM_UNDEFINED) {
944 	 printf("Failed to get tree for expression operand:\n");
945          ir->operands[operand]->print();
946          printf("\n");
947 	 exit(1);
948       }
949       op[operand] = this->result;
950 
951       /* Matrix expression operands should have been broken down to vector
952        * operations already.
953        */
954       assert(!ir->operands[operand]->type->is_matrix());
955    }
956 
957    int vector_elements = ir->operands[0]->type->vector_elements;
958    if (ir->operands[1]) {
959       vector_elements = MAX2(vector_elements,
960 			     ir->operands[1]->type->vector_elements);
961    }
962 
963    this->result.file = PROGRAM_UNDEFINED;
964 
965    /* Storage for our result.  Ideally for an assignment we'd be using
966     * the actual storage for the result here, instead.
967     */
968    result_src = get_temp(ir->type);
969    /* convenience for the emit functions below. */
970    result_dst = dst_reg(result_src);
971    /* Limit writes to the channels that will be used by result_src later.
972     * This does limit this temp's use as a temporary for multi-instruction
973     * sequences.
974     */
975    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
976 
977    switch (ir->operation) {
978    case ir_unop_logic_not:
979       /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
980        * older GPUs implement SEQ using multiple instructions (i915 uses two
981        * SGE instructions and a MUL instruction).  Since our logic values are
982        * 0.0 and 1.0, 1-x also implements !x.
983        */
984       op[0].negate = ~op[0].negate;
985       emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
986       break;
987    case ir_unop_neg:
988       op[0].negate = ~op[0].negate;
989       result_src = op[0];
990       break;
991    case ir_unop_abs:
992       emit(ir, OPCODE_ABS, result_dst, op[0]);
993       break;
994    case ir_unop_sign:
995       emit(ir, OPCODE_SSG, result_dst, op[0]);
996       break;
997    case ir_unop_rcp:
998       emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
999       break;
1000 
1001    case ir_unop_exp2:
1002       emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1003       break;
1004    case ir_unop_exp:
1005       assert(!"not reached: should be handled by exp_to_exp2");
1006       break;
1007    case ir_unop_log:
1008       assert(!"not reached: should be handled by log_to_log2");
1009       break;
1010    case ir_unop_log2:
1011       emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1012       break;
1013    case ir_unop_sin:
1014       emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1015       break;
1016    case ir_unop_cos:
1017       emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1018       break;
1019 
1020    case ir_unop_dFdx:
1021       emit(ir, OPCODE_DDX, result_dst, op[0]);
1022       break;
1023    case ir_unop_dFdy:
1024       emit(ir, OPCODE_DDY, result_dst, op[0]);
1025       break;
1026 
1027    case ir_unop_saturate: {
1028       ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1029                                           result_dst, op[0]);
1030       inst->saturate = true;
1031       break;
1032    }
1033 
1034    case ir_binop_add:
1035       emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1036       break;
1037    case ir_binop_sub:
1038       emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1039       break;
1040 
1041    case ir_binop_mul:
1042       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1043       break;
1044    case ir_binop_div:
1045       assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1046       break;
1047    case ir_binop_mod:
1048       /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1049       assert(ir->type->is_integer_32());
1050       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1051       break;
1052 
1053    case ir_binop_less:
1054       emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1055       break;
1056    case ir_binop_gequal:
1057       emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1058       break;
1059    case ir_binop_equal:
1060       emit_seq(ir, result_dst, op[0], op[1]);
1061       break;
1062    case ir_binop_nequal:
1063       emit_sne(ir, result_dst, op[0], op[1]);
1064       break;
1065    case ir_binop_all_equal:
1066       /* "==" operator producing a scalar boolean. */
1067       if (ir->operands[0]->type->is_vector() ||
1068 	  ir->operands[1]->type->is_vector()) {
1069 	 src_reg temp = get_temp(glsl_type::vec4_type);
1070          emit_sne(ir, dst_reg(temp), op[0], op[1]);
1071 
1072 	 /* After the dot-product, the value will be an integer on the
1073 	  * range [0,4].  Zero becomes 1.0, and positive values become zero.
1074 	  */
1075 	 emit_dp(ir, result_dst, temp, temp, vector_elements);
1076 
1077 	 /* Negating the result of the dot-product gives values on the range
1078 	  * [-4, 0].  Zero becomes 1.0, and negative values become zero.  This
1079 	  * achieved using SGE.
1080 	  */
1081 	 src_reg sge_src = result_src;
1082 	 sge_src.negate = ~sge_src.negate;
1083 	 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1084       } else {
1085          emit_seq(ir, result_dst, op[0], op[1]);
1086       }
1087       break;
1088    case ir_binop_any_nequal:
1089       /* "!=" operator producing a scalar boolean. */
1090       if (ir->operands[0]->type->is_vector() ||
1091 	  ir->operands[1]->type->is_vector()) {
1092 	 src_reg temp = get_temp(glsl_type::vec4_type);
1093          if (ir->operands[0]->type->is_boolean() &&
1094              ir->operands[1]->as_constant() &&
1095              ir->operands[1]->as_constant()->is_zero()) {
1096             temp = op[0];
1097          } else {
1098             emit_sne(ir, dst_reg(temp), op[0], op[1]);
1099          }
1100 
1101 	 /* After the dot-product, the value will be an integer on the
1102 	  * range [0,4].  Zero stays zero, and positive values become 1.0.
1103 	  */
1104 	 ir_to_mesa_instruction *const dp =
1105 	    emit_dp(ir, result_dst, temp, temp, vector_elements);
1106 	 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1107 	    /* The clamping to [0,1] can be done for free in the fragment
1108 	     * shader with a saturate.
1109 	     */
1110 	    dp->saturate = true;
1111 	 } else {
1112 	    /* Negating the result of the dot-product gives values on the range
1113 	     * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
1114 	     * achieved using SLT.
1115 	     */
1116 	    src_reg slt_src = result_src;
1117 	    slt_src.negate = ~slt_src.negate;
1118 	    emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1119 	 }
1120       } else {
1121          emit_sne(ir, result_dst, op[0], op[1]);
1122       }
1123       break;
1124 
1125    case ir_binop_logic_xor:
1126       emit_sne(ir, result_dst, op[0], op[1]);
1127       break;
1128 
1129    case ir_binop_logic_or: {
1130       if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1131          /* After the addition, the value will be an integer on the
1132           * range [0,2].  Zero stays zero, and positive values become 1.0.
1133           */
1134          ir_to_mesa_instruction *add =
1135             emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1136 	 add->saturate = true;
1137       } else {
1138          /* The Boolean arguments are stored as float 0.0 and 1.0.  If either
1139           * value is 1.0, the result of the logcal-or should be 1.0.  If both
1140           * values are 0.0, the result should be 0.0.  This is exactly what
1141           * MAX does.
1142           */
1143          emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1144       }
1145       break;
1146    }
1147 
1148    case ir_binop_logic_and:
1149       /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1150       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1151       break;
1152 
1153    case ir_binop_dot:
1154       assert(ir->operands[0]->type->is_vector());
1155       assert(ir->operands[0]->type == ir->operands[1]->type);
1156       emit_dp(ir, result_dst, op[0], op[1],
1157 	      ir->operands[0]->type->vector_elements);
1158       break;
1159 
1160    case ir_unop_sqrt:
1161       /* sqrt(x) = x * rsq(x). */
1162       emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1163       emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1164       /* For incoming channels <= 0, set the result to 0. */
1165       op[0].negate = ~op[0].negate;
1166       emit(ir, OPCODE_CMP, result_dst,
1167 			  op[0], result_src, src_reg_for_float(0.0));
1168       break;
1169    case ir_unop_rsq:
1170       emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1171       break;
1172    case ir_unop_i2f:
1173    case ir_unop_u2f:
1174    case ir_unop_b2f:
1175    case ir_unop_b2i:
1176    case ir_unop_i2u:
1177    case ir_unop_u2i:
1178       /* Mesa IR lacks types, ints are stored as truncated floats. */
1179       result_src = op[0];
1180       break;
1181    case ir_unop_f2i:
1182    case ir_unop_f2u:
1183       emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1184       break;
1185    case ir_unop_f2b:
1186    case ir_unop_i2b:
1187       emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1188       break;
1189    case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1190    case ir_unop_bitcast_f2u:
1191    case ir_unop_bitcast_i2f:
1192    case ir_unop_bitcast_u2f:
1193       break;
1194    case ir_unop_trunc:
1195       emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1196       break;
1197    case ir_unop_ceil:
1198       op[0].negate = ~op[0].negate;
1199       emit(ir, OPCODE_FLR, result_dst, op[0]);
1200       result_src.negate = ~result_src.negate;
1201       break;
1202    case ir_unop_floor:
1203       emit(ir, OPCODE_FLR, result_dst, op[0]);
1204       break;
1205    case ir_unop_fract:
1206       emit(ir, OPCODE_FRC, result_dst, op[0]);
1207       break;
1208    case ir_unop_pack_snorm_2x16:
1209    case ir_unop_pack_snorm_4x8:
1210    case ir_unop_pack_unorm_2x16:
1211    case ir_unop_pack_unorm_4x8:
1212    case ir_unop_pack_half_2x16:
1213    case ir_unop_pack_double_2x32:
1214    case ir_unop_unpack_snorm_2x16:
1215    case ir_unop_unpack_snorm_4x8:
1216    case ir_unop_unpack_unorm_2x16:
1217    case ir_unop_unpack_unorm_4x8:
1218    case ir_unop_unpack_half_2x16:
1219    case ir_unop_unpack_double_2x32:
1220    case ir_unop_bitfield_reverse:
1221    case ir_unop_bit_count:
1222    case ir_unop_find_msb:
1223    case ir_unop_find_lsb:
1224    case ir_unop_d2f:
1225    case ir_unop_f2d:
1226    case ir_unop_d2i:
1227    case ir_unop_i2d:
1228    case ir_unop_d2u:
1229    case ir_unop_u2d:
1230    case ir_unop_d2b:
1231    case ir_unop_frexp_sig:
1232    case ir_unop_frexp_exp:
1233       assert(!"not supported");
1234       break;
1235    case ir_binop_min:
1236       emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1237       break;
1238    case ir_binop_max:
1239       emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1240       break;
1241    case ir_binop_pow:
1242       emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1243       break;
1244 
1245       /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1246        * hardware backends have no way to avoid Mesa IR generation
1247        * even if they don't use it, we need to emit "something" and
1248        * continue.
1249        */
1250    case ir_binop_lshift:
1251    case ir_binop_rshift:
1252    case ir_binop_bit_and:
1253    case ir_binop_bit_xor:
1254    case ir_binop_bit_or:
1255       emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1256       break;
1257 
1258    case ir_unop_bit_not:
1259    case ir_unop_round_even:
1260       emit(ir, OPCODE_MOV, result_dst, op[0]);
1261       break;
1262 
1263    case ir_binop_ubo_load:
1264       assert(!"not supported");
1265       break;
1266 
1267    case ir_triop_lrp:
1268       /* ir_triop_lrp operands are (x, y, a) while
1269        * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1270        */
1271       emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1272       break;
1273 
1274    case ir_triop_csel:
1275       /* We assume that boolean true and false are 1.0 and 0.0.  OPCODE_CMP
1276        * selects src1 if src0 is < 0, src2 otherwise.
1277        */
1278       op[0].negate = ~op[0].negate;
1279       emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1280       break;
1281 
1282    case ir_binop_vector_extract:
1283    case ir_triop_fma:
1284    case ir_triop_bitfield_extract:
1285    case ir_triop_vector_insert:
1286    case ir_quadop_bitfield_insert:
1287    case ir_binop_ldexp:
1288    case ir_binop_carry:
1289    case ir_binop_borrow:
1290    case ir_binop_abs_sub:
1291    case ir_binop_add_sat:
1292    case ir_binop_sub_sat:
1293    case ir_binop_avg:
1294    case ir_binop_avg_round:
1295    case ir_binop_mul_32x16:
1296    case ir_binop_imul_high:
1297    case ir_unop_interpolate_at_centroid:
1298    case ir_binop_interpolate_at_offset:
1299    case ir_binop_interpolate_at_sample:
1300    case ir_unop_dFdx_coarse:
1301    case ir_unop_dFdx_fine:
1302    case ir_unop_dFdy_coarse:
1303    case ir_unop_dFdy_fine:
1304    case ir_unop_subroutine_to_int:
1305    case ir_unop_get_buffer_size:
1306    case ir_unop_bitcast_u642d:
1307    case ir_unop_bitcast_i642d:
1308    case ir_unop_bitcast_d2u64:
1309    case ir_unop_bitcast_d2i64:
1310    case ir_unop_i642i:
1311    case ir_unop_u642i:
1312    case ir_unop_i642u:
1313    case ir_unop_u642u:
1314    case ir_unop_i642b:
1315    case ir_unop_i642f:
1316    case ir_unop_u642f:
1317    case ir_unop_i642d:
1318    case ir_unop_u642d:
1319    case ir_unop_i2i64:
1320    case ir_unop_u2i64:
1321    case ir_unop_b2i64:
1322    case ir_unop_f2i64:
1323    case ir_unop_d2i64:
1324    case ir_unop_i2u64:
1325    case ir_unop_u2u64:
1326    case ir_unop_f2u64:
1327    case ir_unop_d2u64:
1328    case ir_unop_u642i64:
1329    case ir_unop_i642u64:
1330    case ir_unop_pack_int_2x32:
1331    case ir_unop_unpack_int_2x32:
1332    case ir_unop_pack_uint_2x32:
1333    case ir_unop_unpack_uint_2x32:
1334    case ir_unop_pack_sampler_2x32:
1335    case ir_unop_unpack_sampler_2x32:
1336    case ir_unop_pack_image_2x32:
1337    case ir_unop_unpack_image_2x32:
1338    case ir_unop_atan:
1339    case ir_binop_atan2:
1340    case ir_unop_clz:
1341    case ir_unop_f162f:
1342    case ir_unop_f2f16:
1343    case ir_unop_f2fmp:
1344    case ir_unop_f162b:
1345    case ir_unop_b2f16:
1346    case ir_unop_i2i:
1347    case ir_unop_i2imp:
1348    case ir_unop_u2u:
1349    case ir_unop_u2ump:
1350       assert(!"not supported");
1351       break;
1352 
1353    case ir_unop_ssbo_unsized_array_length:
1354    case ir_quadop_vector:
1355       /* This operation should have already been handled.
1356        */
1357       assert(!"Should not get here.");
1358       break;
1359    }
1360 
1361    this->result = result_src;
1362 }
1363 
1364 
1365 void
visit(ir_swizzle * ir)1366 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1367 {
1368    src_reg src;
1369    int i;
1370    int swizzle[4] = {0};
1371 
1372    /* Note that this is only swizzles in expressions, not those on the left
1373     * hand side of an assignment, which do write masking.  See ir_assignment
1374     * for that.
1375     */
1376 
1377    ir->val->accept(this);
1378    src = this->result;
1379    assert(src.file != PROGRAM_UNDEFINED);
1380    assert(ir->type->vector_elements > 0);
1381 
1382    for (i = 0; i < 4; i++) {
1383       if (i < ir->type->vector_elements) {
1384 	 switch (i) {
1385 	 case 0:
1386 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1387 	    break;
1388 	 case 1:
1389 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1390 	    break;
1391 	 case 2:
1392 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1393 	    break;
1394 	 case 3:
1395 	    swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1396 	    break;
1397 	 }
1398       } else {
1399 	 /* If the type is smaller than a vec4, replicate the last
1400 	  * channel out.
1401 	  */
1402 	 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1403       }
1404    }
1405 
1406    src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1407 
1408    this->result = src;
1409 }
1410 
1411 void
visit(ir_dereference_variable * ir)1412 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1413 {
1414    variable_storage *entry = find_variable_storage(ir->var);
1415    ir_variable *var = ir->var;
1416 
1417    if (!entry) {
1418       switch (var->data.mode) {
1419       case ir_var_uniform:
1420 	 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1421 					       var->data.param_index);
1422 	 this->variables.push_tail(entry);
1423 	 break;
1424       case ir_var_shader_in:
1425 	 /* The linker assigns locations for varyings and attributes,
1426 	  * including deprecated builtins (like gl_Color),
1427 	  * user-assigned generic attributes (glBindVertexLocation),
1428 	  * and user-defined varyings.
1429 	  */
1430 	 assert(var->data.location != -1);
1431          entry = new(mem_ctx) variable_storage(var,
1432                                                PROGRAM_INPUT,
1433                                                var->data.location);
1434          break;
1435       case ir_var_shader_out:
1436 	 assert(var->data.location != -1);
1437          entry = new(mem_ctx) variable_storage(var,
1438                                                PROGRAM_OUTPUT,
1439                                                var->data.location);
1440 	 break;
1441       case ir_var_system_value:
1442          entry = new(mem_ctx) variable_storage(var,
1443                                                PROGRAM_SYSTEM_VALUE,
1444                                                var->data.location);
1445          break;
1446       case ir_var_auto:
1447       case ir_var_temporary:
1448 	 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1449 					       this->next_temp);
1450 	 this->variables.push_tail(entry);
1451 
1452 	 next_temp += type_size(var->type);
1453 	 break;
1454       }
1455 
1456       if (!entry) {
1457 	 printf("Failed to make storage for %s\n", var->name);
1458 	 exit(1);
1459       }
1460    }
1461 
1462    this->result = src_reg(entry->file, entry->index, var->type);
1463 }
1464 
1465 void
visit(ir_dereference_array * ir)1466 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1467 {
1468    ir_constant *index;
1469    src_reg src;
1470    int element_size = type_size(ir->type);
1471 
1472    index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1473 
1474    ir->array->accept(this);
1475    src = this->result;
1476 
1477    if (index) {
1478       src.index += index->value.i[0] * element_size;
1479    } else {
1480       /* Variable index array dereference.  It eats the "vec4" of the
1481        * base of the array and an index that offsets the Mesa register
1482        * index.
1483        */
1484       ir->array_index->accept(this);
1485 
1486       src_reg index_reg;
1487 
1488       if (element_size == 1) {
1489 	 index_reg = this->result;
1490       } else {
1491 	 index_reg = get_temp(glsl_type::float_type);
1492 
1493 	 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1494 	      this->result, src_reg_for_float(element_size));
1495       }
1496 
1497       /* If there was already a relative address register involved, add the
1498        * new and the old together to get the new offset.
1499        */
1500       if (src.reladdr != NULL)  {
1501 	 src_reg accum_reg = get_temp(glsl_type::float_type);
1502 
1503 	 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1504 	      index_reg, *src.reladdr);
1505 
1506 	 index_reg = accum_reg;
1507       }
1508 
1509       src.reladdr = ralloc(mem_ctx, src_reg);
1510       memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1511    }
1512 
1513    /* If the type is smaller than a vec4, replicate the last channel out. */
1514    if (ir->type->is_scalar() || ir->type->is_vector())
1515       src.swizzle = swizzle_for_size(ir->type->vector_elements);
1516    else
1517       src.swizzle = SWIZZLE_NOOP;
1518 
1519    this->result = src;
1520 }
1521 
1522 void
visit(ir_dereference_record * ir)1523 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1524 {
1525    unsigned int i;
1526    const glsl_type *struct_type = ir->record->type;
1527    int offset = 0;
1528 
1529    ir->record->accept(this);
1530 
1531    assert(ir->field_idx >= 0);
1532    for (i = 0; i < struct_type->length; i++) {
1533       if (i == (unsigned) ir->field_idx)
1534 	 break;
1535       offset += type_size(struct_type->fields.structure[i].type);
1536    }
1537 
1538    /* If the type is smaller than a vec4, replicate the last channel out. */
1539    if (ir->type->is_scalar() || ir->type->is_vector())
1540       this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1541    else
1542       this->result.swizzle = SWIZZLE_NOOP;
1543 
1544    this->result.index += offset;
1545 }
1546 
1547 /**
1548  * We want to be careful in assignment setup to hit the actual storage
1549  * instead of potentially using a temporary like we might with the
1550  * ir_dereference handler.
1551  */
1552 static dst_reg
get_assignment_lhs(ir_dereference * ir,ir_to_mesa_visitor * v)1553 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1554 {
1555    /* The LHS must be a dereference.  If the LHS is a variable indexed array
1556     * access of a vector, it must be separated into a series conditional moves
1557     * before reaching this point (see ir_vec_index_to_cond_assign).
1558     */
1559    assert(ir->as_dereference());
1560    ir_dereference_array *deref_array = ir->as_dereference_array();
1561    if (deref_array) {
1562       assert(!deref_array->array->type->is_vector());
1563    }
1564 
1565    /* Use the rvalue deref handler for the most part.  We'll ignore
1566     * swizzles in it and write swizzles using writemask, though.
1567     */
1568    ir->accept(v);
1569    return dst_reg(v->result);
1570 }
1571 
1572 /* Calculate the sampler index and also calculate the base uniform location
1573  * for struct members.
1574  */
1575 static void
calc_sampler_offsets(struct gl_shader_program * prog,ir_dereference * deref,unsigned * offset,unsigned * array_elements,unsigned * location)1576 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1577                      unsigned *offset, unsigned *array_elements,
1578                      unsigned *location)
1579 {
1580    if (deref->ir_type == ir_type_dereference_variable)
1581       return;
1582 
1583    switch (deref->ir_type) {
1584    case ir_type_dereference_array: {
1585       ir_dereference_array *deref_arr = deref->as_dereference_array();
1586 
1587       void *mem_ctx = ralloc_parent(deref_arr);
1588       ir_constant *array_index =
1589          deref_arr->array_index->constant_expression_value(mem_ctx);
1590 
1591       if (!array_index) {
1592 	 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1593 	  * while GLSL 1.30 requires that the array indices be
1594 	  * constant integer expressions.  We don't expect any driver
1595 	  * to actually work with a really variable array index, so
1596 	  * all that would work would be an unrolled loop counter that ends
1597 	  * up being constant above.
1598 	  */
1599          ralloc_strcat(&prog->data->InfoLog,
1600 		       "warning: Variable sampler array index unsupported.\n"
1601 		       "This feature of the language was removed in GLSL 1.20 "
1602 		       "and is unlikely to be supported for 1.10 in Mesa.\n");
1603       } else {
1604          *offset += array_index->value.u[0] * *array_elements;
1605       }
1606 
1607       *array_elements *= deref_arr->array->type->length;
1608 
1609       calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1610                            offset, array_elements, location);
1611       break;
1612    }
1613 
1614    case ir_type_dereference_record: {
1615       ir_dereference_record *deref_record = deref->as_dereference_record();
1616       unsigned field_index = deref_record->field_idx;
1617       *location +=
1618          deref_record->record->type->struct_location_offset(field_index);
1619       calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1620                            offset, array_elements, location);
1621       break;
1622    }
1623 
1624    default:
1625       unreachable("Invalid deref type");
1626       break;
1627    }
1628 }
1629 
1630 static int
get_sampler_uniform_value(class ir_dereference * sampler,struct gl_shader_program * shader_program,const struct gl_program * prog)1631 get_sampler_uniform_value(class ir_dereference *sampler,
1632                           struct gl_shader_program *shader_program,
1633                           const struct gl_program *prog)
1634 {
1635    GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1636    ir_variable *var = sampler->variable_referenced();
1637    unsigned location = var->data.location;
1638    unsigned array_elements = 1;
1639    unsigned offset = 0;
1640 
1641    calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1642                         &location);
1643 
1644    assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1645    return shader_program->data->UniformStorage[location].opaque[shader].index +
1646           offset;
1647 }
1648 
1649 /**
1650  * Process the condition of a conditional assignment
1651  *
1652  * Examines the condition of a conditional assignment to generate the optimal
1653  * first operand of a \c CMP instruction.  If the condition is a relational
1654  * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1655  * used as the source for the \c CMP instruction.  Otherwise the comparison
1656  * is processed to a boolean result, and the boolean result is used as the
1657  * operand to the CMP instruction.
1658  */
1659 bool
process_move_condition(ir_rvalue * ir)1660 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1661 {
1662    ir_rvalue *src_ir = ir;
1663    bool negate = true;
1664    bool switch_order = false;
1665 
1666    ir_expression *const expr = ir->as_expression();
1667    if ((expr != NULL) && (expr->num_operands == 2)) {
1668       bool zero_on_left = false;
1669 
1670       if (expr->operands[0]->is_zero()) {
1671 	 src_ir = expr->operands[1];
1672 	 zero_on_left = true;
1673       } else if (expr->operands[1]->is_zero()) {
1674 	 src_ir = expr->operands[0];
1675 	 zero_on_left = false;
1676       }
1677 
1678       /*      a is -  0  +            -  0  +
1679        * (a <  0)  T  F  F  ( a < 0)  T  F  F
1680        * (0 <  a)  F  F  T  (-a < 0)  F  F  T
1681        * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
1682        * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
1683        *
1684        * Note that exchanging the order of 0 and 'a' in the comparison simply
1685        * means that the value of 'a' should be negated.
1686        */
1687       if (src_ir != ir) {
1688 	 switch (expr->operation) {
1689 	 case ir_binop_less:
1690 	    switch_order = false;
1691 	    negate = zero_on_left;
1692 	    break;
1693 
1694 	 case ir_binop_gequal:
1695 	    switch_order = true;
1696 	    negate = zero_on_left;
1697 	    break;
1698 
1699 	 default:
1700 	    /* This isn't the right kind of comparison afterall, so make sure
1701 	     * the whole condition is visited.
1702 	     */
1703 	    src_ir = ir;
1704 	    break;
1705 	 }
1706       }
1707    }
1708 
1709    src_ir->accept(this);
1710 
1711    /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1712     * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
1713     * choose which value OPCODE_CMP produces without an extra instruction
1714     * computing the condition.
1715     */
1716    if (negate)
1717       this->result.negate = ~this->result.negate;
1718 
1719    return switch_order;
1720 }
1721 
1722 void
visit(ir_assignment * ir)1723 ir_to_mesa_visitor::visit(ir_assignment *ir)
1724 {
1725    dst_reg l;
1726    src_reg r;
1727    int i;
1728 
1729    ir->rhs->accept(this);
1730    r = this->result;
1731 
1732    l = get_assignment_lhs(ir->lhs, this);
1733 
1734    /* FINISHME: This should really set to the correct maximal writemask for each
1735     * FINISHME: component written (in the loops below).  This case can only
1736     * FINISHME: occur for matrices, arrays, and structures.
1737     */
1738    if (ir->write_mask == 0) {
1739       assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1740       l.writemask = WRITEMASK_XYZW;
1741    } else if (ir->lhs->type->is_scalar()) {
1742       /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1743        * FINISHME: W component of fragment shader output zero, work correctly.
1744        */
1745       l.writemask = WRITEMASK_XYZW;
1746    } else {
1747       int swizzles[4];
1748       int first_enabled_chan = 0;
1749       int rhs_chan = 0;
1750 
1751       assert(ir->lhs->type->is_vector());
1752       l.writemask = ir->write_mask;
1753 
1754       for (int i = 0; i < 4; i++) {
1755 	 if (l.writemask & (1 << i)) {
1756 	    first_enabled_chan = GET_SWZ(r.swizzle, i);
1757 	    break;
1758 	 }
1759       }
1760 
1761       /* Swizzle a small RHS vector into the channels being written.
1762        *
1763        * glsl ir treats write_mask as dictating how many channels are
1764        * present on the RHS while Mesa IR treats write_mask as just
1765        * showing which channels of the vec4 RHS get written.
1766        */
1767       for (int i = 0; i < 4; i++) {
1768 	 if (l.writemask & (1 << i))
1769 	    swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1770 	 else
1771 	    swizzles[i] = first_enabled_chan;
1772       }
1773       r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1774 				swizzles[2], swizzles[3]);
1775    }
1776 
1777    assert(l.file != PROGRAM_UNDEFINED);
1778    assert(r.file != PROGRAM_UNDEFINED);
1779 
1780    if (ir->condition) {
1781       const bool switch_order = this->process_move_condition(ir->condition);
1782       src_reg condition = this->result;
1783 
1784       for (i = 0; i < type_size(ir->lhs->type); i++) {
1785 	 if (switch_order) {
1786 	    emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1787 	 } else {
1788 	    emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1789 	 }
1790 
1791 	 l.index++;
1792 	 r.index++;
1793       }
1794    } else {
1795       for (i = 0; i < type_size(ir->lhs->type); i++) {
1796 	 emit(ir, OPCODE_MOV, l, r);
1797 	 l.index++;
1798 	 r.index++;
1799       }
1800    }
1801 }
1802 
1803 
1804 void
visit(ir_constant * ir)1805 ir_to_mesa_visitor::visit(ir_constant *ir)
1806 {
1807    src_reg src;
1808    GLfloat stack_vals[4] = { 0 };
1809    GLfloat *values = stack_vals;
1810    unsigned int i;
1811 
1812    /* Unfortunately, 4 floats is all we can get into
1813     * _mesa_add_unnamed_constant.  So, make a temp to store an
1814     * aggregate constant and move each constant value into it.  If we
1815     * get lucky, copy propagation will eliminate the extra moves.
1816     */
1817 
1818    if (ir->type->is_struct()) {
1819       src_reg temp_base = get_temp(ir->type);
1820       dst_reg temp = dst_reg(temp_base);
1821 
1822       for (i = 0; i < ir->type->length; i++) {
1823          ir_constant *const field_value = ir->get_record_field(i);
1824 	 int size = type_size(field_value->type);
1825 
1826 	 assert(size > 0);
1827 
1828 	 field_value->accept(this);
1829 	 src = this->result;
1830 
1831          for (unsigned j = 0; j < (unsigned int)size; j++) {
1832 	    emit(ir, OPCODE_MOV, temp, src);
1833 
1834 	    src.index++;
1835 	    temp.index++;
1836 	 }
1837       }
1838       this->result = temp_base;
1839       return;
1840    }
1841 
1842    if (ir->type->is_array()) {
1843       src_reg temp_base = get_temp(ir->type);
1844       dst_reg temp = dst_reg(temp_base);
1845       int size = type_size(ir->type->fields.array);
1846 
1847       assert(size > 0);
1848 
1849       for (i = 0; i < ir->type->length; i++) {
1850 	 ir->const_elements[i]->accept(this);
1851 	 src = this->result;
1852 	 for (int j = 0; j < size; j++) {
1853 	    emit(ir, OPCODE_MOV, temp, src);
1854 
1855 	    src.index++;
1856 	    temp.index++;
1857 	 }
1858       }
1859       this->result = temp_base;
1860       return;
1861    }
1862 
1863    if (ir->type->is_matrix()) {
1864       src_reg mat = get_temp(ir->type);
1865       dst_reg mat_column = dst_reg(mat);
1866 
1867       for (i = 0; i < ir->type->matrix_columns; i++) {
1868 	 assert(ir->type->is_float());
1869 	 values = &ir->value.f[i * ir->type->vector_elements];
1870 
1871 	 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1872 	 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1873 						(gl_constant_value *) values,
1874 						ir->type->vector_elements,
1875 						&src.swizzle);
1876 	 emit(ir, OPCODE_MOV, mat_column, src);
1877 
1878 	 mat_column.index++;
1879       }
1880 
1881       this->result = mat;
1882       return;
1883    }
1884 
1885    src.file = PROGRAM_CONSTANT;
1886    switch (ir->type->base_type) {
1887    case GLSL_TYPE_FLOAT:
1888       values = &ir->value.f[0];
1889       break;
1890    case GLSL_TYPE_UINT:
1891       for (i = 0; i < ir->type->vector_elements; i++) {
1892 	 values[i] = ir->value.u[i];
1893       }
1894       break;
1895    case GLSL_TYPE_INT:
1896       for (i = 0; i < ir->type->vector_elements; i++) {
1897 	 values[i] = ir->value.i[i];
1898       }
1899       break;
1900    case GLSL_TYPE_BOOL:
1901       for (i = 0; i < ir->type->vector_elements; i++) {
1902 	 values[i] = ir->value.b[i];
1903       }
1904       break;
1905    default:
1906       assert(!"Non-float/uint/int/bool constant");
1907    }
1908 
1909    this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1910    this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1911 						   (gl_constant_value *) values,
1912 						   ir->type->vector_elements,
1913 						   &this->result.swizzle);
1914 }
1915 
1916 void
visit(ir_call *)1917 ir_to_mesa_visitor::visit(ir_call *)
1918 {
1919    assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1920 }
1921 
1922 void
visit(ir_texture * ir)1923 ir_to_mesa_visitor::visit(ir_texture *ir)
1924 {
1925    src_reg result_src, coord, lod_info, projector, dx, dy;
1926    dst_reg result_dst, coord_dst;
1927    ir_to_mesa_instruction *inst = NULL;
1928    prog_opcode opcode = OPCODE_NOP;
1929 
1930    if (ir->op == ir_txs)
1931       this->result = src_reg_for_float(0.0);
1932    else
1933       ir->coordinate->accept(this);
1934 
1935    /* Put our coords in a temp.  We'll need to modify them for shadow,
1936     * projection, or LOD, so the only case we'd use it as-is is if
1937     * we're doing plain old texturing.  Mesa IR optimization should
1938     * handle cleaning up our mess in that case.
1939     */
1940    coord = get_temp(glsl_type::vec4_type);
1941    coord_dst = dst_reg(coord);
1942    emit(ir, OPCODE_MOV, coord_dst, this->result);
1943 
1944    if (ir->projector) {
1945       ir->projector->accept(this);
1946       projector = this->result;
1947    }
1948 
1949    /* Storage for our result.  Ideally for an assignment we'd be using
1950     * the actual storage for the result here, instead.
1951     */
1952    result_src = get_temp(glsl_type::vec4_type);
1953    result_dst = dst_reg(result_src);
1954 
1955    switch (ir->op) {
1956    case ir_tex:
1957    case ir_txs:
1958       opcode = OPCODE_TEX;
1959       break;
1960    case ir_txb:
1961       opcode = OPCODE_TXB;
1962       ir->lod_info.bias->accept(this);
1963       lod_info = this->result;
1964       break;
1965    case ir_txf:
1966       /* Pretend to be TXL so the sampler, coordinate, lod are available */
1967    case ir_txl:
1968       opcode = OPCODE_TXL;
1969       ir->lod_info.lod->accept(this);
1970       lod_info = this->result;
1971       break;
1972    case ir_txd:
1973       opcode = OPCODE_TXD;
1974       ir->lod_info.grad.dPdx->accept(this);
1975       dx = this->result;
1976       ir->lod_info.grad.dPdy->accept(this);
1977       dy = this->result;
1978       break;
1979    case ir_txf_ms:
1980       assert(!"Unexpected ir_txf_ms opcode");
1981       break;
1982    case ir_lod:
1983       assert(!"Unexpected ir_lod opcode");
1984       break;
1985    case ir_tg4:
1986       assert(!"Unexpected ir_tg4 opcode");
1987       break;
1988    case ir_query_levels:
1989       assert(!"Unexpected ir_query_levels opcode");
1990       break;
1991    case ir_samples_identical:
1992       unreachable("Unexpected ir_samples_identical opcode");
1993    case ir_texture_samples:
1994       unreachable("Unexpected ir_texture_samples opcode");
1995    }
1996 
1997    const glsl_type *sampler_type = ir->sampler->type;
1998 
1999    if (ir->projector) {
2000       if (opcode == OPCODE_TEX) {
2001 	 /* Slot the projector in as the last component of the coord. */
2002 	 coord_dst.writemask = WRITEMASK_W;
2003 	 emit(ir, OPCODE_MOV, coord_dst, projector);
2004 	 coord_dst.writemask = WRITEMASK_XYZW;
2005 	 opcode = OPCODE_TXP;
2006       } else {
2007 	 src_reg coord_w = coord;
2008 	 coord_w.swizzle = SWIZZLE_WWWW;
2009 
2010 	 /* For the other TEX opcodes there's no projective version
2011 	  * since the last slot is taken up by lod info.  Do the
2012 	  * projective divide now.
2013 	  */
2014 	 coord_dst.writemask = WRITEMASK_W;
2015 	 emit(ir, OPCODE_RCP, coord_dst, projector);
2016 
2017 	 /* In the case where we have to project the coordinates "by hand,"
2018 	  * the shadow comparator value must also be projected.
2019 	  */
2020 	 src_reg tmp_src = coord;
2021 	 if (ir->shadow_comparator) {
2022 	    /* Slot the shadow value in as the second to last component of the
2023 	     * coord.
2024 	     */
2025 	    ir->shadow_comparator->accept(this);
2026 
2027 	    tmp_src = get_temp(glsl_type::vec4_type);
2028 	    dst_reg tmp_dst = dst_reg(tmp_src);
2029 
2030 	    /* Projective division not allowed for array samplers. */
2031 	    assert(!sampler_type->sampler_array);
2032 
2033 	    tmp_dst.writemask = WRITEMASK_Z;
2034 	    emit(ir, OPCODE_MOV, tmp_dst, this->result);
2035 
2036 	    tmp_dst.writemask = WRITEMASK_XY;
2037 	    emit(ir, OPCODE_MOV, tmp_dst, coord);
2038 	 }
2039 
2040 	 coord_dst.writemask = WRITEMASK_XYZ;
2041 	 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2042 
2043 	 coord_dst.writemask = WRITEMASK_XYZW;
2044 	 coord.swizzle = SWIZZLE_XYZW;
2045       }
2046    }
2047 
2048    /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2049     * comparator was put in the correct place (and projected) by the code,
2050     * above, that handles by-hand projection.
2051     */
2052    if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2053       /* Slot the shadow value in as the second to last component of the
2054        * coord.
2055        */
2056       ir->shadow_comparator->accept(this);
2057 
2058       /* XXX This will need to be updated for cubemap array samplers. */
2059       if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2060           sampler_type->sampler_array) {
2061          coord_dst.writemask = WRITEMASK_W;
2062       } else {
2063          coord_dst.writemask = WRITEMASK_Z;
2064       }
2065 
2066       emit(ir, OPCODE_MOV, coord_dst, this->result);
2067       coord_dst.writemask = WRITEMASK_XYZW;
2068    }
2069 
2070    if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2071       /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2072       coord_dst.writemask = WRITEMASK_W;
2073       emit(ir, OPCODE_MOV, coord_dst, lod_info);
2074       coord_dst.writemask = WRITEMASK_XYZW;
2075    }
2076 
2077    if (opcode == OPCODE_TXD)
2078       inst = emit(ir, opcode, result_dst, coord, dx, dy);
2079    else
2080       inst = emit(ir, opcode, result_dst, coord);
2081 
2082    if (ir->shadow_comparator)
2083       inst->tex_shadow = GL_TRUE;
2084 
2085    inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2086                                              prog);
2087 
2088    switch (sampler_type->sampler_dimensionality) {
2089    case GLSL_SAMPLER_DIM_1D:
2090       inst->tex_target = (sampler_type->sampler_array)
2091 	 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2092       break;
2093    case GLSL_SAMPLER_DIM_2D:
2094       inst->tex_target = (sampler_type->sampler_array)
2095 	 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2096       break;
2097    case GLSL_SAMPLER_DIM_3D:
2098       inst->tex_target = TEXTURE_3D_INDEX;
2099       break;
2100    case GLSL_SAMPLER_DIM_CUBE:
2101       inst->tex_target = TEXTURE_CUBE_INDEX;
2102       break;
2103    case GLSL_SAMPLER_DIM_RECT:
2104       inst->tex_target = TEXTURE_RECT_INDEX;
2105       break;
2106    case GLSL_SAMPLER_DIM_BUF:
2107       assert(!"FINISHME: Implement ARB_texture_buffer_object");
2108       break;
2109    case GLSL_SAMPLER_DIM_EXTERNAL:
2110       inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2111       break;
2112    default:
2113       assert(!"Should not get here.");
2114    }
2115 
2116    this->result = result_src;
2117 }
2118 
2119 void
visit(ir_return * ir)2120 ir_to_mesa_visitor::visit(ir_return *ir)
2121 {
2122    /* Non-void functions should have been inlined.  We may still emit RETs
2123     * from main() unless the EmitNoMainReturn option is set.
2124     */
2125    assert(!ir->get_value());
2126    emit(ir, OPCODE_RET);
2127 }
2128 
2129 void
visit(ir_discard * ir)2130 ir_to_mesa_visitor::visit(ir_discard *ir)
2131 {
2132    if (!ir->condition)
2133       ir->condition = new(mem_ctx) ir_constant(true);
2134 
2135    ir->condition->accept(this);
2136    this->result.negate = ~this->result.negate;
2137    emit(ir, OPCODE_KIL, undef_dst, this->result);
2138 }
2139 
2140 void
visit(ir_demote * ir)2141 ir_to_mesa_visitor::visit(ir_demote *ir)
2142 {
2143    assert(!"demote statement unsupported");
2144 }
2145 
2146 void
visit(ir_if * ir)2147 ir_to_mesa_visitor::visit(ir_if *ir)
2148 {
2149    ir_to_mesa_instruction *if_inst;
2150 
2151    ir->condition->accept(this);
2152    assert(this->result.file != PROGRAM_UNDEFINED);
2153 
2154    if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2155 
2156    this->instructions.push_tail(if_inst);
2157 
2158    visit_exec_list(&ir->then_instructions, this);
2159 
2160    if (!ir->else_instructions.is_empty()) {
2161       emit(ir->condition, OPCODE_ELSE);
2162       visit_exec_list(&ir->else_instructions, this);
2163    }
2164 
2165    emit(ir->condition, OPCODE_ENDIF);
2166 }
2167 
2168 void
visit(ir_emit_vertex *)2169 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2170 {
2171    assert(!"Geometry shaders not supported.");
2172 }
2173 
2174 void
visit(ir_end_primitive *)2175 ir_to_mesa_visitor::visit(ir_end_primitive *)
2176 {
2177    assert(!"Geometry shaders not supported.");
2178 }
2179 
2180 void
visit(ir_barrier *)2181 ir_to_mesa_visitor::visit(ir_barrier *)
2182 {
2183    unreachable("GLSL barrier() not supported.");
2184 }
2185 
ir_to_mesa_visitor()2186 ir_to_mesa_visitor::ir_to_mesa_visitor()
2187 {
2188    result.file = PROGRAM_UNDEFINED;
2189    next_temp = 1;
2190    next_signature_id = 1;
2191    current_function = NULL;
2192    mem_ctx = ralloc_context(NULL);
2193    ctx = NULL;
2194    prog = NULL;
2195    shader_program = NULL;
2196    options = NULL;
2197 }
2198 
~ir_to_mesa_visitor()2199 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2200 {
2201    ralloc_free(mem_ctx);
2202 }
2203 
2204 static struct prog_src_register
mesa_src_reg_from_ir_src_reg(src_reg reg)2205 mesa_src_reg_from_ir_src_reg(src_reg reg)
2206 {
2207    struct prog_src_register mesa_reg;
2208 
2209    mesa_reg.File = reg.file;
2210    assert(reg.index < (1 << INST_INDEX_BITS));
2211    mesa_reg.Index = reg.index;
2212    mesa_reg.Swizzle = reg.swizzle;
2213    mesa_reg.RelAddr = reg.reladdr != NULL;
2214    mesa_reg.Negate = reg.negate;
2215 
2216    return mesa_reg;
2217 }
2218 
2219 static void
set_branchtargets(ir_to_mesa_visitor * v,struct prog_instruction * mesa_instructions,int num_instructions)2220 set_branchtargets(ir_to_mesa_visitor *v,
2221 		  struct prog_instruction *mesa_instructions,
2222 		  int num_instructions)
2223 {
2224    int if_count = 0, loop_count = 0;
2225    int *if_stack, *loop_stack;
2226    int if_stack_pos = 0, loop_stack_pos = 0;
2227    int i, j;
2228 
2229    for (i = 0; i < num_instructions; i++) {
2230       switch (mesa_instructions[i].Opcode) {
2231       case OPCODE_IF:
2232 	 if_count++;
2233 	 break;
2234       case OPCODE_BGNLOOP:
2235 	 loop_count++;
2236 	 break;
2237       case OPCODE_BRK:
2238       case OPCODE_CONT:
2239 	 mesa_instructions[i].BranchTarget = -1;
2240 	 break;
2241       default:
2242 	 break;
2243       }
2244    }
2245 
2246    if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2247    loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2248 
2249    for (i = 0; i < num_instructions; i++) {
2250       switch (mesa_instructions[i].Opcode) {
2251       case OPCODE_IF:
2252 	 if_stack[if_stack_pos] = i;
2253 	 if_stack_pos++;
2254 	 break;
2255       case OPCODE_ELSE:
2256 	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2257 	 if_stack[if_stack_pos - 1] = i;
2258 	 break;
2259       case OPCODE_ENDIF:
2260 	 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2261 	 if_stack_pos--;
2262 	 break;
2263       case OPCODE_BGNLOOP:
2264 	 loop_stack[loop_stack_pos] = i;
2265 	 loop_stack_pos++;
2266 	 break;
2267       case OPCODE_ENDLOOP:
2268 	 loop_stack_pos--;
2269 	 /* Rewrite any breaks/conts at this nesting level (haven't
2270 	  * already had a BranchTarget assigned) to point to the end
2271 	  * of the loop.
2272 	  */
2273 	 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2274 	    if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2275 		mesa_instructions[j].Opcode == OPCODE_CONT) {
2276 	       if (mesa_instructions[j].BranchTarget == -1) {
2277 		  mesa_instructions[j].BranchTarget = i;
2278 	       }
2279 	    }
2280 	 }
2281 	 /* The loop ends point at each other. */
2282 	 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2283 	 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2284 	 break;
2285       case OPCODE_CAL:
2286 	 foreach_in_list(function_entry, entry, &v->function_signatures) {
2287 	    if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2288 	       mesa_instructions[i].BranchTarget = entry->inst;
2289 	       break;
2290 	    }
2291 	 }
2292 	 break;
2293       default:
2294 	 break;
2295       }
2296    }
2297 }
2298 
2299 static void
print_program(struct prog_instruction * mesa_instructions,ir_instruction ** mesa_instruction_annotation,int num_instructions)2300 print_program(struct prog_instruction *mesa_instructions,
2301 	      ir_instruction **mesa_instruction_annotation,
2302 	      int num_instructions)
2303 {
2304    ir_instruction *last_ir = NULL;
2305    int i;
2306    int indent = 0;
2307 
2308    for (i = 0; i < num_instructions; i++) {
2309       struct prog_instruction *mesa_inst = mesa_instructions + i;
2310       ir_instruction *ir = mesa_instruction_annotation[i];
2311 
2312       fprintf(stdout, "%3d: ", i);
2313 
2314       if (last_ir != ir && ir) {
2315 	 int j;
2316 
2317 	 for (j = 0; j < indent; j++) {
2318 	    fprintf(stdout, " ");
2319 	 }
2320 	 ir->print();
2321 	 printf("\n");
2322 	 last_ir = ir;
2323 
2324 	 fprintf(stdout, "     "); /* line number spacing. */
2325       }
2326 
2327       indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2328 					    PROG_PRINT_DEBUG, NULL);
2329    }
2330 }
2331 
2332 namespace {
2333 
2334 class add_uniform_to_shader : public program_resource_visitor {
2335 public:
add_uniform_to_shader(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_program_parameter_list * params)2336    add_uniform_to_shader(struct gl_context *ctx,
2337                          struct gl_shader_program *shader_program,
2338 			 struct gl_program_parameter_list *params)
2339       : ctx(ctx), shader_program(shader_program), params(params), idx(-1),
2340         var(NULL)
2341    {
2342       /* empty */
2343    }
2344 
process(ir_variable * var)2345    void process(ir_variable *var)
2346    {
2347       this->idx = -1;
2348       this->var = var;
2349       this->program_resource_visitor::process(var,
2350                                          ctx->Const.UseSTD430AsDefaultPacking);
2351       var->data.param_index = this->idx;
2352    }
2353 
2354 private:
2355    virtual void visit_field(const glsl_type *type, const char *name,
2356                             bool row_major, const glsl_type *record_type,
2357                             const enum glsl_interface_packing packing,
2358                             bool last_field);
2359 
2360    struct gl_context *ctx;
2361    struct gl_shader_program *shader_program;
2362    struct gl_program_parameter_list *params;
2363    int idx;
2364    ir_variable *var;
2365 };
2366 
2367 } /* anonymous namespace */
2368 
2369 void
visit_field(const glsl_type * type,const char * name,bool,const glsl_type *,const enum glsl_interface_packing,bool)2370 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2371                                    bool /* row_major */,
2372                                    const glsl_type * /* record_type */,
2373                                    const enum glsl_interface_packing,
2374                                    bool /* last_field */)
2375 {
2376    /* opaque types don't use storage in the param list unless they are
2377     * bindless samplers or images.
2378     */
2379    if (type->contains_opaque() && !var->data.bindless)
2380       return;
2381 
2382    /* Add the uniform to the param list */
2383    assert(_mesa_lookup_parameter_index(params, name) < 0);
2384    int index = _mesa_lookup_parameter_index(params, name);
2385 
2386    unsigned num_params = type->arrays_of_arrays_size();
2387    num_params = MAX2(num_params, 1);
2388    num_params *= type->without_array()->matrix_columns;
2389 
2390    bool is_dual_slot = type->without_array()->is_dual_slot();
2391    if (is_dual_slot)
2392       num_params *= 2;
2393 
2394    _mesa_reserve_parameter_storage(params, num_params);
2395    index = params->NumParameters;
2396 
2397    if (ctx->Const.PackedDriverUniformStorage) {
2398       for (unsigned i = 0; i < num_params; i++) {
2399          unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
2400          unsigned comps = type->without_array()->vector_elements * dmul;
2401          if (is_dual_slot) {
2402             if (i & 0x1)
2403                comps -= 4;
2404             else
2405                comps = 4;
2406          }
2407 
2408          _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
2409                              type->gl_type, NULL, NULL, false);
2410       }
2411    } else {
2412       for (unsigned i = 0; i < num_params; i++) {
2413          _mesa_add_parameter(params, PROGRAM_UNIFORM, name, 4,
2414                              type->gl_type, NULL, NULL, true);
2415       }
2416    }
2417 
2418    /* The first part of the uniform that's processed determines the base
2419     * location of the whole uniform (for structures).
2420     */
2421    if (this->idx < 0)
2422       this->idx = index;
2423 
2424    /* Each Parameter will hold the index to the backing uniform storage.
2425     * This avoids relying on names to match parameters and uniform
2426     * storages later when associating uniform storage.
2427     */
2428    unsigned location = -1;
2429    ASSERTED const bool found =
2430       shader_program->UniformHash->get(location, params->Parameters[index].Name);
2431    assert(found);
2432 
2433    for (unsigned i = 0; i < num_params; i++) {
2434       struct gl_program_parameter *param = &params->Parameters[index + i];
2435       param->UniformStorageIndex = location;
2436       param->MainUniformStorageIndex = params->Parameters[this->idx].UniformStorageIndex;
2437    }
2438 }
2439 
2440 /**
2441  * Generate the program parameters list for the user uniforms in a shader
2442  *
2443  * \param shader_program Linked shader program.  This is only used to
2444  *                       emit possible link errors to the info log.
2445  * \param sh             Shader whose uniforms are to be processed.
2446  * \param params         Parameter list to be filled in.
2447  */
2448 void
_mesa_generate_parameters_list_for_uniforms(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_linked_shader * sh,struct gl_program_parameter_list * params)2449 _mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
2450                                             struct gl_shader_program
2451 					    *shader_program,
2452 					    struct gl_linked_shader *sh,
2453 					    struct gl_program_parameter_list
2454 					    *params)
2455 {
2456    add_uniform_to_shader add(ctx, shader_program, params);
2457 
2458    foreach_in_list(ir_instruction, node, sh->ir) {
2459       ir_variable *var = node->as_variable();
2460 
2461       if ((var == NULL) || (var->data.mode != ir_var_uniform)
2462 	  || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2463 	 continue;
2464 
2465       add.process(var);
2466    }
2467 }
2468 
2469 void
_mesa_associate_uniform_storage(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_program * prog)2470 _mesa_associate_uniform_storage(struct gl_context *ctx,
2471                                 struct gl_shader_program *shader_program,
2472                                 struct gl_program *prog)
2473 {
2474    struct gl_program_parameter_list *params = prog->Parameters;
2475    gl_shader_stage shader_type = prog->info.stage;
2476 
2477    /* After adding each uniform to the parameter list, connect the storage for
2478     * the parameter with the tracking structure used by the API for the
2479     * uniform.
2480     */
2481    unsigned last_location = unsigned(~0);
2482    for (unsigned i = 0; i < params->NumParameters; i++) {
2483       if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2484          continue;
2485 
2486       unsigned location = params->Parameters[i].UniformStorageIndex;
2487 
2488       struct gl_uniform_storage *storage =
2489          &shader_program->data->UniformStorage[location];
2490 
2491       /* Do not associate any uniform storage to built-in uniforms */
2492       if (storage->builtin)
2493          continue;
2494 
2495       if (location != last_location) {
2496          enum gl_uniform_driver_format format = uniform_native;
2497          unsigned columns = 0;
2498 
2499          int dmul;
2500          if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm) {
2501             dmul = storage->type->vector_elements * sizeof(float);
2502          } else {
2503             dmul = 4 * sizeof(float);
2504          }
2505 
2506          switch (storage->type->base_type) {
2507          case GLSL_TYPE_UINT64:
2508             if (storage->type->vector_elements > 2)
2509                dmul *= 2;
2510             /* fallthrough */
2511          case GLSL_TYPE_UINT:
2512          case GLSL_TYPE_UINT16:
2513          case GLSL_TYPE_UINT8:
2514             assert(ctx->Const.NativeIntegers);
2515             format = uniform_native;
2516             columns = 1;
2517             break;
2518          case GLSL_TYPE_INT64:
2519             if (storage->type->vector_elements > 2)
2520                dmul *= 2;
2521             /* fallthrough */
2522          case GLSL_TYPE_INT:
2523          case GLSL_TYPE_INT16:
2524          case GLSL_TYPE_INT8:
2525             format =
2526                (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2527             columns = 1;
2528             break;
2529          case GLSL_TYPE_DOUBLE:
2530             if (storage->type->vector_elements > 2)
2531                dmul *= 2;
2532             /* fallthrough */
2533          case GLSL_TYPE_FLOAT:
2534          case GLSL_TYPE_FLOAT16:
2535             format = uniform_native;
2536             columns = storage->type->matrix_columns;
2537             break;
2538          case GLSL_TYPE_BOOL:
2539             format = uniform_native;
2540             columns = 1;
2541             break;
2542          case GLSL_TYPE_SAMPLER:
2543          case GLSL_TYPE_IMAGE:
2544          case GLSL_TYPE_SUBROUTINE:
2545             format = uniform_native;
2546             columns = 1;
2547             break;
2548          case GLSL_TYPE_ATOMIC_UINT:
2549          case GLSL_TYPE_ARRAY:
2550          case GLSL_TYPE_VOID:
2551          case GLSL_TYPE_STRUCT:
2552          case GLSL_TYPE_ERROR:
2553          case GLSL_TYPE_INTERFACE:
2554          case GLSL_TYPE_FUNCTION:
2555             assert(!"Should not get here.");
2556             break;
2557          }
2558 
2559          unsigned pvo = params->ParameterValueOffset[i];
2560          _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2561                                              format,
2562                                              &params->ParameterValues[pvo]);
2563 
2564          /* When a bindless sampler/image is bound to a texture/image unit, we
2565           * have to overwrite the constant value by the resident handle
2566           * directly in the constant buffer before the next draw. One solution
2567           * is to keep track a pointer to the base of the data.
2568           */
2569          if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2570                                       prog->sh.NumBindlessImages)) {
2571             unsigned array_elements = MAX2(1, storage->array_elements);
2572 
2573             for (unsigned j = 0; j < array_elements; ++j) {
2574                unsigned unit = storage->opaque[shader_type].index + j;
2575 
2576                if (storage->type->without_array()->is_sampler()) {
2577                   assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2578                   prog->sh.BindlessSamplers[unit].data =
2579                      &params->ParameterValues[pvo] + 4 * j;
2580                } else if (storage->type->without_array()->is_image()) {
2581                   assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2582                   prog->sh.BindlessImages[unit].data =
2583                      &params->ParameterValues[pvo] + 4 * j;
2584                }
2585             }
2586          }
2587 
2588          /* After attaching the driver's storage to the uniform, propagate any
2589           * data from the linker's backing store.  This will cause values from
2590           * initializers in the source code to be copied over.
2591           */
2592          unsigned array_elements = MAX2(1, storage->array_elements);
2593          if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm &&
2594              (storage->is_bindless || !storage->type->contains_opaque())) {
2595             const int dmul = storage->type->is_64bit() ? 2 : 1;
2596             const unsigned components =
2597                storage->type->vector_elements *
2598                storage->type->matrix_columns;
2599 
2600             for (unsigned s = 0; s < storage->num_driver_storage; s++) {
2601                gl_constant_value *uni_storage = (gl_constant_value *)
2602                   storage->driver_storage[s].data;
2603                memcpy(uni_storage, storage->storage,
2604                       sizeof(storage->storage[0]) * components *
2605                       array_elements * dmul);
2606             }
2607          } else {
2608             _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2609                                                        array_elements);
2610          }
2611 
2612 	      last_location = location;
2613       }
2614    }
2615 }
2616 
2617 /*
2618  * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2619  * channels for copy propagation and updates following instructions to
2620  * use the original versions.
2621  *
2622  * The ir_to_mesa_visitor lazily produces code assuming that this pass
2623  * will occur.  As an example, a TXP production before this pass:
2624  *
2625  * 0: MOV TEMP[1], INPUT[4].xyyy;
2626  * 1: MOV TEMP[1].w, INPUT[4].wwww;
2627  * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2628  *
2629  * and after:
2630  *
2631  * 0: MOV TEMP[1], INPUT[4].xyyy;
2632  * 1: MOV TEMP[1].w, INPUT[4].wwww;
2633  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2634  *
2635  * which allows for dead code elimination on TEMP[1]'s writes.
2636  */
2637 void
copy_propagate(void)2638 ir_to_mesa_visitor::copy_propagate(void)
2639 {
2640    ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2641 						    ir_to_mesa_instruction *,
2642 						    this->next_temp * 4);
2643    int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2644    int level = 0;
2645 
2646    foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2647       assert(inst->dst.file != PROGRAM_TEMPORARY
2648 	     || inst->dst.index < this->next_temp);
2649 
2650       /* First, do any copy propagation possible into the src regs. */
2651       for (int r = 0; r < 3; r++) {
2652 	 ir_to_mesa_instruction *first = NULL;
2653 	 bool good = true;
2654 	 int acp_base = inst->src[r].index * 4;
2655 
2656 	 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2657 	     inst->src[r].reladdr)
2658 	    continue;
2659 
2660 	 /* See if we can find entries in the ACP consisting of MOVs
2661 	  * from the same src register for all the swizzled channels
2662 	  * of this src register reference.
2663 	  */
2664 	 for (int i = 0; i < 4; i++) {
2665 	    int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2666 	    ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2667 
2668 	    if (!copy_chan) {
2669 	       good = false;
2670 	       break;
2671 	    }
2672 
2673 	    assert(acp_level[acp_base + src_chan] <= level);
2674 
2675 	    if (!first) {
2676 	       first = copy_chan;
2677 	    } else {
2678 	       if (first->src[0].file != copy_chan->src[0].file ||
2679 		   first->src[0].index != copy_chan->src[0].index) {
2680 		  good = false;
2681 		  break;
2682 	       }
2683 	    }
2684 	 }
2685 
2686 	 if (good) {
2687 	    /* We've now validated that we can copy-propagate to
2688 	     * replace this src register reference.  Do it.
2689 	     */
2690 	    inst->src[r].file = first->src[0].file;
2691 	    inst->src[r].index = first->src[0].index;
2692 
2693 	    int swizzle = 0;
2694 	    for (int i = 0; i < 4; i++) {
2695 	       int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2696 	       ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2697 	       swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2698 			   (3 * i));
2699 	    }
2700 	    inst->src[r].swizzle = swizzle;
2701 	 }
2702       }
2703 
2704       switch (inst->op) {
2705       case OPCODE_BGNLOOP:
2706       case OPCODE_ENDLOOP:
2707 	 /* End of a basic block, clear the ACP entirely. */
2708 	 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2709 	 break;
2710 
2711       case OPCODE_IF:
2712 	 ++level;
2713 	 break;
2714 
2715       case OPCODE_ENDIF:
2716       case OPCODE_ELSE:
2717 	 /* Clear all channels written inside the block from the ACP, but
2718 	  * leaving those that were not touched.
2719 	  */
2720 	 for (int r = 0; r < this->next_temp; r++) {
2721 	    for (int c = 0; c < 4; c++) {
2722 	       if (!acp[4 * r + c])
2723 		  continue;
2724 
2725 	       if (acp_level[4 * r + c] >= level)
2726 		  acp[4 * r + c] = NULL;
2727 	    }
2728 	 }
2729 	 if (inst->op == OPCODE_ENDIF)
2730 	    --level;
2731 	 break;
2732 
2733       default:
2734 	 /* Continuing the block, clear any written channels from
2735 	  * the ACP.
2736 	  */
2737 	 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2738 	    /* Any temporary might be written, so no copy propagation
2739 	     * across this instruction.
2740 	     */
2741 	    memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2742 	 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2743 		    inst->dst.reladdr) {
2744 	    /* Any output might be written, so no copy propagation
2745 	     * from outputs across this instruction.
2746 	     */
2747 	    for (int r = 0; r < this->next_temp; r++) {
2748 	       for (int c = 0; c < 4; c++) {
2749 		  if (!acp[4 * r + c])
2750 		     continue;
2751 
2752 		  if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2753 		     acp[4 * r + c] = NULL;
2754 	       }
2755 	    }
2756 	 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2757 		    inst->dst.file == PROGRAM_OUTPUT) {
2758 	    /* Clear where it's used as dst. */
2759 	    if (inst->dst.file == PROGRAM_TEMPORARY) {
2760 	       for (int c = 0; c < 4; c++) {
2761 		  if (inst->dst.writemask & (1 << c)) {
2762 		     acp[4 * inst->dst.index + c] = NULL;
2763 		  }
2764 	       }
2765 	    }
2766 
2767 	    /* Clear where it's used as src. */
2768 	    for (int r = 0; r < this->next_temp; r++) {
2769 	       for (int c = 0; c < 4; c++) {
2770 		  if (!acp[4 * r + c])
2771 		     continue;
2772 
2773 		  int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2774 
2775 		  if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2776 		      acp[4 * r + c]->src[0].index == inst->dst.index &&
2777 		      inst->dst.writemask & (1 << src_chan))
2778 		  {
2779 		     acp[4 * r + c] = NULL;
2780 		  }
2781 	       }
2782 	    }
2783 	 }
2784 	 break;
2785       }
2786 
2787       /* If this is a copy, add it to the ACP. */
2788       if (inst->op == OPCODE_MOV &&
2789 	  inst->dst.file == PROGRAM_TEMPORARY &&
2790 	  !(inst->dst.file == inst->src[0].file &&
2791 	    inst->dst.index == inst->src[0].index) &&
2792 	  !inst->dst.reladdr &&
2793 	  !inst->saturate &&
2794 	  !inst->src[0].reladdr &&
2795 	  !inst->src[0].negate) {
2796 	 for (int i = 0; i < 4; i++) {
2797 	    if (inst->dst.writemask & (1 << i)) {
2798 	       acp[4 * inst->dst.index + i] = inst;
2799 	       acp_level[4 * inst->dst.index + i] = level;
2800 	    }
2801 	 }
2802       }
2803    }
2804 
2805    ralloc_free(acp_level);
2806    ralloc_free(acp);
2807 }
2808 
2809 
2810 /**
2811  * Convert a shader's GLSL IR into a Mesa gl_program.
2812  */
2813 static struct gl_program *
get_mesa_program(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_linked_shader * shader)2814 get_mesa_program(struct gl_context *ctx,
2815                  struct gl_shader_program *shader_program,
2816 		 struct gl_linked_shader *shader)
2817 {
2818    ir_to_mesa_visitor v;
2819    struct prog_instruction *mesa_instructions, *mesa_inst;
2820    ir_instruction **mesa_instruction_annotation;
2821    int i;
2822    struct gl_program *prog;
2823    GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2824    const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2825    struct gl_shader_compiler_options *options =
2826          &ctx->Const.ShaderCompilerOptions[shader->Stage];
2827 
2828    validate_ir_tree(shader->ir);
2829 
2830    prog = shader->Program;
2831    prog->Parameters = _mesa_new_parameter_list();
2832    v.ctx = ctx;
2833    v.prog = prog;
2834    v.shader_program = shader_program;
2835    v.options = options;
2836 
2837    _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
2838 					       prog->Parameters);
2839 
2840    /* Emit Mesa IR for main(). */
2841    visit_exec_list(shader->ir, &v);
2842    v.emit(NULL, OPCODE_END);
2843 
2844    prog->arb.NumTemporaries = v.next_temp;
2845 
2846    unsigned num_instructions = v.instructions.length();
2847 
2848    mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2849                                      num_instructions);
2850    mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2851 					      num_instructions);
2852 
2853    v.copy_propagate();
2854 
2855    /* Convert ir_mesa_instructions into prog_instructions.
2856     */
2857    mesa_inst = mesa_instructions;
2858    i = 0;
2859    foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2860       mesa_inst->Opcode = inst->op;
2861       if (inst->saturate)
2862 	 mesa_inst->Saturate = GL_TRUE;
2863       mesa_inst->DstReg.File = inst->dst.file;
2864       mesa_inst->DstReg.Index = inst->dst.index;
2865       mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2866       mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2867       mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2868       mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2869       mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2870       mesa_inst->TexSrcUnit = inst->sampler;
2871       mesa_inst->TexSrcTarget = inst->tex_target;
2872       mesa_inst->TexShadow = inst->tex_shadow;
2873       mesa_instruction_annotation[i] = inst->ir;
2874 
2875       /* Set IndirectRegisterFiles. */
2876       if (mesa_inst->DstReg.RelAddr)
2877          prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2878 
2879       /* Update program's bitmask of indirectly accessed register files */
2880       for (unsigned src = 0; src < 3; src++)
2881          if (mesa_inst->SrcReg[src].RelAddr)
2882             prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2883 
2884       switch (mesa_inst->Opcode) {
2885       case OPCODE_IF:
2886 	 if (options->MaxIfDepth == 0) {
2887 	    linker_warning(shader_program,
2888 			   "Couldn't flatten if-statement.  "
2889 			   "This will likely result in software "
2890 			   "rasterization.\n");
2891 	 }
2892 	 break;
2893       case OPCODE_BGNLOOP:
2894 	 if (options->EmitNoLoops) {
2895 	    linker_warning(shader_program,
2896 			   "Couldn't unroll loop.  "
2897 			   "This will likely result in software "
2898 			   "rasterization.\n");
2899 	 }
2900 	 break;
2901       case OPCODE_CONT:
2902 	 if (options->EmitNoCont) {
2903 	    linker_warning(shader_program,
2904 			   "Couldn't lower continue-statement.  "
2905 			   "This will likely result in software "
2906 			   "rasterization.\n");
2907 	 }
2908 	 break;
2909       case OPCODE_ARL:
2910          prog->arb.NumAddressRegs = 1;
2911 	 break;
2912       default:
2913 	 break;
2914       }
2915 
2916       mesa_inst++;
2917       i++;
2918 
2919       if (!shader_program->data->LinkStatus)
2920          break;
2921    }
2922 
2923    if (!shader_program->data->LinkStatus) {
2924       goto fail_exit;
2925    }
2926 
2927    set_branchtargets(&v, mesa_instructions, num_instructions);
2928 
2929    if (ctx->_Shader->Flags & GLSL_DUMP) {
2930       fprintf(stderr, "\n");
2931       fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2932 	      shader_program->Name);
2933       _mesa_print_ir(stderr, shader->ir, NULL);
2934       fprintf(stderr, "\n");
2935       fprintf(stderr, "\n");
2936       fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2937 	      shader_program->Name);
2938       print_program(mesa_instructions, mesa_instruction_annotation,
2939 		    num_instructions);
2940       fflush(stderr);
2941    }
2942 
2943    prog->arb.Instructions = mesa_instructions;
2944    prog->arb.NumInstructions = num_instructions;
2945 
2946    /* Setting this to NULL prevents a possible double free in the fail_exit
2947     * path (far below).
2948     */
2949    mesa_instructions = NULL;
2950 
2951    do_set_program_inouts(shader->ir, prog, shader->Stage);
2952 
2953    prog->ShadowSamplers = shader->shadow_samplers;
2954    prog->ExternalSamplersUsed = gl_external_samplers(prog);
2955    _mesa_update_shader_textures_used(shader_program, prog);
2956 
2957    /* Set the gl_FragDepth layout. */
2958    if (target == GL_FRAGMENT_PROGRAM_ARB) {
2959       prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2960    }
2961 
2962    _mesa_optimize_program(prog, prog);
2963 
2964    /* This has to be done last.  Any operation that can cause
2965     * prog->ParameterValues to get reallocated (e.g., anything that adds a
2966     * program constant) has to happen before creating this linkage.
2967     */
2968    _mesa_associate_uniform_storage(ctx, shader_program, prog);
2969    if (!shader_program->data->LinkStatus) {
2970       goto fail_exit;
2971    }
2972 
2973    return prog;
2974 
2975 fail_exit:
2976    ralloc_free(mesa_instructions);
2977    _mesa_reference_program(ctx, &shader->Program, NULL);
2978    return NULL;
2979 }
2980 
2981 extern "C" {
2982 
2983 /**
2984  * Link a shader.
2985  * Called via ctx->Driver.LinkShader()
2986  * This actually involves converting GLSL IR into Mesa gl_programs with
2987  * code lowering and other optimizations.
2988  */
2989 GLboolean
_mesa_ir_link_shader(struct gl_context * ctx,struct gl_shader_program * prog)2990 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2991 {
2992    assert(prog->data->LinkStatus);
2993 
2994    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2995       if (prog->_LinkedShaders[i] == NULL)
2996 	 continue;
2997 
2998       bool progress;
2999       exec_list *ir = prog->_LinkedShaders[i]->ir;
3000       const struct gl_shader_compiler_options *options =
3001             &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3002 
3003       do {
3004 	 progress = false;
3005 
3006 	 /* Lowering */
3007 	 do_mat_op_to_vec(ir);
3008 	 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3009 				 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3010 				 | MUL64_TO_MUL_AND_MUL_HIGH
3011 				 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3012 
3013 	 progress = do_common_optimization(ir, true, true,
3014                                            options, ctx->Const.NativeIntegers)
3015 	   || progress;
3016 
3017 	 progress = lower_quadop_vector(ir, true) || progress;
3018 
3019 	 if (options->MaxIfDepth == 0)
3020 	    progress = lower_discard(ir) || progress;
3021 
3022 	 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3023                                             options->MaxIfDepth) || progress;
3024 
3025 	 /* If there are forms of indirect addressing that the driver
3026 	  * cannot handle, perform the lowering pass.
3027 	  */
3028 	 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3029 	     || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3030 	   progress =
3031 	     lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3032 						 options->EmitNoIndirectInput,
3033 						 options->EmitNoIndirectOutput,
3034 						 options->EmitNoIndirectTemp,
3035 						 options->EmitNoIndirectUniform)
3036 	     || progress;
3037 
3038 	 progress = do_vec_index_to_cond_assign(ir) || progress;
3039          progress = lower_vector_insert(ir, true) || progress;
3040       } while (progress);
3041 
3042       validate_ir_tree(ir);
3043    }
3044 
3045    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3046       struct gl_program *linked_prog;
3047 
3048       if (prog->_LinkedShaders[i] == NULL)
3049 	 continue;
3050 
3051       linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3052 
3053       if (linked_prog) {
3054          _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3055 
3056          if (!ctx->Driver.ProgramStringNotify(ctx,
3057                                               _mesa_shader_stage_to_program(i),
3058                                               linked_prog)) {
3059             _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3060                                     NULL);
3061             return GL_FALSE;
3062          }
3063       }
3064    }
3065 
3066    build_program_resource_list(ctx, prog, false);
3067    return prog->data->LinkStatus;
3068 }
3069 
3070 /**
3071  * Link a GLSL shader program.  Called via glLinkProgram().
3072  */
3073 void
_mesa_glsl_link_shader(struct gl_context * ctx,struct gl_shader_program * prog)3074 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3075 {
3076    unsigned int i;
3077    bool spirv = false;
3078 
3079    _mesa_clear_shader_program_data(ctx, prog);
3080 
3081    prog->data = _mesa_create_shader_program_data();
3082 
3083    prog->data->LinkStatus = LINKING_SUCCESS;
3084 
3085    for (i = 0; i < prog->NumShaders; i++) {
3086       if (!prog->Shaders[i]->CompileStatus) {
3087 	 linker_error(prog, "linking with uncompiled/unspecialized shader");
3088       }
3089 
3090       if (!i) {
3091          spirv = (prog->Shaders[i]->spirv_data != NULL);
3092       } else if (spirv && !prog->Shaders[i]->spirv_data) {
3093          /* The GL_ARB_gl_spirv spec adds a new bullet point to the list of
3094           * reasons LinkProgram can fail:
3095           *
3096           *    "All the shader objects attached to <program> do not have the
3097           *     same value for the SPIR_V_BINARY_ARB state."
3098           */
3099          linker_error(prog,
3100                       "not all attached shaders have the same "
3101                       "SPIR_V_BINARY_ARB state");
3102       }
3103    }
3104    prog->data->spirv = spirv;
3105 
3106    if (prog->data->LinkStatus) {
3107       if (!spirv)
3108          link_shaders(ctx, prog);
3109       else
3110          _mesa_spirv_link_shaders(ctx, prog);
3111    }
3112 
3113    /* If LinkStatus is LINKING_SUCCESS, then reset sampler validated to true.
3114     * Validation happens via the LinkShader call below. If LinkStatus is
3115     * LINKING_SKIPPED, then SamplersValidated will have been restored from the
3116     * shader cache.
3117     */
3118    if (prog->data->LinkStatus == LINKING_SUCCESS) {
3119       prog->SamplersValidated = GL_TRUE;
3120    }
3121 
3122    if (prog->data->LinkStatus && !ctx->Driver.LinkShader(ctx, prog)) {
3123       prog->data->LinkStatus = LINKING_FAILURE;
3124    }
3125 
3126    if (prog->data->LinkStatus != LINKING_FAILURE)
3127       _mesa_create_program_resource_hash(prog);
3128 
3129    /* Return early if we are loading the shader from on-disk cache */
3130    if (prog->data->LinkStatus == LINKING_SKIPPED)
3131       return;
3132 
3133    if (ctx->_Shader->Flags & GLSL_DUMP) {
3134       if (!prog->data->LinkStatus) {
3135 	 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3136       }
3137 
3138       if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3139 	 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3140          fprintf(stderr, "%s\n", prog->data->InfoLog);
3141       }
3142    }
3143 
3144 #ifdef ENABLE_SHADER_CACHE
3145    if (prog->data->LinkStatus)
3146       shader_cache_write_program_metadata(ctx, prog);
3147 #endif
3148 }
3149 
3150 } /* extern "C" */
3151