1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included
14  * in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 
26 /*
27  * Antialiased Triangle rasterizers
28  */
29 
30 
31 #include "main/glheader.h"
32 #include "main/context.h"
33 #include "main/macros.h"
34 #include "main/state.h"
35 #include "s_aatriangle.h"
36 #include "s_context.h"
37 #include "s_span.h"
38 
39 
40 /*
41  * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
42  * vertices and the given Z values.
43  * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
44  */
45 static inline void
compute_plane(const GLfloat v0[],const GLfloat v1[],const GLfloat v2[],GLfloat z0,GLfloat z1,GLfloat z2,GLfloat plane[4])46 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
47               GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
48 {
49    const GLfloat px = v1[0] - v0[0];
50    const GLfloat py = v1[1] - v0[1];
51    const GLfloat pz = z1 - z0;
52 
53    const GLfloat qx = v2[0] - v0[0];
54    const GLfloat qy = v2[1] - v0[1];
55    const GLfloat qz = z2 - z0;
56 
57    /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
58    const GLfloat a = py * qz - pz * qy;
59    const GLfloat b = pz * qx - px * qz;
60    const GLfloat c = px * qy - py * qx;
61    /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
62       on the distance of plane from origin and arbitrary "w" parallel
63       to the plane. */
64    /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
65       which is equal to "-d" below. */
66    const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
67 
68    plane[0] = a;
69    plane[1] = b;
70    plane[2] = c;
71    plane[3] = d;
72 }
73 
74 
75 /*
76  * Compute coefficients of a plane with a constant Z value.
77  */
78 static inline void
constant_plane(GLfloat value,GLfloat plane[4])79 constant_plane(GLfloat value, GLfloat plane[4])
80 {
81    plane[0] = 0.0;
82    plane[1] = 0.0;
83    plane[2] = -1.0;
84    plane[3] = value;
85 }
86 
87 #define CONSTANT_PLANE(VALUE, PLANE)	\
88 do {					\
89    PLANE[0] = 0.0F;			\
90    PLANE[1] = 0.0F;			\
91    PLANE[2] = -1.0F;			\
92    PLANE[3] = VALUE;			\
93 } while (0)
94 
95 
96 
97 /*
98  * Solve plane equation for Z at (X,Y).
99  */
100 static inline GLfloat
solve_plane(GLfloat x,GLfloat y,const GLfloat plane[4])101 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
102 {
103    assert(plane[2] != 0.0F);
104    return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
105 }
106 
107 
108 #define SOLVE_PLANE(X, Y, PLANE) \
109    ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
110 
111 
112 /*
113  * Solve plane and return clamped GLchan value.
114  */
115 static inline GLchan
solve_plane_chan(GLfloat x,GLfloat y,const GLfloat plane[4])116 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
117 {
118    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
119 #if CHAN_TYPE == GL_FLOAT
120    return CLAMP(z, 0.0F, CHAN_MAXF);
121 #else
122    if (z < 0)
123       return 0;
124    else if (z > CHAN_MAX)
125       return CHAN_MAX;
126    return (GLchan) lroundf(z);
127 #endif
128 }
129 
130 
131 static inline GLfloat
plane_dx(const GLfloat plane[4])132 plane_dx(const GLfloat plane[4])
133 {
134    return -plane[0] / plane[2];
135 }
136 
137 static inline GLfloat
plane_dy(const GLfloat plane[4])138 plane_dy(const GLfloat plane[4])
139 {
140    return -plane[1] / plane[2];
141 }
142 
143 
144 
145 /*
146  * Compute how much (area) of the given pixel is inside the triangle.
147  * Vertices MUST be specified in counter-clockwise order.
148  * Return:  coverage in [0, 1].
149  */
150 static GLfloat
compute_coveragef(const GLfloat v0[3],const GLfloat v1[3],const GLfloat v2[3],GLint winx,GLint winy)151 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
152                   const GLfloat v2[3], GLint winx, GLint winy)
153 {
154    /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
155     * Contributed by Ray Tice.
156     *
157     * Jitter sample positions -
158     * - average should be .5 in x & y for each column
159     * - each of the 16 rows and columns should be used once
160     * - the rectangle formed by the first four points
161     *   should contain the other points
162     * - the distrubition should be fairly even in any given direction
163     *
164     * The pattern drawn below isn't optimal, but it's better than a regular
165     * grid.  In the drawing, the center of each subpixel is surrounded by
166     * four dots.  The "x" marks the jittered position relative to the
167     * subpixel center.
168     */
169 #define POS(a, b) (0.5+a*4+b)/16
170    static const GLfloat samples[16][2] = {
171       /* start with the four corners */
172       { POS(0, 2), POS(0, 0) },
173       { POS(3, 3), POS(0, 2) },
174       { POS(0, 0), POS(3, 1) },
175       { POS(3, 1), POS(3, 3) },
176       /* continue with interior samples */
177       { POS(1, 1), POS(0, 1) },
178       { POS(2, 0), POS(0, 3) },
179       { POS(0, 3), POS(1, 3) },
180       { POS(1, 2), POS(1, 0) },
181       { POS(2, 3), POS(1, 2) },
182       { POS(3, 2), POS(1, 1) },
183       { POS(0, 1), POS(2, 2) },
184       { POS(1, 0), POS(2, 1) },
185       { POS(2, 1), POS(2, 3) },
186       { POS(3, 0), POS(2, 0) },
187       { POS(1, 3), POS(3, 0) },
188       { POS(2, 2), POS(3, 2) }
189    };
190 
191    const GLfloat x = (GLfloat) winx;
192    const GLfloat y = (GLfloat) winy;
193    const GLfloat dx0 = v1[0] - v0[0];
194    const GLfloat dy0 = v1[1] - v0[1];
195    const GLfloat dx1 = v2[0] - v1[0];
196    const GLfloat dy1 = v2[1] - v1[1];
197    const GLfloat dx2 = v0[0] - v2[0];
198    const GLfloat dy2 = v0[1] - v2[1];
199    GLint stop = 4, i;
200    GLfloat insideCount = 16.0F;
201 
202    assert(dx0 * dy1 - dx1 * dy0 >= 0.0); /* area >= 0.0 */
203 
204    for (i = 0; i < stop; i++) {
205       const GLfloat sx = x + samples[i][0];
206       const GLfloat sy = y + samples[i][1];
207       /* cross product determines if sample is inside or outside each edge */
208       GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));
209       /* Check if the sample is exactly on an edge.  If so, let cross be a
210        * positive or negative value depending on the direction of the edge.
211        */
212       if (cross == 0.0F)
213          cross = dx0 + dy0;
214       if (cross < 0.0F) {
215          /* sample point is outside first edge */
216          insideCount -= 1.0F;
217          stop = 16;
218       }
219       else {
220          /* sample point is inside first edge */
221          cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));
222          if (cross == 0.0F)
223             cross = dx1 + dy1;
224          if (cross < 0.0F) {
225             /* sample point is outside second edge */
226             insideCount -= 1.0F;
227             stop = 16;
228          }
229          else {
230             /* sample point is inside first and second edges */
231             cross = (dx2 * (sy - v2[1]) -  dy2 * (sx - v2[0]));
232             if (cross == 0.0F)
233                cross = dx2 + dy2;
234             if (cross < 0.0F) {
235                /* sample point is outside third edge */
236                insideCount -= 1.0F;
237                stop = 16;
238             }
239          }
240       }
241    }
242    if (stop == 4)
243       return 1.0F;
244    else
245       return insideCount * (1.0F / 16.0F);
246 }
247 
248 
249 
250 static void
rgba_aa_tri(struct gl_context * ctx,const SWvertex * v0,const SWvertex * v1,const SWvertex * v2)251 rgba_aa_tri(struct gl_context *ctx,
252 	    const SWvertex *v0,
253 	    const SWvertex *v1,
254 	    const SWvertex *v2)
255 {
256 #define DO_Z
257 #include "s_aatritemp.h"
258 }
259 
260 
261 static void
general_aa_tri(struct gl_context * ctx,const SWvertex * v0,const SWvertex * v1,const SWvertex * v2)262 general_aa_tri(struct gl_context *ctx,
263                const SWvertex *v0,
264                const SWvertex *v1,
265                const SWvertex *v2)
266 {
267 #define DO_Z
268 #define DO_ATTRIBS
269 #include "s_aatritemp.h"
270 }
271 
272 
273 
274 /*
275  * Examine GL state and set swrast->Triangle to an
276  * appropriate antialiased triangle rasterizer function.
277  */
278 void
_swrast_set_aa_triangle_function(struct gl_context * ctx)279 _swrast_set_aa_triangle_function(struct gl_context *ctx)
280 {
281    SWcontext *swrast = SWRAST_CONTEXT(ctx);
282 
283    assert(ctx->Polygon.SmoothFlag);
284 
285    if (ctx->Texture._EnabledCoordUnits != 0
286        || _swrast_use_fragment_program(ctx)
287        || swrast->_FogEnabled
288        || _mesa_need_secondary_color(ctx)) {
289       SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri;
290    }
291    else {
292       SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
293    }
294 
295    assert(SWRAST_CONTEXT(ctx)->Triangle);
296 }
297