1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "CallGraphSort.h"
11 #include "Config.h"
12 #include "DLL.h"
13 #include "InputFiles.h"
14 #include "LLDMapFile.h"
15 #include "MapFile.h"
16 #include "PDB.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "lld/Common/ErrorHandler.h"
20 #include "lld/Common/Memory.h"
21 #include "lld/Common/Timer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/Support/BinaryStreamReader.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/FileOutputBuffer.h"
30 #include "llvm/Support/Parallel.h"
31 #include "llvm/Support/Path.h"
32 #include "llvm/Support/RandomNumberGenerator.h"
33 #include "llvm/Support/xxhash.h"
34 #include <algorithm>
35 #include <cstdio>
36 #include <map>
37 #include <memory>
38 #include <utility>
39 
40 using namespace llvm;
41 using namespace llvm::COFF;
42 using namespace llvm::object;
43 using namespace llvm::support;
44 using namespace llvm::support::endian;
45 using namespace lld;
46 using namespace lld::coff;
47 
48 /* To re-generate DOSProgram:
49 $ cat > /tmp/DOSProgram.asm
50 org 0
51         ; Copy cs to ds.
52         push cs
53         pop ds
54         ; Point ds:dx at the $-terminated string.
55         mov dx, str
56         ; Int 21/AH=09h: Write string to standard output.
57         mov ah, 0x9
58         int 0x21
59         ; Int 21/AH=4Ch: Exit with return code (in AL).
60         mov ax, 0x4C01
61         int 0x21
62 str:
63         db 'This program cannot be run in DOS mode.$'
64 align 8, db 0
65 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
66 $ xxd -i /tmp/DOSProgram.bin
67 */
68 static unsigned char dosProgram[] = {
69   0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
70   0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
71   0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
72   0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
73   0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
74 };
75 static_assert(sizeof(dosProgram) % 8 == 0,
76               "DOSProgram size must be multiple of 8");
77 
78 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
79 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");
80 
81 static const int numberOfDataDirectory = 16;
82 
83 // Global vector of all output sections. After output sections are finalized,
84 // this can be indexed by Chunk::getOutputSection.
85 static std::vector<OutputSection *> outputSections;
86 
getOutputSection() const87 OutputSection *Chunk::getOutputSection() const {
88   return osidx == 0 ? nullptr : outputSections[osidx - 1];
89 }
90 
clear()91 void OutputSection::clear() { outputSections.clear(); }
92 
93 namespace {
94 
95 class DebugDirectoryChunk : public NonSectionChunk {
96 public:
DebugDirectoryChunk(const std::vector<std::pair<COFF::DebugType,Chunk * >> & r,bool writeRepro)97   DebugDirectoryChunk(const std::vector<std::pair<COFF::DebugType, Chunk *>> &r,
98                       bool writeRepro)
99       : records(r), writeRepro(writeRepro) {}
100 
getSize() const101   size_t getSize() const override {
102     return (records.size() + int(writeRepro)) * sizeof(debug_directory);
103   }
104 
writeTo(uint8_t * b) const105   void writeTo(uint8_t *b) const override {
106     auto *d = reinterpret_cast<debug_directory *>(b);
107 
108     for (const std::pair<COFF::DebugType, Chunk *>& record : records) {
109       Chunk *c = record.second;
110       OutputSection *os = c->getOutputSection();
111       uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA());
112       fillEntry(d, record.first, c->getSize(), c->getRVA(), offs);
113       ++d;
114     }
115 
116     if (writeRepro) {
117       // FIXME: The COFF spec allows either a 0-sized entry to just say
118       // "the timestamp field is really a hash", or a 4-byte size field
119       // followed by that many bytes containing a longer hash (with the
120       // lowest 4 bytes usually being the timestamp in little-endian order).
121       // Consider storing the full 8 bytes computed by xxHash64 here.
122       fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
123     }
124   }
125 
setTimeDateStamp(uint32_t timeDateStamp)126   void setTimeDateStamp(uint32_t timeDateStamp) {
127     for (support::ulittle32_t *tds : timeDateStamps)
128       *tds = timeDateStamp;
129   }
130 
131 private:
fillEntry(debug_directory * d,COFF::DebugType debugType,size_t size,uint64_t rva,uint64_t offs) const132   void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
133                  uint64_t rva, uint64_t offs) const {
134     d->Characteristics = 0;
135     d->TimeDateStamp = 0;
136     d->MajorVersion = 0;
137     d->MinorVersion = 0;
138     d->Type = debugType;
139     d->SizeOfData = size;
140     d->AddressOfRawData = rva;
141     d->PointerToRawData = offs;
142 
143     timeDateStamps.push_back(&d->TimeDateStamp);
144   }
145 
146   mutable std::vector<support::ulittle32_t *> timeDateStamps;
147   const std::vector<std::pair<COFF::DebugType, Chunk *>> &records;
148   bool writeRepro;
149 };
150 
151 class CVDebugRecordChunk : public NonSectionChunk {
152 public:
getSize() const153   size_t getSize() const override {
154     return sizeof(codeview::DebugInfo) + config->pdbAltPath.size() + 1;
155   }
156 
writeTo(uint8_t * b) const157   void writeTo(uint8_t *b) const override {
158     // Save off the DebugInfo entry to backfill the file signature (build id)
159     // in Writer::writeBuildId
160     buildId = reinterpret_cast<codeview::DebugInfo *>(b);
161 
162     // variable sized field (PDB Path)
163     char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
164     if (!config->pdbAltPath.empty())
165       memcpy(p, config->pdbAltPath.data(), config->pdbAltPath.size());
166     p[config->pdbAltPath.size()] = '\0';
167   }
168 
169   mutable codeview::DebugInfo *buildId = nullptr;
170 };
171 
172 class ExtendedDllCharacteristicsChunk : public NonSectionChunk {
173 public:
ExtendedDllCharacteristicsChunk(uint32_t c)174   ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {}
175 
getSize() const176   size_t getSize() const override { return 4; }
177 
writeTo(uint8_t * buf) const178   void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); }
179 
180   uint32_t characteristics = 0;
181 };
182 
183 // PartialSection represents a group of chunks that contribute to an
184 // OutputSection. Collating a collection of PartialSections of same name and
185 // characteristics constitutes the OutputSection.
186 class PartialSectionKey {
187 public:
188   StringRef name;
189   unsigned characteristics;
190 
operator <(const PartialSectionKey & other) const191   bool operator<(const PartialSectionKey &other) const {
192     int c = name.compare(other.name);
193     if (c == 1)
194       return false;
195     if (c == 0)
196       return characteristics < other.characteristics;
197     return true;
198   }
199 };
200 
201 // The writer writes a SymbolTable result to a file.
202 class Writer {
203 public:
Writer()204   Writer() : buffer(errorHandler().outputBuffer) {}
205   void run();
206 
207 private:
208   void createSections();
209   void createMiscChunks();
210   void createImportTables();
211   void appendImportThunks();
212   void locateImportTables();
213   void createExportTable();
214   void mergeSections();
215   void removeUnusedSections();
216   void assignAddresses();
217   void finalizeAddresses();
218   void removeEmptySections();
219   void assignOutputSectionIndices();
220   void createSymbolAndStringTable();
221   void openFile(StringRef outputPath);
222   template <typename PEHeaderTy> void writeHeader();
223   void createSEHTable();
224   void createRuntimePseudoRelocs();
225   void insertCtorDtorSymbols();
226   void createGuardCFTables();
227   void markSymbolsForRVATable(ObjFile *file,
228                               ArrayRef<SectionChunk *> symIdxChunks,
229                               SymbolRVASet &tableSymbols);
230   void getSymbolsFromSections(ObjFile *file,
231                               ArrayRef<SectionChunk *> symIdxChunks,
232                               std::vector<Symbol *> &symbols);
233   void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
234                         StringRef countSym);
235   void setSectionPermissions();
236   void writeSections();
237   void writeBuildId();
238   void sortSections();
239   void sortExceptionTable();
240   void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
241   void addSyntheticIdata();
242   void fixPartialSectionChars(StringRef name, uint32_t chars);
243   bool fixGnuImportChunks();
244   void fixTlsAlignment();
245   PartialSection *createPartialSection(StringRef name, uint32_t outChars);
246   PartialSection *findPartialSection(StringRef name, uint32_t outChars);
247 
248   llvm::Optional<coff_symbol16> createSymbol(Defined *d);
249   size_t addEntryToStringTable(StringRef str);
250 
251   OutputSection *findSection(StringRef name);
252   void addBaserels();
253   void addBaserelBlocks(std::vector<Baserel> &v);
254 
255   uint32_t getSizeOfInitializedData();
256 
257   std::unique_ptr<FileOutputBuffer> &buffer;
258   std::map<PartialSectionKey, PartialSection *> partialSections;
259   std::vector<char> strtab;
260   std::vector<llvm::object::coff_symbol16> outputSymtab;
261   IdataContents idata;
262   Chunk *importTableStart = nullptr;
263   uint64_t importTableSize = 0;
264   Chunk *edataStart = nullptr;
265   Chunk *edataEnd = nullptr;
266   Chunk *iatStart = nullptr;
267   uint64_t iatSize = 0;
268   DelayLoadContents delayIdata;
269   EdataContents edata;
270   bool setNoSEHCharacteristic = false;
271   uint32_t tlsAlignment = 0;
272 
273   DebugDirectoryChunk *debugDirectory = nullptr;
274   std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords;
275   CVDebugRecordChunk *buildId = nullptr;
276   ArrayRef<uint8_t> sectionTable;
277 
278   uint64_t fileSize;
279   uint32_t pointerToSymbolTable = 0;
280   uint64_t sizeOfImage;
281   uint64_t sizeOfHeaders;
282 
283   OutputSection *textSec;
284   OutputSection *rdataSec;
285   OutputSection *buildidSec;
286   OutputSection *dataSec;
287   OutputSection *pdataSec;
288   OutputSection *idataSec;
289   OutputSection *edataSec;
290   OutputSection *didatSec;
291   OutputSection *rsrcSec;
292   OutputSection *relocSec;
293   OutputSection *ctorsSec;
294   OutputSection *dtorsSec;
295 
296   // The first and last .pdata sections in the output file.
297   //
298   // We need to keep track of the location of .pdata in whichever section it
299   // gets merged into so that we can sort its contents and emit a correct data
300   // directory entry for the exception table. This is also the case for some
301   // other sections (such as .edata) but because the contents of those sections
302   // are entirely linker-generated we can keep track of their locations using
303   // the chunks that the linker creates. All .pdata chunks come from input
304   // files, so we need to keep track of them separately.
305   Chunk *firstPdata = nullptr;
306   Chunk *lastPdata;
307 };
308 } // anonymous namespace
309 
310 static Timer codeLayoutTimer("Code Layout", Timer::root());
311 static Timer diskCommitTimer("Commit Output File", Timer::root());
312 
writeResult()313 void lld::coff::writeResult() { Writer().run(); }
314 
addChunk(Chunk * c)315 void OutputSection::addChunk(Chunk *c) {
316   chunks.push_back(c);
317 }
318 
insertChunkAtStart(Chunk * c)319 void OutputSection::insertChunkAtStart(Chunk *c) {
320   chunks.insert(chunks.begin(), c);
321 }
322 
setPermissions(uint32_t c)323 void OutputSection::setPermissions(uint32_t c) {
324   header.Characteristics &= ~permMask;
325   header.Characteristics |= c;
326 }
327 
merge(OutputSection * other)328 void OutputSection::merge(OutputSection *other) {
329   chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
330   other->chunks.clear();
331   contribSections.insert(contribSections.end(), other->contribSections.begin(),
332                          other->contribSections.end());
333   other->contribSections.clear();
334 }
335 
336 // Write the section header to a given buffer.
writeHeaderTo(uint8_t * buf)337 void OutputSection::writeHeaderTo(uint8_t *buf) {
338   auto *hdr = reinterpret_cast<coff_section *>(buf);
339   *hdr = header;
340   if (stringTableOff) {
341     // If name is too long, write offset into the string table as a name.
342     sprintf(hdr->Name, "/%d", stringTableOff);
343   } else {
344     assert(!config->debug || name.size() <= COFF::NameSize ||
345            (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
346     strncpy(hdr->Name, name.data(),
347             std::min(name.size(), (size_t)COFF::NameSize));
348   }
349 }
350 
addContributingPartialSection(PartialSection * sec)351 void OutputSection::addContributingPartialSection(PartialSection *sec) {
352   contribSections.push_back(sec);
353 }
354 
355 // Check whether the target address S is in range from a relocation
356 // of type relType at address P.
isInRange(uint16_t relType,uint64_t s,uint64_t p,int margin)357 static bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
358   if (config->machine == ARMNT) {
359     int64_t diff = AbsoluteDifference(s, p + 4) + margin;
360     switch (relType) {
361     case IMAGE_REL_ARM_BRANCH20T:
362       return isInt<21>(diff);
363     case IMAGE_REL_ARM_BRANCH24T:
364     case IMAGE_REL_ARM_BLX23T:
365       return isInt<25>(diff);
366     default:
367       return true;
368     }
369   } else if (config->machine == ARM64) {
370     int64_t diff = AbsoluteDifference(s, p) + margin;
371     switch (relType) {
372     case IMAGE_REL_ARM64_BRANCH26:
373       return isInt<28>(diff);
374     case IMAGE_REL_ARM64_BRANCH19:
375       return isInt<21>(diff);
376     case IMAGE_REL_ARM64_BRANCH14:
377       return isInt<16>(diff);
378     default:
379       return true;
380     }
381   } else {
382     llvm_unreachable("Unexpected architecture");
383   }
384 }
385 
386 // Return the last thunk for the given target if it is in range,
387 // or create a new one.
388 static std::pair<Defined *, bool>
getThunk(DenseMap<uint64_t,Defined * > & lastThunks,Defined * target,uint64_t p,uint16_t type,int margin)389 getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, uint64_t p,
390          uint16_t type, int margin) {
391   Defined *&lastThunk = lastThunks[target->getRVA()];
392   if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
393     return {lastThunk, false};
394   Chunk *c;
395   switch (config->machine) {
396   case ARMNT:
397     c = make<RangeExtensionThunkARM>(target);
398     break;
399   case ARM64:
400     c = make<RangeExtensionThunkARM64>(target);
401     break;
402   default:
403     llvm_unreachable("Unexpected architecture");
404   }
405   Defined *d = make<DefinedSynthetic>("", c);
406   lastThunk = d;
407   return {d, true};
408 }
409 
410 // This checks all relocations, and for any relocation which isn't in range
411 // it adds a thunk after the section chunk that contains the relocation.
412 // If the latest thunk for the specific target is in range, that is used
413 // instead of creating a new thunk. All range checks are done with the
414 // specified margin, to make sure that relocations that originally are in
415 // range, but only barely, also get thunks - in case other added thunks makes
416 // the target go out of range.
417 //
418 // After adding thunks, we verify that all relocations are in range (with
419 // no extra margin requirements). If this failed, we restart (throwing away
420 // the previously created thunks) and retry with a wider margin.
createThunks(OutputSection * os,int margin)421 static bool createThunks(OutputSection *os, int margin) {
422   bool addressesChanged = false;
423   DenseMap<uint64_t, Defined *> lastThunks;
424   DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
425   size_t thunksSize = 0;
426   // Recheck Chunks.size() each iteration, since we can insert more
427   // elements into it.
428   for (size_t i = 0; i != os->chunks.size(); ++i) {
429     SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
430     if (!sc)
431       continue;
432     size_t thunkInsertionSpot = i + 1;
433 
434     // Try to get a good enough estimate of where new thunks will be placed.
435     // Offset this by the size of the new thunks added so far, to make the
436     // estimate slightly better.
437     size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
438     ObjFile *file = sc->file;
439     std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
440     ArrayRef<coff_relocation> originalRelocs =
441         file->getCOFFObj()->getRelocations(sc->header);
442     for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
443       const coff_relocation &rel = originalRelocs[j];
444       Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
445 
446       // The estimate of the source address P should be pretty accurate,
447       // but we don't know whether the target Symbol address should be
448       // offset by thunksSize or not (or by some of thunksSize but not all of
449       // it), giving us some uncertainty once we have added one thunk.
450       uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
451 
452       Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
453       if (!sym)
454         continue;
455 
456       uint64_t s = sym->getRVA();
457 
458       if (isInRange(rel.Type, s, p, margin))
459         continue;
460 
461       // If the target isn't in range, hook it up to an existing or new
462       // thunk.
463       Defined *thunk;
464       bool wasNew;
465       std::tie(thunk, wasNew) = getThunk(lastThunks, sym, p, rel.Type, margin);
466       if (wasNew) {
467         Chunk *thunkChunk = thunk->getChunk();
468         thunkChunk->setRVA(
469             thunkInsertionRVA); // Estimate of where it will be located.
470         os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
471         thunkInsertionSpot++;
472         thunksSize += thunkChunk->getSize();
473         thunkInsertionRVA += thunkChunk->getSize();
474         addressesChanged = true;
475       }
476 
477       // To redirect the relocation, add a symbol to the parent object file's
478       // symbol table, and replace the relocation symbol table index with the
479       // new index.
480       auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
481       uint32_t &thunkSymbolIndex = insertion.first->second;
482       if (insertion.second)
483         thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
484       relocReplacements.push_back({j, thunkSymbolIndex});
485     }
486 
487     // Get a writable copy of this section's relocations so they can be
488     // modified. If the relocations point into the object file, allocate new
489     // memory. Otherwise, this must be previously allocated memory that can be
490     // modified in place.
491     ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
492     MutableArrayRef<coff_relocation> newRelocs;
493     if (originalRelocs.data() == curRelocs.data()) {
494       newRelocs = makeMutableArrayRef(
495           bAlloc.Allocate<coff_relocation>(originalRelocs.size()),
496           originalRelocs.size());
497     } else {
498       newRelocs = makeMutableArrayRef(
499           const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
500     }
501 
502     // Copy each relocation, but replace the symbol table indices which need
503     // thunks.
504     auto nextReplacement = relocReplacements.begin();
505     auto endReplacement = relocReplacements.end();
506     for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
507       newRelocs[i] = originalRelocs[i];
508       if (nextReplacement != endReplacement && nextReplacement->first == i) {
509         newRelocs[i].SymbolTableIndex = nextReplacement->second;
510         ++nextReplacement;
511       }
512     }
513 
514     sc->setRelocs(newRelocs);
515   }
516   return addressesChanged;
517 }
518 
519 // Verify that all relocations are in range, with no extra margin requirements.
verifyRanges(const std::vector<Chunk * > chunks)520 static bool verifyRanges(const std::vector<Chunk *> chunks) {
521   for (Chunk *c : chunks) {
522     SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
523     if (!sc)
524       continue;
525 
526     ArrayRef<coff_relocation> relocs = sc->getRelocs();
527     for (size_t j = 0, e = relocs.size(); j < e; ++j) {
528       const coff_relocation &rel = relocs[j];
529       Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
530 
531       Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
532       if (!sym)
533         continue;
534 
535       uint64_t p = sc->getRVA() + rel.VirtualAddress;
536       uint64_t s = sym->getRVA();
537 
538       if (!isInRange(rel.Type, s, p, 0))
539         return false;
540     }
541   }
542   return true;
543 }
544 
545 // Assign addresses and add thunks if necessary.
finalizeAddresses()546 void Writer::finalizeAddresses() {
547   assignAddresses();
548   if (config->machine != ARMNT && config->machine != ARM64)
549     return;
550 
551   size_t origNumChunks = 0;
552   for (OutputSection *sec : outputSections) {
553     sec->origChunks = sec->chunks;
554     origNumChunks += sec->chunks.size();
555   }
556 
557   int pass = 0;
558   int margin = 1024 * 100;
559   while (true) {
560     // First check whether we need thunks at all, or if the previous pass of
561     // adding them turned out ok.
562     bool rangesOk = true;
563     size_t numChunks = 0;
564     for (OutputSection *sec : outputSections) {
565       if (!verifyRanges(sec->chunks)) {
566         rangesOk = false;
567         break;
568       }
569       numChunks += sec->chunks.size();
570     }
571     if (rangesOk) {
572       if (pass > 0)
573         log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
574             "margin " + Twine(margin) + " in " + Twine(pass) + " passes");
575       return;
576     }
577 
578     if (pass >= 10)
579       fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");
580 
581     if (pass > 0) {
582       // If the previous pass didn't work out, reset everything back to the
583       // original conditions before retrying with a wider margin. This should
584       // ideally never happen under real circumstances.
585       for (OutputSection *sec : outputSections)
586         sec->chunks = sec->origChunks;
587       margin *= 2;
588     }
589 
590     // Try adding thunks everywhere where it is needed, with a margin
591     // to avoid things going out of range due to the added thunks.
592     bool addressesChanged = false;
593     for (OutputSection *sec : outputSections)
594       addressesChanged |= createThunks(sec, margin);
595     // If the verification above thought we needed thunks, we should have
596     // added some.
597     assert(addressesChanged);
598 
599     // Recalculate the layout for the whole image (and verify the ranges at
600     // the start of the next round).
601     assignAddresses();
602 
603     pass++;
604   }
605 }
606 
607 // The main function of the writer.
run()608 void Writer::run() {
609   ScopedTimer t1(codeLayoutTimer);
610 
611   createImportTables();
612   createSections();
613   appendImportThunks();
614   // Import thunks must be added before the Control Flow Guard tables are added.
615   createMiscChunks();
616   createExportTable();
617   mergeSections();
618   removeUnusedSections();
619   finalizeAddresses();
620   removeEmptySections();
621   assignOutputSectionIndices();
622   setSectionPermissions();
623   createSymbolAndStringTable();
624 
625   if (fileSize > UINT32_MAX)
626     fatal("image size (" + Twine(fileSize) + ") " +
627         "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
628 
629   openFile(config->outputFile);
630   if (config->is64()) {
631     writeHeader<pe32plus_header>();
632   } else {
633     writeHeader<pe32_header>();
634   }
635   writeSections();
636   sortExceptionTable();
637 
638   // Fix up the alignment in the TLS Directory's characteristic field,
639   // if a specific alignment value is needed
640   if (tlsAlignment)
641     fixTlsAlignment();
642 
643   t1.stop();
644 
645   if (!config->pdbPath.empty() && config->debug) {
646     assert(buildId);
647     createPDB(symtab, outputSections, sectionTable, buildId->buildId);
648   }
649   writeBuildId();
650 
651   writeLLDMapFile(outputSections);
652   writeMapFile(outputSections);
653 
654   if (errorCount())
655     return;
656 
657   ScopedTimer t2(diskCommitTimer);
658   if (auto e = buffer->commit())
659     fatal("failed to write the output file: " + toString(std::move(e)));
660 }
661 
getOutputSectionName(StringRef name)662 static StringRef getOutputSectionName(StringRef name) {
663   StringRef s = name.split('$').first;
664 
665   // Treat a later period as a separator for MinGW, for sections like
666   // ".ctors.01234".
667   return s.substr(0, s.find('.', 1));
668 }
669 
670 // For /order.
sortBySectionOrder(std::vector<Chunk * > & chunks)671 static void sortBySectionOrder(std::vector<Chunk *> &chunks) {
672   auto getPriority = [](const Chunk *c) {
673     if (auto *sec = dyn_cast<SectionChunk>(c))
674       if (sec->sym)
675         return config->order.lookup(sec->sym->getName());
676     return 0;
677   };
678 
679   llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
680     return getPriority(a) < getPriority(b);
681   });
682 }
683 
684 // Change the characteristics of existing PartialSections that belong to the
685 // section Name to Chars.
fixPartialSectionChars(StringRef name,uint32_t chars)686 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
687   for (auto it : partialSections) {
688     PartialSection *pSec = it.second;
689     StringRef curName = pSec->name;
690     if (!curName.consume_front(name) ||
691         (!curName.empty() && !curName.startswith("$")))
692       continue;
693     if (pSec->characteristics == chars)
694       continue;
695     PartialSection *destSec = createPartialSection(pSec->name, chars);
696     destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
697                            pSec->chunks.end());
698     pSec->chunks.clear();
699   }
700 }
701 
702 // Sort concrete section chunks from GNU import libraries.
703 //
704 // GNU binutils doesn't use short import files, but instead produces import
705 // libraries that consist of object files, with section chunks for the .idata$*
706 // sections. These are linked just as regular static libraries. Each import
707 // library consists of one header object, one object file for every imported
708 // symbol, and one trailer object. In order for the .idata tables/lists to
709 // be formed correctly, the section chunks within each .idata$* section need
710 // to be grouped by library, and sorted alphabetically within each library
711 // (which makes sure the header comes first and the trailer last).
fixGnuImportChunks()712 bool Writer::fixGnuImportChunks() {
713   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
714 
715   // Make sure all .idata$* section chunks are mapped as RDATA in order to
716   // be sorted into the same sections as our own synthesized .idata chunks.
717   fixPartialSectionChars(".idata", rdata);
718 
719   bool hasIdata = false;
720   // Sort all .idata$* chunks, grouping chunks from the same library,
721   // with alphabetical ordering of the object fils within a library.
722   for (auto it : partialSections) {
723     PartialSection *pSec = it.second;
724     if (!pSec->name.startswith(".idata"))
725       continue;
726 
727     if (!pSec->chunks.empty())
728       hasIdata = true;
729     llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
730       SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
731       SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
732       if (!sc1 || !sc2) {
733         // if SC1, order them ascending. If SC2 or both null,
734         // S is not less than T.
735         return sc1 != nullptr;
736       }
737       // Make a string with "libraryname/objectfile" for sorting, achieving
738       // both grouping by library and sorting of objects within a library,
739       // at once.
740       std::string key1 =
741           (sc1->file->parentName + "/" + sc1->file->getName()).str();
742       std::string key2 =
743           (sc2->file->parentName + "/" + sc2->file->getName()).str();
744       return key1 < key2;
745     });
746   }
747   return hasIdata;
748 }
749 
750 // Add generated idata chunks, for imported symbols and DLLs, and a
751 // terminator in .idata$2.
addSyntheticIdata()752 void Writer::addSyntheticIdata() {
753   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
754   idata.create();
755 
756   // Add the .idata content in the right section groups, to allow
757   // chunks from other linked in object files to be grouped together.
758   // See Microsoft PE/COFF spec 5.4 for details.
759   auto add = [&](StringRef n, std::vector<Chunk *> &v) {
760     PartialSection *pSec = createPartialSection(n, rdata);
761     pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
762   };
763 
764   // The loader assumes a specific order of data.
765   // Add each type in the correct order.
766   add(".idata$2", idata.dirs);
767   add(".idata$4", idata.lookups);
768   add(".idata$5", idata.addresses);
769   if (!idata.hints.empty())
770     add(".idata$6", idata.hints);
771   add(".idata$7", idata.dllNames);
772 }
773 
774 // Locate the first Chunk and size of the import directory list and the
775 // IAT.
locateImportTables()776 void Writer::locateImportTables() {
777   uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
778 
779   if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
780     if (!importDirs->chunks.empty())
781       importTableStart = importDirs->chunks.front();
782     for (Chunk *c : importDirs->chunks)
783       importTableSize += c->getSize();
784   }
785 
786   if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
787     if (!importAddresses->chunks.empty())
788       iatStart = importAddresses->chunks.front();
789     for (Chunk *c : importAddresses->chunks)
790       iatSize += c->getSize();
791   }
792 }
793 
794 // Return whether a SectionChunk's suffix (the dollar and any trailing
795 // suffix) should be removed and sorted into the main suffixless
796 // PartialSection.
shouldStripSectionSuffix(SectionChunk * sc,StringRef name)797 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name) {
798   // On MinGW, comdat groups are formed by putting the comdat group name
799   // after the '$' in the section name. For .eh_frame$<symbol>, that must
800   // still be sorted before the .eh_frame trailer from crtend.o, thus just
801   // strip the section name trailer. For other sections, such as
802   // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
803   // ".tls$"), they must be strictly sorted after .tls. And for the
804   // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
805   // suffix for sorting. Thus, to play it safe, only strip the suffix for
806   // the standard sections.
807   if (!config->mingw)
808     return false;
809   if (!sc || !sc->isCOMDAT())
810     return false;
811   return name.startswith(".text$") || name.startswith(".data$") ||
812          name.startswith(".rdata$") || name.startswith(".pdata$") ||
813          name.startswith(".xdata$") || name.startswith(".eh_frame$");
814 }
815 
sortSections()816 void Writer::sortSections() {
817   if (!config->callGraphProfile.empty()) {
818     DenseMap<const SectionChunk *, int> order = computeCallGraphProfileOrder();
819     for (auto it : order) {
820       if (DefinedRegular *sym = it.first->sym)
821         config->order[sym->getName()] = it.second;
822     }
823   }
824   if (!config->order.empty())
825     for (auto it : partialSections)
826       sortBySectionOrder(it.second->chunks);
827 }
828 
829 // Create output section objects and add them to OutputSections.
createSections()830 void Writer::createSections() {
831   // First, create the builtin sections.
832   const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
833   const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
834   const uint32_t code = IMAGE_SCN_CNT_CODE;
835   const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
836   const uint32_t r = IMAGE_SCN_MEM_READ;
837   const uint32_t w = IMAGE_SCN_MEM_WRITE;
838   const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
839 
840   SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
841   auto createSection = [&](StringRef name, uint32_t outChars) {
842     OutputSection *&sec = sections[{name, outChars}];
843     if (!sec) {
844       sec = make<OutputSection>(name, outChars);
845       outputSections.push_back(sec);
846     }
847     return sec;
848   };
849 
850   // Try to match the section order used by link.exe.
851   textSec = createSection(".text", code | r | x);
852   createSection(".bss", bss | r | w);
853   rdataSec = createSection(".rdata", data | r);
854   buildidSec = createSection(".buildid", data | r);
855   dataSec = createSection(".data", data | r | w);
856   pdataSec = createSection(".pdata", data | r);
857   idataSec = createSection(".idata", data | r);
858   edataSec = createSection(".edata", data | r);
859   didatSec = createSection(".didat", data | r);
860   rsrcSec = createSection(".rsrc", data | r);
861   relocSec = createSection(".reloc", data | discardable | r);
862   ctorsSec = createSection(".ctors", data | r | w);
863   dtorsSec = createSection(".dtors", data | r | w);
864 
865   // Then bin chunks by name and output characteristics.
866   for (Chunk *c : symtab->getChunks()) {
867     auto *sc = dyn_cast<SectionChunk>(c);
868     if (sc && !sc->live) {
869       if (config->verbose)
870         sc->printDiscardedMessage();
871       continue;
872     }
873     StringRef name = c->getSectionName();
874     if (shouldStripSectionSuffix(sc, name))
875       name = name.split('$').first;
876 
877     if (name.startswith(".tls"))
878       tlsAlignment = std::max(tlsAlignment, c->getAlignment());
879 
880     PartialSection *pSec = createPartialSection(name,
881                                                 c->getOutputCharacteristics());
882     pSec->chunks.push_back(c);
883   }
884 
885   fixPartialSectionChars(".rsrc", data | r);
886   fixPartialSectionChars(".edata", data | r);
887   // Even in non MinGW cases, we might need to link against GNU import
888   // libraries.
889   bool hasIdata = fixGnuImportChunks();
890   if (!idata.empty())
891     hasIdata = true;
892 
893   if (hasIdata)
894     addSyntheticIdata();
895 
896   sortSections();
897 
898   if (hasIdata)
899     locateImportTables();
900 
901   // Then create an OutputSection for each section.
902   // '$' and all following characters in input section names are
903   // discarded when determining output section. So, .text$foo
904   // contributes to .text, for example. See PE/COFF spec 3.2.
905   for (auto it : partialSections) {
906     PartialSection *pSec = it.second;
907     StringRef name = getOutputSectionName(pSec->name);
908     uint32_t outChars = pSec->characteristics;
909 
910     if (name == ".CRT") {
911       // In link.exe, there is a special case for the I386 target where .CRT
912       // sections are treated as if they have output characteristics DATA | R if
913       // their characteristics are DATA | R | W. This implements the same
914       // special case for all architectures.
915       outChars = data | r;
916 
917       log("Processing section " + pSec->name + " -> " + name);
918 
919       sortCRTSectionChunks(pSec->chunks);
920     }
921 
922     OutputSection *sec = createSection(name, outChars);
923     for (Chunk *c : pSec->chunks)
924       sec->addChunk(c);
925 
926     sec->addContributingPartialSection(pSec);
927   }
928 
929   // Finally, move some output sections to the end.
930   auto sectionOrder = [&](const OutputSection *s) {
931     // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
932     // because the loader cannot handle holes. Stripping can remove other
933     // discardable ones than .reloc, which is first of them (created early).
934     if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
935       return 2;
936     // .rsrc should come at the end of the non-discardable sections because its
937     // size may change by the Win32 UpdateResources() function, causing
938     // subsequent sections to move (see https://crbug.com/827082).
939     if (s == rsrcSec)
940       return 1;
941     return 0;
942   };
943   llvm::stable_sort(outputSections,
944                     [&](const OutputSection *s, const OutputSection *t) {
945                       return sectionOrder(s) < sectionOrder(t);
946                     });
947 }
948 
createMiscChunks()949 void Writer::createMiscChunks() {
950   for (MergeChunk *p : MergeChunk::instances) {
951     if (p) {
952       p->finalizeContents();
953       rdataSec->addChunk(p);
954     }
955   }
956 
957   // Create thunks for locally-dllimported symbols.
958   if (!symtab->localImportChunks.empty()) {
959     for (Chunk *c : symtab->localImportChunks)
960       rdataSec->addChunk(c);
961   }
962 
963   // Create Debug Information Chunks
964   OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec;
965   if (config->debug || config->repro || config->cetCompat) {
966     debugDirectory = make<DebugDirectoryChunk>(debugRecords, config->repro);
967     debugDirectory->setAlignment(4);
968     debugInfoSec->addChunk(debugDirectory);
969   }
970 
971   if (config->debug) {
972     // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified.  We
973     // output a PDB no matter what, and this chunk provides the only means of
974     // allowing a debugger to match a PDB and an executable.  So we need it even
975     // if we're ultimately not going to write CodeView data to the PDB.
976     buildId = make<CVDebugRecordChunk>();
977     debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId});
978   }
979 
980   if (config->cetCompat) {
981     debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS,
982                             make<ExtendedDllCharacteristicsChunk>(
983                                 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT)});
984   }
985 
986   // Align and add each chunk referenced by the debug data directory.
987   for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) {
988     r.second->setAlignment(4);
989     debugInfoSec->addChunk(r.second);
990   }
991 
992   // Create SEH table. x86-only.
993   if (config->safeSEH)
994     createSEHTable();
995 
996   // Create /guard:cf tables if requested.
997   if (config->guardCF != GuardCFLevel::Off)
998     createGuardCFTables();
999 
1000   if (config->autoImport)
1001     createRuntimePseudoRelocs();
1002 
1003   if (config->mingw)
1004     insertCtorDtorSymbols();
1005 }
1006 
1007 // Create .idata section for the DLL-imported symbol table.
1008 // The format of this section is inherently Windows-specific.
1009 // IdataContents class abstracted away the details for us,
1010 // so we just let it create chunks and add them to the section.
createImportTables()1011 void Writer::createImportTables() {
1012   // Initialize DLLOrder so that import entries are ordered in
1013   // the same order as in the command line. (That affects DLL
1014   // initialization order, and this ordering is MSVC-compatible.)
1015   for (ImportFile *file : ImportFile::instances) {
1016     if (!file->live)
1017       continue;
1018 
1019     std::string dll = StringRef(file->dllName).lower();
1020     if (config->dllOrder.count(dll) == 0)
1021       config->dllOrder[dll] = config->dllOrder.size();
1022 
1023     if (file->impSym && !isa<DefinedImportData>(file->impSym))
1024       fatal(toString(*file->impSym) + " was replaced");
1025     DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
1026     if (config->delayLoads.count(StringRef(file->dllName).lower())) {
1027       if (!file->thunkSym)
1028         fatal("cannot delay-load " + toString(file) +
1029               " due to import of data: " + toString(*impSym));
1030       delayIdata.add(impSym);
1031     } else {
1032       idata.add(impSym);
1033     }
1034   }
1035 }
1036 
appendImportThunks()1037 void Writer::appendImportThunks() {
1038   if (ImportFile::instances.empty())
1039     return;
1040 
1041   for (ImportFile *file : ImportFile::instances) {
1042     if (!file->live)
1043       continue;
1044 
1045     if (!file->thunkSym)
1046       continue;
1047 
1048     if (!isa<DefinedImportThunk>(file->thunkSym))
1049       fatal(toString(*file->thunkSym) + " was replaced");
1050     DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1051     if (file->thunkLive)
1052       textSec->addChunk(thunk->getChunk());
1053   }
1054 
1055   if (!delayIdata.empty()) {
1056     Defined *helper = cast<Defined>(config->delayLoadHelper);
1057     delayIdata.create(helper);
1058     for (Chunk *c : delayIdata.getChunks())
1059       didatSec->addChunk(c);
1060     for (Chunk *c : delayIdata.getDataChunks())
1061       dataSec->addChunk(c);
1062     for (Chunk *c : delayIdata.getCodeChunks())
1063       textSec->addChunk(c);
1064   }
1065 }
1066 
createExportTable()1067 void Writer::createExportTable() {
1068   if (!edataSec->chunks.empty()) {
1069     // Allow using a custom built export table from input object files, instead
1070     // of having the linker synthesize the tables.
1071     if (config->hadExplicitExports)
1072       warn("literal .edata sections override exports");
1073   } else if (!config->exports.empty()) {
1074     for (Chunk *c : edata.chunks)
1075       edataSec->addChunk(c);
1076   }
1077   if (!edataSec->chunks.empty()) {
1078     edataStart = edataSec->chunks.front();
1079     edataEnd = edataSec->chunks.back();
1080   }
1081 }
1082 
removeUnusedSections()1083 void Writer::removeUnusedSections() {
1084   // Remove sections that we can be sure won't get content, to avoid
1085   // allocating space for their section headers.
1086   auto isUnused = [this](OutputSection *s) {
1087     if (s == relocSec)
1088       return false; // This section is populated later.
1089     // MergeChunks have zero size at this point, as their size is finalized
1090     // later. Only remove sections that have no Chunks at all.
1091     return s->chunks.empty();
1092   };
1093   outputSections.erase(
1094       std::remove_if(outputSections.begin(), outputSections.end(), isUnused),
1095       outputSections.end());
1096 }
1097 
1098 // The Windows loader doesn't seem to like empty sections,
1099 // so we remove them if any.
removeEmptySections()1100 void Writer::removeEmptySections() {
1101   auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
1102   outputSections.erase(
1103       std::remove_if(outputSections.begin(), outputSections.end(), isEmpty),
1104       outputSections.end());
1105 }
1106 
assignOutputSectionIndices()1107 void Writer::assignOutputSectionIndices() {
1108   // Assign final output section indices, and assign each chunk to its output
1109   // section.
1110   uint32_t idx = 1;
1111   for (OutputSection *os : outputSections) {
1112     os->sectionIndex = idx;
1113     for (Chunk *c : os->chunks)
1114       c->setOutputSectionIdx(idx);
1115     ++idx;
1116   }
1117 
1118   // Merge chunks are containers of chunks, so assign those an output section
1119   // too.
1120   for (MergeChunk *mc : MergeChunk::instances)
1121     if (mc)
1122       for (SectionChunk *sc : mc->sections)
1123         if (sc && sc->live)
1124           sc->setOutputSectionIdx(mc->getOutputSectionIdx());
1125 }
1126 
addEntryToStringTable(StringRef str)1127 size_t Writer::addEntryToStringTable(StringRef str) {
1128   assert(str.size() > COFF::NameSize);
1129   size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
1130   strtab.insert(strtab.end(), str.begin(), str.end());
1131   strtab.push_back('\0');
1132   return offsetOfEntry;
1133 }
1134 
createSymbol(Defined * def)1135 Optional<coff_symbol16> Writer::createSymbol(Defined *def) {
1136   coff_symbol16 sym;
1137   switch (def->kind()) {
1138   case Symbol::DefinedAbsoluteKind:
1139     sym.Value = def->getRVA();
1140     sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
1141     break;
1142   case Symbol::DefinedSyntheticKind:
1143     // Relative symbols are unrepresentable in a COFF symbol table.
1144     return None;
1145   default: {
1146     // Don't write symbols that won't be written to the output to the symbol
1147     // table.
1148     Chunk *c = def->getChunk();
1149     if (!c)
1150       return None;
1151     OutputSection *os = c->getOutputSection();
1152     if (!os)
1153       return None;
1154 
1155     sym.Value = def->getRVA() - os->getRVA();
1156     sym.SectionNumber = os->sectionIndex;
1157     break;
1158   }
1159   }
1160 
1161   // Symbols that are runtime pseudo relocations don't point to the actual
1162   // symbol data itself (as they are imported), but points to the IAT entry
1163   // instead. Avoid emitting them to the symbol table, as they can confuse
1164   // debuggers.
1165   if (def->isRuntimePseudoReloc)
1166     return None;
1167 
1168   StringRef name = def->getName();
1169   if (name.size() > COFF::NameSize) {
1170     sym.Name.Offset.Zeroes = 0;
1171     sym.Name.Offset.Offset = addEntryToStringTable(name);
1172   } else {
1173     memset(sym.Name.ShortName, 0, COFF::NameSize);
1174     memcpy(sym.Name.ShortName, name.data(), name.size());
1175   }
1176 
1177   if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1178     COFFSymbolRef ref = d->getCOFFSymbol();
1179     sym.Type = ref.getType();
1180     sym.StorageClass = ref.getStorageClass();
1181   } else {
1182     sym.Type = IMAGE_SYM_TYPE_NULL;
1183     sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1184   }
1185   sym.NumberOfAuxSymbols = 0;
1186   return sym;
1187 }
1188 
createSymbolAndStringTable()1189 void Writer::createSymbolAndStringTable() {
1190   // PE/COFF images are limited to 8 byte section names. Longer names can be
1191   // supported by writing a non-standard string table, but this string table is
1192   // not mapped at runtime and the long names will therefore be inaccessible.
1193   // link.exe always truncates section names to 8 bytes, whereas binutils always
1194   // preserves long section names via the string table. LLD adopts a hybrid
1195   // solution where discardable sections have long names preserved and
1196   // non-discardable sections have their names truncated, to ensure that any
1197   // section which is mapped at runtime also has its name mapped at runtime.
1198   for (OutputSection *sec : outputSections) {
1199     if (sec->name.size() <= COFF::NameSize)
1200       continue;
1201     if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
1202       continue;
1203     if (config->warnLongSectionNames) {
1204       warn("section name " + sec->name +
1205            " is longer than 8 characters and will use a non-standard string "
1206            "table");
1207     }
1208     sec->setStringTableOff(addEntryToStringTable(sec->name));
1209   }
1210 
1211   if (config->debugDwarf || config->debugSymtab) {
1212     for (ObjFile *file : ObjFile::instances) {
1213       for (Symbol *b : file->getSymbols()) {
1214         auto *d = dyn_cast_or_null<Defined>(b);
1215         if (!d || d->writtenToSymtab)
1216           continue;
1217         d->writtenToSymtab = true;
1218 
1219         if (Optional<coff_symbol16> sym = createSymbol(d))
1220           outputSymtab.push_back(*sym);
1221       }
1222     }
1223   }
1224 
1225   if (outputSymtab.empty() && strtab.empty())
1226     return;
1227 
1228   // We position the symbol table to be adjacent to the end of the last section.
1229   uint64_t fileOff = fileSize;
1230   pointerToSymbolTable = fileOff;
1231   fileOff += outputSymtab.size() * sizeof(coff_symbol16);
1232   fileOff += 4 + strtab.size();
1233   fileSize = alignTo(fileOff, config->fileAlign);
1234 }
1235 
mergeSections()1236 void Writer::mergeSections() {
1237   if (!pdataSec->chunks.empty()) {
1238     firstPdata = pdataSec->chunks.front();
1239     lastPdata = pdataSec->chunks.back();
1240   }
1241 
1242   for (auto &p : config->merge) {
1243     StringRef toName = p.second;
1244     if (p.first == toName)
1245       continue;
1246     StringSet<> names;
1247     while (1) {
1248       if (!names.insert(toName).second)
1249         fatal("/merge: cycle found for section '" + p.first + "'");
1250       auto i = config->merge.find(toName);
1251       if (i == config->merge.end())
1252         break;
1253       toName = i->second;
1254     }
1255     OutputSection *from = findSection(p.first);
1256     OutputSection *to = findSection(toName);
1257     if (!from)
1258       continue;
1259     if (!to) {
1260       from->name = toName;
1261       continue;
1262     }
1263     to->merge(from);
1264   }
1265 }
1266 
1267 // Visits all sections to assign incremental, non-overlapping RVAs and
1268 // file offsets.
assignAddresses()1269 void Writer::assignAddresses() {
1270   sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
1271                   sizeof(data_directory) * numberOfDataDirectory +
1272                   sizeof(coff_section) * outputSections.size();
1273   sizeOfHeaders +=
1274       config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
1275   sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
1276   fileSize = sizeOfHeaders;
1277 
1278   // The first page is kept unmapped.
1279   uint64_t rva = alignTo(sizeOfHeaders, config->align);
1280 
1281   for (OutputSection *sec : outputSections) {
1282     if (sec == relocSec)
1283       addBaserels();
1284     uint64_t rawSize = 0, virtualSize = 0;
1285     sec->header.VirtualAddress = rva;
1286 
1287     // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1288     // hotpatchable image.
1289     const bool isCodeSection =
1290         (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
1291         (sec->header.Characteristics & IMAGE_SCN_MEM_READ) &&
1292         (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE);
1293     uint32_t padding = isCodeSection ? config->functionPadMin : 0;
1294 
1295     for (Chunk *c : sec->chunks) {
1296       if (padding && c->isHotPatchable())
1297         virtualSize += padding;
1298       virtualSize = alignTo(virtualSize, c->getAlignment());
1299       c->setRVA(rva + virtualSize);
1300       virtualSize += c->getSize();
1301       if (c->hasData)
1302         rawSize = alignTo(virtualSize, config->fileAlign);
1303     }
1304     if (virtualSize > UINT32_MAX)
1305       error("section larger than 4 GiB: " + sec->name);
1306     sec->header.VirtualSize = virtualSize;
1307     sec->header.SizeOfRawData = rawSize;
1308     if (rawSize != 0)
1309       sec->header.PointerToRawData = fileSize;
1310     rva += alignTo(virtualSize, config->align);
1311     fileSize += alignTo(rawSize, config->fileAlign);
1312   }
1313   sizeOfImage = alignTo(rva, config->align);
1314 
1315   // Assign addresses to sections in MergeChunks.
1316   for (MergeChunk *mc : MergeChunk::instances)
1317     if (mc)
1318       mc->assignSubsectionRVAs();
1319 }
1320 
writeHeader()1321 template <typename PEHeaderTy> void Writer::writeHeader() {
1322   // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1323   // executable consists of an MS-DOS MZ executable. If the executable is run
1324   // under DOS, that program gets run (usually to just print an error message).
1325   // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1326   // the PE header instead.
1327   uint8_t *buf = buffer->getBufferStart();
1328   auto *dos = reinterpret_cast<dos_header *>(buf);
1329   buf += sizeof(dos_header);
1330   dos->Magic[0] = 'M';
1331   dos->Magic[1] = 'Z';
1332   dos->UsedBytesInTheLastPage = dosStubSize % 512;
1333   dos->FileSizeInPages = divideCeil(dosStubSize, 512);
1334   dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
1335 
1336   dos->AddressOfRelocationTable = sizeof(dos_header);
1337   dos->AddressOfNewExeHeader = dosStubSize;
1338 
1339   // Write DOS program.
1340   memcpy(buf, dosProgram, sizeof(dosProgram));
1341   buf += sizeof(dosProgram);
1342 
1343   // Write PE magic
1344   memcpy(buf, PEMagic, sizeof(PEMagic));
1345   buf += sizeof(PEMagic);
1346 
1347   // Write COFF header
1348   auto *coff = reinterpret_cast<coff_file_header *>(buf);
1349   buf += sizeof(*coff);
1350   coff->Machine = config->machine;
1351   coff->NumberOfSections = outputSections.size();
1352   coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
1353   if (config->largeAddressAware)
1354     coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
1355   if (!config->is64())
1356     coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
1357   if (config->dll)
1358     coff->Characteristics |= IMAGE_FILE_DLL;
1359   if (config->driverUponly)
1360     coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
1361   if (!config->relocatable)
1362     coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
1363   if (config->swaprunCD)
1364     coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
1365   if (config->swaprunNet)
1366     coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
1367   coff->SizeOfOptionalHeader =
1368       sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
1369 
1370   // Write PE header
1371   auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
1372   buf += sizeof(*pe);
1373   pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
1374 
1375   // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1376   // reason signing the resulting PE file with Authenticode produces a
1377   // signature that fails to validate on Windows 7 (but is OK on 10).
1378   // Set it to 14.0, which is what VS2015 outputs, and which avoids
1379   // that problem.
1380   pe->MajorLinkerVersion = 14;
1381   pe->MinorLinkerVersion = 0;
1382 
1383   pe->ImageBase = config->imageBase;
1384   pe->SectionAlignment = config->align;
1385   pe->FileAlignment = config->fileAlign;
1386   pe->MajorImageVersion = config->majorImageVersion;
1387   pe->MinorImageVersion = config->minorImageVersion;
1388   pe->MajorOperatingSystemVersion = config->majorOSVersion;
1389   pe->MinorOperatingSystemVersion = config->minorOSVersion;
1390   pe->MajorSubsystemVersion = config->majorSubsystemVersion;
1391   pe->MinorSubsystemVersion = config->minorSubsystemVersion;
1392   pe->Subsystem = config->subsystem;
1393   pe->SizeOfImage = sizeOfImage;
1394   pe->SizeOfHeaders = sizeOfHeaders;
1395   if (!config->noEntry) {
1396     Defined *entry = cast<Defined>(config->entry);
1397     pe->AddressOfEntryPoint = entry->getRVA();
1398     // Pointer to thumb code must have the LSB set, so adjust it.
1399     if (config->machine == ARMNT)
1400       pe->AddressOfEntryPoint |= 1;
1401   }
1402   pe->SizeOfStackReserve = config->stackReserve;
1403   pe->SizeOfStackCommit = config->stackCommit;
1404   pe->SizeOfHeapReserve = config->heapReserve;
1405   pe->SizeOfHeapCommit = config->heapCommit;
1406   if (config->appContainer)
1407     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
1408   if (config->driverWdm)
1409     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
1410   if (config->dynamicBase)
1411     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
1412   if (config->highEntropyVA)
1413     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
1414   if (!config->allowBind)
1415     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
1416   if (config->nxCompat)
1417     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
1418   if (!config->allowIsolation)
1419     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
1420   if (config->guardCF != GuardCFLevel::Off)
1421     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
1422   if (config->integrityCheck)
1423     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
1424   if (setNoSEHCharacteristic || config->noSEH)
1425     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
1426   if (config->terminalServerAware)
1427     pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
1428   pe->NumberOfRvaAndSize = numberOfDataDirectory;
1429   if (textSec->getVirtualSize()) {
1430     pe->BaseOfCode = textSec->getRVA();
1431     pe->SizeOfCode = textSec->getRawSize();
1432   }
1433   pe->SizeOfInitializedData = getSizeOfInitializedData();
1434 
1435   // Write data directory
1436   auto *dir = reinterpret_cast<data_directory *>(buf);
1437   buf += sizeof(*dir) * numberOfDataDirectory;
1438   if (edataStart) {
1439     dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
1440     dir[EXPORT_TABLE].Size =
1441         edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
1442   }
1443   if (importTableStart) {
1444     dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
1445     dir[IMPORT_TABLE].Size = importTableSize;
1446   }
1447   if (iatStart) {
1448     dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
1449     dir[IAT].Size = iatSize;
1450   }
1451   if (rsrcSec->getVirtualSize()) {
1452     dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
1453     dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
1454   }
1455   if (firstPdata) {
1456     dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA();
1457     dir[EXCEPTION_TABLE].Size =
1458         lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA();
1459   }
1460   if (relocSec->getVirtualSize()) {
1461     dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
1462     dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
1463   }
1464   if (Symbol *sym = symtab->findUnderscore("_tls_used")) {
1465     if (Defined *b = dyn_cast<Defined>(sym)) {
1466       dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
1467       dir[TLS_TABLE].Size = config->is64()
1468                                 ? sizeof(object::coff_tls_directory64)
1469                                 : sizeof(object::coff_tls_directory32);
1470     }
1471   }
1472   if (debugDirectory) {
1473     dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
1474     dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
1475   }
1476   if (Symbol *sym = symtab->findUnderscore("_load_config_used")) {
1477     if (auto *b = dyn_cast<DefinedRegular>(sym)) {
1478       SectionChunk *sc = b->getChunk();
1479       assert(b->getRVA() >= sc->getRVA());
1480       uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
1481       if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
1482         fatal("_load_config_used is malformed");
1483 
1484       ArrayRef<uint8_t> secContents = sc->getContents();
1485       uint32_t loadConfigSize =
1486           *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
1487       if (offsetInChunk + loadConfigSize > sc->getSize())
1488         fatal("_load_config_used is too large");
1489       dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
1490       dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
1491     }
1492   }
1493   if (!delayIdata.empty()) {
1494     dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
1495         delayIdata.getDirRVA();
1496     dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
1497   }
1498 
1499   // Write section table
1500   for (OutputSection *sec : outputSections) {
1501     sec->writeHeaderTo(buf);
1502     buf += sizeof(coff_section);
1503   }
1504   sectionTable = ArrayRef<uint8_t>(
1505       buf - outputSections.size() * sizeof(coff_section), buf);
1506 
1507   if (outputSymtab.empty() && strtab.empty())
1508     return;
1509 
1510   coff->PointerToSymbolTable = pointerToSymbolTable;
1511   uint32_t numberOfSymbols = outputSymtab.size();
1512   coff->NumberOfSymbols = numberOfSymbols;
1513   auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
1514       buffer->getBufferStart() + coff->PointerToSymbolTable);
1515   for (size_t i = 0; i != numberOfSymbols; ++i)
1516     symbolTable[i] = outputSymtab[i];
1517   // Create the string table, it follows immediately after the symbol table.
1518   // The first 4 bytes is length including itself.
1519   buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
1520   write32le(buf, strtab.size() + 4);
1521   if (!strtab.empty())
1522     memcpy(buf + 4, strtab.data(), strtab.size());
1523 }
1524 
openFile(StringRef path)1525 void Writer::openFile(StringRef path) {
1526   buffer = CHECK(
1527       FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
1528       "failed to open " + path);
1529 }
1530 
createSEHTable()1531 void Writer::createSEHTable() {
1532   SymbolRVASet handlers;
1533   for (ObjFile *file : ObjFile::instances) {
1534     if (!file->hasSafeSEH())
1535       error("/safeseh: " + file->getName() + " is not compatible with SEH");
1536     markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
1537   }
1538 
1539   // Set the "no SEH" characteristic if there really were no handlers, or if
1540   // there is no load config object to point to the table of handlers.
1541   setNoSEHCharacteristic =
1542       handlers.empty() || !symtab->findUnderscore("_load_config_used");
1543 
1544   maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
1545                    "__safe_se_handler_count");
1546 }
1547 
1548 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1549 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1550 // symbol's offset into that Chunk.
addSymbolToRVASet(SymbolRVASet & rvaSet,Defined * s)1551 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
1552   Chunk *c = s->getChunk();
1553   if (auto *sc = dyn_cast<SectionChunk>(c))
1554     c = sc->repl; // Look through ICF replacement.
1555   uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
1556   rvaSet.insert({c, off});
1557 }
1558 
1559 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1560 // symbol in an executable section.
maybeAddAddressTakenFunction(SymbolRVASet & addressTakenSyms,Symbol * s)1561 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
1562                                          Symbol *s) {
1563   if (!s)
1564     return;
1565 
1566   switch (s->kind()) {
1567   case Symbol::DefinedLocalImportKind:
1568   case Symbol::DefinedImportDataKind:
1569     // Defines an __imp_ pointer, so it is data, so it is ignored.
1570     break;
1571   case Symbol::DefinedCommonKind:
1572     // Common is always data, so it is ignored.
1573     break;
1574   case Symbol::DefinedAbsoluteKind:
1575   case Symbol::DefinedSyntheticKind:
1576     // Absolute is never code, synthetic generally isn't and usually isn't
1577     // determinable.
1578     break;
1579   case Symbol::LazyArchiveKind:
1580   case Symbol::LazyObjectKind:
1581   case Symbol::UndefinedKind:
1582     // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1583     // symbols shouldn't have relocations.
1584     break;
1585 
1586   case Symbol::DefinedImportThunkKind:
1587     // Thunks are always code, include them.
1588     addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
1589     break;
1590 
1591   case Symbol::DefinedRegularKind: {
1592     // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1593     // address taken if the symbol type is function and it's in an executable
1594     // section.
1595     auto *d = cast<DefinedRegular>(s);
1596     if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
1597       SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
1598       if (sc && sc->live &&
1599           sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
1600         addSymbolToRVASet(addressTakenSyms, d);
1601     }
1602     break;
1603   }
1604   }
1605 }
1606 
1607 // Visit all relocations from all section contributions of this object file and
1608 // mark the relocation target as address-taken.
markSymbolsWithRelocations(ObjFile * file,SymbolRVASet & usedSymbols)1609 static void markSymbolsWithRelocations(ObjFile *file,
1610                                        SymbolRVASet &usedSymbols) {
1611   for (Chunk *c : file->getChunks()) {
1612     // We only care about live section chunks. Common chunks and other chunks
1613     // don't generally contain relocations.
1614     SectionChunk *sc = dyn_cast<SectionChunk>(c);
1615     if (!sc || !sc->live)
1616       continue;
1617 
1618     for (const coff_relocation &reloc : sc->getRelocs()) {
1619       if (config->machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32)
1620         // Ignore relative relocations on x86. On x86_64 they can't be ignored
1621         // since they're also used to compute absolute addresses.
1622         continue;
1623 
1624       Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
1625       maybeAddAddressTakenFunction(usedSymbols, ref);
1626     }
1627   }
1628 }
1629 
1630 // Create the guard function id table. This is a table of RVAs of all
1631 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1632 // table.
createGuardCFTables()1633 void Writer::createGuardCFTables() {
1634   SymbolRVASet addressTakenSyms;
1635   SymbolRVASet giatsRVASet;
1636   std::vector<Symbol *> giatsSymbols;
1637   SymbolRVASet longJmpTargets;
1638   for (ObjFile *file : ObjFile::instances) {
1639     // If the object was compiled with /guard:cf, the address taken symbols
1640     // are in .gfids$y sections, and the longjmp targets are in .gljmp$y
1641     // sections. If the object was not compiled with /guard:cf, we assume there
1642     // were no setjmp targets, and that all code symbols with relocations are
1643     // possibly address-taken.
1644     if (file->hasGuardCF()) {
1645       markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
1646       markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet);
1647       getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols);
1648       markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
1649     } else {
1650       markSymbolsWithRelocations(file, addressTakenSyms);
1651     }
1652   }
1653 
1654   // Mark the image entry as address-taken.
1655   if (config->entry)
1656     maybeAddAddressTakenFunction(addressTakenSyms, config->entry);
1657 
1658   // Mark exported symbols in executable sections as address-taken.
1659   for (Export &e : config->exports)
1660     maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
1661 
1662   // For each entry in the .giats table, check if it has a corresponding load
1663   // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1664   // so, add the load thunk to the address taken (.gfids) table.
1665   for (Symbol *s : giatsSymbols) {
1666     if (auto *di = dyn_cast<DefinedImportData>(s)) {
1667       if (di->loadThunkSym)
1668         addSymbolToRVASet(addressTakenSyms, di->loadThunkSym);
1669     }
1670   }
1671 
1672   // Ensure sections referenced in the gfid table are 16-byte aligned.
1673   for (const ChunkAndOffset &c : addressTakenSyms)
1674     if (c.inputChunk->getAlignment() < 16)
1675       c.inputChunk->setAlignment(16);
1676 
1677   maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
1678                    "__guard_fids_count");
1679 
1680   // Add the Guard Address Taken IAT Entry Table (.giats).
1681   maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table",
1682                    "__guard_iat_count");
1683 
1684   // Add the longjmp target table unless the user told us not to.
1685   if (config->guardCF == GuardCFLevel::Full)
1686     maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
1687                      "__guard_longjmp_count");
1688 
1689   // Set __guard_flags, which will be used in the load config to indicate that
1690   // /guard:cf was enabled.
1691   uint32_t guardFlags = uint32_t(coff_guard_flags::CFInstrumented) |
1692                         uint32_t(coff_guard_flags::HasFidTable);
1693   if (config->guardCF == GuardCFLevel::Full)
1694     guardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable);
1695   Symbol *flagSym = symtab->findUnderscore("__guard_flags");
1696   cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
1697 }
1698 
1699 // Take a list of input sections containing symbol table indices and add those
1700 // symbols to a vector. The challenge is that symbol RVAs are not known and
1701 // depend on the table size, so we can't directly build a set of integers.
getSymbolsFromSections(ObjFile * file,ArrayRef<SectionChunk * > symIdxChunks,std::vector<Symbol * > & symbols)1702 void Writer::getSymbolsFromSections(ObjFile *file,
1703                                     ArrayRef<SectionChunk *> symIdxChunks,
1704                                     std::vector<Symbol *> &symbols) {
1705   for (SectionChunk *c : symIdxChunks) {
1706     // Skip sections discarded by linker GC. This comes up when a .gfids section
1707     // is associated with something like a vtable and the vtable is discarded.
1708     // In this case, the associated gfids section is discarded, and we don't
1709     // mark the virtual member functions as address-taken by the vtable.
1710     if (!c->live)
1711       continue;
1712 
1713     // Validate that the contents look like symbol table indices.
1714     ArrayRef<uint8_t> data = c->getContents();
1715     if (data.size() % 4 != 0) {
1716       warn("ignoring " + c->getSectionName() +
1717            " symbol table index section in object " + toString(file));
1718       continue;
1719     }
1720 
1721     // Read each symbol table index and check if that symbol was included in the
1722     // final link. If so, add it to the vector of symbols.
1723     ArrayRef<ulittle32_t> symIndices(
1724         reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
1725     ArrayRef<Symbol *> objSymbols = file->getSymbols();
1726     for (uint32_t symIndex : symIndices) {
1727       if (symIndex >= objSymbols.size()) {
1728         warn("ignoring invalid symbol table index in section " +
1729              c->getSectionName() + " in object " + toString(file));
1730         continue;
1731       }
1732       if (Symbol *s = objSymbols[symIndex]) {
1733         if (s->isLive())
1734           symbols.push_back(cast<Symbol>(s));
1735       }
1736     }
1737   }
1738 }
1739 
1740 // Take a list of input sections containing symbol table indices and add those
1741 // symbols to an RVA table.
markSymbolsForRVATable(ObjFile * file,ArrayRef<SectionChunk * > symIdxChunks,SymbolRVASet & tableSymbols)1742 void Writer::markSymbolsForRVATable(ObjFile *file,
1743                                     ArrayRef<SectionChunk *> symIdxChunks,
1744                                     SymbolRVASet &tableSymbols) {
1745   std::vector<Symbol *> syms;
1746   getSymbolsFromSections(file, symIdxChunks, syms);
1747 
1748   for (Symbol *s : syms)
1749     addSymbolToRVASet(tableSymbols, cast<Defined>(s));
1750 }
1751 
1752 // Replace the absolute table symbol with a synthetic symbol pointing to
1753 // tableChunk so that we can emit base relocations for it and resolve section
1754 // relative relocations.
maybeAddRVATable(SymbolRVASet tableSymbols,StringRef tableSym,StringRef countSym)1755 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
1756                               StringRef countSym) {
1757   if (tableSymbols.empty())
1758     return;
1759 
1760   RVATableChunk *tableChunk = make<RVATableChunk>(std::move(tableSymbols));
1761   rdataSec->addChunk(tableChunk);
1762 
1763   Symbol *t = symtab->findUnderscore(tableSym);
1764   Symbol *c = symtab->findUnderscore(countSym);
1765   replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
1766   cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / 4);
1767 }
1768 
1769 // MinGW specific. Gather all relocations that are imported from a DLL even
1770 // though the code didn't expect it to, produce the table that the runtime
1771 // uses for fixing them up, and provide the synthetic symbols that the
1772 // runtime uses for finding the table.
createRuntimePseudoRelocs()1773 void Writer::createRuntimePseudoRelocs() {
1774   std::vector<RuntimePseudoReloc> rels;
1775 
1776   for (Chunk *c : symtab->getChunks()) {
1777     auto *sc = dyn_cast<SectionChunk>(c);
1778     if (!sc || !sc->live)
1779       continue;
1780     sc->getRuntimePseudoRelocs(rels);
1781   }
1782 
1783   if (!config->pseudoRelocs) {
1784     // Not writing any pseudo relocs; if some were needed, error out and
1785     // indicate what required them.
1786     for (const RuntimePseudoReloc &rpr : rels)
1787       error("automatic dllimport of " + rpr.sym->getName() + " in " +
1788             toString(rpr.target->file) + " requires pseudo relocations");
1789     return;
1790   }
1791 
1792   if (!rels.empty())
1793     log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
1794   PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
1795   rdataSec->addChunk(table);
1796   EmptyChunk *endOfList = make<EmptyChunk>();
1797   rdataSec->addChunk(endOfList);
1798 
1799   Symbol *headSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1800   Symbol *endSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1801   replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
1802   replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
1803 }
1804 
1805 // MinGW specific.
1806 // The MinGW .ctors and .dtors lists have sentinels at each end;
1807 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1808 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1809 // and __DTOR_LIST__ respectively.
insertCtorDtorSymbols()1810 void Writer::insertCtorDtorSymbols() {
1811   AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(-1);
1812   AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(0);
1813   AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(-1);
1814   AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(0);
1815   ctorsSec->insertChunkAtStart(ctorListHead);
1816   ctorsSec->addChunk(ctorListEnd);
1817   dtorsSec->insertChunkAtStart(dtorListHead);
1818   dtorsSec->addChunk(dtorListEnd);
1819 
1820   Symbol *ctorListSym = symtab->findUnderscore("__CTOR_LIST__");
1821   Symbol *dtorListSym = symtab->findUnderscore("__DTOR_LIST__");
1822   replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
1823                                   ctorListHead);
1824   replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
1825                                   dtorListHead);
1826 }
1827 
1828 // Handles /section options to allow users to overwrite
1829 // section attributes.
setSectionPermissions()1830 void Writer::setSectionPermissions() {
1831   for (auto &p : config->section) {
1832     StringRef name = p.first;
1833     uint32_t perm = p.second;
1834     for (OutputSection *sec : outputSections)
1835       if (sec->name == name)
1836         sec->setPermissions(perm);
1837   }
1838 }
1839 
1840 // Write section contents to a mmap'ed file.
writeSections()1841 void Writer::writeSections() {
1842   // Record the number of sections to apply section index relocations
1843   // against absolute symbols. See applySecIdx in Chunks.cpp..
1844   DefinedAbsolute::numOutputSections = outputSections.size();
1845 
1846   uint8_t *buf = buffer->getBufferStart();
1847   for (OutputSection *sec : outputSections) {
1848     uint8_t *secBuf = buf + sec->getFileOff();
1849     // Fill gaps between functions in .text with INT3 instructions
1850     // instead of leaving as NUL bytes (which can be interpreted as
1851     // ADD instructions).
1852     if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE)
1853       memset(secBuf, 0xCC, sec->getRawSize());
1854     parallelForEach(sec->chunks, [&](Chunk *c) {
1855       c->writeTo(secBuf + c->getRVA() - sec->getRVA());
1856     });
1857   }
1858 }
1859 
writeBuildId()1860 void Writer::writeBuildId() {
1861   // There are two important parts to the build ID.
1862   // 1) If building with debug info, the COFF debug directory contains a
1863   //    timestamp as well as a Guid and Age of the PDB.
1864   // 2) In all cases, the PE COFF file header also contains a timestamp.
1865   // For reproducibility, instead of a timestamp we want to use a hash of the
1866   // PE contents.
1867   if (config->debug) {
1868     assert(buildId && "BuildId is not set!");
1869     // BuildId->BuildId was filled in when the PDB was written.
1870   }
1871 
1872   // At this point the only fields in the COFF file which remain unset are the
1873   // "timestamp" in the COFF file header, and the ones in the coff debug
1874   // directory.  Now we can hash the file and write that hash to the various
1875   // timestamp fields in the file.
1876   StringRef outputFileData(
1877       reinterpret_cast<const char *>(buffer->getBufferStart()),
1878       buffer->getBufferSize());
1879 
1880   uint32_t timestamp = config->timestamp;
1881   uint64_t hash = 0;
1882   bool generateSyntheticBuildId =
1883       config->mingw && config->debug && config->pdbPath.empty();
1884 
1885   if (config->repro || generateSyntheticBuildId)
1886     hash = xxHash64(outputFileData);
1887 
1888   if (config->repro)
1889     timestamp = static_cast<uint32_t>(hash);
1890 
1891   if (generateSyntheticBuildId) {
1892     // For MinGW builds without a PDB file, we still generate a build id
1893     // to allow associating a crash dump to the executable.
1894     buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
1895     buildId->buildId->PDB70.Age = 1;
1896     memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
1897     // xxhash only gives us 8 bytes, so put some fixed data in the other half.
1898     memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
1899   }
1900 
1901   if (debugDirectory)
1902     debugDirectory->setTimeDateStamp(timestamp);
1903 
1904   uint8_t *buf = buffer->getBufferStart();
1905   buf += dosStubSize + sizeof(PEMagic);
1906   object::coff_file_header *coffHeader =
1907       reinterpret_cast<coff_file_header *>(buf);
1908   coffHeader->TimeDateStamp = timestamp;
1909 }
1910 
1911 // Sort .pdata section contents according to PE/COFF spec 5.5.
sortExceptionTable()1912 void Writer::sortExceptionTable() {
1913   if (!firstPdata)
1914     return;
1915   // We assume .pdata contains function table entries only.
1916   auto bufAddr = [&](Chunk *c) {
1917     OutputSection *os = c->getOutputSection();
1918     return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
1919            os->getRVA();
1920   };
1921   uint8_t *begin = bufAddr(firstPdata);
1922   uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize();
1923   if (config->machine == AMD64) {
1924     struct Entry { ulittle32_t begin, end, unwind; };
1925     if ((end - begin) % sizeof(Entry) != 0) {
1926       fatal("unexpected .pdata size: " + Twine(end - begin) +
1927             " is not a multiple of " + Twine(sizeof(Entry)));
1928     }
1929     parallelSort(
1930         MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1931         [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1932     return;
1933   }
1934   if (config->machine == ARMNT || config->machine == ARM64) {
1935     struct Entry { ulittle32_t begin, unwind; };
1936     if ((end - begin) % sizeof(Entry) != 0) {
1937       fatal("unexpected .pdata size: " + Twine(end - begin) +
1938             " is not a multiple of " + Twine(sizeof(Entry)));
1939     }
1940     parallelSort(
1941         MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1942         [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1943     return;
1944   }
1945   lld::errs() << "warning: don't know how to handle .pdata.\n";
1946 }
1947 
1948 // The CRT section contains, among other things, the array of function
1949 // pointers that initialize every global variable that is not trivially
1950 // constructed. The CRT calls them one after the other prior to invoking
1951 // main().
1952 //
1953 // As per C++ spec, 3.6.2/2.3,
1954 // "Variables with ordered initialization defined within a single
1955 // translation unit shall be initialized in the order of their definitions
1956 // in the translation unit"
1957 //
1958 // It is therefore critical to sort the chunks containing the function
1959 // pointers in the order that they are listed in the object file (top to
1960 // bottom), otherwise global objects might not be initialized in the
1961 // correct order.
sortCRTSectionChunks(std::vector<Chunk * > & chunks)1962 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
1963   auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
1964     auto sa = dyn_cast<SectionChunk>(a);
1965     auto sb = dyn_cast<SectionChunk>(b);
1966     assert(sa && sb && "Non-section chunks in CRT section!");
1967 
1968     StringRef sAObj = sa->file->mb.getBufferIdentifier();
1969     StringRef sBObj = sb->file->mb.getBufferIdentifier();
1970 
1971     return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
1972   };
1973   llvm::stable_sort(chunks, sectionChunkOrder);
1974 
1975   if (config->verbose) {
1976     for (auto &c : chunks) {
1977       auto sc = dyn_cast<SectionChunk>(c);
1978       log("  " + sc->file->mb.getBufferIdentifier().str() +
1979           ", SectionID: " + Twine(sc->getSectionNumber()));
1980     }
1981   }
1982 }
1983 
findSection(StringRef name)1984 OutputSection *Writer::findSection(StringRef name) {
1985   for (OutputSection *sec : outputSections)
1986     if (sec->name == name)
1987       return sec;
1988   return nullptr;
1989 }
1990 
getSizeOfInitializedData()1991 uint32_t Writer::getSizeOfInitializedData() {
1992   uint32_t res = 0;
1993   for (OutputSection *s : outputSections)
1994     if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
1995       res += s->getRawSize();
1996   return res;
1997 }
1998 
1999 // Add base relocations to .reloc section.
addBaserels()2000 void Writer::addBaserels() {
2001   if (!config->relocatable)
2002     return;
2003   relocSec->chunks.clear();
2004   std::vector<Baserel> v;
2005   for (OutputSection *sec : outputSections) {
2006     if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2007       continue;
2008     // Collect all locations for base relocations.
2009     for (Chunk *c : sec->chunks)
2010       c->getBaserels(&v);
2011     // Add the addresses to .reloc section.
2012     if (!v.empty())
2013       addBaserelBlocks(v);
2014     v.clear();
2015   }
2016 }
2017 
2018 // Add addresses to .reloc section. Note that addresses are grouped by page.
addBaserelBlocks(std::vector<Baserel> & v)2019 void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
2020   const uint32_t mask = ~uint32_t(pageSize - 1);
2021   uint32_t page = v[0].rva & mask;
2022   size_t i = 0, j = 1;
2023   for (size_t e = v.size(); j < e; ++j) {
2024     uint32_t p = v[j].rva & mask;
2025     if (p == page)
2026       continue;
2027     relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2028     i = j;
2029     page = p;
2030   }
2031   if (i == j)
2032     return;
2033   relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2034 }
2035 
createPartialSection(StringRef name,uint32_t outChars)2036 PartialSection *Writer::createPartialSection(StringRef name,
2037                                              uint32_t outChars) {
2038   PartialSection *&pSec = partialSections[{name, outChars}];
2039   if (pSec)
2040     return pSec;
2041   pSec = make<PartialSection>(name, outChars);
2042   return pSec;
2043 }
2044 
findPartialSection(StringRef name,uint32_t outChars)2045 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
2046   auto it = partialSections.find({name, outChars});
2047   if (it != partialSections.end())
2048     return it->second;
2049   return nullptr;
2050 }
2051 
fixTlsAlignment()2052 void Writer::fixTlsAlignment() {
2053   Defined *tlsSym =
2054       dyn_cast_or_null<Defined>(symtab->findUnderscore("_tls_used"));
2055   if (!tlsSym)
2056     return;
2057 
2058   OutputSection *sec = tlsSym->getChunk()->getOutputSection();
2059   assert(sec && tlsSym->getRVA() >= sec->getRVA() &&
2060          "no output section for _tls_used");
2061 
2062   uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2063   uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA();
2064   uint64_t directorySize = config->is64()
2065                                ? sizeof(object::coff_tls_directory64)
2066                                : sizeof(object::coff_tls_directory32);
2067 
2068   if (tlsOffset + directorySize > sec->getRawSize())
2069     fatal("_tls_used sym is malformed");
2070 
2071   if (config->is64()) {
2072     object::coff_tls_directory64 *tlsDir =
2073         reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]);
2074     tlsDir->setAlignment(tlsAlignment);
2075   } else {
2076     object::coff_tls_directory32 *tlsDir =
2077         reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]);
2078     tlsDir->setAlignment(tlsAlignment);
2079   }
2080 }
2081