1 //===- DependenceInfo.cpp - Calculate dependency information for a Scop. --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Calculate the data dependency relations for a Scop using ISL.
10 //
11 // The integer set library (ISL) from Sven, has a integrated dependency analysis
12 // to calculate data dependences. This pass takes advantage of this and
13 // calculate those dependences a Scop.
14 //
15 // The dependences in this pass are exact in terms that for a specific read
16 // statement instance only the last write statement instance is returned. In
17 // case of may writes a set of possible write instances is returned. This
18 // analysis will never produce redundant dependences.
19 //
20 //===----------------------------------------------------------------------===//
21 //
22 #include "polly/DependenceInfo.h"
23 #include "polly/LinkAllPasses.h"
24 #include "polly/Options.h"
25 #include "polly/ScopInfo.h"
26 #include "polly/Support/GICHelper.h"
27 #include "polly/Support/ISLTools.h"
28 #include "llvm/Support/Debug.h"
29 #include "isl/aff.h"
30 #include "isl/ctx.h"
31 #include "isl/flow.h"
32 #include "isl/map.h"
33 #include "isl/schedule.h"
34 #include "isl/set.h"
35 #include "isl/union_map.h"
36 #include "isl/union_set.h"
37 
38 using namespace polly;
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "polly-dependence"
42 
43 static cl::opt<int> OptComputeOut(
44     "polly-dependences-computeout",
45     cl::desc("Bound the dependence analysis by a maximal amount of "
46              "computational steps (0 means no bound)"),
47     cl::Hidden, cl::init(500000), cl::ZeroOrMore, cl::cat(PollyCategory));
48 
49 static cl::opt<bool> LegalityCheckDisabled(
50     "disable-polly-legality", cl::desc("Disable polly legality check"),
51     cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
52 
53 static cl::opt<bool>
54     UseReductions("polly-dependences-use-reductions",
55                   cl::desc("Exploit reductions in dependence analysis"),
56                   cl::Hidden, cl::init(true), cl::ZeroOrMore,
57                   cl::cat(PollyCategory));
58 
59 enum AnalysisType { VALUE_BASED_ANALYSIS, MEMORY_BASED_ANALYSIS };
60 
61 static cl::opt<enum AnalysisType> OptAnalysisType(
62     "polly-dependences-analysis-type",
63     cl::desc("The kind of dependence analysis to use"),
64     cl::values(clEnumValN(VALUE_BASED_ANALYSIS, "value-based",
65                           "Exact dependences without transitive dependences"),
66                clEnumValN(MEMORY_BASED_ANALYSIS, "memory-based",
67                           "Overapproximation of dependences")),
68     cl::Hidden, cl::init(VALUE_BASED_ANALYSIS), cl::ZeroOrMore,
69     cl::cat(PollyCategory));
70 
71 static cl::opt<Dependences::AnalysisLevel> OptAnalysisLevel(
72     "polly-dependences-analysis-level",
73     cl::desc("The level of dependence analysis"),
74     cl::values(clEnumValN(Dependences::AL_Statement, "statement-wise",
75                           "Statement-level analysis"),
76                clEnumValN(Dependences::AL_Reference, "reference-wise",
77                           "Memory reference level analysis that distinguish"
78                           " accessed references in the same statement"),
79                clEnumValN(Dependences::AL_Access, "access-wise",
80                           "Memory reference level analysis that distinguish"
81                           " access instructions in the same statement")),
82     cl::Hidden, cl::init(Dependences::AL_Statement), cl::ZeroOrMore,
83     cl::cat(PollyCategory));
84 
85 //===----------------------------------------------------------------------===//
86 
87 /// Tag the @p Relation domain with @p TagId
tag(__isl_take isl_map * Relation,__isl_take isl_id * TagId)88 static __isl_give isl_map *tag(__isl_take isl_map *Relation,
89                                __isl_take isl_id *TagId) {
90   isl_space *Space = isl_map_get_space(Relation);
91   Space = isl_space_drop_dims(Space, isl_dim_out, 0,
92                               isl_map_dim(Relation, isl_dim_out));
93   Space = isl_space_set_tuple_id(Space, isl_dim_out, TagId);
94   isl_multi_aff *Tag = isl_multi_aff_domain_map(Space);
95   Relation = isl_map_preimage_domain_multi_aff(Relation, Tag);
96   return Relation;
97 }
98 
99 /// Tag the @p Relation domain with either MA->getArrayId() or
100 ///        MA->getId() based on @p TagLevel
tag(__isl_take isl_map * Relation,MemoryAccess * MA,Dependences::AnalysisLevel TagLevel)101 static __isl_give isl_map *tag(__isl_take isl_map *Relation, MemoryAccess *MA,
102                                Dependences::AnalysisLevel TagLevel) {
103   if (TagLevel == Dependences::AL_Reference)
104     return tag(Relation, MA->getArrayId().release());
105 
106   if (TagLevel == Dependences::AL_Access)
107     return tag(Relation, MA->getId().release());
108 
109   // No need to tag at the statement level.
110   return Relation;
111 }
112 
113 /// Collect information about the SCoP @p S.
collectInfo(Scop & S,isl_union_map * & Read,isl_union_map * & MustWrite,isl_union_map * & MayWrite,isl_union_map * & ReductionTagMap,isl_union_set * & TaggedStmtDomain,Dependences::AnalysisLevel Level)114 static void collectInfo(Scop &S, isl_union_map *&Read,
115                         isl_union_map *&MustWrite, isl_union_map *&MayWrite,
116                         isl_union_map *&ReductionTagMap,
117                         isl_union_set *&TaggedStmtDomain,
118                         Dependences::AnalysisLevel Level) {
119   isl_space *Space = S.getParamSpace().release();
120   Read = isl_union_map_empty(isl_space_copy(Space));
121   MustWrite = isl_union_map_empty(isl_space_copy(Space));
122   MayWrite = isl_union_map_empty(isl_space_copy(Space));
123   ReductionTagMap = isl_union_map_empty(isl_space_copy(Space));
124   isl_union_map *StmtSchedule = isl_union_map_empty(Space);
125 
126   SmallPtrSet<const ScopArrayInfo *, 8> ReductionArrays;
127   if (UseReductions)
128     for (ScopStmt &Stmt : S)
129       for (MemoryAccess *MA : Stmt)
130         if (MA->isReductionLike())
131           ReductionArrays.insert(MA->getScopArrayInfo());
132 
133   for (ScopStmt &Stmt : S) {
134     for (MemoryAccess *MA : Stmt) {
135       isl_set *domcp = Stmt.getDomain().release();
136       isl_map *accdom = MA->getAccessRelation().release();
137 
138       accdom = isl_map_intersect_domain(accdom, domcp);
139 
140       if (ReductionArrays.count(MA->getScopArrayInfo())) {
141         // Wrap the access domain and adjust the schedule accordingly.
142         //
143         // An access domain like
144         //   Stmt[i0, i1] -> MemAcc_A[i0 + i1]
145         // will be transformed into
146         //   [Stmt[i0, i1] -> MemAcc_A[i0 + i1]] -> MemAcc_A[i0 + i1]
147         //
148         // We collect all the access domains in the ReductionTagMap.
149         // This is used in Dependences::calculateDependences to create
150         // a tagged Schedule tree.
151 
152         ReductionTagMap =
153             isl_union_map_add_map(ReductionTagMap, isl_map_copy(accdom));
154         accdom = isl_map_range_map(accdom);
155       } else {
156         accdom = tag(accdom, MA, Level);
157         if (Level > Dependences::AL_Statement) {
158           isl_map *StmtScheduleMap = Stmt.getSchedule().release();
159           assert(StmtScheduleMap &&
160                  "Schedules that contain extension nodes require special "
161                  "handling.");
162           isl_map *Schedule = tag(StmtScheduleMap, MA, Level);
163           StmtSchedule = isl_union_map_add_map(StmtSchedule, Schedule);
164         }
165       }
166 
167       if (MA->isRead())
168         Read = isl_union_map_add_map(Read, accdom);
169       else if (MA->isMayWrite())
170         MayWrite = isl_union_map_add_map(MayWrite, accdom);
171       else
172         MustWrite = isl_union_map_add_map(MustWrite, accdom);
173     }
174 
175     if (!ReductionArrays.empty() && Level == Dependences::AL_Statement)
176       StmtSchedule =
177           isl_union_map_add_map(StmtSchedule, Stmt.getSchedule().release());
178   }
179 
180   StmtSchedule = isl_union_map_intersect_params(
181       StmtSchedule, S.getAssumedContext().release());
182   TaggedStmtDomain = isl_union_map_domain(StmtSchedule);
183 
184   ReductionTagMap = isl_union_map_coalesce(ReductionTagMap);
185   Read = isl_union_map_coalesce(Read);
186   MustWrite = isl_union_map_coalesce(MustWrite);
187   MayWrite = isl_union_map_coalesce(MayWrite);
188 }
189 
190 /// Fix all dimension of @p Zero to 0 and add it to @p user
fixSetToZero(isl::set Zero,isl::union_set * User)191 static void fixSetToZero(isl::set Zero, isl::union_set *User) {
192   for (unsigned i = 0; i < Zero.dim(isl::dim::set); i++)
193     Zero = Zero.fix_si(isl::dim::set, i, 0);
194   *User = User->add_set(Zero);
195 }
196 
197 /// Compute the privatization dependences for a given dependency @p Map
198 ///
199 /// Privatization dependences are widened original dependences which originate
200 /// or end in a reduction access. To compute them we apply the transitive close
201 /// of the reduction dependences (which maps each iteration of a reduction
202 /// statement to all following ones) on the RAW/WAR/WAW dependences. The
203 /// dependences which start or end at a reduction statement will be extended to
204 /// depend on all following reduction statement iterations as well.
205 /// Note: "Following" here means according to the reduction dependences.
206 ///
207 /// For the input:
208 ///
209 ///  S0:   *sum = 0;
210 ///        for (int i = 0; i < 1024; i++)
211 ///  S1:     *sum += i;
212 ///  S2:   *sum = *sum * 3;
213 ///
214 /// we have the following dependences before we add privatization dependences:
215 ///
216 ///   RAW:
217 ///     { S0[] -> S1[0]; S1[1023] -> S2[] }
218 ///   WAR:
219 ///     {  }
220 ///   WAW:
221 ///     { S0[] -> S1[0]; S1[1024] -> S2[] }
222 ///   RED:
223 ///     { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
224 ///
225 /// and afterwards:
226 ///
227 ///   RAW:
228 ///     { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
229 ///       S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
230 ///   WAR:
231 ///     {  }
232 ///   WAW:
233 ///     { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
234 ///       S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
235 ///   RED:
236 ///     { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
237 ///
238 /// Note: This function also computes the (reverse) transitive closure of the
239 ///       reduction dependences.
addPrivatizationDependences()240 void Dependences::addPrivatizationDependences() {
241   isl_union_map *PrivRAW, *PrivWAW, *PrivWAR;
242 
243   // The transitive closure might be over approximated, thus could lead to
244   // dependency cycles in the privatization dependences. To make sure this
245   // will not happen we remove all negative dependences after we computed
246   // the transitive closure.
247   TC_RED = isl_union_map_transitive_closure(isl_union_map_copy(RED), nullptr);
248 
249   // FIXME: Apply the current schedule instead of assuming the identity schedule
250   //        here. The current approach is only valid as long as we compute the
251   //        dependences only with the initial (identity schedule). Any other
252   //        schedule could change "the direction of the backward dependences" we
253   //        want to eliminate here.
254   isl_union_set *UDeltas = isl_union_map_deltas(isl_union_map_copy(TC_RED));
255   isl_union_set *Universe = isl_union_set_universe(isl_union_set_copy(UDeltas));
256   isl::union_set Zero =
257       isl::manage(isl_union_set_empty(isl_union_set_get_space(Universe)));
258 
259   for (isl::set Set : isl::manage_copy(Universe).get_set_list())
260     fixSetToZero(Set, &Zero);
261 
262   isl_union_map *NonPositive =
263       isl_union_set_lex_le_union_set(UDeltas, Zero.release());
264 
265   TC_RED = isl_union_map_subtract(TC_RED, NonPositive);
266 
267   TC_RED = isl_union_map_union(
268       TC_RED, isl_union_map_reverse(isl_union_map_copy(TC_RED)));
269   TC_RED = isl_union_map_coalesce(TC_RED);
270 
271   isl_union_map **Maps[] = {&RAW, &WAW, &WAR};
272   isl_union_map **PrivMaps[] = {&PrivRAW, &PrivWAW, &PrivWAR};
273   for (unsigned u = 0; u < 3; u++) {
274     isl_union_map **Map = Maps[u], **PrivMap = PrivMaps[u];
275 
276     *PrivMap = isl_union_map_apply_range(isl_union_map_copy(*Map),
277                                          isl_union_map_copy(TC_RED));
278     *PrivMap = isl_union_map_union(
279         *PrivMap, isl_union_map_apply_range(isl_union_map_copy(TC_RED),
280                                             isl_union_map_copy(*Map)));
281 
282     *Map = isl_union_map_union(*Map, *PrivMap);
283   }
284 
285   isl_union_set_free(Universe);
286 }
287 
buildFlow(__isl_keep isl_union_map * Snk,__isl_keep isl_union_map * Src,__isl_keep isl_union_map * MaySrc,__isl_keep isl_union_map * Kill,__isl_keep isl_schedule * Schedule)288 static __isl_give isl_union_flow *buildFlow(__isl_keep isl_union_map *Snk,
289                                             __isl_keep isl_union_map *Src,
290                                             __isl_keep isl_union_map *MaySrc,
291                                             __isl_keep isl_union_map *Kill,
292                                             __isl_keep isl_schedule *Schedule) {
293   isl_union_access_info *AI;
294 
295   AI = isl_union_access_info_from_sink(isl_union_map_copy(Snk));
296   if (MaySrc)
297     AI = isl_union_access_info_set_may_source(AI, isl_union_map_copy(MaySrc));
298   if (Src)
299     AI = isl_union_access_info_set_must_source(AI, isl_union_map_copy(Src));
300   if (Kill)
301     AI = isl_union_access_info_set_kill(AI, isl_union_map_copy(Kill));
302   AI = isl_union_access_info_set_schedule(AI, isl_schedule_copy(Schedule));
303   auto Flow = isl_union_access_info_compute_flow(AI);
304   LLVM_DEBUG(if (!Flow) dbgs()
305                  << "last error: "
306                  << isl_ctx_last_error(isl_schedule_get_ctx(Schedule))
307                  << '\n';);
308   return Flow;
309 }
310 
calculateDependences(Scop & S)311 void Dependences::calculateDependences(Scop &S) {
312   isl_union_map *Read, *MustWrite, *MayWrite, *ReductionTagMap;
313   isl_schedule *Schedule;
314   isl_union_set *TaggedStmtDomain;
315 
316   LLVM_DEBUG(dbgs() << "Scop: \n" << S << "\n");
317 
318   collectInfo(S, Read, MustWrite, MayWrite, ReductionTagMap, TaggedStmtDomain,
319               Level);
320 
321   bool HasReductions = !isl_union_map_is_empty(ReductionTagMap);
322 
323   LLVM_DEBUG(dbgs() << "Read: " << Read << '\n';
324              dbgs() << "MustWrite: " << MustWrite << '\n';
325              dbgs() << "MayWrite: " << MayWrite << '\n';
326              dbgs() << "ReductionTagMap: " << ReductionTagMap << '\n';
327              dbgs() << "TaggedStmtDomain: " << TaggedStmtDomain << '\n';);
328 
329   Schedule = S.getScheduleTree().release();
330 
331   if (!HasReductions) {
332     isl_union_map_free(ReductionTagMap);
333     // Tag the schedule tree if we want fine-grain dependence info
334     if (Level > AL_Statement) {
335       auto TaggedMap =
336           isl_union_set_unwrap(isl_union_set_copy(TaggedStmtDomain));
337       auto Tags = isl_union_map_domain_map_union_pw_multi_aff(TaggedMap);
338       Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags);
339     }
340   } else {
341     isl_union_map *IdentityMap;
342     isl_union_pw_multi_aff *ReductionTags, *IdentityTags, *Tags;
343 
344     // Extract Reduction tags from the combined access domains in the given
345     // SCoP. The result is a map that maps each tagged element in the domain to
346     // the memory location it accesses. ReductionTags = {[Stmt[i] ->
347     // Array[f(i)]] -> Stmt[i] }
348     ReductionTags =
349         isl_union_map_domain_map_union_pw_multi_aff(ReductionTagMap);
350 
351     // Compute an identity map from each statement in domain to itself.
352     // IdentityTags = { [Stmt[i] -> Stmt[i] }
353     IdentityMap = isl_union_set_identity(isl_union_set_copy(TaggedStmtDomain));
354     IdentityTags = isl_union_pw_multi_aff_from_union_map(IdentityMap);
355 
356     Tags = isl_union_pw_multi_aff_union_add(ReductionTags, IdentityTags);
357 
358     // By pulling back Tags from Schedule, we have a schedule tree that can
359     // be used to compute normal dependences, as well as 'tagged' reduction
360     // dependences.
361     Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags);
362   }
363 
364   LLVM_DEBUG(dbgs() << "Read: " << Read << "\n";
365              dbgs() << "MustWrite: " << MustWrite << "\n";
366              dbgs() << "MayWrite: " << MayWrite << "\n";
367              dbgs() << "Schedule: " << Schedule << "\n");
368 
369   isl_union_map *StrictWAW = nullptr;
370   {
371     IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), OptComputeOut);
372 
373     RAW = WAW = WAR = RED = nullptr;
374     isl_union_map *Write = isl_union_map_union(isl_union_map_copy(MustWrite),
375                                                isl_union_map_copy(MayWrite));
376 
377     // We are interested in detecting reductions that do not have intermediate
378     // computations that are captured by other statements.
379     //
380     // Example:
381     // void f(int *A, int *B) {
382     //     for(int i = 0; i <= 100; i++) {
383     //
384     //            *-WAR (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
385     //            |                                                   |
386     //            *-WAW (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
387     //            |                                                   |
388     //            v                                                   |
389     //     S0:    *A += i; >------------------*-----------------------*
390     //                                        |
391     //         if (i >= 98) {          WAR (S0[i] -> S1[i]) 98 <= i <= 100
392     //                                        |
393     //     S1:        *B = *A; <--------------*
394     //         }
395     //     }
396     // }
397     //
398     // S0[0 <= i <= 100] has a reduction. However, the values in
399     // S0[98 <= i <= 100] is captured in S1[98 <= i <= 100].
400     // Since we allow free reordering on our reduction dependences, we need to
401     // remove all instances of a reduction statement that have data dependences
402     // originating from them.
403     // In the case of the example, we need to remove S0[98 <= i <= 100] from
404     // our reduction dependences.
405     //
406     // When we build up the WAW dependences that are used to detect reductions,
407     // we consider only **Writes that have no intermediate Reads**.
408     //
409     // `isl_union_flow_get_must_dependence` gives us dependences of the form:
410     // (sink <- must_source).
411     //
412     // It *will not give* dependences of the form:
413     // 1. (sink <- ... <- may_source <- ... <- must_source)
414     // 2. (sink <- ... <- must_source <- ... <- must_source)
415     //
416     // For a detailed reference on ISL's flow analysis, see:
417     // "Presburger Formulas and Polyhedral Compilation" - Approximate Dataflow
418     //  Analysis.
419     //
420     // Since we set "Write" as a must-source, "Read" as a may-source, and ask
421     // for must dependences, we get all Writes to Writes that **do not flow
422     // through a Read**.
423     //
424     // ScopInfo::checkForReductions makes sure that if something captures
425     // the reduction variable in the same basic block, then it is rejected
426     // before it is even handed here. This makes sure that there is exactly
427     // one read and one write to a reduction variable in a Statement.
428     // Example:
429     //     void f(int *sum, int A[N], int B[N]) {
430     //       for (int i = 0; i < N; i++) {
431     //         *sum += A[i]; < the store and the load is not tagged as a
432     //         B[i] = *sum;  < reduction-like access due to the overlap.
433     //       }
434     //     }
435 
436     isl_union_flow *Flow = buildFlow(Write, Write, Read, nullptr, Schedule);
437     StrictWAW = isl_union_flow_get_must_dependence(Flow);
438     isl_union_flow_free(Flow);
439 
440     if (OptAnalysisType == VALUE_BASED_ANALYSIS) {
441       Flow = buildFlow(Read, MustWrite, MayWrite, nullptr, Schedule);
442       RAW = isl_union_flow_get_may_dependence(Flow);
443       isl_union_flow_free(Flow);
444 
445       Flow = buildFlow(Write, MustWrite, MayWrite, nullptr, Schedule);
446       WAW = isl_union_flow_get_may_dependence(Flow);
447       isl_union_flow_free(Flow);
448 
449       // ISL now supports "kills" in approximate dataflow analysis, we can
450       // specify the MustWrite as kills, Read as source and Write as sink.
451       Flow = buildFlow(Write, nullptr, Read, MustWrite, Schedule);
452       WAR = isl_union_flow_get_may_dependence(Flow);
453       isl_union_flow_free(Flow);
454     } else {
455       Flow = buildFlow(Read, nullptr, Write, nullptr, Schedule);
456       RAW = isl_union_flow_get_may_dependence(Flow);
457       isl_union_flow_free(Flow);
458 
459       Flow = buildFlow(Write, nullptr, Read, nullptr, Schedule);
460       WAR = isl_union_flow_get_may_dependence(Flow);
461       isl_union_flow_free(Flow);
462 
463       Flow = buildFlow(Write, nullptr, Write, nullptr, Schedule);
464       WAW = isl_union_flow_get_may_dependence(Flow);
465       isl_union_flow_free(Flow);
466     }
467 
468     isl_union_map_free(Write);
469     isl_union_map_free(MustWrite);
470     isl_union_map_free(MayWrite);
471     isl_union_map_free(Read);
472     isl_schedule_free(Schedule);
473 
474     RAW = isl_union_map_coalesce(RAW);
475     WAW = isl_union_map_coalesce(WAW);
476     WAR = isl_union_map_coalesce(WAR);
477 
478     // End of max_operations scope.
479   }
480 
481   if (isl_ctx_last_error(IslCtx.get()) == isl_error_quota) {
482     isl_union_map_free(RAW);
483     isl_union_map_free(WAW);
484     isl_union_map_free(WAR);
485     isl_union_map_free(StrictWAW);
486     RAW = WAW = WAR = StrictWAW = nullptr;
487     isl_ctx_reset_error(IslCtx.get());
488   }
489 
490   // Drop out early, as the remaining computations are only needed for
491   // reduction dependences or dependences that are finer than statement
492   // level dependences.
493   if (!HasReductions && Level == AL_Statement) {
494     RED = isl_union_map_empty(isl_union_map_get_space(RAW));
495     TC_RED = isl_union_map_empty(isl_union_set_get_space(TaggedStmtDomain));
496     isl_union_set_free(TaggedStmtDomain);
497     isl_union_map_free(StrictWAW);
498     return;
499   }
500 
501   isl_union_map *STMT_RAW, *STMT_WAW, *STMT_WAR;
502   STMT_RAW = isl_union_map_intersect_domain(
503       isl_union_map_copy(RAW), isl_union_set_copy(TaggedStmtDomain));
504   STMT_WAW = isl_union_map_intersect_domain(
505       isl_union_map_copy(WAW), isl_union_set_copy(TaggedStmtDomain));
506   STMT_WAR =
507       isl_union_map_intersect_domain(isl_union_map_copy(WAR), TaggedStmtDomain);
508   LLVM_DEBUG({
509     dbgs() << "Wrapped Dependences:\n";
510     dump();
511     dbgs() << "\n";
512   });
513 
514   // To handle reduction dependences we proceed as follows:
515   // 1) Aggregate all possible reduction dependences, namely all self
516   //    dependences on reduction like statements.
517   // 2) Intersect them with the actual RAW & WAW dependences to the get the
518   //    actual reduction dependences. This will ensure the load/store memory
519   //    addresses were __identical__ in the two iterations of the statement.
520   // 3) Relax the original RAW, WAW and WAR dependences by subtracting the
521   //    actual reduction dependences. Binary reductions (sum += A[i]) cause
522   //    the same, RAW, WAW and WAR dependences.
523   // 4) Add the privatization dependences which are widened versions of
524   //    already present dependences. They model the effect of manual
525   //    privatization at the outermost possible place (namely after the last
526   //    write and before the first access to a reduction location).
527 
528   // Step 1)
529   RED = isl_union_map_empty(isl_union_map_get_space(RAW));
530   for (ScopStmt &Stmt : S) {
531     for (MemoryAccess *MA : Stmt) {
532       if (!MA->isReductionLike())
533         continue;
534       isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release());
535       isl_map *Identity =
536           isl_map_from_domain_and_range(isl_set_copy(AccDomW), AccDomW);
537       RED = isl_union_map_add_map(RED, Identity);
538     }
539   }
540 
541   // Step 2)
542   RED = isl_union_map_intersect(RED, isl_union_map_copy(RAW));
543   RED = isl_union_map_intersect(RED, StrictWAW);
544 
545   if (!isl_union_map_is_empty(RED)) {
546 
547     // Step 3)
548     RAW = isl_union_map_subtract(RAW, isl_union_map_copy(RED));
549     WAW = isl_union_map_subtract(WAW, isl_union_map_copy(RED));
550     WAR = isl_union_map_subtract(WAR, isl_union_map_copy(RED));
551 
552     // Step 4)
553     addPrivatizationDependences();
554   } else
555     TC_RED = isl_union_map_empty(isl_union_map_get_space(RED));
556 
557   LLVM_DEBUG({
558     dbgs() << "Final Wrapped Dependences:\n";
559     dump();
560     dbgs() << "\n";
561   });
562 
563   // RED_SIN is used to collect all reduction dependences again after we
564   // split them according to the causing memory accesses. The current assumption
565   // is that our method of splitting will not have any leftovers. In the end
566   // we validate this assumption until we have more confidence in this method.
567   isl_union_map *RED_SIN = isl_union_map_empty(isl_union_map_get_space(RAW));
568 
569   // For each reduction like memory access, check if there are reduction
570   // dependences with the access relation of the memory access as a domain
571   // (wrapped space!). If so these dependences are caused by this memory access.
572   // We then move this portion of reduction dependences back to the statement ->
573   // statement space and add a mapping from the memory access to these
574   // dependences.
575   for (ScopStmt &Stmt : S) {
576     for (MemoryAccess *MA : Stmt) {
577       if (!MA->isReductionLike())
578         continue;
579 
580       isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release());
581       isl_union_map *AccRedDepU = isl_union_map_intersect_domain(
582           isl_union_map_copy(TC_RED), isl_union_set_from_set(AccDomW));
583       if (isl_union_map_is_empty(AccRedDepU)) {
584         isl_union_map_free(AccRedDepU);
585         continue;
586       }
587 
588       isl_map *AccRedDep = isl_map_from_union_map(AccRedDepU);
589       RED_SIN = isl_union_map_add_map(RED_SIN, isl_map_copy(AccRedDep));
590       AccRedDep = isl_map_zip(AccRedDep);
591       AccRedDep = isl_set_unwrap(isl_map_domain(AccRedDep));
592       setReductionDependences(MA, AccRedDep);
593     }
594   }
595 
596   assert(isl_union_map_is_equal(RED_SIN, TC_RED) &&
597          "Intersecting the reduction dependence domain with the wrapped access "
598          "relation is not enough, we need to loosen the access relation also");
599   isl_union_map_free(RED_SIN);
600 
601   RAW = isl_union_map_zip(RAW);
602   WAW = isl_union_map_zip(WAW);
603   WAR = isl_union_map_zip(WAR);
604   RED = isl_union_map_zip(RED);
605   TC_RED = isl_union_map_zip(TC_RED);
606 
607   LLVM_DEBUG({
608     dbgs() << "Zipped Dependences:\n";
609     dump();
610     dbgs() << "\n";
611   });
612 
613   RAW = isl_union_set_unwrap(isl_union_map_domain(RAW));
614   WAW = isl_union_set_unwrap(isl_union_map_domain(WAW));
615   WAR = isl_union_set_unwrap(isl_union_map_domain(WAR));
616   RED = isl_union_set_unwrap(isl_union_map_domain(RED));
617   TC_RED = isl_union_set_unwrap(isl_union_map_domain(TC_RED));
618 
619   LLVM_DEBUG({
620     dbgs() << "Unwrapped Dependences:\n";
621     dump();
622     dbgs() << "\n";
623   });
624 
625   RAW = isl_union_map_union(RAW, STMT_RAW);
626   WAW = isl_union_map_union(WAW, STMT_WAW);
627   WAR = isl_union_map_union(WAR, STMT_WAR);
628 
629   RAW = isl_union_map_coalesce(RAW);
630   WAW = isl_union_map_coalesce(WAW);
631   WAR = isl_union_map_coalesce(WAR);
632   RED = isl_union_map_coalesce(RED);
633   TC_RED = isl_union_map_coalesce(TC_RED);
634 
635   LLVM_DEBUG(dump());
636 }
637 
isValidSchedule(Scop & S,const StatementToIslMapTy & NewSchedule) const638 bool Dependences::isValidSchedule(
639     Scop &S, const StatementToIslMapTy &NewSchedule) const {
640   if (LegalityCheckDisabled)
641     return true;
642 
643   isl::union_map Dependences = getDependences(TYPE_RAW | TYPE_WAW | TYPE_WAR);
644   isl::space Space = S.getParamSpace();
645   isl::union_map Schedule = isl::union_map::empty(Space);
646 
647   isl::space ScheduleSpace;
648 
649   for (ScopStmt &Stmt : S) {
650     isl::map StmtScat;
651 
652     auto Lookup = NewSchedule.find(&Stmt);
653     if (Lookup == NewSchedule.end())
654       StmtScat = Stmt.getSchedule();
655     else
656       StmtScat = Lookup->second;
657     assert(!StmtScat.is_null() &&
658            "Schedules that contain extension nodes require special handling.");
659 
660     if (!ScheduleSpace)
661       ScheduleSpace = StmtScat.get_space().range();
662 
663     Schedule = Schedule.add_map(StmtScat);
664   }
665 
666   Dependences = Dependences.apply_domain(Schedule);
667   Dependences = Dependences.apply_range(Schedule);
668 
669   isl::set Zero = isl::set::universe(ScheduleSpace);
670   for (unsigned i = 0; i < Zero.dim(isl::dim::set); i++)
671     Zero = Zero.fix_si(isl::dim::set, i, 0);
672 
673   isl::union_set UDeltas = Dependences.deltas();
674   isl::set Deltas = singleton(UDeltas, ScheduleSpace);
675 
676   isl::map NonPositive = Deltas.lex_le_set(Zero);
677   return NonPositive.is_empty();
678 }
679 
680 // Check if the current scheduling dimension is parallel.
681 //
682 // We check for parallelism by verifying that the loop does not carry any
683 // dependences.
684 //
685 // Parallelism test: if the distance is zero in all outer dimensions, then it
686 // has to be zero in the current dimension as well.
687 //
688 // Implementation: first, translate dependences into time space, then force
689 // outer dimensions to be equal. If the distance is zero in the current
690 // dimension, then the loop is parallel. The distance is zero in the current
691 // dimension if it is a subset of a map with equal values for the current
692 // dimension.
isParallel(isl_union_map * Schedule,isl_union_map * Deps,isl_pw_aff ** MinDistancePtr) const693 bool Dependences::isParallel(isl_union_map *Schedule, isl_union_map *Deps,
694                              isl_pw_aff **MinDistancePtr) const {
695   isl_set *Deltas, *Distance;
696   isl_map *ScheduleDeps;
697   unsigned Dimension;
698   bool IsParallel;
699 
700   Deps = isl_union_map_apply_range(Deps, isl_union_map_copy(Schedule));
701   Deps = isl_union_map_apply_domain(Deps, isl_union_map_copy(Schedule));
702 
703   if (isl_union_map_is_empty(Deps)) {
704     isl_union_map_free(Deps);
705     return true;
706   }
707 
708   ScheduleDeps = isl_map_from_union_map(Deps);
709   Dimension = isl_map_dim(ScheduleDeps, isl_dim_out) - 1;
710 
711   for (unsigned i = 0; i < Dimension; i++)
712     ScheduleDeps = isl_map_equate(ScheduleDeps, isl_dim_out, i, isl_dim_in, i);
713 
714   Deltas = isl_map_deltas(ScheduleDeps);
715   Distance = isl_set_universe(isl_set_get_space(Deltas));
716 
717   // [0, ..., 0, +] - All zeros and last dimension larger than zero
718   for (unsigned i = 0; i < Dimension; i++)
719     Distance = isl_set_fix_si(Distance, isl_dim_set, i, 0);
720 
721   Distance = isl_set_lower_bound_si(Distance, isl_dim_set, Dimension, 1);
722   Distance = isl_set_intersect(Distance, Deltas);
723 
724   IsParallel = isl_set_is_empty(Distance);
725   if (IsParallel || !MinDistancePtr) {
726     isl_set_free(Distance);
727     return IsParallel;
728   }
729 
730   Distance = isl_set_project_out(Distance, isl_dim_set, 0, Dimension);
731   Distance = isl_set_coalesce(Distance);
732 
733   // This last step will compute a expression for the minimal value in the
734   // distance polyhedron Distance with regards to the first (outer most)
735   // dimension.
736   *MinDistancePtr = isl_pw_aff_coalesce(isl_set_dim_min(Distance, 0));
737 
738   return false;
739 }
740 
printDependencyMap(raw_ostream & OS,__isl_keep isl_union_map * DM)741 static void printDependencyMap(raw_ostream &OS, __isl_keep isl_union_map *DM) {
742   if (DM)
743     OS << DM << "\n";
744   else
745     OS << "n/a\n";
746 }
747 
print(raw_ostream & OS) const748 void Dependences::print(raw_ostream &OS) const {
749   OS << "\tRAW dependences:\n\t\t";
750   printDependencyMap(OS, RAW);
751   OS << "\tWAR dependences:\n\t\t";
752   printDependencyMap(OS, WAR);
753   OS << "\tWAW dependences:\n\t\t";
754   printDependencyMap(OS, WAW);
755   OS << "\tReduction dependences:\n\t\t";
756   printDependencyMap(OS, RED);
757   OS << "\tTransitive closure of reduction dependences:\n\t\t";
758   printDependencyMap(OS, TC_RED);
759 }
760 
dump() const761 void Dependences::dump() const { print(dbgs()); }
762 
releaseMemory()763 void Dependences::releaseMemory() {
764   isl_union_map_free(RAW);
765   isl_union_map_free(WAR);
766   isl_union_map_free(WAW);
767   isl_union_map_free(RED);
768   isl_union_map_free(TC_RED);
769 
770   RED = RAW = WAR = WAW = TC_RED = nullptr;
771 
772   for (auto &ReductionDeps : ReductionDependences)
773     isl_map_free(ReductionDeps.second);
774   ReductionDependences.clear();
775 }
776 
getDependences(int Kinds) const777 isl::union_map Dependences::getDependences(int Kinds) const {
778   assert(hasValidDependences() && "No valid dependences available");
779   isl::space Space = isl::manage_copy(RAW).get_space();
780   isl::union_map Deps = Deps.empty(Space);
781 
782   if (Kinds & TYPE_RAW)
783     Deps = Deps.unite(isl::manage_copy(RAW));
784 
785   if (Kinds & TYPE_WAR)
786     Deps = Deps.unite(isl::manage_copy(WAR));
787 
788   if (Kinds & TYPE_WAW)
789     Deps = Deps.unite(isl::manage_copy(WAW));
790 
791   if (Kinds & TYPE_RED)
792     Deps = Deps.unite(isl::manage_copy(RED));
793 
794   if (Kinds & TYPE_TC_RED)
795     Deps = Deps.unite(isl::manage_copy(TC_RED));
796 
797   Deps = Deps.coalesce();
798   Deps = Deps.detect_equalities();
799   return Deps;
800 }
801 
hasValidDependences() const802 bool Dependences::hasValidDependences() const {
803   return (RAW != nullptr) && (WAR != nullptr) && (WAW != nullptr);
804 }
805 
806 __isl_give isl_map *
getReductionDependences(MemoryAccess * MA) const807 Dependences::getReductionDependences(MemoryAccess *MA) const {
808   return isl_map_copy(ReductionDependences.lookup(MA));
809 }
810 
setReductionDependences(MemoryAccess * MA,isl_map * D)811 void Dependences::setReductionDependences(MemoryAccess *MA, isl_map *D) {
812   assert(ReductionDependences.count(MA) == 0 &&
813          "Reduction dependences set twice!");
814   ReductionDependences[MA] = D;
815 }
816 
817 const Dependences &
getDependences(Dependences::AnalysisLevel Level)818 DependenceAnalysis::Result::getDependences(Dependences::AnalysisLevel Level) {
819   if (Dependences *d = D[Level].get())
820     return *d;
821 
822   return recomputeDependences(Level);
823 }
824 
recomputeDependences(Dependences::AnalysisLevel Level)825 const Dependences &DependenceAnalysis::Result::recomputeDependences(
826     Dependences::AnalysisLevel Level) {
827   D[Level].reset(new Dependences(S.getSharedIslCtx(), Level));
828   D[Level]->calculateDependences(S);
829   return *D[Level];
830 }
831 
832 DependenceAnalysis::Result
run(Scop & S,ScopAnalysisManager & SAM,ScopStandardAnalysisResults & SAR)833 DependenceAnalysis::run(Scop &S, ScopAnalysisManager &SAM,
834                         ScopStandardAnalysisResults &SAR) {
835   return {S, {}};
836 }
837 
838 AnalysisKey DependenceAnalysis::Key;
839 
840 PreservedAnalyses
run(Scop & S,ScopAnalysisManager & SAM,ScopStandardAnalysisResults & SAR,SPMUpdater & U)841 DependenceInfoPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
842                                ScopStandardAnalysisResults &SAR,
843                                SPMUpdater &U) {
844   auto &DI = SAM.getResult<DependenceAnalysis>(S, SAR);
845 
846   if (auto d = DI.D[OptAnalysisLevel].get()) {
847     d->print(OS);
848     return PreservedAnalyses::all();
849   }
850 
851   // Otherwise create the dependences on-the-fly and print them
852   Dependences D(S.getSharedIslCtx(), OptAnalysisLevel);
853   D.calculateDependences(S);
854   D.print(OS);
855 
856   return PreservedAnalyses::all();
857 }
858 
859 const Dependences &
getDependences(Dependences::AnalysisLevel Level)860 DependenceInfo::getDependences(Dependences::AnalysisLevel Level) {
861   if (Dependences *d = D[Level].get())
862     return *d;
863 
864   return recomputeDependences(Level);
865 }
866 
867 const Dependences &
recomputeDependences(Dependences::AnalysisLevel Level)868 DependenceInfo::recomputeDependences(Dependences::AnalysisLevel Level) {
869   D[Level].reset(new Dependences(S->getSharedIslCtx(), Level));
870   D[Level]->calculateDependences(*S);
871   return *D[Level];
872 }
873 
runOnScop(Scop & ScopVar)874 bool DependenceInfo::runOnScop(Scop &ScopVar) {
875   S = &ScopVar;
876   return false;
877 }
878 
879 /// Print the dependences for the given SCoP to @p OS.
880 
printScop(raw_ostream & OS,Scop & S) const881 void polly::DependenceInfo::printScop(raw_ostream &OS, Scop &S) const {
882   if (auto d = D[OptAnalysisLevel].get()) {
883     d->print(OS);
884     return;
885   }
886 
887   // Otherwise create the dependences on-the-fly and print it
888   Dependences D(S.getSharedIslCtx(), OptAnalysisLevel);
889   D.calculateDependences(S);
890   D.print(OS);
891 }
892 
getAnalysisUsage(AnalysisUsage & AU) const893 void DependenceInfo::getAnalysisUsage(AnalysisUsage &AU) const {
894   AU.addRequiredTransitive<ScopInfoRegionPass>();
895   AU.setPreservesAll();
896 }
897 
898 char DependenceInfo::ID = 0;
899 
createDependenceInfoPass()900 Pass *polly::createDependenceInfoPass() { return new DependenceInfo(); }
901 
902 INITIALIZE_PASS_BEGIN(DependenceInfo, "polly-dependences",
903                       "Polly - Calculate dependences", false, false);
904 INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
905 INITIALIZE_PASS_END(DependenceInfo, "polly-dependences",
906                     "Polly - Calculate dependences", false, false)
907 
908 //===----------------------------------------------------------------------===//
909 const Dependences &
getDependences(Scop * S,Dependences::AnalysisLevel Level)910 DependenceInfoWrapperPass::getDependences(Scop *S,
911                                           Dependences::AnalysisLevel Level) {
912   auto It = ScopToDepsMap.find(S);
913   if (It != ScopToDepsMap.end())
914     if (It->second) {
915       if (It->second->getDependenceLevel() == Level)
916         return *It->second.get();
917     }
918   return recomputeDependences(S, Level);
919 }
920 
recomputeDependences(Scop * S,Dependences::AnalysisLevel Level)921 const Dependences &DependenceInfoWrapperPass::recomputeDependences(
922     Scop *S, Dependences::AnalysisLevel Level) {
923   std::unique_ptr<Dependences> D(new Dependences(S->getSharedIslCtx(), Level));
924   D->calculateDependences(*S);
925   auto Inserted = ScopToDepsMap.insert(std::make_pair(S, std::move(D)));
926   return *Inserted.first->second;
927 }
928 
runOnFunction(Function & F)929 bool DependenceInfoWrapperPass::runOnFunction(Function &F) {
930   auto &SI = *getAnalysis<ScopInfoWrapperPass>().getSI();
931   for (auto &It : SI) {
932     assert(It.second && "Invalid SCoP object!");
933     recomputeDependences(It.second.get(), Dependences::AL_Access);
934   }
935   return false;
936 }
937 
print(raw_ostream & OS,const Module * M) const938 void DependenceInfoWrapperPass::print(raw_ostream &OS, const Module *M) const {
939   for (auto &It : ScopToDepsMap) {
940     assert((It.first && It.second) && "Invalid Scop or Dependence object!\n");
941     It.second->print(OS);
942   }
943 }
944 
getAnalysisUsage(AnalysisUsage & AU) const945 void DependenceInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
946   AU.addRequiredTransitive<ScopInfoWrapperPass>();
947   AU.setPreservesAll();
948 }
949 
950 char DependenceInfoWrapperPass::ID = 0;
951 
createDependenceInfoWrapperPassPass()952 Pass *polly::createDependenceInfoWrapperPassPass() {
953   return new DependenceInfoWrapperPass();
954 }
955 
956 INITIALIZE_PASS_BEGIN(
957     DependenceInfoWrapperPass, "polly-function-dependences",
958     "Polly - Calculate dependences for all the SCoPs of a function", false,
959     false)
960 INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass);
961 INITIALIZE_PASS_END(
962     DependenceInfoWrapperPass, "polly-function-dependences",
963     "Polly - Calculate dependences for all the SCoPs of a function", false,
964     false)
965