1 /**************************************************************************
2  *
3  * Copyright 2010-2018 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
18  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
19  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
20  * USE OR OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * The above copyright notice and this permission notice (including the
23  * next paragraph) shall be included in all copies or substantial portions
24  * of the Software.
25  *
26  **************************************************************************/
27 
28 
29 /**
30  * @file
31  * s3tc pixel format manipulation.
32  *
33  * @author Roland Scheidegger <sroland@vmware.com>
34  */
35 
36 
37 #include <llvm/Config/llvm-config.h>
38 
39 #include "util/format/u_format.h"
40 #include "util/u_math.h"
41 #include "util/u_string.h"
42 #include "util/u_cpu_detect.h"
43 #include "util/u_debug.h"
44 
45 #include "lp_bld_arit.h"
46 #include "lp_bld_type.h"
47 #include "lp_bld_const.h"
48 #include "lp_bld_conv.h"
49 #include "lp_bld_gather.h"
50 #include "lp_bld_format.h"
51 #include "lp_bld_logic.h"
52 #include "lp_bld_pack.h"
53 #include "lp_bld_flow.h"
54 #include "lp_bld_printf.h"
55 #include "lp_bld_struct.h"
56 #include "lp_bld_swizzle.h"
57 #include "lp_bld_init.h"
58 #include "lp_bld_debug.h"
59 #include "lp_bld_intr.h"
60 
61 
62 /**
63  * Reverse an interleave2_half
64  * (ie. pick every second element, independent lower/upper halfs)
65  * sse2 can only do that with 32bit (shufps) or larger elements
66  * natively. (Otherwise, and/pack (even) or shift/pack (odd)
67  * could be used, ideally llvm would do that for us.)
68  * XXX: Unfortunately, this does NOT translate to a shufps if those
69  * are int vectors (and casting will not help, llvm needs to recognize it
70  * as "real" float). Instead, llvm will use a pshufd/pshufd/punpcklqdq
71  * sequence which I'm pretty sure is a lot worse despite domain transition
72  * penalties with shufps (except maybe on Nehalem).
73  */
74 static LLVMValueRef
lp_build_uninterleave2_half(struct gallivm_state * gallivm,struct lp_type type,LLVMValueRef a,LLVMValueRef b,unsigned lo_hi)75 lp_build_uninterleave2_half(struct gallivm_state *gallivm,
76                             struct lp_type type,
77                             LLVMValueRef a,
78                             LLVMValueRef b,
79                             unsigned lo_hi)
80 {
81    LLVMValueRef shuffle, elems[LP_MAX_VECTOR_LENGTH];
82    unsigned i;
83 
84    assert(type.length <= LP_MAX_VECTOR_LENGTH);
85    assert(lo_hi < 2);
86 
87    if (type.length * type.width == 256) {
88       assert(type.length == 8);
89       assert(type.width == 32);
90       static const unsigned shufvals[8] = {0, 2, 8, 10, 4, 6, 12, 14};
91       for (i = 0; i < type.length; ++i) {
92          elems[i] = lp_build_const_int32(gallivm, shufvals[i] + lo_hi);
93       }
94    } else {
95       for (i = 0; i < type.length; ++i) {
96          elems[i] = lp_build_const_int32(gallivm, 2*i + lo_hi);
97       }
98    }
99 
100    shuffle = LLVMConstVector(elems, type.length);
101 
102    return LLVMBuildShuffleVector(gallivm->builder, a, b, shuffle, "");
103 
104 }
105 
106 
107 /**
108  * Build shuffle for extending vectors.
109  */
110 static LLVMValueRef
lp_build_const_extend_shuffle(struct gallivm_state * gallivm,unsigned n,unsigned length)111 lp_build_const_extend_shuffle(struct gallivm_state *gallivm,
112                               unsigned n, unsigned length)
113 {
114    LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
115    unsigned i;
116 
117    assert(n <= length);
118    assert(length <= LP_MAX_VECTOR_LENGTH);
119 
120    /* TODO: cache results in a static table */
121 
122    for(i = 0; i < n; i++) {
123       elems[i] = lp_build_const_int32(gallivm, i);
124    }
125    for (i = n; i < length; i++) {
126       elems[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
127    }
128 
129    return LLVMConstVector(elems, length);
130 }
131 
132 static LLVMValueRef
lp_build_const_unpackx2_shuffle(struct gallivm_state * gallivm,unsigned n)133 lp_build_const_unpackx2_shuffle(struct gallivm_state *gallivm, unsigned n)
134 {
135    LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
136    unsigned i, j;
137 
138    assert(n <= LP_MAX_VECTOR_LENGTH);
139 
140    /* TODO: cache results in a static table */
141 
142    for(i = 0, j = 0; i < n; i += 2, ++j) {
143       elems[i + 0] = lp_build_const_int32(gallivm, 0 + j);
144       elems[i + 1] = lp_build_const_int32(gallivm, n + j);
145       elems[n + i + 0] = lp_build_const_int32(gallivm, 0 + n/2 + j);
146       elems[n + i + 1] = lp_build_const_int32(gallivm, n + n/2 + j);
147    }
148 
149    return LLVMConstVector(elems, n * 2);
150 }
151 
152 /*
153  * broadcast 1 element to all elements
154  */
155 static LLVMValueRef
lp_build_const_shuffle1(struct gallivm_state * gallivm,unsigned index,unsigned n)156 lp_build_const_shuffle1(struct gallivm_state *gallivm,
157                         unsigned index, unsigned n)
158 {
159    LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
160    unsigned i;
161 
162    assert(n <= LP_MAX_VECTOR_LENGTH);
163 
164    /* TODO: cache results in a static table */
165 
166    for (i = 0; i < n; i++) {
167       elems[i] = lp_build_const_int32(gallivm, index);
168    }
169 
170    return LLVMConstVector(elems, n);
171 }
172 
173 /*
174  * move 1 element to pos 0, rest undef
175  */
176 static LLVMValueRef
lp_build_shuffle1undef(struct gallivm_state * gallivm,LLVMValueRef a,unsigned index,unsigned n)177 lp_build_shuffle1undef(struct gallivm_state *gallivm,
178                        LLVMValueRef a, unsigned index, unsigned n)
179 {
180    LLVMValueRef elems[LP_MAX_VECTOR_LENGTH], shuf;
181    unsigned i;
182 
183    assert(n <= LP_MAX_VECTOR_LENGTH);
184 
185    elems[0] = lp_build_const_int32(gallivm, index);
186 
187    for (i = 1; i < n; i++) {
188       elems[i] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
189    }
190    shuf = LLVMConstVector(elems, n);
191 
192    return LLVMBuildShuffleVector(gallivm->builder, a, a, shuf, "");
193 }
194 
195 static boolean
format_dxt1_variant(enum pipe_format format)196 format_dxt1_variant(enum pipe_format format)
197 {
198   return format == PIPE_FORMAT_DXT1_RGB ||
199          format == PIPE_FORMAT_DXT1_RGBA ||
200          format == PIPE_FORMAT_DXT1_SRGB ||
201          format == PIPE_FORMAT_DXT1_SRGBA;
202 
203 }
204 
205 /**
206  * Gather elements from scatter positions in memory into vectors.
207  * This is customised for fetching texels from s3tc textures.
208  * For SSE, typical value is length=4.
209  *
210  * @param length length of the offsets
211  * @param colors the stored colors of the blocks will be extracted into this.
212  * @param codewords the codewords of the blocks will be extracted into this.
213  * @param alpha_lo used for storing lower 32bit of alpha components for dxt3/5
214  * @param alpha_hi used for storing higher 32bit of alpha components for dxt3/5
215  * @param base_ptr base pointer, should be a i8 pointer type.
216  * @param offsets vector with offsets
217  */
218 static void
lp_build_gather_s3tc(struct gallivm_state * gallivm,unsigned length,const struct util_format_description * format_desc,LLVMValueRef * colors,LLVMValueRef * codewords,LLVMValueRef * alpha_lo,LLVMValueRef * alpha_hi,LLVMValueRef base_ptr,LLVMValueRef offsets)219 lp_build_gather_s3tc(struct gallivm_state *gallivm,
220                      unsigned length,
221                      const struct util_format_description *format_desc,
222                      LLVMValueRef *colors,
223                      LLVMValueRef *codewords,
224                      LLVMValueRef *alpha_lo,
225                      LLVMValueRef *alpha_hi,
226                      LLVMValueRef base_ptr,
227                      LLVMValueRef offsets)
228 {
229    LLVMBuilderRef builder = gallivm->builder;
230    unsigned block_bits = format_desc->block.bits;
231    unsigned i;
232    LLVMValueRef elems[8];
233    LLVMTypeRef type32 = LLVMInt32TypeInContext(gallivm->context);
234    LLVMTypeRef type64 = LLVMInt64TypeInContext(gallivm->context);
235    LLVMTypeRef type32dxt;
236    struct lp_type lp_type32dxt;
237 
238    memset(&lp_type32dxt, 0, sizeof lp_type32dxt);
239    lp_type32dxt.width = 32;
240    lp_type32dxt.length = block_bits / 32;
241    type32dxt = lp_build_vec_type(gallivm, lp_type32dxt);
242 
243    assert(block_bits == 64 || block_bits == 128);
244    assert(length == 1 || length == 4 || length == 8);
245 
246    for (i = 0; i < length; ++i) {
247       elems[i] = lp_build_gather_elem(gallivm, length,
248                                       block_bits, block_bits, TRUE,
249                                       base_ptr, offsets, i, FALSE);
250       elems[i] = LLVMBuildBitCast(builder, elems[i], type32dxt, "");
251    }
252    if (length == 1) {
253       LLVMValueRef elem = elems[0];
254       if (block_bits == 128) {
255          *alpha_lo = LLVMBuildExtractElement(builder, elem,
256                                              lp_build_const_int32(gallivm, 0), "");
257          *alpha_hi = LLVMBuildExtractElement(builder, elem,
258                                              lp_build_const_int32(gallivm, 1), "");
259          *colors = LLVMBuildExtractElement(builder, elem,
260                                            lp_build_const_int32(gallivm, 2), "");
261          *codewords = LLVMBuildExtractElement(builder, elem,
262                                               lp_build_const_int32(gallivm, 3), "");
263       }
264       else {
265          *alpha_lo = LLVMGetUndef(type32);
266          *alpha_hi = LLVMGetUndef(type32);
267          *colors = LLVMBuildExtractElement(builder, elem,
268                                            lp_build_const_int32(gallivm, 0), "");
269          *codewords = LLVMBuildExtractElement(builder, elem,
270                                               lp_build_const_int32(gallivm, 1), "");
271       }
272    }
273    else {
274       LLVMValueRef tmp[4], cc01, cc23;
275       struct lp_type lp_type32, lp_type64;
276       memset(&lp_type32, 0, sizeof lp_type32);
277       lp_type32.width = 32;
278       lp_type32.length = length;
279       memset(&lp_type64, 0, sizeof lp_type64);
280       lp_type64.width = 64;
281       lp_type64.length = length/2;
282 
283       if (block_bits == 128) {
284          if (length == 8) {
285             for (i = 0; i < 4; ++i) {
286                tmp[0] = elems[i];
287                tmp[1] = elems[i+4];
288                elems[i] = lp_build_concat(gallivm, tmp, lp_type32dxt, 2);
289             }
290          }
291          lp_build_transpose_aos(gallivm, lp_type32, elems, tmp);
292          *colors = tmp[2];
293          *codewords = tmp[3];
294          *alpha_lo = tmp[0];
295          *alpha_hi = tmp[1];
296       } else {
297          LLVMTypeRef type64_vec = LLVMVectorType(type64, length/2);
298          LLVMTypeRef type32_vec = LLVMVectorType(type32, length);
299 
300          for (i = 0; i < length; ++i) {
301             /* no-op shuffle */
302             elems[i] = LLVMBuildShuffleVector(builder, elems[i],
303                                               LLVMGetUndef(type32dxt),
304                                               lp_build_const_extend_shuffle(gallivm, 2, 4), "");
305          }
306          if (length == 8) {
307             struct lp_type lp_type32_4 = {0};
308             lp_type32_4.width = 32;
309             lp_type32_4.length = 4;
310             for (i = 0; i < 4; ++i) {
311                tmp[0] = elems[i];
312                tmp[1] = elems[i+4];
313                elems[i] = lp_build_concat(gallivm, tmp, lp_type32_4, 2);
314             }
315          }
316          cc01 = lp_build_interleave2_half(gallivm, lp_type32, elems[0], elems[1], 0);
317          cc23 = lp_build_interleave2_half(gallivm, lp_type32, elems[2], elems[3], 0);
318          cc01 = LLVMBuildBitCast(builder, cc01, type64_vec, "");
319          cc23 = LLVMBuildBitCast(builder, cc23, type64_vec, "");
320          *colors = lp_build_interleave2_half(gallivm, lp_type64, cc01, cc23, 0);
321          *codewords = lp_build_interleave2_half(gallivm, lp_type64, cc01, cc23, 1);
322          *colors = LLVMBuildBitCast(builder, *colors, type32_vec, "");
323          *codewords = LLVMBuildBitCast(builder, *codewords, type32_vec, "");
324       }
325    }
326 }
327 
328 /** Convert from <n x i32> containing 2 x n rgb565 colors
329  * to 2 <n x i32> rgba8888 colors
330  * This is the most optimized version I can think of
331  * should be nearly as fast as decoding only one color
332  * NOTE: alpha channel will be set to 0
333  * @param colors  is a <n x i32> vector containing the rgb565 colors
334  */
335 static void
color_expand2_565_to_8888(struct gallivm_state * gallivm,unsigned n,LLVMValueRef colors,LLVMValueRef * color0,LLVMValueRef * color1)336 color_expand2_565_to_8888(struct gallivm_state *gallivm,
337                           unsigned n,
338                           LLVMValueRef colors,
339                           LLVMValueRef *color0,
340                           LLVMValueRef *color1)
341 {
342    LLVMBuilderRef builder = gallivm->builder;
343    LLVMValueRef r, g, b, rblo, glo;
344    LLVMValueRef rgblomask, rb, rgb0, rgb1;
345    struct lp_type type, type16, type8;
346 
347    assert(n > 1);
348 
349    memset(&type, 0, sizeof type);
350    type.width = 32;
351    type.length = n;
352 
353    memset(&type16, 0, sizeof type16);
354    type16.width = 16;
355    type16.length = 2 * n;
356 
357    memset(&type8, 0, sizeof type8);
358    type8.width = 8;
359    type8.length = 4 * n;
360 
361    rgblomask = lp_build_const_int_vec(gallivm, type16, 0x0707);
362    colors = LLVMBuildBitCast(builder, colors,
363                              lp_build_vec_type(gallivm, type16), "");
364    /* move r into low 8 bits, b into high 8 bits, g into another reg (low bits)
365     * make sure low bits of r are zero - could use AND but requires constant */
366    r = LLVMBuildLShr(builder, colors, lp_build_const_int_vec(gallivm, type16, 11), "");
367    r = LLVMBuildShl(builder, r, lp_build_const_int_vec(gallivm, type16, 3), "");
368    b = LLVMBuildShl(builder, colors, lp_build_const_int_vec(gallivm, type16, 11), "");
369    rb = LLVMBuildOr(builder, r, b, "");
370    rblo = LLVMBuildLShr(builder, rb, lp_build_const_int_vec(gallivm, type16, 5), "");
371    /* don't have byte shift hence need mask */
372    rblo = LLVMBuildAnd(builder, rblo, rgblomask, "");
373    rb = LLVMBuildOr(builder, rb, rblo, "");
374 
375    /* make sure low bits of g are zero */
376    g = LLVMBuildAnd(builder, colors, lp_build_const_int_vec(gallivm, type16, 0x07e0), "");
377    g = LLVMBuildLShr(builder, g, lp_build_const_int_vec(gallivm, type16, 3), "");
378    glo = LLVMBuildLShr(builder, g, lp_build_const_int_vec(gallivm, type16, 6), "");
379    g = LLVMBuildOr(builder, g, glo, "");
380 
381    rb = LLVMBuildBitCast(builder, rb, lp_build_vec_type(gallivm, type8), "");
382    g = LLVMBuildBitCast(builder, g, lp_build_vec_type(gallivm, type8), "");
383    rgb0 = lp_build_interleave2_half(gallivm, type8, rb, g, 0);
384    rgb1 = lp_build_interleave2_half(gallivm, type8, rb, g, 1);
385 
386    rgb0 = LLVMBuildBitCast(builder, rgb0, lp_build_vec_type(gallivm, type), "");
387    rgb1 = LLVMBuildBitCast(builder, rgb1, lp_build_vec_type(gallivm, type), "");
388 
389    /* rgb0 is rgb00, rgb01, rgb10, rgb11
390     * instead of rgb00, rgb10, rgb20, rgb30 hence need reshuffle
391     * on x86 this _should_ just generate one shufps...
392     */
393    *color0 = lp_build_uninterleave2_half(gallivm, type, rgb0, rgb1, 0);
394    *color1 = lp_build_uninterleave2_half(gallivm, type, rgb0, rgb1, 1);
395 }
396 
397 
398 /** Convert from <n x i32> containing rgb565 colors
399  * (in first 16 bits) to <n x i32> rgba8888 colors
400  * bits 16-31 MBZ
401  * NOTE: alpha channel will be set to 0
402  * @param colors  is a <n x i32> vector containing the rgb565 colors
403  */
404 static LLVMValueRef
color_expand_565_to_8888(struct gallivm_state * gallivm,unsigned n,LLVMValueRef colors)405 color_expand_565_to_8888(struct gallivm_state *gallivm,
406                          unsigned n,
407                          LLVMValueRef colors)
408 {
409    LLVMBuilderRef builder = gallivm->builder;
410    LLVMValueRef rgba, r, g, b, rgblo, glo;
411    LLVMValueRef rbhimask, g6mask, rgblomask;
412    struct lp_type type;
413    memset(&type, 0, sizeof type);
414    type.width = 32;
415    type.length = n;
416 
417    /* color expansion:
418     * first extract and shift colors into their final locations
419     * (high bits - low bits zero at this point)
420     * then replicate highest bits to the lowest bits
421     * note rb replication can be done in parallel but not g
422     * (different shift)
423     * r5mask = 0xf800, g6mask = 0x07e0, b5mask = 0x001f
424     * rhigh = 8, ghigh = 5, bhigh = 19
425     * rblow = 5, glow = 6
426     * rgblowmask = 0x00070307
427     * r = colors >> rhigh
428     * b = colors << bhigh
429     * g = (colors & g6mask) << ghigh
430     * rb = (r | b) rbhimask
431     * rbtmp = rb >> rblow
432     * gtmp = rb >> glow
433     * rbtmp = rbtmp | gtmp
434     * rbtmp = rbtmp & rgblowmask
435     * rgb = rb | g | rbtmp
436     */
437    g6mask = lp_build_const_int_vec(gallivm, type, 0x07e0);
438    rbhimask = lp_build_const_int_vec(gallivm, type, 0x00f800f8);
439    rgblomask = lp_build_const_int_vec(gallivm, type, 0x00070307);
440 
441    r = LLVMBuildLShr(builder, colors, lp_build_const_int_vec(gallivm, type, 8), "");
442    b = LLVMBuildShl(builder, colors, lp_build_const_int_vec(gallivm, type, 19), "");
443    g = LLVMBuildAnd(builder, colors, g6mask, "");
444    g = LLVMBuildShl(builder, g, lp_build_const_int_vec(gallivm, type, 5), "");
445    rgba = LLVMBuildOr(builder, r, b, "");
446    rgba = LLVMBuildAnd(builder, rgba, rbhimask, "");
447    rgblo = LLVMBuildLShr(builder, rgba, lp_build_const_int_vec(gallivm, type, 5), "");
448    glo = LLVMBuildLShr(builder, g, lp_build_const_int_vec(gallivm, type, 6), "");
449    rgblo = LLVMBuildOr(builder, rgblo, glo, "");
450    rgblo = LLVMBuildAnd(builder, rgblo, rgblomask, "");
451    rgba = LLVMBuildOr(builder, rgba, g, "");
452    rgba = LLVMBuildOr(builder, rgba, rgblo, "");
453 
454    return rgba;
455 }
456 
457 
458 /*
459  * Average two byte vectors. (Will always round up.)
460  */
461 static LLVMValueRef
lp_build_pavgb(struct lp_build_context * bld8,LLVMValueRef v0,LLVMValueRef v1)462 lp_build_pavgb(struct lp_build_context *bld8,
463                LLVMValueRef v0,
464                LLVMValueRef v1)
465 {
466    struct gallivm_state *gallivm = bld8->gallivm;
467    LLVMBuilderRef builder = gallivm->builder;
468    assert(bld8->type.width == 8);
469    assert(bld8->type.length == 16 || bld8->type.length == 32);
470    if (LLVM_VERSION_MAJOR < 6) {
471       LLVMValueRef intrargs[2];
472       char *intr_name = bld8->type.length == 32 ? "llvm.x86.avx2.pavg.b" :
473                                                   "llvm.x86.sse2.pavg.b";
474       intrargs[0] = v0;
475       intrargs[1] = v1;
476       return lp_build_intrinsic(builder, intr_name,
477                                 bld8->vec_type, intrargs, 2, 0);
478    } else {
479       /*
480        * Must match llvm's autoupgrade of pavg.b intrinsic to be useful.
481        * You better hope the backend code manages to detect the pattern, and
482        * the pattern doesn't change there...
483        */
484       struct lp_type type_ext = bld8->type;
485       LLVMTypeRef vec_type_ext;
486       LLVMValueRef res;
487       LLVMValueRef ext_one;
488       type_ext.width = 16;
489       vec_type_ext = lp_build_vec_type(gallivm, type_ext);
490       ext_one = lp_build_const_vec(gallivm, type_ext, 1);
491 
492       v0 = LLVMBuildZExt(builder, v0, vec_type_ext, "");
493       v1 = LLVMBuildZExt(builder, v1, vec_type_ext, "");
494       res = LLVMBuildAdd(builder, v0, v1, "");
495       res = LLVMBuildAdd(builder, res, ext_one, "");
496       res = LLVMBuildLShr(builder, res, ext_one, "");
497       res = LLVMBuildTrunc(builder, res, bld8->vec_type, "");
498       return res;
499    }
500 }
501 
502 /**
503  * Calculate 1/3(v1-v0) + v0
504  * and 2*1/3(v1-v0) + v0
505  */
506 static void
lp_build_lerp23(struct lp_build_context * bld,LLVMValueRef v0,LLVMValueRef v1,LLVMValueRef * res0,LLVMValueRef * res1)507 lp_build_lerp23(struct lp_build_context *bld,
508                 LLVMValueRef v0,
509                 LLVMValueRef v1,
510                 LLVMValueRef *res0,
511                 LLVMValueRef *res1)
512 {
513    struct gallivm_state *gallivm = bld->gallivm;
514    LLVMValueRef x, x_lo, x_hi, delta_lo, delta_hi;
515    LLVMValueRef mul_lo, mul_hi, v0_lo, v0_hi, v1_lo, v1_hi, tmp;
516    const struct lp_type type = bld->type;
517    LLVMBuilderRef builder = bld->gallivm->builder;
518    struct lp_type i16_type = lp_wider_type(type);
519    struct lp_build_context bld2;
520 
521    assert(lp_check_value(type, v0));
522    assert(lp_check_value(type, v1));
523    assert(!type.floating && !type.fixed && !type.norm && type.width == 8);
524 
525    lp_build_context_init(&bld2, gallivm, i16_type);
526    bld2.type.sign = TRUE;
527    x = lp_build_const_int_vec(gallivm, bld->type, 255*1/3);
528 
529    /* FIXME: use native avx256 unpack/pack */
530    lp_build_unpack2(gallivm, type, i16_type, x, &x_lo, &x_hi);
531    lp_build_unpack2(gallivm, type, i16_type, v0, &v0_lo, &v0_hi);
532    lp_build_unpack2(gallivm, type, i16_type, v1, &v1_lo, &v1_hi);
533    delta_lo = lp_build_sub(&bld2, v1_lo, v0_lo);
534    delta_hi = lp_build_sub(&bld2, v1_hi, v0_hi);
535 
536    mul_lo = LLVMBuildMul(builder, x_lo, delta_lo, "");
537    mul_hi = LLVMBuildMul(builder, x_hi, delta_hi, "");
538 
539    x_lo = LLVMBuildLShr(builder, mul_lo, lp_build_const_int_vec(gallivm, i16_type, 8), "");
540    x_hi = LLVMBuildLShr(builder, mul_hi, lp_build_const_int_vec(gallivm, i16_type, 8), "");
541    /* lerp optimization: pack now, do add afterwards */
542    tmp = lp_build_pack2(gallivm, i16_type, type, x_lo, x_hi);
543    *res0 = lp_build_add(bld, tmp, v0);
544 
545    x_lo = LLVMBuildLShr(builder, mul_lo, lp_build_const_int_vec(gallivm, i16_type, 7), "");
546    x_hi = LLVMBuildLShr(builder, mul_hi, lp_build_const_int_vec(gallivm, i16_type, 7), "");
547    /* unlike above still need mask (but add still afterwards). */
548    x_lo = LLVMBuildAnd(builder, x_lo, lp_build_const_int_vec(gallivm, i16_type, 0xff), "");
549    x_hi = LLVMBuildAnd(builder, x_hi, lp_build_const_int_vec(gallivm, i16_type, 0xff), "");
550    tmp = lp_build_pack2(gallivm, i16_type, type, x_lo, x_hi);
551    *res1 = lp_build_add(bld, tmp, v0);
552 }
553 
554 /**
555  * Convert from <n x i64> s3tc dxt1 to <4n x i8> RGBA AoS
556  * @param colors  is a <n x i32> vector with n x 2x16bit colors
557  * @param codewords  is a <n x i32> vector containing the codewords
558  * @param i  is a <n x i32> vector with the x pixel coordinate (0 to 3)
559  * @param j  is a <n x i32> vector with the y pixel coordinate (0 to 3)
560  */
561 static LLVMValueRef
s3tc_dxt1_full_to_rgba_aos(struct gallivm_state * gallivm,unsigned n,enum pipe_format format,LLVMValueRef colors,LLVMValueRef codewords,LLVMValueRef i,LLVMValueRef j)562 s3tc_dxt1_full_to_rgba_aos(struct gallivm_state *gallivm,
563                            unsigned n,
564                            enum pipe_format format,
565                            LLVMValueRef colors,
566                            LLVMValueRef codewords,
567                            LLVMValueRef i,
568                            LLVMValueRef j)
569 {
570    LLVMBuilderRef builder = gallivm->builder;
571    LLVMValueRef color0, color1, color2, color3, color2_2, color3_2;
572    LLVMValueRef rgba, a, colors0, colors1, col0, col1, const2;
573    LLVMValueRef bit_pos, sel_mask, sel_lo, sel_hi, indices;
574    struct lp_type type, type8;
575    struct lp_build_context bld8, bld32;
576    boolean is_dxt1_variant = format_dxt1_variant(format);
577 
578    memset(&type, 0, sizeof type);
579    type.width = 32;
580    type.length = n;
581 
582    memset(&type8, 0, sizeof type8);
583    type8.width = 8;
584    type8.length = 4*n;
585 
586    assert(lp_check_value(type, i));
587    assert(lp_check_value(type, j));
588 
589    a = lp_build_const_int_vec(gallivm, type, 0xff000000);
590 
591    lp_build_context_init(&bld32, gallivm, type);
592    lp_build_context_init(&bld8, gallivm, type8);
593 
594    /*
595     * works as follows:
596     * - expand color0/color1 to rgba8888
597     * - calculate color2/3 (interpolation) according to color0 < color1 rules
598     * - calculate color2/3 according to color0 >= color1 rules
599     * - do selection of color2/3 according to comparison of color0/1
600     * - extract indices (vector shift).
601     * - use compare/select to select the correct color. Since we have 2bit
602     *   indices (and 4 colors), needs at least three compare/selects.
603     */
604    /*
605     * expand the two colors
606     */
607    col0 = LLVMBuildAnd(builder, colors, lp_build_const_int_vec(gallivm, type, 0x0000ffff), "");
608    col1 = LLVMBuildLShr(builder, colors, lp_build_const_int_vec(gallivm, type, 16), "");
609    if (n > 1) {
610       color_expand2_565_to_8888(gallivm, n, colors, &color0, &color1);
611    }
612    else {
613       color0 = color_expand_565_to_8888(gallivm, n, col0);
614       color1 = color_expand_565_to_8888(gallivm, n, col1);
615    }
616 
617    /*
618     * interpolate colors
619     * color2_1 is 2/3 color0 + 1/3 color1
620     * color3_1 is 1/3 color0 + 2/3 color1
621     * color2_2 is 1/2 color0 + 1/2 color1
622     * color3_2 is 0
623     */
624 
625    colors0 = LLVMBuildBitCast(builder, color0, bld8.vec_type, "");
626    colors1 = LLVMBuildBitCast(builder, color1, bld8.vec_type, "");
627    /* can combine 2 lerps into one mostly - still looks expensive enough. */
628    lp_build_lerp23(&bld8, colors0, colors1, &color2, &color3);
629    color2 = LLVMBuildBitCast(builder, color2, bld32.vec_type, "");
630    color3 = LLVMBuildBitCast(builder, color3, bld32.vec_type, "");
631 
632    /* dxt3/5 always use 4-color encoding */
633    if (is_dxt1_variant) {
634       /* fix up alpha */
635       if (format == PIPE_FORMAT_DXT1_RGBA ||
636           format == PIPE_FORMAT_DXT1_SRGBA) {
637          color0 = LLVMBuildOr(builder, color0, a, "");
638          color1 = LLVMBuildOr(builder, color1, a, "");
639          color3 = LLVMBuildOr(builder, color3, a, "");
640       }
641       /*
642        * XXX with sse2 and 16x8 vectors, should use pavgb even when n == 1.
643        * Much cheaper (but we don't care that much if n == 1).
644        */
645       if ((util_cpu_caps.has_sse2 && n == 4) ||
646           (util_cpu_caps.has_avx2 && n == 8)) {
647          color2_2 = lp_build_pavgb(&bld8, colors0, colors1);
648          color2_2 = LLVMBuildBitCast(builder, color2_2, bld32.vec_type, "");
649       }
650       else {
651          struct lp_type i16_type = lp_wider_type(type8);
652          struct lp_build_context bld2;
653          LLVMValueRef v0_lo, v0_hi, v1_lo, v1_hi, addlo, addhi;
654 
655          lp_build_context_init(&bld2, gallivm, i16_type);
656          bld2.type.sign = TRUE;
657 
658          /*
659           * This isn't as expensive as it looks (the unpack is the same as
660           * for lerp23), with correct rounding.
661           * (Note that while rounding is correct, this will always round down,
662           * whereas pavgb will always round up.)
663           */
664          /* FIXME: use native avx256 unpack/pack */
665          lp_build_unpack2(gallivm, type8, i16_type, colors0, &v0_lo, &v0_hi);
666          lp_build_unpack2(gallivm, type8, i16_type, colors1, &v1_lo, &v1_hi);
667 
668          addlo = lp_build_add(&bld2, v0_lo, v1_lo);
669          addhi = lp_build_add(&bld2, v0_hi, v1_hi);
670          addlo = LLVMBuildLShr(builder, addlo,
671                                lp_build_const_int_vec(gallivm, i16_type, 1), "");
672          addhi = LLVMBuildLShr(builder, addhi,
673                                lp_build_const_int_vec(gallivm, i16_type, 1), "");
674          color2_2 = lp_build_pack2(gallivm, i16_type, type8, addlo, addhi);
675          color2_2 = LLVMBuildBitCast(builder, color2_2, bld32.vec_type, "");
676       }
677       color3_2 = lp_build_const_int_vec(gallivm, type, 0);
678 
679       /* select between colors2/3 */
680       /* signed compare is faster saves some xors */
681       type.sign = TRUE;
682       sel_mask = lp_build_compare(gallivm, type, PIPE_FUNC_GREATER, col0, col1);
683       color2 = lp_build_select(&bld32, sel_mask, color2, color2_2);
684       color3 = lp_build_select(&bld32, sel_mask, color3, color3_2);
685       type.sign = FALSE;
686 
687       if (format == PIPE_FORMAT_DXT1_RGBA ||
688           format == PIPE_FORMAT_DXT1_SRGBA) {
689          color2 = LLVMBuildOr(builder, color2, a, "");
690       }
691    }
692 
693    const2 = lp_build_const_int_vec(gallivm, type, 2);
694    /* extract 2-bit index values */
695    bit_pos = LLVMBuildShl(builder, j, const2, "");
696    bit_pos = LLVMBuildAdd(builder, bit_pos, i, "");
697    bit_pos = LLVMBuildAdd(builder, bit_pos, bit_pos, "");
698    /*
699     * NOTE: This innocent looking shift is very expensive with x86/ssex.
700     * Shifts with per-elemnent shift count get roughly translated to
701     * extract (count), extract (value), shift, move (back to xmm), unpack
702     * per element!
703     * So about 20 instructions here for 4xi32.
704     * Newer llvm versions (3.7+) will not do extract/insert but use a
705     * a couple constant count vector shifts plus shuffles. About same
706     * amount of instructions unfortunately...
707     * Would get much worse with 8xi16 even...
708     * We could actually do better here:
709     * - subtract bit_pos from 128+30, shl 23, convert float to int...
710     * - now do mul with codewords followed by shr 30...
711     * But requires 32bit->32bit mul, sse41 only (well that's emulatable
712     * with 2 32bit->64bit muls...) and not exactly cheap
713     * AVX2, of course, fixes this nonsense.
714     */
715    indices = LLVMBuildLShr(builder, codewords, bit_pos, "");
716 
717    /* finally select the colors */
718    sel_lo = LLVMBuildAnd(builder, indices, bld32.one, "");
719    sel_lo = lp_build_compare(gallivm, type, PIPE_FUNC_EQUAL, sel_lo, bld32.one);
720    color0 = lp_build_select(&bld32, sel_lo, color1, color0);
721    color2 = lp_build_select(&bld32, sel_lo, color3, color2);
722    sel_hi = LLVMBuildAnd(builder, indices, const2, "");
723    sel_hi = lp_build_compare(gallivm, type, PIPE_FUNC_EQUAL, sel_hi, const2);
724    rgba = lp_build_select(&bld32, sel_hi, color2, color0);
725 
726    /* fix up alpha */
727    if (format == PIPE_FORMAT_DXT1_RGB ||
728        format == PIPE_FORMAT_DXT1_SRGB) {
729       rgba = LLVMBuildOr(builder, rgba, a, "");
730    }
731    return LLVMBuildBitCast(builder, rgba, bld8.vec_type, "");
732 }
733 
734 
735 static LLVMValueRef
s3tc_dxt1_to_rgba_aos(struct gallivm_state * gallivm,unsigned n,enum pipe_format format,LLVMValueRef colors,LLVMValueRef codewords,LLVMValueRef i,LLVMValueRef j)736 s3tc_dxt1_to_rgba_aos(struct gallivm_state *gallivm,
737                       unsigned n,
738                       enum pipe_format format,
739                       LLVMValueRef colors,
740                       LLVMValueRef codewords,
741                       LLVMValueRef i,
742                       LLVMValueRef j)
743 {
744    return s3tc_dxt1_full_to_rgba_aos(gallivm, n, format,
745                                      colors, codewords, i, j);
746 }
747 
748 
749 /**
750  * Convert from <n x i128> s3tc dxt3 to <4n x i8> RGBA AoS
751  * @param colors  is a <n x i32> vector with n x 2x16bit colors
752  * @param codewords  is a <n x i32> vector containing the codewords
753  * @param alphas  is a <n x i64> vector containing the alpha values
754  * @param i  is a <n x i32> vector with the x pixel coordinate (0 to 3)
755  * @param j  is a <n x i32> vector with the y pixel coordinate (0 to 3)
756  */
757 static LLVMValueRef
s3tc_dxt3_to_rgba_aos(struct gallivm_state * gallivm,unsigned n,enum pipe_format format,LLVMValueRef colors,LLVMValueRef codewords,LLVMValueRef alpha_low,LLVMValueRef alpha_hi,LLVMValueRef i,LLVMValueRef j)758 s3tc_dxt3_to_rgba_aos(struct gallivm_state *gallivm,
759                       unsigned n,
760                       enum pipe_format format,
761                       LLVMValueRef colors,
762                       LLVMValueRef codewords,
763                       LLVMValueRef alpha_low,
764                       LLVMValueRef alpha_hi,
765                       LLVMValueRef i,
766                       LLVMValueRef j)
767 {
768    LLVMBuilderRef builder = gallivm->builder;
769    LLVMValueRef rgba, tmp, tmp2;
770    LLVMValueRef bit_pos, sel_mask;
771    struct lp_type type, type8;
772    struct lp_build_context bld;
773 
774    memset(&type, 0, sizeof type);
775    type.width = 32;
776    type.length = n;
777 
778    memset(&type8, 0, sizeof type8);
779    type8.width = 8;
780    type8.length = n*4;
781 
782    assert(lp_check_value(type, i));
783    assert(lp_check_value(type, j));
784 
785    lp_build_context_init(&bld, gallivm, type);
786 
787    rgba = s3tc_dxt1_to_rgba_aos(gallivm, n, format,
788                                 colors, codewords, i, j);
789 
790    rgba = LLVMBuildBitCast(builder, rgba, bld.vec_type, "");
791 
792    /*
793     * Extract alpha values. Since we now need to select from
794     * which 32bit vector values are fetched, construct selection
795     * mask from highest bit of bit_pos, and use select, then shift
796     * according to the bit_pos (without the highest bit).
797     * Note this is pointless for n == 1 case. Could just
798     * directly use 64bit arithmetic if we'd extract 64bit
799     * alpha value instead of 2x32...
800     */
801    /* pos = 4*(4j+i) */
802    bit_pos = LLVMBuildShl(builder, j, lp_build_const_int_vec(gallivm, type, 2), "");
803    bit_pos = LLVMBuildAdd(builder, bit_pos, i, "");
804    bit_pos = LLVMBuildShl(builder, bit_pos,
805                           lp_build_const_int_vec(gallivm, type, 2), "");
806    sel_mask = LLVMBuildLShr(builder, bit_pos,
807                             lp_build_const_int_vec(gallivm, type, 5), "");
808    sel_mask = LLVMBuildSub(builder, sel_mask, bld.one, "");
809    tmp = lp_build_select(&bld, sel_mask, alpha_low, alpha_hi);
810    bit_pos = LLVMBuildAnd(builder, bit_pos,
811                           lp_build_const_int_vec(gallivm, type, 0xffffffdf), "");
812    /* Warning: slow shift with per element count (without avx2) */
813    /*
814     * Could do pshufb here as well - just use appropriate 2 bits in bit_pos
815     * to select the right byte with pshufb. Then for the remaining one bit
816     * just do shift/select.
817     */
818    tmp = LLVMBuildLShr(builder, tmp, bit_pos, "");
819 
820    /* combined expand from a4 to a8 and shift into position */
821    tmp = LLVMBuildShl(builder, tmp, lp_build_const_int_vec(gallivm, type, 28), "");
822    tmp2 = LLVMBuildLShr(builder, tmp, lp_build_const_int_vec(gallivm, type, 4), "");
823    tmp = LLVMBuildOr(builder, tmp, tmp2, "");
824 
825    rgba = LLVMBuildOr(builder, tmp, rgba, "");
826 
827    return LLVMBuildBitCast(builder, rgba, lp_build_vec_type(gallivm, type8), "");
828 }
829 
830 static LLVMValueRef
lp_build_lerpdxta(struct gallivm_state * gallivm,LLVMValueRef alpha0,LLVMValueRef alpha1,LLVMValueRef code,LLVMValueRef sel_mask,unsigned n)831 lp_build_lerpdxta(struct gallivm_state *gallivm,
832                   LLVMValueRef alpha0,
833                   LLVMValueRef alpha1,
834                   LLVMValueRef code,
835                   LLVMValueRef sel_mask,
836                   unsigned n)
837 {
838    /*
839     * note we're doing lerp in 16bit since 32bit pmulld is only available in sse41
840     * (plus pmullw is actually faster...)
841     * we just pretend our 32bit values (which are really only 8bit) are 16bits.
842     * Note that this is obviously a disaster for the scalar case.
843     */
844    LLVMBuilderRef builder = gallivm->builder;
845    LLVMValueRef delta, ainterp;
846    LLVMValueRef weight5, weight7, weight;
847    struct lp_type type32, type16, type8;
848    struct lp_build_context bld16;
849 
850    memset(&type32, 0, sizeof type32);
851    type32.width = 32;
852    type32.length = n;
853    memset(&type16, 0, sizeof type16);
854    type16.width = 16;
855    type16.length = 2*n;
856    type16.sign = TRUE;
857    memset(&type8, 0, sizeof type8);
858    type8.width = 8;
859    type8.length = 4*n;
860 
861    lp_build_context_init(&bld16, gallivm, type16);
862    /* 255/7 is a bit off - increase accuracy at the expense of shift later */
863    sel_mask = LLVMBuildBitCast(builder, sel_mask, bld16.vec_type, "");
864    weight5 = lp_build_const_int_vec(gallivm, type16, 255*64/5);
865    weight7 = lp_build_const_int_vec(gallivm, type16, 255*64/7);
866    weight = lp_build_select(&bld16, sel_mask, weight7, weight5);
867 
868    alpha0 = LLVMBuildBitCast(builder, alpha0, bld16.vec_type, "");
869    alpha1 = LLVMBuildBitCast(builder, alpha1, bld16.vec_type, "");
870    code = LLVMBuildBitCast(builder, code, bld16.vec_type, "");
871    /* we'll get garbage in the elements which had code 0 (or larger than 5 or 7)
872       but we don't care */
873    code = LLVMBuildSub(builder, code, bld16.one, "");
874 
875    weight = LLVMBuildMul(builder, weight, code, "");
876    weight = LLVMBuildLShr(builder, weight,
877                           lp_build_const_int_vec(gallivm, type16, 6), "");
878 
879    delta = LLVMBuildSub(builder, alpha1, alpha0, "");
880 
881    ainterp = LLVMBuildMul(builder, delta, weight, "");
882    ainterp = LLVMBuildLShr(builder, ainterp,
883                            lp_build_const_int_vec(gallivm, type16, 8), "");
884 
885    ainterp = LLVMBuildBitCast(builder, ainterp, lp_build_vec_type(gallivm, type8), "");
886    alpha0 = LLVMBuildBitCast(builder, alpha0, lp_build_vec_type(gallivm, type8), "");
887    ainterp = LLVMBuildAdd(builder, alpha0, ainterp, "");
888    ainterp = LLVMBuildBitCast(builder, ainterp, lp_build_vec_type(gallivm, type32), "");
889 
890    return ainterp;
891 }
892 
893 static LLVMValueRef
s3tc_dxt5_alpha_channel(struct gallivm_state * gallivm,bool is_signed,unsigned n,LLVMValueRef alpha_hi,LLVMValueRef alpha_lo,LLVMValueRef i,LLVMValueRef j)894 s3tc_dxt5_alpha_channel(struct gallivm_state *gallivm,
895                         bool is_signed,
896                         unsigned n,
897                         LLVMValueRef alpha_hi, LLVMValueRef alpha_lo,
898                         LLVMValueRef i, LLVMValueRef j)
899 {
900    LLVMBuilderRef builder = gallivm->builder;
901    struct lp_type type, type8;
902    LLVMValueRef tmp, alpha0, alpha1, alphac, alphac0, bit_pos, shift;
903    LLVMValueRef sel_mask, tmp_mask, alpha, alpha64, code_s;
904    LLVMValueRef mask6, mask7, ainterp;
905    LLVMTypeRef i64t = LLVMInt64TypeInContext(gallivm->context);
906    LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
907    struct lp_build_context bld32;
908 
909    memset(&type, 0, sizeof type);
910    type.width = 32;
911    type.length = n;
912 
913    memset(&type8, 0, sizeof type8);
914    type8.width = 8;
915    type8.length = n;
916    type8.sign = is_signed;
917 
918    lp_build_context_init(&bld32, gallivm, type);
919    /* this looks pretty complex for vectorization:
920     * extract a0/a1 values
921     * extract code
922     * select weights for interpolation depending on a0 > a1
923     * mul weights by code - 1
924     * lerp a0/a1/weights
925     * use selects for getting either a0, a1, interp a, interp a/0.0, interp a/1.0
926     */
927 
928    alpha0 = LLVMBuildAnd(builder, alpha_lo,
929                          lp_build_const_int_vec(gallivm, type, 0xff), "");
930    if (is_signed) {
931       alpha0 = LLVMBuildTrunc(builder, alpha0, lp_build_vec_type(gallivm, type8), "");
932       alpha0 = LLVMBuildSExt(builder, alpha0, lp_build_vec_type(gallivm, type), "");
933    }
934 
935    alpha1 = LLVMBuildLShr(builder, alpha_lo,
936                           lp_build_const_int_vec(gallivm, type, 8), "");
937    alpha1 = LLVMBuildAnd(builder, alpha1,
938                          lp_build_const_int_vec(gallivm, type, 0xff), "");
939    if (is_signed) {
940       alpha1 = LLVMBuildTrunc(builder, alpha1, lp_build_vec_type(gallivm, type8), "");
941       alpha1 = LLVMBuildSExt(builder, alpha1, lp_build_vec_type(gallivm, type), "");
942    }
943 
944    /* pos = 3*(4j+i) */
945    bit_pos = LLVMBuildShl(builder, j, lp_build_const_int_vec(gallivm, type, 2), "");
946    bit_pos = LLVMBuildAdd(builder, bit_pos, i, "");
947    tmp = LLVMBuildAdd(builder, bit_pos, bit_pos, "");
948    bit_pos = LLVMBuildAdd(builder, bit_pos, tmp, "");
949    /* get rid of first 2 bytes - saves shifts of alpha_lo/hi */
950    bit_pos = LLVMBuildAdd(builder, bit_pos,
951                           lp_build_const_int_vec(gallivm, type, 16), "");
952 
953    if (n == 1) {
954       struct lp_type type64;
955       memset(&type64, 0, sizeof type64);
956       type64.width = 64;
957       type64.length = 1;
958       /* This is pretty pointless could avoid by just directly extracting
959          64bit in the first place but makes it more complicated elsewhere */
960       alpha_lo = LLVMBuildZExt(builder, alpha_lo, i64t, "");
961       alpha_hi = LLVMBuildZExt(builder, alpha_hi, i64t, "");
962       alphac0 = LLVMBuildShl(builder, alpha_hi,
963                              lp_build_const_int_vec(gallivm, type64, 32), "");
964       alphac0 = LLVMBuildOr(builder, alpha_lo, alphac0, "");
965 
966       shift = LLVMBuildZExt(builder, bit_pos, i64t, "");
967       alphac0 = LLVMBuildLShr(builder, alphac0, shift, "");
968       alphac0 = LLVMBuildTrunc(builder, alphac0, i32t, "");
969       alphac = LLVMBuildAnd(builder, alphac0,
970                             lp_build_const_int_vec(gallivm, type, 0x7), "");
971    }
972    else {
973       /*
974        * Using non-native vector length here (actually, with avx2 and
975        * n == 4 llvm will indeed expand to ymm regs...)
976        * At least newer llvm versions handle that ok.
977        * llvm 3.7+ will even handle the emulated 64bit shift with variable
978        * shift count without extraction (and it's actually easier to
979        * emulate than the 32bit one).
980        */
981       alpha64 = LLVMBuildShuffleVector(builder, alpha_lo, alpha_hi,
982                                        lp_build_const_unpackx2_shuffle(gallivm, n), "");
983 
984       alpha64 = LLVMBuildBitCast(builder, alpha64, LLVMVectorType(i64t, n), "");
985       shift = LLVMBuildZExt(builder, bit_pos, LLVMVectorType(i64t, n), "");
986       alphac = LLVMBuildLShr(builder, alpha64, shift, "");
987       alphac = LLVMBuildTrunc(builder, alphac, bld32.vec_type, "");
988 
989       alphac = LLVMBuildAnd(builder, alphac,
990                             lp_build_const_int_vec(gallivm, type, 0x7), "");
991    }
992 
993    /* signed compare is faster saves some xors */
994    type.sign = TRUE;
995    /* alpha0 > alpha1 selection */
996    sel_mask = lp_build_compare(gallivm, type, PIPE_FUNC_GREATER,
997                                alpha0, alpha1);
998    ainterp = lp_build_lerpdxta(gallivm, alpha0, alpha1, alphac, sel_mask, n);
999 
1000    /*
1001     * if a0 > a1 then we select a0 for case 0, a1 for case 1, interp otherwise.
1002     * else we select a0 for case 0, a1 for case 1,
1003     * interp for case 2-5, 00 for 6 and 0xff(ffffff) for 7
1004     * a = (c == 0) ? a0 : a1
1005     * a = (c > 1) ? ainterp : a
1006     * Finally handle case 6/7 for !(a0 > a1)
1007     * a = (!(a0 > a1) && c == 6) ? 0 : a (andnot with mask)
1008     * a = (!(a0 > a1) && c == 7) ? 0xffffffff : a (or with mask)
1009     */
1010    tmp_mask = lp_build_compare(gallivm, type, PIPE_FUNC_EQUAL,
1011                                alphac, bld32.zero);
1012    alpha = lp_build_select(&bld32, tmp_mask, alpha0, alpha1);
1013    tmp_mask = lp_build_compare(gallivm, type, PIPE_FUNC_GREATER,
1014                                alphac, bld32.one);
1015    alpha = lp_build_select(&bld32, tmp_mask, ainterp, alpha);
1016 
1017    code_s = LLVMBuildAnd(builder, alphac,
1018                          LLVMBuildNot(builder, sel_mask, ""), "");
1019    mask6 = lp_build_compare(gallivm, type, PIPE_FUNC_EQUAL,
1020                             code_s, lp_build_const_int_vec(gallivm, type, 6));
1021    mask7 = lp_build_compare(gallivm, type, PIPE_FUNC_EQUAL,
1022                             code_s, lp_build_const_int_vec(gallivm, type, 7));
1023    if (is_signed) {
1024       alpha = lp_build_select(&bld32, mask6, lp_build_const_int_vec(gallivm, type, -127), alpha);
1025       alpha = lp_build_select(&bld32, mask7, lp_build_const_int_vec(gallivm, type, 127), alpha);
1026    } else {
1027       alpha = LLVMBuildAnd(builder, alpha, LLVMBuildNot(builder, mask6, ""), "");
1028       alpha = LLVMBuildOr(builder, alpha, mask7, "");
1029    }
1030    /* There can be garbage in upper bits, mask them off for rgtc formats */
1031    alpha = LLVMBuildAnd(builder, alpha, lp_build_const_int_vec(gallivm, type, 0xff), "");
1032 
1033    return alpha;
1034 }
1035 
1036 /**
1037  * Convert from <n x i128> s3tc dxt5 to <4n x i8> RGBA AoS
1038  * @param colors  is a <n x i32> vector with n x 2x16bit colors
1039  * @param codewords  is a <n x i32> vector containing the codewords
1040  * @param alphas  is a <n x i64> vector containing the alpha values
1041  * @param i  is a <n x i32> vector with the x pixel coordinate (0 to 3)
1042  * @param j  is a <n x i32> vector with the y pixel coordinate (0 to 3)
1043  */
1044 static LLVMValueRef
s3tc_dxt5_full_to_rgba_aos(struct gallivm_state * gallivm,unsigned n,enum pipe_format format,LLVMValueRef colors,LLVMValueRef codewords,LLVMValueRef alpha_lo,LLVMValueRef alpha_hi,LLVMValueRef i,LLVMValueRef j)1045 s3tc_dxt5_full_to_rgba_aos(struct gallivm_state *gallivm,
1046                            unsigned n,
1047                            enum pipe_format format,
1048                            LLVMValueRef colors,
1049                            LLVMValueRef codewords,
1050                            LLVMValueRef alpha_lo,
1051                            LLVMValueRef alpha_hi,
1052                            LLVMValueRef i,
1053                            LLVMValueRef j)
1054 {
1055    LLVMBuilderRef builder = gallivm->builder;
1056    LLVMValueRef rgba, alpha;
1057    struct lp_type type, type8;
1058    struct lp_build_context bld32;
1059 
1060    memset(&type, 0, sizeof type);
1061    type.width = 32;
1062    type.length = n;
1063 
1064    memset(&type8, 0, sizeof type8);
1065    type8.width = 8;
1066    type8.length = n*4;
1067 
1068    assert(lp_check_value(type, i));
1069    assert(lp_check_value(type, j));
1070 
1071    lp_build_context_init(&bld32, gallivm, type);
1072 
1073    assert(lp_check_value(type, i));
1074    assert(lp_check_value(type, j));
1075 
1076    rgba = s3tc_dxt1_to_rgba_aos(gallivm, n, format,
1077                                 colors, codewords, i, j);
1078 
1079    rgba = LLVMBuildBitCast(builder, rgba, bld32.vec_type, "");
1080 
1081    alpha = s3tc_dxt5_alpha_channel(gallivm, false, n, alpha_hi, alpha_lo, i, j);
1082    alpha = LLVMBuildShl(builder, alpha, lp_build_const_int_vec(gallivm, type, 24), "");
1083    rgba = LLVMBuildOr(builder, alpha, rgba, "");
1084 
1085    return LLVMBuildBitCast(builder, rgba, lp_build_vec_type(gallivm, type8), "");
1086 }
1087 
1088 
1089 static void
lp_build_gather_s3tc_simple_scalar(struct gallivm_state * gallivm,const struct util_format_description * format_desc,LLVMValueRef * dxt_block,LLVMValueRef ptr)1090 lp_build_gather_s3tc_simple_scalar(struct gallivm_state *gallivm,
1091                                    const struct util_format_description *format_desc,
1092                                    LLVMValueRef *dxt_block,
1093                                    LLVMValueRef ptr)
1094 {
1095    LLVMBuilderRef builder = gallivm->builder;
1096    unsigned block_bits = format_desc->block.bits;
1097    LLVMValueRef elem, shuf;
1098    LLVMTypeRef type32 = LLVMIntTypeInContext(gallivm->context, 32);
1099    LLVMTypeRef src_type = LLVMIntTypeInContext(gallivm->context, block_bits);
1100    LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
1101    LLVMTypeRef type32_4 = LLVMVectorType(type32, 4);
1102 
1103    assert(block_bits == 64 || block_bits == 128);
1104 
1105    ptr = LLVMBuildBitCast(builder, ptr, src_ptr_type, "");
1106    elem = LLVMBuildLoad(builder, ptr, "");
1107 
1108    if (block_bits == 128) {
1109       /* just return block as is */
1110       *dxt_block = LLVMBuildBitCast(builder, elem, type32_4, "");
1111    }
1112    else {
1113       LLVMTypeRef type32_2 = LLVMVectorType(type32, 2);
1114       shuf = lp_build_const_extend_shuffle(gallivm, 2, 4);
1115       elem = LLVMBuildBitCast(builder, elem, type32_2, "");
1116       *dxt_block = LLVMBuildShuffleVector(builder, elem,
1117                                           LLVMGetUndef(type32_2), shuf, "");
1118    }
1119 }
1120 
1121 
1122 static void
s3tc_store_cached_block(struct gallivm_state * gallivm,LLVMValueRef * col,LLVMValueRef tag_value,LLVMValueRef hash_index,LLVMValueRef cache)1123 s3tc_store_cached_block(struct gallivm_state *gallivm,
1124                         LLVMValueRef *col,
1125                         LLVMValueRef tag_value,
1126                         LLVMValueRef hash_index,
1127                         LLVMValueRef cache)
1128 {
1129    LLVMBuilderRef builder = gallivm->builder;
1130    LLVMValueRef ptr, indices[3];
1131    LLVMTypeRef type_ptr4x32;
1132    unsigned count;
1133 
1134    type_ptr4x32 = LLVMPointerType(LLVMVectorType(LLVMInt32TypeInContext(gallivm->context), 4), 0);
1135    indices[0] = lp_build_const_int32(gallivm, 0);
1136    indices[1] = lp_build_const_int32(gallivm, LP_BUILD_FORMAT_CACHE_MEMBER_TAGS);
1137    indices[2] = hash_index;
1138    ptr = LLVMBuildGEP(builder, cache, indices, ARRAY_SIZE(indices), "");
1139    LLVMBuildStore(builder, tag_value, ptr);
1140 
1141    indices[1] = lp_build_const_int32(gallivm, LP_BUILD_FORMAT_CACHE_MEMBER_DATA);
1142    hash_index = LLVMBuildMul(builder, hash_index,
1143                              lp_build_const_int32(gallivm, 16), "");
1144    for (count = 0; count < 4; count++) {
1145       indices[2] = hash_index;
1146       ptr = LLVMBuildGEP(builder, cache, indices, ARRAY_SIZE(indices), "");
1147       ptr = LLVMBuildBitCast(builder, ptr, type_ptr4x32, "");
1148       LLVMBuildStore(builder, col[count], ptr);
1149       hash_index = LLVMBuildAdd(builder, hash_index,
1150                                 lp_build_const_int32(gallivm, 4), "");
1151    }
1152 }
1153 
1154 static LLVMValueRef
s3tc_lookup_cached_pixel(struct gallivm_state * gallivm,LLVMValueRef ptr,LLVMValueRef index)1155 s3tc_lookup_cached_pixel(struct gallivm_state *gallivm,
1156                          LLVMValueRef ptr,
1157                          LLVMValueRef index)
1158 {
1159    LLVMBuilderRef builder = gallivm->builder;
1160    LLVMValueRef member_ptr, indices[3];
1161 
1162    indices[0] = lp_build_const_int32(gallivm, 0);
1163    indices[1] = lp_build_const_int32(gallivm, LP_BUILD_FORMAT_CACHE_MEMBER_DATA);
1164    indices[2] = index;
1165    member_ptr = LLVMBuildGEP(builder, ptr, indices, ARRAY_SIZE(indices), "");
1166    return LLVMBuildLoad(builder, member_ptr, "cache_data");
1167 }
1168 
1169 static LLVMValueRef
s3tc_lookup_tag_data(struct gallivm_state * gallivm,LLVMValueRef ptr,LLVMValueRef index)1170 s3tc_lookup_tag_data(struct gallivm_state *gallivm,
1171                      LLVMValueRef ptr,
1172                      LLVMValueRef index)
1173 {
1174    LLVMBuilderRef builder = gallivm->builder;
1175    LLVMValueRef member_ptr, indices[3];
1176 
1177    indices[0] = lp_build_const_int32(gallivm, 0);
1178    indices[1] = lp_build_const_int32(gallivm, LP_BUILD_FORMAT_CACHE_MEMBER_TAGS);
1179    indices[2] = index;
1180    member_ptr = LLVMBuildGEP(builder, ptr, indices, ARRAY_SIZE(indices), "");
1181    return LLVMBuildLoad(builder, member_ptr, "tag_data");
1182 }
1183 
1184 #if LP_BUILD_FORMAT_CACHE_DEBUG
1185 static void
s3tc_update_cache_access(struct gallivm_state * gallivm,LLVMValueRef ptr,unsigned count,unsigned index)1186 s3tc_update_cache_access(struct gallivm_state *gallivm,
1187                          LLVMValueRef ptr,
1188                          unsigned count,
1189                          unsigned index)
1190 {
1191    LLVMBuilderRef builder = gallivm->builder;
1192    LLVMValueRef member_ptr, cache_access;
1193 
1194    assert(index == LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_TOTAL ||
1195           index == LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_MISS);
1196 
1197    member_ptr = lp_build_struct_get_ptr(gallivm, ptr, index, "");
1198    cache_access = LLVMBuildLoad(builder, member_ptr, "cache_access");
1199    cache_access = LLVMBuildAdd(builder, cache_access,
1200                                LLVMConstInt(LLVMInt64TypeInContext(gallivm->context),
1201                                                                    count, 0), "");
1202    LLVMBuildStore(builder, cache_access, member_ptr);
1203 }
1204 #endif
1205 
1206 /**
1207  * Calculate 1/3(v1-v0) + v0 and 2*1/3(v1-v0) + v0.
1208  * The lerp is performed between the first 2 32bit colors
1209  * in the source vector, both results are returned packed in result vector.
1210  */
1211 static LLVMValueRef
lp_build_lerp23_single(struct lp_build_context * bld,LLVMValueRef v01)1212 lp_build_lerp23_single(struct lp_build_context *bld,
1213                        LLVMValueRef v01)
1214 {
1215    struct gallivm_state *gallivm = bld->gallivm;
1216    LLVMValueRef x, mul, delta, res, v0, v1, elems[8];
1217    const struct lp_type type = bld->type;
1218    LLVMBuilderRef builder = bld->gallivm->builder;
1219    struct lp_type i16_type = lp_wider_type(type);
1220    struct lp_type i32_type = lp_wider_type(i16_type);
1221    struct lp_build_context bld2;
1222 
1223    assert(!type.floating && !type.fixed && !type.norm && type.width == 8);
1224 
1225    lp_build_context_init(&bld2, gallivm, i16_type);
1226    bld2.type.sign = TRUE;
1227 
1228    /* weights 256/3, 256*2/3, with correct rounding */
1229    elems[0] = elems[1] = elems[2] = elems[3] =
1230       lp_build_const_elem(gallivm, i16_type, 255*1/3);
1231    elems[4] = elems[5] = elems[6] = elems[7] =
1232       lp_build_const_elem(gallivm, i16_type, 171);
1233    x = LLVMConstVector(elems, 8);
1234 
1235    /*
1236     * v01 has col0 in 32bit elem 0, col1 in elem 1.
1237     * Interleave/unpack will give us separate v0/v1 vectors.
1238     */
1239    v01 = lp_build_interleave2(gallivm, i32_type, v01, v01, 0);
1240    v01 = LLVMBuildBitCast(builder, v01, bld->vec_type, "");
1241 
1242    lp_build_unpack2(gallivm, type, i16_type, v01, &v0, &v1);
1243    delta = lp_build_sub(&bld2, v1, v0);
1244 
1245    mul = LLVMBuildMul(builder, x, delta, "");
1246 
1247    mul = LLVMBuildLShr(builder, mul, lp_build_const_int_vec(gallivm, i16_type, 8), "");
1248    /* lerp optimization: pack now, do add afterwards */
1249    res = lp_build_pack2(gallivm, i16_type, type, mul, bld2.undef);
1250    /* only lower 2 elems are valid - for these v0 is really v0 */
1251    return lp_build_add(bld, res, v01);
1252 }
1253 
1254 /*
1255  * decode one dxt1 block.
1256  */
1257 static void
s3tc_decode_block_dxt1(struct gallivm_state * gallivm,enum pipe_format format,LLVMValueRef dxt_block,LLVMValueRef * col)1258 s3tc_decode_block_dxt1(struct gallivm_state *gallivm,
1259                        enum pipe_format format,
1260                        LLVMValueRef dxt_block,
1261                        LLVMValueRef *col)
1262 {
1263    LLVMBuilderRef builder = gallivm->builder;
1264    LLVMValueRef color01, color23, color01_16, color0123;
1265    LLVMValueRef rgba, tmp, a, sel_mask, indices, code, const2;
1266    struct lp_type type8, type32, type16, type64;
1267    struct lp_build_context bld8, bld32, bld16, bld64;
1268    unsigned i;
1269    boolean is_dxt1_variant = format_dxt1_variant(format);
1270 
1271    memset(&type32, 0, sizeof type32);
1272    type32.width = 32;
1273    type32.length = 4;
1274    type32.sign = TRUE;
1275 
1276    memset(&type8, 0, sizeof type8);
1277    type8.width = 8;
1278    type8.length = 16;
1279 
1280    memset(&type16, 0, sizeof type16);
1281    type16.width = 16;
1282    type16.length = 8;
1283 
1284    memset(&type64, 0, sizeof type64);
1285    type64.width = 64;
1286    type64.length = 2;
1287 
1288    a = lp_build_const_int_vec(gallivm, type32, 0xff000000);
1289    const2 = lp_build_const_int_vec(gallivm, type32, 2);
1290 
1291    lp_build_context_init(&bld32, gallivm, type32);
1292    lp_build_context_init(&bld16, gallivm, type16);
1293    lp_build_context_init(&bld8, gallivm, type8);
1294    lp_build_context_init(&bld64, gallivm, type64);
1295 
1296    if (is_dxt1_variant) {
1297       color01 = lp_build_shuffle1undef(gallivm, dxt_block, 0, 4);
1298       code = lp_build_shuffle1undef(gallivm, dxt_block, 1, 4);
1299    } else {
1300       color01 = lp_build_shuffle1undef(gallivm, dxt_block, 2, 4);
1301       code = lp_build_shuffle1undef(gallivm, dxt_block, 3, 4);
1302    }
1303    code = LLVMBuildBitCast(builder, code, bld8.vec_type, "");
1304    /* expand bytes to dwords */
1305    code = lp_build_interleave2(gallivm, type8, code, code, 0);
1306    code = lp_build_interleave2(gallivm, type8, code, code, 0);
1307 
1308 
1309    /*
1310     * works as follows:
1311     * - expand color0/color1 to rgba8888
1312     * - calculate color2/3 (interpolation) according to color0 < color1 rules
1313     * - calculate color2/3 according to color0 >= color1 rules
1314     * - do selection of color2/3 according to comparison of color0/1
1315     * - extract indices.
1316     * - use compare/select to select the correct color. Since we have 2bit
1317     *   indices (and 4 colors), needs at least three compare/selects.
1318     */
1319 
1320    /*
1321     * expand the two colors
1322     */
1323    color01 = LLVMBuildBitCast(builder, color01, bld16.vec_type, "");
1324    color01 = lp_build_interleave2(gallivm, type16, color01,
1325                                   bld16.zero, 0);
1326    color01_16 = LLVMBuildBitCast(builder, color01, bld32.vec_type, "");
1327    color01 = color_expand_565_to_8888(gallivm, 4, color01_16);
1328 
1329    /*
1330     * interpolate colors
1331     * color2_1 is 2/3 color0 + 1/3 color1
1332     * color3_1 is 1/3 color0 + 2/3 color1
1333     * color2_2 is 1/2 color0 + 1/2 color1
1334     * color3_2 is 0
1335     */
1336 
1337    /* TODO: since this is now always scalar, should
1338     * probably just use control flow here instead of calculating
1339     * both cases and then selection
1340     */
1341    if (format == PIPE_FORMAT_DXT1_RGBA ||
1342        format == PIPE_FORMAT_DXT1_SRGBA) {
1343       color01 = LLVMBuildOr(builder, color01, a, "");
1344    }
1345    /* can combine 2 lerps into one mostly */
1346    color23 = lp_build_lerp23_single(&bld8, color01);
1347    color23 = LLVMBuildBitCast(builder, color23, bld32.vec_type, "");
1348 
1349    /* dxt3/5 always use 4-color encoding */
1350    if (is_dxt1_variant) {
1351       LLVMValueRef color23_2, color2_2;
1352 
1353       if (util_cpu_caps.has_sse2) {
1354          LLVMValueRef intrargs[2];
1355          intrargs[0] = LLVMBuildBitCast(builder, color01, bld8.vec_type, "");
1356          /* same interleave as for lerp23 - correct result in 2nd element */
1357          intrargs[1] = lp_build_interleave2(gallivm, type32, color01, color01, 0);
1358          intrargs[1] = LLVMBuildBitCast(builder, intrargs[1], bld8.vec_type, "");
1359          color2_2 = lp_build_pavgb(&bld8, intrargs[0], intrargs[1]);
1360       }
1361       else {
1362          LLVMValueRef v01, v0, v1, vhalf;
1363          /*
1364           * This isn't as expensive as it looks (the unpack is the same as
1365           * for lerp23, which is the reason why we do the pointless
1366           * interleave2 too), with correct rounding (the two lower elements
1367           * will be the same).
1368           */
1369          v01 = lp_build_interleave2(gallivm, type32, color01, color01, 0);
1370          v01 = LLVMBuildBitCast(builder, v01, bld8.vec_type, "");
1371          lp_build_unpack2(gallivm, type8, type16, v01, &v0, &v1);
1372          vhalf = lp_build_add(&bld16, v0, v1);
1373          vhalf = LLVMBuildLShr(builder, vhalf, bld16.one, "");
1374          color2_2 = lp_build_pack2(gallivm, type16, type8, vhalf, bld16.undef);
1375       }
1376       /* shuffle in color 3 as elem 2 zero, color 2 elem 1 */
1377       color23_2 = LLVMBuildBitCast(builder, color2_2, bld64.vec_type, "");
1378       color23_2 = LLVMBuildLShr(builder, color23_2,
1379                                 lp_build_const_int_vec(gallivm, type64, 32), "");
1380       color23_2 = LLVMBuildBitCast(builder, color23_2, bld32.vec_type, "");
1381 
1382       tmp = LLVMBuildBitCast(builder, color01_16, bld64.vec_type, "");
1383       tmp = LLVMBuildLShr(builder, tmp,
1384                           lp_build_const_int_vec(gallivm, type64, 32), "");
1385       tmp = LLVMBuildBitCast(builder, tmp, bld32.vec_type, "");
1386       sel_mask = lp_build_compare(gallivm, type32, PIPE_FUNC_GREATER,
1387                                   color01_16, tmp);
1388       sel_mask = lp_build_interleave2(gallivm, type32, sel_mask, sel_mask, 0);
1389       color23 = lp_build_select(&bld32, sel_mask, color23, color23_2);
1390    }
1391 
1392    if (util_cpu_caps.has_ssse3) {
1393       /*
1394        * Use pshufb as mini-lut. (Only doable with intrinsics as the
1395        * final shuffles are non-constant. pshufb is awesome!)
1396        */
1397       LLVMValueRef shuf[16], low2mask;
1398       LLVMValueRef intrargs[2], lut_ind, lut_adj;
1399 
1400       color01 = LLVMBuildBitCast(builder, color01, bld64.vec_type, "");
1401       color23 = LLVMBuildBitCast(builder, color23, bld64.vec_type, "");
1402       color0123 = lp_build_interleave2(gallivm, type64, color01, color23, 0);
1403       color0123 = LLVMBuildBitCast(builder, color0123, bld32.vec_type, "");
1404 
1405       if (format == PIPE_FORMAT_DXT1_RGB ||
1406           format == PIPE_FORMAT_DXT1_SRGB) {
1407          color0123 = LLVMBuildOr(builder, color0123, a, "");
1408       }
1409 
1410       /* shuffle as r0r1r2r3g0g1... */
1411       for (i = 0; i < 4; i++) {
1412          shuf[4*i] = lp_build_const_int32(gallivm, 0 + i);
1413          shuf[4*i+1] = lp_build_const_int32(gallivm, 4 + i);
1414          shuf[4*i+2] = lp_build_const_int32(gallivm, 8 + i);
1415          shuf[4*i+3] = lp_build_const_int32(gallivm, 12 + i);
1416       }
1417       color0123 = LLVMBuildBitCast(builder, color0123, bld8.vec_type, "");
1418       color0123 = LLVMBuildShuffleVector(builder, color0123, bld8.undef,
1419                                          LLVMConstVector(shuf, 16), "");
1420 
1421       /* lowest 2 bits of each 8 bit value contain index into "LUT" */
1422       low2mask = lp_build_const_int_vec(gallivm, type8, 3);
1423       /* add 0/4/8/12 for r/g/b/a */
1424       lut_adj = lp_build_const_int_vec(gallivm, type32, 0x0c080400);
1425       lut_adj = LLVMBuildBitCast(builder, lut_adj, bld8.vec_type, "");
1426       intrargs[0] = color0123;
1427       for (i = 0; i < 4; i++) {
1428          lut_ind = LLVMBuildAnd(builder, code, low2mask, "");
1429          lut_ind = LLVMBuildOr(builder, lut_ind, lut_adj, "");
1430          intrargs[1] = lut_ind;
1431          col[i] = lp_build_intrinsic(builder, "llvm.x86.ssse3.pshuf.b.128",
1432                                      bld8.vec_type, intrargs, 2, 0);
1433          col[i] = LLVMBuildBitCast(builder, col[i], bld32.vec_type, "");
1434          code = LLVMBuildBitCast(builder, code, bld32.vec_type, "");
1435          code = LLVMBuildLShr(builder, code, const2, "");
1436          code = LLVMBuildBitCast(builder, code, bld8.vec_type, "");
1437       }
1438    }
1439    else {
1440       /* Thanks to vectorization can do 4 texels in parallel */
1441       LLVMValueRef color0, color1, color2, color3;
1442       if (format == PIPE_FORMAT_DXT1_RGB ||
1443           format == PIPE_FORMAT_DXT1_SRGB) {
1444          color01 = LLVMBuildOr(builder, color01, a, "");
1445          color23 = LLVMBuildOr(builder, color23, a, "");
1446       }
1447       color0 = LLVMBuildShuffleVector(builder, color01, bld32.undef,
1448                                       lp_build_const_shuffle1(gallivm, 0, 4), "");
1449       color1 = LLVMBuildShuffleVector(builder, color01, bld32.undef,
1450                                       lp_build_const_shuffle1(gallivm, 1, 4), "");
1451       color2 = LLVMBuildShuffleVector(builder, color23, bld32.undef,
1452                                       lp_build_const_shuffle1(gallivm, 0, 4), "");
1453       color3 = LLVMBuildShuffleVector(builder, color23, bld32.undef,
1454                                       lp_build_const_shuffle1(gallivm, 1, 4), "");
1455       code = LLVMBuildBitCast(builder, code, bld32.vec_type, "");
1456 
1457       for (i = 0; i < 4; i++) {
1458          /* select the colors */
1459          LLVMValueRef selmasklo, rgba01, rgba23, bitlo;
1460          bitlo = bld32.one;
1461          indices = LLVMBuildAnd(builder, code, bitlo, "");
1462          selmasklo = lp_build_compare(gallivm, type32, PIPE_FUNC_EQUAL,
1463                                       indices, bitlo);
1464          rgba01 = lp_build_select(&bld32, selmasklo, color1, color0);
1465 
1466          LLVMValueRef selmaskhi;
1467          indices = LLVMBuildAnd(builder, code, const2, "");
1468          selmaskhi = lp_build_compare(gallivm, type32, PIPE_FUNC_EQUAL,
1469                                       indices, const2);
1470          rgba23 = lp_build_select(&bld32, selmasklo, color3, color2);
1471          rgba = lp_build_select(&bld32, selmaskhi, rgba23, rgba01);
1472 
1473          /*
1474           * Note that this will give "wrong" order.
1475           * col0 will be rgba0, rgba4, rgba8, rgba12, col1 rgba1, rgba5, ...
1476           * This would be easily fixable by using different shuffle, bitlo/hi
1477           * vectors above (and different shift), but seems slightly easier to
1478           * deal with for dxt3/dxt5 alpha too. So instead change lookup.
1479           */
1480          col[i] = rgba;
1481          code = LLVMBuildLShr(builder, code, const2, "");
1482       }
1483    }
1484 }
1485 
1486 /*
1487  * decode one dxt3 block.
1488  */
1489 static void
s3tc_decode_block_dxt3(struct gallivm_state * gallivm,enum pipe_format format,LLVMValueRef dxt_block,LLVMValueRef * col)1490 s3tc_decode_block_dxt3(struct gallivm_state *gallivm,
1491                        enum pipe_format format,
1492                        LLVMValueRef dxt_block,
1493                        LLVMValueRef *col)
1494 {
1495    LLVMBuilderRef builder = gallivm->builder;
1496    LLVMValueRef alpha, alphas0, alphas1, shift4_16, a[4], mask8hi;
1497    struct lp_type type32, type8, type16;
1498    unsigned i;
1499 
1500    memset(&type32, 0, sizeof type32);
1501    type32.width = 32;
1502    type32.length = 4;
1503 
1504    memset(&type8, 0, sizeof type8);
1505    type8.width = 8;
1506    type8.length = 16;
1507 
1508    memset(&type16, 0, sizeof type16);
1509    type16.width = 16;
1510    type16.length = 8;
1511 
1512    s3tc_decode_block_dxt1(gallivm, format, dxt_block, col);
1513 
1514    shift4_16 = lp_build_const_int_vec(gallivm, type16, 4);
1515    mask8hi = lp_build_const_int_vec(gallivm, type32, 0xff000000);
1516 
1517    alpha = LLVMBuildBitCast(builder, dxt_block,
1518                             lp_build_vec_type(gallivm, type8), "");
1519    alpha = lp_build_interleave2(gallivm, type8, alpha, alpha, 0);
1520    alpha = LLVMBuildBitCast(builder, alpha,
1521                             lp_build_vec_type(gallivm, type16), "");
1522    alpha = LLVMBuildAnd(builder, alpha,
1523                         lp_build_const_int_vec(gallivm, type16, 0xf00f), "");
1524    alphas0 = LLVMBuildLShr(builder, alpha, shift4_16, "");
1525    alphas1 = LLVMBuildShl(builder, alpha, shift4_16, "");
1526    alpha = LLVMBuildOr(builder, alphas0, alpha, "");
1527    alpha = LLVMBuildOr(builder, alphas1, alpha, "");
1528    alpha = LLVMBuildBitCast(builder, alpha,
1529                             lp_build_vec_type(gallivm, type32), "");
1530    /*
1531     * alpha now contains elems 0,1,2,3,... (ubytes)
1532     * we need 0,4,8,12, 1,5,9,13 etc. in dwords to match color (which
1533     * is just as easy as "natural" order - 3 shift/and instead of 6 unpack).
1534     */
1535    a[0] = LLVMBuildShl(builder, alpha,
1536                        lp_build_const_int_vec(gallivm, type32, 24), "");
1537    a[1] = LLVMBuildShl(builder, alpha,
1538                        lp_build_const_int_vec(gallivm, type32, 16), "");
1539    a[1] = LLVMBuildAnd(builder, a[1], mask8hi, "");
1540    a[2] = LLVMBuildShl(builder, alpha,
1541                        lp_build_const_int_vec(gallivm, type32, 8), "");
1542    a[2] = LLVMBuildAnd(builder, a[2], mask8hi, "");
1543    a[3] = LLVMBuildAnd(builder, alpha, mask8hi, "");
1544 
1545    for (i = 0; i < 4; i++) {
1546       col[i] = LLVMBuildOr(builder, col[i], a[i], "");
1547    }
1548 }
1549 
1550 
1551 static LLVMValueRef
lp_build_lerpdxta_block(struct gallivm_state * gallivm,LLVMValueRef alpha0,LLVMValueRef alpha1,LLVMValueRef code,LLVMValueRef sel_mask)1552 lp_build_lerpdxta_block(struct gallivm_state *gallivm,
1553                         LLVMValueRef alpha0,
1554                         LLVMValueRef alpha1,
1555                         LLVMValueRef code,
1556                         LLVMValueRef sel_mask)
1557 {
1558    LLVMBuilderRef builder = gallivm->builder;
1559    LLVMValueRef delta, ainterp;
1560    LLVMValueRef weight5, weight7, weight;
1561    struct lp_type type16;
1562    struct lp_build_context bld;
1563 
1564    memset(&type16, 0, sizeof type16);
1565    type16.width = 16;
1566    type16.length = 8;
1567    type16.sign = TRUE;
1568 
1569    lp_build_context_init(&bld, gallivm, type16);
1570    /*
1571     * 256/7 is only 36.57 so we'd lose quite some precision. Since it would
1572     * actually be desirable to do this here with even higher accuracy than
1573     * even 8 bit (more or less required for rgtc, albeit that's not handled
1574     * here right now), shift the weights after multiplication by code.
1575     */
1576    weight5 = lp_build_const_int_vec(gallivm, type16, 256*64/5);
1577    weight7 = lp_build_const_int_vec(gallivm, type16, 256*64/7);
1578    weight = lp_build_select(&bld, sel_mask, weight7, weight5);
1579 
1580    /*
1581     * we'll get garbage in the elements which had code 0 (or larger than
1582     * 5 or 7) but we don't care (or rather, need to fix up anyway).
1583     */
1584    code = LLVMBuildSub(builder, code, bld.one, "");
1585 
1586    weight = LLVMBuildMul(builder, weight, code, "");
1587    weight = LLVMBuildLShr(builder, weight,
1588                           lp_build_const_int_vec(gallivm, type16, 6), "");
1589 
1590    delta = LLVMBuildSub(builder, alpha1, alpha0, "");
1591 
1592    ainterp = LLVMBuildMul(builder, delta, weight, "");
1593    ainterp = LLVMBuildLShr(builder, ainterp,
1594                            lp_build_const_int_vec(gallivm, type16, 8), "");
1595 
1596    /* lerp is done later (with packed values) */
1597 
1598    return ainterp;
1599 }
1600 
1601 
1602 /*
1603  * decode one dxt5 block.
1604  */
1605 static void
s3tc_decode_block_dxt5(struct gallivm_state * gallivm,enum pipe_format format,LLVMValueRef dxt_block,LLVMValueRef * col)1606 s3tc_decode_block_dxt5(struct gallivm_state *gallivm,
1607                        enum pipe_format format,
1608                        LLVMValueRef dxt_block,
1609                        LLVMValueRef *col)
1610 {
1611    LLVMBuilderRef builder = gallivm->builder;
1612    LLVMValueRef alpha, alpha0, alpha1, ares;
1613    LLVMValueRef ainterp, ainterp0, ainterp1, shuffle1, sel_mask, sel_mask2;
1614    LLVMValueRef a[4], acode, tmp0, tmp1;
1615    LLVMTypeRef i64t, i32t;
1616    struct lp_type type32, type64, type8, type16;
1617    struct lp_build_context bld16, bld8;
1618    unsigned i;
1619 
1620    memset(&type32, 0, sizeof type32);
1621    type32.width = 32;
1622    type32.length = 4;
1623 
1624    memset(&type64, 0, sizeof type64);
1625    type64.width = 64;
1626    type64.length = 2;
1627 
1628    memset(&type8, 0, sizeof type8);
1629    type8.width = 8;
1630    type8.length = 16;
1631 
1632    memset(&type16, 0, sizeof type16);
1633    type16.width = 16;
1634    type16.length = 8;
1635 
1636    lp_build_context_init(&bld16, gallivm, type16);
1637    lp_build_context_init(&bld8, gallivm, type8);
1638 
1639    i64t = lp_build_vec_type(gallivm, type64);
1640    i32t = lp_build_vec_type(gallivm, type32);
1641 
1642    s3tc_decode_block_dxt1(gallivm, format, dxt_block, col);
1643 
1644    /*
1645     * three possible strategies for vectorizing alpha:
1646     * 1) compute all 8 values then use scalar extraction
1647     *    (i.e. have all 8 alpha values packed in one 64bit scalar
1648     *    and do something like ax = vals >> (codex * 8) followed
1649     *    by inserting these values back into color)
1650     * 2) same as 8 but just use pshufb as a mini-LUT for selection.
1651     *    (without pshufb would need boatloads of cmp/selects trying to
1652     *    keep things vectorized for essentially scalar selection).
1653     * 3) do something similar to the uncached case
1654     *    needs more calculations (need to calc 16 values instead of 8 though
1655     *    that's only an issue for the lerp which we need to do twice otherwise
1656     *    everything still fits into 128bit) but keeps things vectorized mostly.
1657     * Trying 3) here though not sure it's really faster...
1658     * With pshufb, we try 2) (cheaper and more accurate)
1659     */
1660 
1661    /*
1662     * Ideally, we'd use 2 variable 16bit shifts here (byte shifts wouldn't
1663     * help since code crosses 8bit boundaries). But variable shifts are
1664     * AVX2 only, and even then only dword/quadword (intel _really_ hates
1665     * shifts!). Instead, emulate by 16bit muls.
1666     * Also, the required byte shuffles are essentially non-emulatable, so
1667     * require ssse3 (albeit other archs might do them fine).
1668     * This is not directly tied to ssse3 - just need sane byte shuffles.
1669     * But ordering is going to be different below so use same condition.
1670     */
1671 
1672 
1673    /* vectorize alpha */
1674    alpha = LLVMBuildBitCast(builder, dxt_block, i64t, "");
1675    alpha0 = LLVMBuildAnd(builder, alpha,
1676                          lp_build_const_int_vec(gallivm, type64, 0xff), "");
1677    alpha0 = LLVMBuildBitCast(builder, alpha0, bld16.vec_type, "");
1678    alpha = LLVMBuildBitCast(builder, alpha, bld16.vec_type, "");
1679    alpha1 = LLVMBuildLShr(builder, alpha,
1680                           lp_build_const_int_vec(gallivm, type16, 8), "");
1681    alpha = LLVMBuildBitCast(builder, alpha,  i64t, "");
1682    shuffle1 = lp_build_const_shuffle1(gallivm, 0, 8);
1683    alpha0 = LLVMBuildShuffleVector(builder, alpha0, alpha0, shuffle1, "");
1684    alpha1 = LLVMBuildShuffleVector(builder, alpha1, alpha1, shuffle1, "");
1685 
1686    type16.sign = TRUE;
1687    sel_mask = lp_build_compare(gallivm, type16, PIPE_FUNC_GREATER,
1688                                alpha0, alpha1);
1689    type16.sign = FALSE;
1690    sel_mask = LLVMBuildBitCast(builder, sel_mask, bld8.vec_type, "");
1691 
1692    if (!util_cpu_caps.has_ssse3) {
1693       LLVMValueRef acodeg, mask1, acode0, acode1;
1694 
1695       /* extraction of the 3 bit values into something more useful is HARD */
1696       /* first steps are actually scalar */
1697       acode = LLVMBuildLShr(builder, alpha,
1698                             lp_build_const_int_vec(gallivm, type64, 16), "");
1699       tmp0 = LLVMBuildAnd(builder, acode,
1700                           lp_build_const_int_vec(gallivm, type64, 0xffffff), "");
1701       tmp1 =  LLVMBuildLShr(builder, acode,
1702                             lp_build_const_int_vec(gallivm, type64, 24), "");
1703       tmp0 = LLVMBuildBitCast(builder, tmp0, i32t, "");
1704       tmp1 = LLVMBuildBitCast(builder, tmp1, i32t, "");
1705       acode = lp_build_interleave2(gallivm, type32, tmp0, tmp1, 0);
1706       /* now have 2x24bit in 4x32bit, order 01234567, 89..., undef, undef */
1707       tmp0 = LLVMBuildAnd(builder, acode,
1708                           lp_build_const_int_vec(gallivm, type32, 0xfff), "");
1709       tmp1 =  LLVMBuildLShr(builder, acode,
1710                             lp_build_const_int_vec(gallivm, type32, 12), "");
1711       acode = lp_build_interleave2(gallivm, type32, tmp0, tmp1, 0);
1712       /* now have 4x12bit in 4x32bit, order 0123, 4567, ,,, */
1713       tmp0 = LLVMBuildAnd(builder, acode,
1714                           lp_build_const_int_vec(gallivm, type32, 0x3f), "");
1715       tmp1 =  LLVMBuildLShr(builder, acode,
1716                             lp_build_const_int_vec(gallivm, type32, 6), "");
1717       /* use signed pack doesn't matter and otherwise need sse41 */
1718       type32.sign = type16.sign = TRUE;
1719       acode = lp_build_pack2(gallivm, type32, type16, tmp0, tmp1);
1720       type32.sign = type16.sign = FALSE;
1721       /* now have 8x6bit in 8x16bit, 01, 45, 89, ..., 23, 67, ... */
1722       acode0 = LLVMBuildAnd(builder, acode,
1723                             lp_build_const_int_vec(gallivm, type16, 0x7), "");
1724       acode1 =  LLVMBuildLShr(builder, acode,
1725                               lp_build_const_int_vec(gallivm, type16, 3), "");
1726       acode = lp_build_pack2(gallivm, type16, type8, acode0, acode1);
1727       /* acode0 contains elems 0,4,8,12,2,6,10,14, acode1 1,5,9,... */
1728 
1729       acodeg = LLVMBuildAnd(builder, acode,
1730                             LLVMBuildNot(builder, sel_mask, ""), "");
1731       mask1 = lp_build_compare(gallivm, type8, PIPE_FUNC_EQUAL,
1732                                acode, bld8.one);
1733 
1734       sel_mask = LLVMBuildBitCast(builder, sel_mask, bld16.vec_type, "");
1735       ainterp0 = lp_build_lerpdxta_block(gallivm, alpha0, alpha1, acode0, sel_mask);
1736       ainterp1 = lp_build_lerpdxta_block(gallivm, alpha0, alpha1, acode1, sel_mask);
1737       sel_mask = LLVMBuildBitCast(builder, sel_mask, bld8.vec_type, "");
1738       ainterp = lp_build_pack2(gallivm, type16, type8, ainterp0, ainterp1);
1739       alpha0 = lp_build_pack2(gallivm, type16, type8, alpha0, alpha0);
1740       alpha1 = lp_build_pack2(gallivm, type16, type8, alpha1, alpha1);
1741       ainterp = LLVMBuildAdd(builder, ainterp, alpha0, "");
1742       /* Fix up val01 */
1743       sel_mask2 = lp_build_compare(gallivm, type8, PIPE_FUNC_EQUAL,
1744                                    acode, bld8.zero);
1745       ainterp = lp_build_select(&bld8, sel_mask2, alpha0, ainterp);
1746       ainterp = lp_build_select(&bld8, mask1, alpha1, ainterp);
1747 
1748       /* fix up val67 if a0 <= a1 */
1749       sel_mask2 = lp_build_compare(gallivm, type8, PIPE_FUNC_EQUAL,
1750                                    acodeg, lp_build_const_int_vec(gallivm, type8, 6));
1751       ares = LLVMBuildAnd(builder, ainterp, LLVMBuildNot(builder, sel_mask2, ""), "");
1752       sel_mask2 = lp_build_compare(gallivm, type8, PIPE_FUNC_EQUAL,
1753                                    acodeg, lp_build_const_int_vec(gallivm, type8, 7));
1754       ares = LLVMBuildOr(builder, ares, sel_mask2, "");
1755 
1756       /* unpack in right order (0,4,8,12,1,5,..) */
1757       /* this gives us zero, a0, zero, a4, zero, a8, ... for tmp0 */
1758       tmp0 = lp_build_interleave2(gallivm, type8, bld8.zero, ares, 0);
1759       tmp1 = lp_build_interleave2(gallivm, type8, bld8.zero, ares, 1);
1760       tmp0 = LLVMBuildBitCast(builder, tmp0, bld16.vec_type, "");
1761       tmp1 = LLVMBuildBitCast(builder, tmp1, bld16.vec_type, "");
1762 
1763       a[0] = lp_build_interleave2(gallivm, type16, bld16.zero, tmp0, 0);
1764       a[1] = lp_build_interleave2(gallivm, type16, bld16.zero, tmp1, 0);
1765       a[2] = lp_build_interleave2(gallivm, type16, bld16.zero, tmp0, 1);
1766       a[3] = lp_build_interleave2(gallivm, type16, bld16.zero, tmp1, 1);
1767    }
1768    else {
1769       LLVMValueRef elems[16], intrargs[2], shufa, mulclo, mulchi, mask8hi;
1770       LLVMTypeRef type16s = LLVMInt16TypeInContext(gallivm->context);
1771       LLVMTypeRef type8s = LLVMInt8TypeInContext(gallivm->context);
1772       unsigned i, j;
1773       /*
1774        * Ideally, we'd use 2 variable 16bit shifts here (byte shifts wouldn't
1775        * help since code crosses 8bit boundaries). But variable shifts are
1776        * AVX2 only, and even then only dword/quadword (intel _really_ hates
1777        * shifts!). Instead, emulate by 16bit muls.
1778        * Also, the required byte shuffles are essentially non-emulatable, so
1779        * require ssse3 (albeit other archs might do them fine, but the
1780        * complete path is ssse3 only for now).
1781        */
1782       for (i = 0, j = 0; i < 16; i += 8, j += 3) {
1783          elems[i+0] = elems[i+1] = elems[i+2] = lp_build_const_int32(gallivm, j+2);
1784          elems[i+3] = elems[i+4] = lp_build_const_int32(gallivm, j+3);
1785          elems[i+5] = elems[i+6] = elems[i+7] = lp_build_const_int32(gallivm, j+4);
1786       }
1787       shufa = LLVMConstVector(elems, 16);
1788       alpha = LLVMBuildBitCast(builder, alpha, bld8.vec_type, "");
1789       acode = LLVMBuildShuffleVector(builder, alpha, bld8.undef, shufa, "");
1790       acode = LLVMBuildBitCast(builder, acode, bld16.vec_type, "");
1791       /*
1792        * Put 0/2/4/6 into high 3 bits of 16 bits (save AND mask)
1793        * Do the same for 1/3/5/7 (albeit still need mask there - ideally
1794        * we'd place them into bits 4-7 so could save shift but impossible.)
1795        */
1796       for (i = 0; i < 8; i += 4) {
1797          elems[i+0] = LLVMConstInt(type16s, 1 << (13-0), 0);
1798          elems[i+1] = LLVMConstInt(type16s, 1 << (13-6), 0);
1799          elems[i+2] = LLVMConstInt(type16s, 1 << (13-4), 0);
1800          elems[i+3] = LLVMConstInt(type16s, 1 << (13-2), 0);
1801       }
1802       mulclo = LLVMConstVector(elems, 8);
1803       for (i = 0; i < 8; i += 4) {
1804          elems[i+0] = LLVMConstInt(type16s, 1 << (13-3), 0);
1805          elems[i+1] = LLVMConstInt(type16s, 1 << (13-9), 0);
1806          elems[i+2] = LLVMConstInt(type16s, 1 << (13-7), 0);
1807          elems[i+3] = LLVMConstInt(type16s, 1 << (13-5), 0);
1808       }
1809       mulchi = LLVMConstVector(elems, 8);
1810 
1811       tmp0 = LLVMBuildMul(builder, acode, mulclo, "");
1812       tmp1 = LLVMBuildMul(builder, acode, mulchi, "");
1813       tmp0 = LLVMBuildLShr(builder, tmp0,
1814                            lp_build_const_int_vec(gallivm, type16, 13), "");
1815       tmp1 = LLVMBuildLShr(builder, tmp1,
1816                            lp_build_const_int_vec(gallivm, type16, 5), "");
1817       tmp1 = LLVMBuildAnd(builder, tmp1,
1818                           lp_build_const_int_vec(gallivm, type16, 0x700), "");
1819       acode = LLVMBuildOr(builder, tmp0, tmp1, "");
1820       acode = LLVMBuildBitCast(builder, acode, bld8.vec_type, "");
1821 
1822       /*
1823        * Note that ordering is different here to non-ssse3 path:
1824        * 0/1/2/3/4/5...
1825        */
1826 
1827       LLVMValueRef weight0, weight1, weight, delta;
1828       LLVMValueRef constff_elem7, const0_elem6;
1829       /* weights, correctly rounded (round(256*x/7)) */
1830       elems[0] = LLVMConstInt(type16s, 256, 0);
1831       elems[1] = LLVMConstInt(type16s, 0, 0);
1832       elems[2] = LLVMConstInt(type16s, 219, 0);
1833       elems[3] =  LLVMConstInt(type16s, 183, 0);
1834       elems[4] =  LLVMConstInt(type16s, 146, 0);
1835       elems[5] =  LLVMConstInt(type16s, 110, 0);
1836       elems[6] =  LLVMConstInt(type16s, 73, 0);
1837       elems[7] =  LLVMConstInt(type16s, 37, 0);
1838       weight0 = LLVMConstVector(elems, 8);
1839 
1840       elems[0] = LLVMConstInt(type16s, 256, 0);
1841       elems[1] = LLVMConstInt(type16s, 0, 0);
1842       elems[2] = LLVMConstInt(type16s, 205, 0);
1843       elems[3] =  LLVMConstInt(type16s, 154, 0);
1844       elems[4] =  LLVMConstInt(type16s, 102, 0);
1845       elems[5] =  LLVMConstInt(type16s, 51, 0);
1846       elems[6] =  LLVMConstInt(type16s, 0, 0);
1847       elems[7] =  LLVMConstInt(type16s, 0, 0);
1848       weight1 = LLVMConstVector(elems, 8);
1849 
1850       weight0 = LLVMBuildBitCast(builder, weight0, bld8.vec_type, "");
1851       weight1 = LLVMBuildBitCast(builder, weight1, bld8.vec_type, "");
1852       weight = lp_build_select(&bld8, sel_mask, weight0, weight1);
1853       weight = LLVMBuildBitCast(builder, weight, bld16.vec_type, "");
1854 
1855       for (i = 0; i < 16; i++) {
1856          elems[i] = LLVMConstNull(type8s);
1857       }
1858       elems[7] = LLVMConstInt(type8s, 255, 0);
1859       constff_elem7 = LLVMConstVector(elems, 16);
1860 
1861       for (i = 0; i < 16; i++) {
1862          elems[i] = LLVMConstInt(type8s, 255, 0);
1863       }
1864       elems[6] = LLVMConstInt(type8s, 0, 0);
1865       const0_elem6 = LLVMConstVector(elems, 16);
1866 
1867       /* standard simple lerp - but the version we need isn't available */
1868       delta = LLVMBuildSub(builder, alpha0, alpha1, "");
1869       ainterp = LLVMBuildMul(builder, delta, weight, "");
1870       ainterp = LLVMBuildLShr(builder, ainterp,
1871                               lp_build_const_int_vec(gallivm, type16, 8), "");
1872       ainterp = LLVMBuildBitCast(builder, ainterp, bld8.vec_type, "");
1873       alpha1 = LLVMBuildBitCast(builder, alpha1, bld8.vec_type, "");
1874       ainterp = LLVMBuildAdd(builder, ainterp, alpha1, "");
1875       ainterp = LLVMBuildBitCast(builder, ainterp, bld16.vec_type, "");
1876       ainterp = lp_build_pack2(gallivm, type16, type8, ainterp, bld16.undef);
1877 
1878       /* fixing 0/0xff case is slightly more complex */
1879       constff_elem7 = LLVMBuildAnd(builder, constff_elem7,
1880                                    LLVMBuildNot(builder, sel_mask, ""), "");
1881       const0_elem6 = LLVMBuildOr(builder, const0_elem6, sel_mask, "");
1882       ainterp = LLVMBuildOr(builder, ainterp, constff_elem7, "");
1883       ainterp = LLVMBuildAnd(builder, ainterp, const0_elem6, "");
1884 
1885       /* now pick all 16 elements at once! */
1886       intrargs[0] = ainterp;
1887       intrargs[1] = acode;
1888       ares = lp_build_intrinsic(builder, "llvm.x86.ssse3.pshuf.b.128",
1889                                 bld8.vec_type, intrargs, 2, 0);
1890 
1891       ares = LLVMBuildBitCast(builder, ares, i32t, "");
1892       mask8hi = lp_build_const_int_vec(gallivm, type32, 0xff000000);
1893       a[0] = LLVMBuildShl(builder, ares,
1894                           lp_build_const_int_vec(gallivm, type32, 24), "");
1895       a[1] = LLVMBuildShl(builder, ares,
1896                           lp_build_const_int_vec(gallivm, type32, 16), "");
1897       a[1] = LLVMBuildAnd(builder, a[1], mask8hi, "");
1898       a[2] = LLVMBuildShl(builder, ares,
1899                           lp_build_const_int_vec(gallivm, type32, 8), "");
1900       a[2] = LLVMBuildAnd(builder, a[2], mask8hi, "");
1901       a[3] = LLVMBuildAnd(builder, ares, mask8hi, "");
1902    }
1903 
1904    for (i = 0; i < 4; i++) {
1905       a[i] = LLVMBuildBitCast(builder, a[i], i32t, "");
1906       col[i] = LLVMBuildOr(builder, col[i], a[i], "");
1907    }
1908 }
1909 
1910 
1911 static void
generate_update_cache_one_block(struct gallivm_state * gallivm,LLVMValueRef function,const struct util_format_description * format_desc)1912 generate_update_cache_one_block(struct gallivm_state *gallivm,
1913                                 LLVMValueRef function,
1914                                 const struct util_format_description *format_desc)
1915 {
1916    LLVMBasicBlockRef block;
1917    LLVMBuilderRef old_builder;
1918    LLVMValueRef ptr_addr;
1919    LLVMValueRef hash_index;
1920    LLVMValueRef cache;
1921    LLVMValueRef dxt_block, tag_value;
1922    LLVMValueRef col[LP_MAX_VECTOR_LENGTH];
1923 
1924    ptr_addr     = LLVMGetParam(function, 0);
1925    hash_index   = LLVMGetParam(function, 1);
1926    cache        = LLVMGetParam(function, 2);
1927 
1928    lp_build_name(ptr_addr,   "ptr_addr"  );
1929    lp_build_name(hash_index, "hash_index");
1930    lp_build_name(cache,      "cache_addr");
1931 
1932    /*
1933     * Function body
1934     */
1935 
1936    old_builder = gallivm->builder;
1937    block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
1938    gallivm->builder = LLVMCreateBuilderInContext(gallivm->context);
1939    LLVMPositionBuilderAtEnd(gallivm->builder, block);
1940 
1941    lp_build_gather_s3tc_simple_scalar(gallivm, format_desc, &dxt_block,
1942                                       ptr_addr);
1943 
1944    switch (format_desc->format) {
1945    case PIPE_FORMAT_DXT1_RGB:
1946    case PIPE_FORMAT_DXT1_RGBA:
1947    case PIPE_FORMAT_DXT1_SRGB:
1948    case PIPE_FORMAT_DXT1_SRGBA:
1949       s3tc_decode_block_dxt1(gallivm, format_desc->format, dxt_block, col);
1950       break;
1951    case PIPE_FORMAT_DXT3_RGBA:
1952    case PIPE_FORMAT_DXT3_SRGBA:
1953       s3tc_decode_block_dxt3(gallivm, format_desc->format, dxt_block, col);
1954       break;
1955    case PIPE_FORMAT_DXT5_RGBA:
1956    case PIPE_FORMAT_DXT5_SRGBA:
1957       s3tc_decode_block_dxt5(gallivm, format_desc->format, dxt_block, col);
1958       break;
1959    default:
1960       assert(0);
1961       s3tc_decode_block_dxt1(gallivm, format_desc->format, dxt_block, col);
1962       break;
1963    }
1964 
1965    tag_value = LLVMBuildPtrToInt(gallivm->builder, ptr_addr,
1966                                  LLVMInt64TypeInContext(gallivm->context), "");
1967    s3tc_store_cached_block(gallivm, col, tag_value, hash_index, cache);
1968 
1969    LLVMBuildRetVoid(gallivm->builder);
1970 
1971    LLVMDisposeBuilder(gallivm->builder);
1972    gallivm->builder = old_builder;
1973 
1974    gallivm_verify_function(gallivm, function);
1975 }
1976 
1977 
1978 static void
update_cached_block(struct gallivm_state * gallivm,const struct util_format_description * format_desc,LLVMValueRef ptr_addr,LLVMValueRef hash_index,LLVMValueRef cache)1979 update_cached_block(struct gallivm_state *gallivm,
1980                     const struct util_format_description *format_desc,
1981                     LLVMValueRef ptr_addr,
1982                     LLVMValueRef hash_index,
1983                     LLVMValueRef cache)
1984 
1985 {
1986    LLVMBuilderRef builder = gallivm->builder;
1987    LLVMModuleRef module = gallivm->module;
1988    char name[256];
1989    LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
1990    LLVMTypeRef pi8t = LLVMPointerType(i8t, 0);
1991    LLVMValueRef function, inst;
1992    LLVMBasicBlockRef bb;
1993    LLVMValueRef args[3];
1994 
1995    snprintf(name, sizeof name, "%s_update_cache_one_block",
1996             format_desc->short_name);
1997    function = LLVMGetNamedFunction(module, name);
1998 
1999    if (!function) {
2000       LLVMTypeRef ret_type;
2001       LLVMTypeRef arg_types[3];
2002       LLVMTypeRef function_type;
2003       unsigned arg;
2004 
2005       /*
2006        * Generate the function prototype.
2007        */
2008 
2009       ret_type = LLVMVoidTypeInContext(gallivm->context);
2010       arg_types[0] = pi8t;
2011       arg_types[1] = LLVMInt32TypeInContext(gallivm->context);
2012       arg_types[2] = LLVMTypeOf(cache); // XXX: put right type here
2013       function_type = LLVMFunctionType(ret_type, arg_types, ARRAY_SIZE(arg_types), 0);
2014       function = LLVMAddFunction(module, name, function_type);
2015 
2016       for (arg = 0; arg < ARRAY_SIZE(arg_types); ++arg)
2017          if (LLVMGetTypeKind(arg_types[arg]) == LLVMPointerTypeKind)
2018             lp_add_function_attr(function, arg + 1, LP_FUNC_ATTR_NOALIAS);
2019 
2020       LLVMSetFunctionCallConv(function, LLVMFastCallConv);
2021       LLVMSetVisibility(function, LLVMHiddenVisibility);
2022       generate_update_cache_one_block(gallivm, function, format_desc);
2023    }
2024 
2025    args[0] = ptr_addr;
2026    args[1] = hash_index;
2027    args[2] = cache;
2028 
2029    LLVMBuildCall(builder, function, args, ARRAY_SIZE(args), "");
2030    bb = LLVMGetInsertBlock(builder);
2031    inst = LLVMGetLastInstruction(bb);
2032    LLVMSetInstructionCallConv(inst, LLVMFastCallConv);
2033 }
2034 
2035 /*
2036  * cached lookup
2037  */
2038 static LLVMValueRef
compressed_fetch_cached(struct gallivm_state * gallivm,const struct util_format_description * format_desc,unsigned n,LLVMValueRef base_ptr,LLVMValueRef offset,LLVMValueRef i,LLVMValueRef j,LLVMValueRef cache)2039 compressed_fetch_cached(struct gallivm_state *gallivm,
2040                         const struct util_format_description *format_desc,
2041                         unsigned n,
2042                         LLVMValueRef base_ptr,
2043                         LLVMValueRef offset,
2044                         LLVMValueRef i,
2045                         LLVMValueRef j,
2046                         LLVMValueRef cache)
2047 
2048 {
2049    LLVMBuilderRef builder = gallivm->builder;
2050    unsigned count, low_bit, log2size;
2051    LLVMValueRef color, offset_stored, addr, ptr_addrtrunc, tmp;
2052    LLVMValueRef ij_index, hash_index, hash_mask, block_index;
2053    LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
2054    LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
2055    LLVMTypeRef i64t = LLVMInt64TypeInContext(gallivm->context);
2056    struct lp_type type;
2057    struct lp_build_context bld32;
2058    memset(&type, 0, sizeof type);
2059    type.width = 32;
2060    type.length = n;
2061 
2062    lp_build_context_init(&bld32, gallivm, type);
2063 
2064    /*
2065     * compute hash - we use direct mapped cache, the hash function could
2066     *                be better but it needs to be simple
2067     * per-element:
2068     *    compare offset with offset stored at tag (hash)
2069     *    if not equal extract block, store block, update tag
2070     *    extract color from cache
2071     *    assemble colors
2072     */
2073 
2074    low_bit = util_logbase2(format_desc->block.bits / 8);
2075    log2size = util_logbase2(LP_BUILD_FORMAT_CACHE_SIZE);
2076    addr = LLVMBuildPtrToInt(builder, base_ptr, i64t, "");
2077    ptr_addrtrunc = LLVMBuildPtrToInt(builder, base_ptr, i32t, "");
2078    ptr_addrtrunc = lp_build_broadcast_scalar(&bld32, ptr_addrtrunc);
2079    /* For the hash function, first mask off the unused lowest bits. Then just
2080       do some xor with address bits - only use lower 32bits */
2081    ptr_addrtrunc = LLVMBuildAdd(builder, offset, ptr_addrtrunc, "");
2082    ptr_addrtrunc = LLVMBuildLShr(builder, ptr_addrtrunc,
2083                                  lp_build_const_int_vec(gallivm, type, low_bit), "");
2084    /* This only really makes sense for size 64,128,256 */
2085    hash_index = ptr_addrtrunc;
2086    ptr_addrtrunc = LLVMBuildLShr(builder, ptr_addrtrunc,
2087                                  lp_build_const_int_vec(gallivm, type, 2*log2size), "");
2088    hash_index = LLVMBuildXor(builder, ptr_addrtrunc, hash_index, "");
2089    tmp = LLVMBuildLShr(builder, hash_index,
2090                        lp_build_const_int_vec(gallivm, type, log2size), "");
2091    hash_index = LLVMBuildXor(builder, hash_index, tmp, "");
2092 
2093    hash_mask = lp_build_const_int_vec(gallivm, type, LP_BUILD_FORMAT_CACHE_SIZE - 1);
2094    hash_index = LLVMBuildAnd(builder, hash_index, hash_mask, "");
2095    ij_index = LLVMBuildShl(builder, i, lp_build_const_int_vec(gallivm, type, 2), "");
2096    ij_index = LLVMBuildAdd(builder, ij_index, j, "");
2097    block_index = LLVMBuildShl(builder, hash_index,
2098                               lp_build_const_int_vec(gallivm, type, 4), "");
2099    block_index = LLVMBuildAdd(builder, ij_index, block_index, "");
2100 
2101    if (n > 1) {
2102       color = bld32.undef;
2103       for (count = 0; count < n; count++) {
2104          LLVMValueRef index, cond, colorx;
2105          LLVMValueRef block_indexx, hash_indexx, addrx, offsetx, ptr_addrx;
2106          struct lp_build_if_state if_ctx;
2107 
2108          index = lp_build_const_int32(gallivm, count);
2109          offsetx = LLVMBuildExtractElement(builder, offset, index, "");
2110          addrx = LLVMBuildZExt(builder, offsetx, i64t, "");
2111          addrx = LLVMBuildAdd(builder, addrx, addr, "");
2112          block_indexx = LLVMBuildExtractElement(builder, block_index, index, "");
2113          hash_indexx = LLVMBuildLShr(builder, block_indexx,
2114                                      lp_build_const_int32(gallivm, 4), "");
2115          offset_stored = s3tc_lookup_tag_data(gallivm, cache, hash_indexx);
2116          cond = LLVMBuildICmp(builder, LLVMIntNE, offset_stored, addrx, "");
2117 
2118          lp_build_if(&if_ctx, gallivm, cond);
2119          {
2120             ptr_addrx = LLVMBuildIntToPtr(builder, addrx,
2121                                           LLVMPointerType(i8t, 0), "");
2122             update_cached_block(gallivm, format_desc, ptr_addrx, hash_indexx, cache);
2123 #if LP_BUILD_FORMAT_CACHE_DEBUG
2124             s3tc_update_cache_access(gallivm, cache, 1,
2125                                      LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_MISS);
2126 #endif
2127          }
2128          lp_build_endif(&if_ctx);
2129 
2130          colorx = s3tc_lookup_cached_pixel(gallivm, cache, block_indexx);
2131 
2132          color = LLVMBuildInsertElement(builder, color, colorx,
2133                                         lp_build_const_int32(gallivm, count), "");
2134       }
2135    }
2136    else {
2137       LLVMValueRef cond;
2138       struct lp_build_if_state if_ctx;
2139 
2140       tmp = LLVMBuildZExt(builder, offset, i64t, "");
2141       addr = LLVMBuildAdd(builder, tmp, addr, "");
2142       offset_stored = s3tc_lookup_tag_data(gallivm, cache, hash_index);
2143       cond = LLVMBuildICmp(builder, LLVMIntNE, offset_stored, addr, "");
2144 
2145       lp_build_if(&if_ctx, gallivm, cond);
2146       {
2147          tmp = LLVMBuildIntToPtr(builder, addr, LLVMPointerType(i8t, 0), "");
2148          update_cached_block(gallivm, format_desc, tmp, hash_index, cache);
2149 #if LP_BUILD_FORMAT_CACHE_DEBUG
2150          s3tc_update_cache_access(gallivm, cache, 1,
2151                                   LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_MISS);
2152 #endif
2153       }
2154       lp_build_endif(&if_ctx);
2155 
2156       color = s3tc_lookup_cached_pixel(gallivm, cache, block_index);
2157    }
2158 #if LP_BUILD_FORMAT_CACHE_DEBUG
2159    s3tc_update_cache_access(gallivm, cache, n,
2160                             LP_BUILD_FORMAT_CACHE_MEMBER_ACCESS_TOTAL);
2161 #endif
2162    return LLVMBuildBitCast(builder, color, LLVMVectorType(i8t, n * 4), "");
2163 }
2164 
2165 
2166 static LLVMValueRef
s3tc_dxt5_to_rgba_aos(struct gallivm_state * gallivm,unsigned n,enum pipe_format format,LLVMValueRef colors,LLVMValueRef codewords,LLVMValueRef alpha_lo,LLVMValueRef alpha_hi,LLVMValueRef i,LLVMValueRef j)2167 s3tc_dxt5_to_rgba_aos(struct gallivm_state *gallivm,
2168                       unsigned n,
2169                       enum pipe_format format,
2170                       LLVMValueRef colors,
2171                       LLVMValueRef codewords,
2172                       LLVMValueRef alpha_lo,
2173                       LLVMValueRef alpha_hi,
2174                       LLVMValueRef i,
2175                       LLVMValueRef j)
2176 {
2177    return s3tc_dxt5_full_to_rgba_aos(gallivm, n, format, colors,
2178                                      codewords, alpha_lo, alpha_hi, i, j);
2179 }
2180 
2181 
2182 /**
2183  * @param n  number of pixels processed (usually n=4, but it should also work with n=1
2184  *           and multiples of 4)
2185  * @param base_ptr  base pointer (32bit or 64bit pointer depending on the architecture)
2186  * @param offset <n x i32> vector with the relative offsets of the S3TC blocks
2187  * @param i  is a <n x i32> vector with the x subpixel coordinate (0..3)
2188  * @param j  is a <n x i32> vector with the y subpixel coordinate (0..3)
2189  * @return  a <4*n x i8> vector with the pixel RGBA values in AoS
2190  */
2191 LLVMValueRef
lp_build_fetch_s3tc_rgba_aos(struct gallivm_state * gallivm,const struct util_format_description * format_desc,unsigned n,LLVMValueRef base_ptr,LLVMValueRef offset,LLVMValueRef i,LLVMValueRef j,LLVMValueRef cache)2192 lp_build_fetch_s3tc_rgba_aos(struct gallivm_state *gallivm,
2193                              const struct util_format_description *format_desc,
2194                              unsigned n,
2195                              LLVMValueRef base_ptr,
2196                              LLVMValueRef offset,
2197                              LLVMValueRef i,
2198                              LLVMValueRef j,
2199                              LLVMValueRef cache)
2200 {
2201    LLVMValueRef rgba;
2202    LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
2203    LLVMBuilderRef builder = gallivm->builder;
2204 
2205    assert(format_desc->layout == UTIL_FORMAT_LAYOUT_S3TC);
2206    assert(format_desc->block.width == 4);
2207    assert(format_desc->block.height == 4);
2208 
2209    assert((n == 1) || (n % 4 == 0));
2210 
2211 /*   debug_printf("format = %d\n", format_desc->format);*/
2212    if (cache) {
2213       rgba = compressed_fetch_cached(gallivm, format_desc, n,
2214                                      base_ptr, offset, i, j, cache);
2215       return rgba;
2216    }
2217 
2218    /*
2219     * Could use n > 8 here with avx2, but doesn't seem faster.
2220     */
2221    if (n > 4) {
2222       unsigned count;
2223       LLVMTypeRef i8_vectype = LLVMVectorType(i8t, 4 * n);
2224       LLVMTypeRef i128_type = LLVMIntTypeInContext(gallivm->context, 128);
2225       LLVMTypeRef i128_vectype =  LLVMVectorType(i128_type, n / 4);
2226       LLVMTypeRef i324_vectype = LLVMVectorType(LLVMInt32TypeInContext(
2227                                                 gallivm->context), 4);
2228       LLVMValueRef offset4, i4, j4, rgba4[LP_MAX_VECTOR_LENGTH/16];
2229       struct lp_type lp_324_vectype = lp_type_uint_vec(32, 128);
2230 
2231       assert(n / 4 <= ARRAY_SIZE(rgba4));
2232 
2233       rgba = LLVMGetUndef(i128_vectype);
2234 
2235       for (count = 0; count < n / 4; count++) {
2236          LLVMValueRef colors, codewords, alpha_lo = NULL, alpha_hi = NULL;
2237 
2238          i4 = lp_build_extract_range(gallivm, i, count * 4, 4);
2239          j4 = lp_build_extract_range(gallivm, j, count * 4, 4);
2240          offset4 = lp_build_extract_range(gallivm, offset, count * 4, 4);
2241 
2242          lp_build_gather_s3tc(gallivm, 4, format_desc, &colors, &codewords,
2243                               &alpha_lo, &alpha_hi, base_ptr, offset4);
2244 
2245          switch (format_desc->format) {
2246          case PIPE_FORMAT_DXT1_RGB:
2247          case PIPE_FORMAT_DXT1_RGBA:
2248          case PIPE_FORMAT_DXT1_SRGB:
2249          case PIPE_FORMAT_DXT1_SRGBA:
2250             rgba4[count] = s3tc_dxt1_to_rgba_aos(gallivm, 4, format_desc->format,
2251                                                  colors, codewords, i4, j4);
2252             break;
2253          case PIPE_FORMAT_DXT3_RGBA:
2254          case PIPE_FORMAT_DXT3_SRGBA:
2255             rgba4[count] = s3tc_dxt3_to_rgba_aos(gallivm, 4, format_desc->format, colors,
2256                                                  codewords, alpha_lo, alpha_hi, i4, j4);
2257             break;
2258          case PIPE_FORMAT_DXT5_RGBA:
2259          case PIPE_FORMAT_DXT5_SRGBA:
2260             rgba4[count] = s3tc_dxt5_to_rgba_aos(gallivm, 4, format_desc->format, colors,
2261                                                  codewords, alpha_lo, alpha_hi, i4, j4);
2262             break;
2263          default:
2264             assert(0);
2265             rgba4[count] = LLVMGetUndef(LLVMVectorType(i8t, 4));
2266             break;
2267          }
2268          /* shuffles typically give best results with dword elements...*/
2269          rgba4[count] = LLVMBuildBitCast(builder, rgba4[count], i324_vectype, "");
2270       }
2271       rgba = lp_build_concat(gallivm, rgba4, lp_324_vectype, n / 4);
2272       rgba = LLVMBuildBitCast(builder, rgba, i8_vectype, "");
2273    }
2274    else {
2275       LLVMValueRef colors, codewords, alpha_lo = NULL, alpha_hi = NULL;
2276 
2277       lp_build_gather_s3tc(gallivm, n, format_desc, &colors, &codewords,
2278                            &alpha_lo, &alpha_hi, base_ptr, offset);
2279 
2280       switch (format_desc->format) {
2281       case PIPE_FORMAT_DXT1_RGB:
2282       case PIPE_FORMAT_DXT1_RGBA:
2283       case PIPE_FORMAT_DXT1_SRGB:
2284       case PIPE_FORMAT_DXT1_SRGBA:
2285          rgba = s3tc_dxt1_to_rgba_aos(gallivm, n, format_desc->format,
2286                                       colors, codewords, i, j);
2287          break;
2288       case PIPE_FORMAT_DXT3_RGBA:
2289       case PIPE_FORMAT_DXT3_SRGBA:
2290          rgba = s3tc_dxt3_to_rgba_aos(gallivm, n, format_desc->format, colors,
2291                                       codewords, alpha_lo, alpha_hi, i, j);
2292          break;
2293       case PIPE_FORMAT_DXT5_RGBA:
2294       case PIPE_FORMAT_DXT5_SRGBA:
2295          rgba = s3tc_dxt5_to_rgba_aos(gallivm, n, format_desc->format, colors,
2296                                       codewords, alpha_lo, alpha_hi, i, j);
2297          break;
2298       default:
2299          assert(0);
2300          rgba = LLVMGetUndef(LLVMVectorType(i8t, 4*n));
2301          break;
2302       }
2303    }
2304 
2305    /* always return just decompressed values - srgb conversion is done later */
2306 
2307    return rgba;
2308 }
2309 
2310 /**
2311  * Gather elements from scatter positions in memory into vectors.
2312  * This is customised for fetching texels from s3tc textures.
2313  * For SSE, typical value is length=4.
2314  *
2315  * @param length length of the offsets
2316  * @param colors the stored colors of the blocks will be extracted into this.
2317  * @param codewords the codewords of the blocks will be extracted into this.
2318  * @param alpha_lo used for storing lower 32bit of alpha components for dxt3/5
2319  * @param alpha_hi used for storing higher 32bit of alpha components for dxt3/5
2320  * @param base_ptr base pointer, should be a i8 pointer type.
2321  * @param offsets vector with offsets
2322  */
2323 static void
lp_build_gather_rgtc(struct gallivm_state * gallivm,unsigned length,const struct util_format_description * format_desc,LLVMValueRef * red_lo,LLVMValueRef * red_hi,LLVMValueRef * green_lo,LLVMValueRef * green_hi,LLVMValueRef base_ptr,LLVMValueRef offsets)2324 lp_build_gather_rgtc(struct gallivm_state *gallivm,
2325                      unsigned length,
2326                      const struct util_format_description *format_desc,
2327                      LLVMValueRef *red_lo, LLVMValueRef *red_hi,
2328                      LLVMValueRef *green_lo, LLVMValueRef *green_hi,
2329                      LLVMValueRef base_ptr,
2330                      LLVMValueRef offsets)
2331 {
2332    LLVMBuilderRef builder = gallivm->builder;
2333    unsigned block_bits = format_desc->block.bits;
2334    unsigned i;
2335    LLVMValueRef elems[8];
2336    LLVMTypeRef type32 = LLVMInt32TypeInContext(gallivm->context);
2337    LLVMTypeRef type64 = LLVMInt64TypeInContext(gallivm->context);
2338    LLVMTypeRef type32dxt;
2339    struct lp_type lp_type32dxt;
2340 
2341    memset(&lp_type32dxt, 0, sizeof lp_type32dxt);
2342    lp_type32dxt.width = 32;
2343    lp_type32dxt.length = block_bits / 32;
2344    type32dxt = lp_build_vec_type(gallivm, lp_type32dxt);
2345 
2346    assert(block_bits == 64 || block_bits == 128);
2347    assert(length == 1 || length == 4 || length == 8);
2348 
2349    for (i = 0; i < length; ++i) {
2350       elems[i] = lp_build_gather_elem(gallivm, length,
2351                                       block_bits, block_bits, TRUE,
2352                                       base_ptr, offsets, i, FALSE);
2353       elems[i] = LLVMBuildBitCast(builder, elems[i], type32dxt, "");
2354    }
2355    if (length == 1) {
2356       LLVMValueRef elem = elems[0];
2357 
2358       *red_lo = LLVMBuildExtractElement(builder, elem,
2359                                         lp_build_const_int32(gallivm, 0), "");
2360       *red_hi = LLVMBuildExtractElement(builder, elem,
2361                                         lp_build_const_int32(gallivm, 1), "");
2362 
2363       if (block_bits == 128) {
2364          *green_lo = LLVMBuildExtractElement(builder, elem,
2365                                              lp_build_const_int32(gallivm, 2), "");
2366          *green_hi = LLVMBuildExtractElement(builder, elem,
2367                                              lp_build_const_int32(gallivm, 3), "");
2368       }
2369    } else {
2370       LLVMValueRef tmp[4];
2371       struct lp_type lp_type32, lp_type64;
2372       memset(&lp_type32, 0, sizeof lp_type32);
2373       lp_type32.width = 32;
2374       lp_type32.length = length;
2375       lp_type32.sign = lp_type32dxt.sign;
2376       memset(&lp_type64, 0, sizeof lp_type64);
2377       lp_type64.width = 64;
2378       lp_type64.length = length/2;
2379       if (block_bits == 128) {
2380          if (length == 8) {
2381             for (i = 0; i < 4; ++i) {
2382                tmp[0] = elems[i];
2383                tmp[1] = elems[i+4];
2384                elems[i] = lp_build_concat(gallivm, tmp, lp_type32dxt, 2);
2385             }
2386          }
2387          lp_build_transpose_aos(gallivm, lp_type32, elems, tmp);
2388          *green_lo = tmp[2];
2389          *green_hi = tmp[3];
2390          *red_lo = tmp[0];
2391          *red_hi = tmp[1];
2392       } else {
2393          LLVMValueRef red01, red23;
2394          LLVMTypeRef type64_vec = LLVMVectorType(type64, length/2);
2395          LLVMTypeRef type32_vec = LLVMVectorType(type32, length);
2396 
2397          for (i = 0; i < length; ++i) {
2398             /* no-op shuffle */
2399             elems[i] = LLVMBuildShuffleVector(builder, elems[i],
2400                                               LLVMGetUndef(type32dxt),
2401                                               lp_build_const_extend_shuffle(gallivm, 2, 4), "");
2402          }
2403          if (length == 8) {
2404             struct lp_type lp_type32_4 = {0};
2405             lp_type32_4.width = 32;
2406             lp_type32_4.length = 4;
2407             for (i = 0; i < 4; ++i) {
2408                tmp[0] = elems[i];
2409                tmp[1] = elems[i+4];
2410                elems[i] = lp_build_concat(gallivm, tmp, lp_type32_4, 2);
2411             }
2412          }
2413          red01 = lp_build_interleave2_half(gallivm, lp_type32, elems[0], elems[1], 0);
2414          red23 = lp_build_interleave2_half(gallivm, lp_type32, elems[2], elems[3], 0);
2415          red01 = LLVMBuildBitCast(builder, red01, type64_vec, "");
2416          red23 = LLVMBuildBitCast(builder, red23, type64_vec, "");
2417          *red_lo = lp_build_interleave2_half(gallivm, lp_type64, red01, red23, 0);
2418          *red_hi = lp_build_interleave2_half(gallivm, lp_type64, red01, red23, 1);
2419          *red_lo = LLVMBuildBitCast(builder, *red_lo, type32_vec, "");
2420          *red_hi = LLVMBuildBitCast(builder, *red_hi, type32_vec, "");
2421          *green_lo = NULL;
2422          *green_hi = NULL;
2423       }
2424    }
2425 }
2426 
2427 static LLVMValueRef
rgtc1_to_rgba_aos(struct gallivm_state * gallivm,unsigned n,enum pipe_format format,LLVMValueRef red_lo,LLVMValueRef red_hi,LLVMValueRef i,LLVMValueRef j)2428 rgtc1_to_rgba_aos(struct gallivm_state *gallivm,
2429                   unsigned n,
2430                   enum pipe_format format,
2431                   LLVMValueRef red_lo,
2432                   LLVMValueRef red_hi,
2433                   LLVMValueRef i,
2434                   LLVMValueRef j)
2435 {
2436    LLVMBuilderRef builder = gallivm->builder;
2437    bool is_signed = (format == PIPE_FORMAT_RGTC1_SNORM);
2438    LLVMValueRef red = s3tc_dxt5_alpha_channel(gallivm, is_signed, n, red_hi, red_lo, i, j);
2439    LLVMValueRef rgba;
2440    struct lp_type type, type8;
2441    memset(&type, 0, sizeof type);
2442    type.width = 32;
2443    type.length = n;
2444    memset(&type8, 0, sizeof type8);
2445    type8.width = 8;
2446    type8.length = n*4;
2447    rgba = lp_build_const_int_vec(gallivm, type, is_signed ? (0x7f << 24) : (0xff << 24));
2448    rgba = LLVMBuildOr(builder, rgba, red, "");
2449    return LLVMBuildBitCast(builder, rgba, lp_build_vec_type(gallivm, type8), "");
2450 }
2451 
2452 static LLVMValueRef
rgtc2_to_rgba_aos(struct gallivm_state * gallivm,unsigned n,enum pipe_format format,LLVMValueRef red_lo,LLVMValueRef red_hi,LLVMValueRef green_lo,LLVMValueRef green_hi,LLVMValueRef i,LLVMValueRef j)2453 rgtc2_to_rgba_aos(struct gallivm_state *gallivm,
2454                   unsigned n,
2455                   enum pipe_format format,
2456                   LLVMValueRef red_lo,
2457                   LLVMValueRef red_hi,
2458                   LLVMValueRef green_lo,
2459                   LLVMValueRef green_hi,
2460                   LLVMValueRef i,
2461                   LLVMValueRef j)
2462 {
2463    LLVMBuilderRef builder = gallivm->builder;
2464    bool is_signed = (format == PIPE_FORMAT_RGTC2_SNORM);
2465    LLVMValueRef red = s3tc_dxt5_alpha_channel(gallivm, is_signed, n, red_hi, red_lo, i, j);
2466    LLVMValueRef green = s3tc_dxt5_alpha_channel(gallivm, is_signed, n, green_hi, green_lo, i, j);
2467    LLVMValueRef rgba;
2468    struct lp_type type, type8;
2469    memset(&type, 0, sizeof type);
2470    type.width = 32;
2471    type.length = n;
2472    memset(&type8, 0, sizeof type8);
2473    type8.width = 8;
2474    type8.length = n*4;
2475    rgba = lp_build_const_int_vec(gallivm, type, is_signed ? (0x7f << 24) : (0xff << 24));
2476    rgba = LLVMBuildOr(builder, rgba, red, "");
2477    green = LLVMBuildShl(builder, green, lp_build_const_int_vec(gallivm, type, 8), "");
2478    rgba = LLVMBuildOr(builder, rgba, green, "");
2479    return LLVMBuildBitCast(builder, rgba, lp_build_vec_type(gallivm, type8), "");
2480 }
2481 
2482 static LLVMValueRef
latc1_to_rgba_aos(struct gallivm_state * gallivm,unsigned n,enum pipe_format format,LLVMValueRef red_lo,LLVMValueRef red_hi,LLVMValueRef i,LLVMValueRef j)2483 latc1_to_rgba_aos(struct gallivm_state *gallivm,
2484                   unsigned n,
2485                   enum pipe_format format,
2486                   LLVMValueRef red_lo,
2487                   LLVMValueRef red_hi,
2488                   LLVMValueRef i,
2489                   LLVMValueRef j)
2490 {
2491    LLVMBuilderRef builder = gallivm->builder;
2492    bool is_signed = (format == PIPE_FORMAT_LATC1_SNORM);
2493    LLVMValueRef red = s3tc_dxt5_alpha_channel(gallivm, is_signed, n, red_hi, red_lo, i, j);
2494    LLVMValueRef rgba, temp;
2495    struct lp_type type, type8;
2496    memset(&type, 0, sizeof type);
2497    type.width = 32;
2498    type.length = n;
2499    memset(&type8, 0, sizeof type8);
2500    type8.width = 8;
2501    type8.length = n*4;
2502    rgba = lp_build_const_int_vec(gallivm, type, is_signed ? (0x7f << 24) : (0xff << 24));
2503    rgba = LLVMBuildOr(builder, rgba, red, "");
2504    temp = LLVMBuildShl(builder, red, lp_build_const_int_vec(gallivm, type, 8), "");
2505    rgba = LLVMBuildOr(builder, rgba, temp, "");
2506    temp = LLVMBuildShl(builder, red, lp_build_const_int_vec(gallivm, type, 16), "");
2507    rgba = LLVMBuildOr(builder, rgba, temp, "");
2508    return LLVMBuildBitCast(builder, rgba, lp_build_vec_type(gallivm, type8), "");
2509 }
2510 
2511 static LLVMValueRef
latc2_to_rgba_aos(struct gallivm_state * gallivm,unsigned n,enum pipe_format format,LLVMValueRef red_lo,LLVMValueRef red_hi,LLVMValueRef green_lo,LLVMValueRef green_hi,LLVMValueRef i,LLVMValueRef j)2512 latc2_to_rgba_aos(struct gallivm_state *gallivm,
2513                   unsigned n,
2514                   enum pipe_format format,
2515                   LLVMValueRef red_lo,
2516                   LLVMValueRef red_hi,
2517                   LLVMValueRef green_lo,
2518                   LLVMValueRef green_hi,
2519                   LLVMValueRef i,
2520                   LLVMValueRef j)
2521 {
2522    LLVMBuilderRef builder = gallivm->builder;
2523    bool is_signed = (format == PIPE_FORMAT_LATC2_SNORM);
2524    LLVMValueRef red = s3tc_dxt5_alpha_channel(gallivm, is_signed, n, red_hi, red_lo, i, j);
2525    LLVMValueRef green = s3tc_dxt5_alpha_channel(gallivm, is_signed, n, green_hi, green_lo, i, j);
2526    LLVMValueRef rgba, temp;
2527    struct lp_type type, type8;
2528    memset(&type, 0, sizeof type);
2529    type.width = 32;
2530    type.length = n;
2531    memset(&type8, 0, sizeof type8);
2532    type8.width = 8;
2533    type8.length = n*4;
2534 
2535    temp = LLVMBuildShl(builder, red, lp_build_const_int_vec(gallivm, type, 8), "");
2536    rgba = LLVMBuildOr(builder, red, temp, "");
2537    temp = LLVMBuildShl(builder, red, lp_build_const_int_vec(gallivm, type, 16), "");
2538    rgba = LLVMBuildOr(builder, rgba, temp, "");
2539    temp = LLVMBuildShl(builder, green, lp_build_const_int_vec(gallivm, type, 24), "");
2540    rgba = LLVMBuildOr(builder, rgba, temp, "");
2541    return LLVMBuildBitCast(builder, rgba, lp_build_vec_type(gallivm, type8), "");
2542 }
2543 
2544 /**
2545  * @param n  number of pixels processed (usually n=4, but it should also work with n=1
2546  *           and multiples of 4)
2547  * @param base_ptr  base pointer (32bit or 64bit pointer depending on the architecture)
2548  * @param offset <n x i32> vector with the relative offsets of the S3TC blocks
2549  * @param i  is a <n x i32> vector with the x subpixel coordinate (0..3)
2550  * @param j  is a <n x i32> vector with the y subpixel coordinate (0..3)
2551  * @return  a <4*n x i8> vector with the pixel RGBA values in AoS
2552  */
2553 LLVMValueRef
lp_build_fetch_rgtc_rgba_aos(struct gallivm_state * gallivm,const struct util_format_description * format_desc,unsigned n,LLVMValueRef base_ptr,LLVMValueRef offset,LLVMValueRef i,LLVMValueRef j,LLVMValueRef cache)2554 lp_build_fetch_rgtc_rgba_aos(struct gallivm_state *gallivm,
2555                              const struct util_format_description *format_desc,
2556                              unsigned n,
2557                              LLVMValueRef base_ptr,
2558                              LLVMValueRef offset,
2559                              LLVMValueRef i,
2560                              LLVMValueRef j,
2561                              LLVMValueRef cache)
2562 {
2563    LLVMValueRef rgba;
2564    LLVMTypeRef i8t = LLVMInt8TypeInContext(gallivm->context);
2565    LLVMBuilderRef builder = gallivm->builder;
2566    LLVMValueRef red_lo, red_hi, green_lo, green_hi;
2567    assert(format_desc->layout == UTIL_FORMAT_LAYOUT_RGTC);
2568    assert(format_desc->block.width == 4);
2569    assert(format_desc->block.height == 4);
2570 
2571    assert((n == 1) || (n % 4 == 0));
2572 
2573    if (n > 4) {
2574       unsigned count;
2575       LLVMTypeRef i128_type = LLVMIntTypeInContext(gallivm->context, 128);
2576       LLVMTypeRef i128_vectype =  LLVMVectorType(i128_type, n / 4);
2577       LLVMTypeRef i8_vectype = LLVMVectorType(i8t, 4 * n);
2578       LLVMTypeRef i324_vectype = LLVMVectorType(LLVMInt32TypeInContext(
2579                                                    gallivm->context), 4);
2580       LLVMValueRef offset4, i4, j4, rgba4[LP_MAX_VECTOR_LENGTH/16];
2581       struct lp_type lp_324_vectype = lp_type_uint_vec(32, 128);
2582 
2583       rgba = LLVMGetUndef(i128_vectype);
2584 
2585       for (count = 0; count < n / 4; count++) {
2586 
2587          i4 = lp_build_extract_range(gallivm, i, count * 4, 4);
2588          j4 = lp_build_extract_range(gallivm, j, count * 4, 4);
2589          offset4 = lp_build_extract_range(gallivm, offset, count * 4, 4);
2590 
2591          lp_build_gather_rgtc(gallivm, 4, format_desc, &red_lo, &red_hi,
2592                               &green_lo, &green_hi, base_ptr, offset4);
2593 
2594          switch (format_desc->format) {
2595          case PIPE_FORMAT_RGTC1_UNORM:
2596          case PIPE_FORMAT_RGTC1_SNORM:
2597             rgba4[count] = rgtc1_to_rgba_aos(gallivm, 4, format_desc->format,
2598                                              red_lo, red_hi, i4, j4);
2599             break;
2600          case PIPE_FORMAT_RGTC2_UNORM:
2601          case PIPE_FORMAT_RGTC2_SNORM:
2602             rgba4[count] = rgtc2_to_rgba_aos(gallivm, 4, format_desc->format,
2603                                              red_lo, red_hi, green_lo, green_hi, i4, j4);
2604             break;
2605          case PIPE_FORMAT_LATC1_UNORM:
2606          case PIPE_FORMAT_LATC1_SNORM:
2607             rgba4[count] = latc1_to_rgba_aos(gallivm, 4, format_desc->format,
2608                                              red_lo, red_hi, i4, j4);
2609             break;
2610          case PIPE_FORMAT_LATC2_UNORM:
2611          case PIPE_FORMAT_LATC2_SNORM:
2612             rgba4[count] = latc2_to_rgba_aos(gallivm, 4, format_desc->format,
2613                                              red_lo, red_hi, green_lo, green_hi, i4, j4);
2614             break;
2615          default:
2616             assert(0);
2617             rgba4[count] = LLVMGetUndef(LLVMVectorType(i8t, 4));
2618             break;
2619          }
2620          /* shuffles typically give best results with dword elements...*/
2621          rgba4[count] = LLVMBuildBitCast(builder, rgba4[count], i324_vectype, "");
2622       }
2623       rgba = lp_build_concat(gallivm, rgba4, lp_324_vectype, n / 4);
2624       rgba = LLVMBuildBitCast(builder, rgba, i8_vectype, "");
2625    } else {
2626       LLVMValueRef red_lo, red_hi, green_lo, green_hi;
2627 
2628       lp_build_gather_rgtc(gallivm, n, format_desc, &red_lo, &red_hi,
2629                            &green_lo, &green_hi, base_ptr, offset);
2630 
2631       switch (format_desc->format) {
2632       case PIPE_FORMAT_RGTC1_UNORM:
2633       case PIPE_FORMAT_RGTC1_SNORM:
2634          rgba = rgtc1_to_rgba_aos(gallivm, n, format_desc->format,
2635                                   red_lo, red_hi, i, j);
2636          break;
2637       case PIPE_FORMAT_RGTC2_UNORM:
2638       case PIPE_FORMAT_RGTC2_SNORM:
2639          rgba = rgtc2_to_rgba_aos(gallivm, n, format_desc->format,
2640                                   red_lo, red_hi, green_lo, green_hi, i, j);
2641          break;
2642       case PIPE_FORMAT_LATC1_UNORM:
2643       case PIPE_FORMAT_LATC1_SNORM:
2644          rgba = latc1_to_rgba_aos(gallivm, n, format_desc->format,
2645                                   red_lo, red_hi, i, j);
2646          break;
2647       case PIPE_FORMAT_LATC2_UNORM:
2648       case PIPE_FORMAT_LATC2_SNORM:
2649          rgba = latc2_to_rgba_aos(gallivm, n, format_desc->format,
2650                                   red_lo, red_hi, green_lo, green_hi, i, j);
2651          break;
2652       default:
2653          assert(0);
2654          rgba = LLVMGetUndef(LLVMVectorType(i8t, 4*n));
2655          break;
2656       }
2657    }
2658    return rgba;
2659 }
2660