1 //===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "FindTarget.h"
10 #include "AST.h"
11 #include "support/Logger.h"
12 #include "clang/AST/ASTTypeTraits.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/AST/DeclVisitor.h"
17 #include "clang/AST/DeclarationName.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprConcepts.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/NestedNameSpecifier.h"
23 #include "clang/AST/PrettyPrinter.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/AST/TemplateBase.h"
27 #include "clang/AST/Type.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/AST/TypeLocVisitor.h"
30 #include "clang/AST/TypeVisitor.h"
31 #include "clang/Basic/LangOptions.h"
32 #include "clang/Basic/OperatorKinds.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/Specifiers.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <iterator>
41 #include <utility>
42 #include <vector>
43
44 namespace clang {
45 namespace clangd {
46 namespace {
47 using ast_type_traits::DynTypedNode;
48
49 LLVM_ATTRIBUTE_UNUSED std::string
nodeToString(const ast_type_traits::DynTypedNode & N)50 nodeToString(const ast_type_traits::DynTypedNode &N) {
51 std::string S = std::string(N.getNodeKind().asStringRef());
52 {
53 llvm::raw_string_ostream OS(S);
54 OS << ": ";
55 N.print(OS, PrintingPolicy(LangOptions()));
56 }
57 std::replace(S.begin(), S.end(), '\n', ' ');
58 return S;
59 }
60
61 // Helper function for getMembersReferencedViaDependentName()
62 // which takes a possibly-dependent type `T` and heuristically
63 // resolves it to a CXXRecordDecl in which we can try name lookup.
resolveTypeToRecordDecl(const Type * T)64 CXXRecordDecl *resolveTypeToRecordDecl(const Type *T) {
65 assert(T);
66
67 if (const auto *RT = T->getAs<RecordType>())
68 return dyn_cast<CXXRecordDecl>(RT->getDecl());
69
70 if (const auto *ICNT = T->getAs<InjectedClassNameType>())
71 T = ICNT->getInjectedSpecializationType().getTypePtrOrNull();
72 if (!T)
73 return nullptr;
74
75 const auto *TST = T->getAs<TemplateSpecializationType>();
76 if (!TST)
77 return nullptr;
78
79 const ClassTemplateDecl *TD = dyn_cast_or_null<ClassTemplateDecl>(
80 TST->getTemplateName().getAsTemplateDecl());
81 if (!TD)
82 return nullptr;
83
84 return TD->getTemplatedDecl();
85 }
86
87 // Given a tag-decl type and a member name, heuristically resolve the
88 // name to one or more declarations.
89 // The current heuristic is simply to look up the name in the primary
90 // template. This is a heuristic because the template could potentially
91 // have specializations that declare different members.
92 // Multiple declarations could be returned if the name is overloaded
93 // (e.g. an overloaded method in the primary template).
94 // This heuristic will give the desired answer in many cases, e.g.
95 // for a call to vector<T>::size().
96 // The name to look up is provided in the form of a factory that takes
97 // an ASTContext, because an ASTContext may be needed to obtain the
98 // name (e.g. if it's an operator name), but the caller may not have
99 // access to an ASTContext.
getMembersReferencedViaDependentName(const Type * T,llvm::function_ref<DeclarationName (ASTContext &)> NameFactory,llvm::function_ref<bool (const NamedDecl * ND)> Filter)100 std::vector<const NamedDecl *> getMembersReferencedViaDependentName(
101 const Type *T,
102 llvm::function_ref<DeclarationName(ASTContext &)> NameFactory,
103 llvm::function_ref<bool(const NamedDecl *ND)> Filter) {
104 if (!T)
105 return {};
106 if (auto *ET = T->getAs<EnumType>()) {
107 auto Result =
108 ET->getDecl()->lookup(NameFactory(ET->getDecl()->getASTContext()));
109 return {Result.begin(), Result.end()};
110 }
111 if (auto *RD = resolveTypeToRecordDecl(T)) {
112 if (!RD->hasDefinition())
113 return {};
114 RD = RD->getDefinition();
115 DeclarationName Name = NameFactory(RD->getASTContext());
116 return RD->lookupDependentName(Name, Filter);
117 }
118 return {};
119 }
120
__anon85af7d330202(const NamedDecl *D) 121 const auto NonStaticFilter = [](const NamedDecl *D) {
122 return D->isCXXInstanceMember();
123 };
__anon85af7d330302(const NamedDecl *D) 124 const auto StaticFilter = [](const NamedDecl *D) {
125 return !D->isCXXInstanceMember();
126 };
__anon85af7d330402(const NamedDecl *D) 127 const auto ValueFilter = [](const NamedDecl *D) { return isa<ValueDecl>(D); };
__anon85af7d330502(const NamedDecl *D) 128 const auto TypeFilter = [](const NamedDecl *D) { return isa<TypeDecl>(D); };
__anon85af7d330602(const NamedDecl *D) 129 const auto TemplateFilter = [](const NamedDecl *D) {
130 return isa<TemplateDecl>(D);
131 };
132
133 // Given the type T of a dependent expression that appears of the LHS of a
134 // "->", heuristically find a corresponding pointee type in whose scope we
135 // could look up the name appearing on the RHS.
getPointeeType(const Type * T)136 const Type *getPointeeType(const Type *T) {
137 if (!T)
138 return nullptr;
139
140 if (T->isPointerType()) {
141 return T->getAs<PointerType>()->getPointeeType().getTypePtrOrNull();
142 }
143
144 // Try to handle smart pointer types.
145
146 // Look up operator-> in the primary template. If we find one, it's probably a
147 // smart pointer type.
148 auto ArrowOps = getMembersReferencedViaDependentName(
149 T,
150 [](ASTContext &Ctx) {
151 return Ctx.DeclarationNames.getCXXOperatorName(OO_Arrow);
152 },
153 NonStaticFilter);
154 if (ArrowOps.empty())
155 return nullptr;
156
157 // Getting the return type of the found operator-> method decl isn't useful,
158 // because we discarded template arguments to perform lookup in the primary
159 // template scope, so the return type would just have the form U* where U is a
160 // template parameter type.
161 // Instead, just handle the common case where the smart pointer type has the
162 // form of SmartPtr<X, ...>, and assume X is the pointee type.
163 auto *TST = T->getAs<TemplateSpecializationType>();
164 if (!TST)
165 return nullptr;
166 if (TST->getNumArgs() == 0)
167 return nullptr;
168 const TemplateArgument &FirstArg = TST->getArg(0);
169 if (FirstArg.getKind() != TemplateArgument::Type)
170 return nullptr;
171 return FirstArg.getAsType().getTypePtrOrNull();
172 }
173
174 // Forward declaration, needed as this function is mutually recursive
175 // with resolveExprToDecls.
176 const Type *resolveExprToType(const Expr *E);
177
178 // Try to heuristically resolve a possibly-dependent expression `E` to one
179 // or more declarations that it likely references.
resolveExprToDecls(const Expr * E)180 std::vector<const NamedDecl *> resolveExprToDecls(const Expr *E) {
181 if (const auto *ME = dyn_cast<CXXDependentScopeMemberExpr>(E)) {
182 const Type *BaseType = ME->getBaseType().getTypePtrOrNull();
183 if (ME->isArrow()) {
184 BaseType = getPointeeType(BaseType);
185 }
186 if (!BaseType)
187 return {};
188 if (const auto *BT = BaseType->getAs<BuiltinType>()) {
189 // If BaseType is the type of a dependent expression, it's just
190 // represented as BultinType::Dependent which gives us no information. We
191 // can get further by analyzing the depedent expression.
192 Expr *Base = ME->isImplicitAccess() ? nullptr : ME->getBase();
193 if (Base && BT->getKind() == BuiltinType::Dependent) {
194 BaseType = resolveExprToType(Base);
195 }
196 }
197 return getMembersReferencedViaDependentName(
198 BaseType, [ME](ASTContext &) { return ME->getMember(); },
199 NonStaticFilter);
200 }
201 if (const auto *RE = dyn_cast<DependentScopeDeclRefExpr>(E)) {
202 return getMembersReferencedViaDependentName(
203 RE->getQualifier()->getAsType(),
204 [RE](ASTContext &) { return RE->getDeclName(); }, StaticFilter);
205 }
206 if (const auto *CE = dyn_cast<CallExpr>(E)) {
207 const auto *CalleeType = resolveExprToType(CE->getCallee());
208 if (!CalleeType)
209 return {};
210 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>())
211 CalleeType = FnTypePtr->getPointeeType().getTypePtr();
212 if (const FunctionType *FnType = CalleeType->getAs<FunctionType>()) {
213 if (const auto *D =
214 resolveTypeToRecordDecl(FnType->getReturnType().getTypePtr())) {
215 return {D};
216 }
217 }
218 }
219 if (const auto *ME = dyn_cast<MemberExpr>(E))
220 return {ME->getMemberDecl()};
221 if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
222 return {DRE->getFoundDecl()};
223 return {};
224 }
225
resolveDeclsToType(const std::vector<const NamedDecl * > & Decls)226 const Type *resolveDeclsToType(const std::vector<const NamedDecl *> &Decls) {
227 if (Decls.size() != 1) // Names an overload set -- just bail.
228 return nullptr;
229 if (const auto *TD = dyn_cast<TypeDecl>(Decls[0])) {
230 return TD->getTypeForDecl();
231 }
232 if (const auto *VD = dyn_cast<ValueDecl>(Decls[0])) {
233 return VD->getType().getTypePtrOrNull();
234 }
235 return nullptr;
236 }
237
238 // Try to heuristically resolve the type of a possibly-dependent expression `E`.
resolveExprToType(const Expr * E)239 const Type *resolveExprToType(const Expr *E) {
240 return resolveDeclsToType(resolveExprToDecls(E));
241 }
242
243 // Try to heuristically resolve the type of a possibly-dependent nested name
244 // specifier.
resolveNestedNameSpecifierToType(const NestedNameSpecifier * NNS)245 const Type *resolveNestedNameSpecifierToType(const NestedNameSpecifier *NNS) {
246 if (!NNS)
247 return nullptr;
248
249 switch (NNS->getKind()) {
250 case NestedNameSpecifier::TypeSpec:
251 case NestedNameSpecifier::TypeSpecWithTemplate:
252 return NNS->getAsType();
253 case NestedNameSpecifier::Identifier: {
254 return resolveDeclsToType(getMembersReferencedViaDependentName(
255 resolveNestedNameSpecifierToType(NNS->getPrefix()),
256 [&](const ASTContext &) { return NNS->getAsIdentifier(); },
257 TypeFilter));
258 }
259 default:
260 break;
261 }
262 return nullptr;
263 }
264
getTemplatePattern(const NamedDecl * D)265 const NamedDecl *getTemplatePattern(const NamedDecl *D) {
266 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
267 if (const auto *Result = CRD->getTemplateInstantiationPattern())
268 return Result;
269 // getTemplateInstantiationPattern returns null if the Specialization is
270 // incomplete (e.g. the type didn't need to be complete), fall back to the
271 // primary template.
272 if (CRD->getTemplateSpecializationKind() == TSK_Undeclared)
273 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(CRD))
274 return Spec->getSpecializedTemplate()->getTemplatedDecl();
275 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
276 return FD->getTemplateInstantiationPattern();
277 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
278 // Hmm: getTIP returns its arg if it's not an instantiation?!
279 VarDecl *T = VD->getTemplateInstantiationPattern();
280 return (T == D) ? nullptr : T;
281 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
282 return ED->getInstantiatedFromMemberEnum();
283 } else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
284 if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
285 if (const DeclContext *ParentPat =
286 dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
287 for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
288 if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
289 return BaseND;
290 } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
291 if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
292 if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
293 for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
294 return BaseECD;
295 }
296 }
297 }
298 return nullptr;
299 }
300
301 // TargetFinder locates the entities that an AST node refers to.
302 //
303 // Typically this is (possibly) one declaration and (possibly) one type, but
304 // may be more:
305 // - for ambiguous nodes like OverloadExpr
306 // - if we want to include e.g. both typedefs and the underlying type
307 //
308 // This is organized as a set of mutually recursive helpers for particular node
309 // types, but for most nodes this is a short walk rather than a deep traversal.
310 //
311 // It's tempting to do e.g. typedef resolution as a second normalization step,
312 // after finding the 'primary' decl etc. But we do this monolithically instead
313 // because:
314 // - normalization may require these traversals again (e.g. unwrapping a
315 // typedef reveals a decltype which must be traversed)
316 // - it doesn't simplify that much, e.g. the first stage must still be able
317 // to yield multiple decls to handle OverloadExpr
318 // - there are cases where it's required for correctness. e.g:
319 // template<class X> using pvec = vector<x*>; pvec<int> x;
320 // There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
321 // and both are lossy. We must know upfront what the caller ultimately wants.
322 //
323 // FIXME: improve common dependent scope using name lookup in primary templates.
324 // We currently handle several dependent constructs, but some others remain to
325 // be handled:
326 // - UnresolvedUsingTypenameDecl
327 struct TargetFinder {
328 using RelSet = DeclRelationSet;
329 using Rel = DeclRelation;
330
331 private:
332 llvm::SmallDenseMap<const NamedDecl *,
333 std::pair<RelSet, /*InsertionOrder*/ size_t>>
334 Decls;
335 RelSet Flags;
336
debugclang::clangd::__anon85af7d330111::TargetFinder337 template <typename T> void debug(T &Node, RelSet Flags) {
338 dlog("visit [{0}] {1}", Flags,
339 nodeToString(ast_type_traits::DynTypedNode::create(Node)));
340 }
341
reportclang::clangd::__anon85af7d330111::TargetFinder342 void report(const NamedDecl *D, RelSet Flags) {
343 dlog("--> [{0}] {1}", Flags,
344 nodeToString(ast_type_traits::DynTypedNode::create(*D)));
345 auto It = Decls.try_emplace(D, std::make_pair(Flags, Decls.size()));
346 // If already exists, update the flags.
347 if (!It.second)
348 It.first->second.first |= Flags;
349 }
350
351 public:
takeDeclsclang::clangd::__anon85af7d330111::TargetFinder352 llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
353 using ValTy = std::pair<const NamedDecl *, RelSet>;
354 llvm::SmallVector<ValTy, 1> Result;
355 Result.resize(Decls.size());
356 for (const auto &Elem : Decls)
357 Result[Elem.second.second] = {Elem.first, Elem.second.first};
358 return Result;
359 }
360
addclang::clangd::__anon85af7d330111::TargetFinder361 void add(const Decl *Dcl, RelSet Flags) {
362 const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Dcl);
363 if (!D)
364 return;
365 debug(*D, Flags);
366 if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
367 D = UDD->getNominatedNamespaceAsWritten();
368
369 if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
370 add(TND->getUnderlyingType(), Flags | Rel::Underlying);
371 Flags |= Rel::Alias; // continue with the alias.
372 } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
373 // no Underlying as this is a non-renaming alias.
374 for (const UsingShadowDecl *S : UD->shadows())
375 add(S->getUnderlyingDecl(), Flags);
376 Flags |= Rel::Alias; // continue with the alias.
377 } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
378 add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
379 Flags |= Rel::Alias; // continue with the alias
380 } else if (const UnresolvedUsingValueDecl *UUVD =
381 dyn_cast<UnresolvedUsingValueDecl>(D)) {
382 for (const NamedDecl *Target : getMembersReferencedViaDependentName(
383 UUVD->getQualifier()->getAsType(),
384 [UUVD](ASTContext &) { return UUVD->getNameInfo().getName(); },
385 ValueFilter)) {
386 add(Target, Flags); // no Underlying as this is a non-renaming alias
387 }
388 Flags |= Rel::Alias; // continue with the alias
389 } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
390 // Include the using decl, but don't traverse it. This may end up
391 // including *all* shadows, which we don't want.
392 report(USD->getUsingDecl(), Flags | Rel::Alias);
393 // Shadow decls are synthetic and not themselves interesting.
394 // Record the underlying decl instead, if allowed.
395 D = USD->getTargetDecl();
396 } else if (const auto *DG = dyn_cast<CXXDeductionGuideDecl>(D)) {
397 D = DG->getDeducedTemplate();
398 } else if (const ObjCImplementationDecl *IID =
399 dyn_cast<ObjCImplementationDecl>(D)) {
400 // Treat ObjC{Interface,Implementation}Decl as if they were a decl/def
401 // pair as long as the interface isn't implicit.
402 if (const auto *CID = IID->getClassInterface())
403 if (const auto *DD = CID->getDefinition())
404 if (!DD->isImplicitInterfaceDecl())
405 D = DD;
406 } else if (const ObjCCategoryImplDecl *CID =
407 dyn_cast<ObjCCategoryImplDecl>(D)) {
408 // Treat ObjC{Category,CategoryImpl}Decl as if they were a decl/def pair.
409 D = CID->getCategoryDecl();
410 }
411 if (!D)
412 return;
413
414 if (const Decl *Pat = getTemplatePattern(D)) {
415 assert(Pat != D);
416 add(Pat, Flags | Rel::TemplatePattern);
417 // Now continue with the instantiation.
418 Flags |= Rel::TemplateInstantiation;
419 }
420
421 report(D, Flags);
422 }
423
addclang::clangd::__anon85af7d330111::TargetFinder424 void add(const Stmt *S, RelSet Flags) {
425 if (!S)
426 return;
427 debug(*S, Flags);
428 struct Visitor : public ConstStmtVisitor<Visitor> {
429 TargetFinder &Outer;
430 RelSet Flags;
431 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
432
433 void VisitCallExpr(const CallExpr *CE) {
434 Outer.add(CE->getCalleeDecl(), Flags);
435 }
436 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
437 Outer.add(E->getNamedConcept(), Flags);
438 }
439 void VisitDeclRefExpr(const DeclRefExpr *DRE) {
440 const Decl *D = DRE->getDecl();
441 // UsingShadowDecl allows us to record the UsingDecl.
442 // getFoundDecl() returns the wrong thing in other cases (templates).
443 if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
444 D = USD;
445 Outer.add(D, Flags);
446 }
447 void VisitMemberExpr(const MemberExpr *ME) {
448 const Decl *D = ME->getMemberDecl();
449 if (auto *USD =
450 llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
451 D = USD;
452 Outer.add(D, Flags);
453 }
454 void VisitOverloadExpr(const OverloadExpr *OE) {
455 for (auto *D : OE->decls())
456 Outer.add(D, Flags);
457 }
458 void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
459 Outer.add(SE->getPack(), Flags);
460 }
461 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
462 Outer.add(CCE->getConstructor(), Flags);
463 }
464 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
465 for (const DesignatedInitExpr::Designator &D :
466 llvm::reverse(DIE->designators()))
467 if (D.isFieldDesignator()) {
468 Outer.add(D.getField(), Flags);
469 // We don't know which designator was intended, we assume the outer.
470 break;
471 }
472 }
473 void VisitGotoStmt(const GotoStmt *Goto) {
474 if (auto *LabelDecl = Goto->getLabel())
475 Outer.add(LabelDecl, Flags);
476 }
477 void VisitLabelStmt(const LabelStmt *Label) {
478 if (auto *LabelDecl = Label->getDecl())
479 Outer.add(LabelDecl, Flags);
480 }
481 void
482 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
483 for (const NamedDecl *D : resolveExprToDecls(E)) {
484 Outer.add(D, Flags);
485 }
486 }
487 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
488 for (const NamedDecl *D : resolveExprToDecls(E)) {
489 Outer.add(D, Flags);
490 }
491 }
492 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
493 Outer.add(OIRE->getDecl(), Flags);
494 }
495 void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
496 Outer.add(OME->getMethodDecl(), Flags);
497 }
498 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
499 if (OPRE->isExplicitProperty())
500 Outer.add(OPRE->getExplicitProperty(), Flags);
501 else {
502 if (OPRE->isMessagingGetter())
503 Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
504 if (OPRE->isMessagingSetter())
505 Outer.add(OPRE->getImplicitPropertySetter(), Flags);
506 }
507 }
508 void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
509 Outer.add(OPE->getProtocol(), Flags);
510 }
511 void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
512 Outer.add(OVE->getSourceExpr(), Flags);
513 }
514 void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
515 Outer.add(POE->getSyntacticForm(), Flags);
516 }
517 void VisitCXXNewExpr(const CXXNewExpr *CNE) {
518 Outer.add(CNE->getOperatorNew(), Flags);
519 }
520 void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE) {
521 Outer.add(CDE->getOperatorDelete(), Flags);
522 }
523 };
524 Visitor(*this, Flags).Visit(S);
525 }
526
addclang::clangd::__anon85af7d330111::TargetFinder527 void add(QualType T, RelSet Flags) {
528 if (T.isNull())
529 return;
530 debug(T, Flags);
531 struct Visitor : public TypeVisitor<Visitor> {
532 TargetFinder &Outer;
533 RelSet Flags;
534 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
535
536 void VisitTagType(const TagType *TT) {
537 Outer.add(TT->getAsTagDecl(), Flags);
538 }
539
540 void VisitElaboratedType(const ElaboratedType *ET) {
541 Outer.add(ET->desugar(), Flags);
542 }
543
544 void VisitInjectedClassNameType(const InjectedClassNameType *ICNT) {
545 Outer.add(ICNT->getDecl(), Flags);
546 }
547
548 void VisitDecltypeType(const DecltypeType *DTT) {
549 Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
550 }
551 void VisitDeducedType(const DeducedType *DT) {
552 // FIXME: In practice this doesn't work: the AutoType you find inside
553 // TypeLoc never has a deduced type. https://llvm.org/PR42914
554 Outer.add(DT->getDeducedType(), Flags | Rel::Underlying);
555 }
556 void VisitDeducedTemplateSpecializationType(
557 const DeducedTemplateSpecializationType *DTST) {
558 // FIXME: This is a workaround for https://llvm.org/PR42914,
559 // which is causing DTST->getDeducedType() to be empty. We
560 // fall back to the template pattern and miss the instantiation
561 // even when it's known in principle. Once that bug is fixed,
562 // this method can be removed (the existing handling in
563 // VisitDeducedType() is sufficient).
564 if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
565 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
566 }
567 void VisitDependentNameType(const DependentNameType *DNT) {
568 for (const NamedDecl *ND : getMembersReferencedViaDependentName(
569 resolveNestedNameSpecifierToType(DNT->getQualifier()),
570 [DNT](ASTContext &) { return DNT->getIdentifier(); },
571 TypeFilter)) {
572 Outer.add(ND, Flags);
573 }
574 }
575 void VisitDependentTemplateSpecializationType(
576 const DependentTemplateSpecializationType *DTST) {
577 for (const NamedDecl *ND : getMembersReferencedViaDependentName(
578 resolveNestedNameSpecifierToType(DTST->getQualifier()),
579 [DTST](ASTContext &) { return DTST->getIdentifier(); },
580 TemplateFilter)) {
581 Outer.add(ND, Flags);
582 }
583 }
584 void VisitTypedefType(const TypedefType *TT) {
585 Outer.add(TT->getDecl(), Flags);
586 }
587 void
588 VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
589 // Have to handle these case-by-case.
590
591 // templated type aliases: there's no specialized/instantiated using
592 // decl to point to. So try to find a decl for the underlying type
593 // (after substitution), and failing that point to the (templated) using
594 // decl.
595 if (TST->isTypeAlias()) {
596 Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
597 // Don't *traverse* the alias, which would result in traversing the
598 // template of the underlying type.
599 Outer.report(
600 TST->getTemplateName().getAsTemplateDecl()->getTemplatedDecl(),
601 Flags | Rel::Alias | Rel::TemplatePattern);
602 }
603 // specializations of template template parameters aren't instantiated
604 // into decls, so they must refer to the parameter itself.
605 else if (const auto *Parm =
606 llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
607 TST->getTemplateName().getAsTemplateDecl()))
608 Outer.add(Parm, Flags);
609 // class template specializations have a (specialized) CXXRecordDecl.
610 else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
611 Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
612 else {
613 // fallback: the (un-specialized) declaration from primary template.
614 if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
615 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
616 }
617 }
618 void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
619 Outer.add(TTPT->getDecl(), Flags);
620 }
621 void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
622 Outer.add(OIT->getDecl(), Flags);
623 }
624 void VisitObjCObjectType(const ObjCObjectType *OOT) {
625 // FIXME: ObjCObjectTypeLoc has no children for the protocol list, so
626 // there is no node in id<Foo> that refers to ObjCProtocolDecl Foo.
627 if (OOT->isObjCQualifiedId() && OOT->getNumProtocols() == 1)
628 Outer.add(OOT->getProtocol(0), Flags);
629 }
630 };
631 Visitor(*this, Flags).Visit(T.getTypePtr());
632 }
633
addclang::clangd::__anon85af7d330111::TargetFinder634 void add(const NestedNameSpecifier *NNS, RelSet Flags) {
635 if (!NNS)
636 return;
637 debug(*NNS, Flags);
638 switch (NNS->getKind()) {
639 case NestedNameSpecifier::Namespace:
640 add(NNS->getAsNamespace(), Flags);
641 return;
642 case NestedNameSpecifier::NamespaceAlias:
643 add(NNS->getAsNamespaceAlias(), Flags);
644 return;
645 case NestedNameSpecifier::Identifier:
646 case NestedNameSpecifier::TypeSpec:
647 case NestedNameSpecifier::TypeSpecWithTemplate:
648 add(QualType(resolveNestedNameSpecifierToType(NNS), 0), Flags);
649 return;
650 case NestedNameSpecifier::Global:
651 // This should be TUDecl, but we can't get a pointer to it!
652 return;
653 case NestedNameSpecifier::Super:
654 add(NNS->getAsRecordDecl(), Flags);
655 return;
656 }
657 llvm_unreachable("unhandled NestedNameSpecifier::SpecifierKind");
658 }
659
addclang::clangd::__anon85af7d330111::TargetFinder660 void add(const CXXCtorInitializer *CCI, RelSet Flags) {
661 if (!CCI)
662 return;
663 debug(*CCI, Flags);
664
665 if (CCI->isAnyMemberInitializer())
666 add(CCI->getAnyMember(), Flags);
667 // Constructor calls contain a TypeLoc node, so we don't handle them here.
668 }
669
addclang::clangd::__anon85af7d330111::TargetFinder670 void add(const TemplateArgument &Arg, RelSet Flags) {
671 // Only used for template template arguments.
672 // For type and non-type template arguments, SelectionTree
673 // will hit a more specific node (e.g. a TypeLoc or a
674 // DeclRefExpr).
675 if (Arg.getKind() == TemplateArgument::Template ||
676 Arg.getKind() == TemplateArgument::TemplateExpansion) {
677 if (TemplateDecl *TD = Arg.getAsTemplate().getAsTemplateDecl()) {
678 report(TD, Flags);
679 }
680 }
681 }
682 };
683
684 } // namespace
685
686 llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
allTargetDecls(const ast_type_traits::DynTypedNode & N)687 allTargetDecls(const ast_type_traits::DynTypedNode &N) {
688 dlog("allTargetDecls({0})", nodeToString(N));
689 TargetFinder Finder;
690 DeclRelationSet Flags;
691 if (const Decl *D = N.get<Decl>())
692 Finder.add(D, Flags);
693 else if (const Stmt *S = N.get<Stmt>())
694 Finder.add(S, Flags);
695 else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
696 Finder.add(NNSL->getNestedNameSpecifier(), Flags);
697 else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
698 Finder.add(NNS, Flags);
699 else if (const TypeLoc *TL = N.get<TypeLoc>())
700 Finder.add(TL->getType(), Flags);
701 else if (const QualType *QT = N.get<QualType>())
702 Finder.add(*QT, Flags);
703 else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
704 Finder.add(CCI, Flags);
705 else if (const TemplateArgumentLoc *TAL = N.get<TemplateArgumentLoc>())
706 Finder.add(TAL->getArgument(), Flags);
707
708 return Finder.takeDecls();
709 }
710
711 llvm::SmallVector<const NamedDecl *, 1>
targetDecl(const ast_type_traits::DynTypedNode & N,DeclRelationSet Mask)712 targetDecl(const ast_type_traits::DynTypedNode &N, DeclRelationSet Mask) {
713 llvm::SmallVector<const NamedDecl *, 1> Result;
714 for (const auto &Entry : allTargetDecls(N)) {
715 if (!(Entry.second & ~Mask))
716 Result.push_back(Entry.first);
717 }
718 return Result;
719 }
720
721 llvm::SmallVector<const NamedDecl *, 1>
explicitReferenceTargets(DynTypedNode N,DeclRelationSet Mask)722 explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask) {
723 assert(!(Mask & (DeclRelation::TemplatePattern |
724 DeclRelation::TemplateInstantiation)) &&
725 "explicitReferenceTargets handles templates on its own");
726 auto Decls = allTargetDecls(N);
727
728 // We prefer to return template instantiation, but fallback to template
729 // pattern if instantiation is not available.
730 Mask |= DeclRelation::TemplatePattern | DeclRelation::TemplateInstantiation;
731
732 llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
733 llvm::SmallVector<const NamedDecl *, 1> Targets;
734 bool SeenTemplateInstantiations = false;
735 for (auto &D : Decls) {
736 if (D.second & ~Mask)
737 continue;
738 if (D.second & DeclRelation::TemplatePattern) {
739 TemplatePatterns.push_back(D.first);
740 continue;
741 }
742 if (D.second & DeclRelation::TemplateInstantiation)
743 SeenTemplateInstantiations = true;
744 Targets.push_back(D.first);
745 }
746 if (!SeenTemplateInstantiations)
747 Targets.insert(Targets.end(), TemplatePatterns.begin(),
748 TemplatePatterns.end());
749 return Targets;
750 }
751
752 namespace {
refInDecl(const Decl * D)753 llvm::SmallVector<ReferenceLoc, 2> refInDecl(const Decl *D) {
754 struct Visitor : ConstDeclVisitor<Visitor> {
755 llvm::SmallVector<ReferenceLoc, 2> Refs;
756
757 void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
758 // We want to keep it as non-declaration references, as the
759 // "using namespace" declaration doesn't have a name.
760 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
761 D->getIdentLocation(),
762 /*IsDecl=*/false,
763 {D->getNominatedNamespaceAsWritten()}});
764 }
765
766 void VisitUsingDecl(const UsingDecl *D) {
767 // "using ns::identifier;" is a non-declaration reference.
768 Refs.push_back(
769 ReferenceLoc{D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
770 explicitReferenceTargets(DynTypedNode::create(*D),
771 DeclRelation::Underlying)});
772 }
773
774 void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
775 // For namespace alias, "namespace Foo = Target;", we add two references.
776 // Add a declaration reference for Foo.
777 VisitNamedDecl(D);
778 // Add a non-declaration reference for Target.
779 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
780 D->getTargetNameLoc(),
781 /*IsDecl=*/false,
782 {D->getAliasedNamespace()}});
783 }
784
785 void VisitNamedDecl(const NamedDecl *ND) {
786 // We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
787 // as their underlying decls, covering the same range, will be visited.
788 if (llvm::isa<ClassTemplateDecl>(ND) ||
789 llvm::isa<FunctionTemplateDecl>(ND) ||
790 llvm::isa<VarTemplateDecl>(ND) ||
791 llvm::isa<TypeAliasTemplateDecl>(ND))
792 return;
793 // FIXME: decide on how to surface destructors when we need them.
794 if (llvm::isa<CXXDestructorDecl>(ND))
795 return;
796 // Filter anonymous decls, name location will point outside the name token
797 // and the clients are not prepared to handle that.
798 if (ND->getDeclName().isIdentifier() &&
799 !ND->getDeclName().getAsIdentifierInfo())
800 return;
801 Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
802 ND->getLocation(),
803 /*IsDecl=*/true,
804 {ND}});
805 }
806
807 void VisitCXXDeductionGuideDecl(const CXXDeductionGuideDecl *DG) {
808 // The class template name in a deduction guide targets the class
809 // template.
810 Refs.push_back(ReferenceLoc{DG->getQualifierLoc(),
811 DG->getNameInfo().getLoc(),
812 /*IsDecl=*/false,
813 {DG->getDeducedTemplate()}});
814 }
815 };
816
817 Visitor V;
818 V.Visit(D);
819 return V.Refs;
820 }
821
refInStmt(const Stmt * S)822 llvm::SmallVector<ReferenceLoc, 2> refInStmt(const Stmt *S) {
823 struct Visitor : ConstStmtVisitor<Visitor> {
824 // FIXME: handle more complicated cases: more ObjC, designated initializers.
825 llvm::SmallVector<ReferenceLoc, 2> Refs;
826
827 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
828 Refs.push_back(ReferenceLoc{E->getNestedNameSpecifierLoc(),
829 E->getConceptNameLoc(),
830 /*IsDecl=*/false,
831 {E->getNamedConcept()}});
832 }
833
834 void VisitDeclRefExpr(const DeclRefExpr *E) {
835 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
836 E->getNameInfo().getLoc(),
837 /*IsDecl=*/false,
838 {E->getFoundDecl()}});
839 }
840
841 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
842 Refs.push_back(ReferenceLoc{
843 E->getQualifierLoc(), E->getNameInfo().getLoc(), /*IsDecl=*/false,
844 explicitReferenceTargets(DynTypedNode::create(*E), {})});
845 }
846
847 void VisitMemberExpr(const MemberExpr *E) {
848 // Skip destructor calls to avoid duplication: TypeLoc within will be
849 // visited separately.
850 if (llvm::dyn_cast<CXXDestructorDecl>(E->getFoundDecl().getDecl()))
851 return;
852 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
853 E->getMemberNameInfo().getLoc(),
854 /*IsDecl=*/false,
855 {E->getFoundDecl()}});
856 }
857
858 void
859 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
860 Refs.push_back(
861 ReferenceLoc{E->getQualifierLoc(), E->getMemberNameInfo().getLoc(),
862 /*IsDecl=*/false,
863 explicitReferenceTargets(DynTypedNode::create(*E), {})});
864 }
865
866 void VisitOverloadExpr(const OverloadExpr *E) {
867 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
868 E->getNameInfo().getLoc(),
869 /*IsDecl=*/false,
870 llvm::SmallVector<const NamedDecl *, 1>(
871 E->decls().begin(), E->decls().end())});
872 }
873
874 void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
875 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
876 E->getPackLoc(),
877 /*IsDecl=*/false,
878 {E->getPack()}});
879 }
880
881 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
882 Refs.push_back(ReferenceLoc{
883 NestedNameSpecifierLoc(), E->getLocation(),
884 /*IsDecl=*/false,
885 // Select the getter, setter, or @property depending on the call.
886 explicitReferenceTargets(DynTypedNode::create(*E), {})});
887 }
888
889 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
890 for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
891 if (!D.isFieldDesignator())
892 continue;
893
894 llvm::SmallVector<const NamedDecl *, 1> Targets;
895 if (D.getField())
896 Targets.push_back(D.getField());
897 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(), D.getFieldLoc(),
898 /*IsDecl=*/false, std::move(Targets)});
899 }
900 }
901
902 void VisitGotoStmt(const GotoStmt *GS) {
903 llvm::SmallVector<const NamedDecl *, 1> Targets;
904 if (const auto *L = GS->getLabel())
905 Targets.push_back(L);
906 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(), GS->getLabelLoc(),
907 /*IsDecl=*/false, std::move(Targets)});
908 }
909
910 void VisitLabelStmt(const LabelStmt *LS) {
911 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
912 LS->getIdentLoc(),
913 /*IsDecl=*/true,
914 {LS->getDecl()}});
915 }
916 };
917
918 Visitor V;
919 V.Visit(S);
920 return V.Refs;
921 }
922
refInTypeLoc(TypeLoc L)923 llvm::SmallVector<ReferenceLoc, 2> refInTypeLoc(TypeLoc L) {
924 struct Visitor : TypeLocVisitor<Visitor> {
925 llvm::Optional<ReferenceLoc> Ref;
926
927 void VisitElaboratedTypeLoc(ElaboratedTypeLoc L) {
928 // We only know about qualifier, rest if filled by inner locations.
929 Visit(L.getNamedTypeLoc().getUnqualifiedLoc());
930 // Fill in the qualifier.
931 if (!Ref)
932 return;
933 assert(!Ref->Qualifier.hasQualifier() && "qualifier already set");
934 Ref->Qualifier = L.getQualifierLoc();
935 }
936
937 void VisitTagTypeLoc(TagTypeLoc L) {
938 Ref = ReferenceLoc{NestedNameSpecifierLoc(),
939 L.getNameLoc(),
940 /*IsDecl=*/false,
941 {L.getDecl()}};
942 }
943
944 void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
945 Ref = ReferenceLoc{NestedNameSpecifierLoc(),
946 L.getNameLoc(),
947 /*IsDecl=*/false,
948 {L.getDecl()}};
949 }
950
951 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
952 // We must ensure template type aliases are included in results if they
953 // were written in the source code, e.g. in
954 // template <class T> using valias = vector<T>;
955 // ^valias<int> x;
956 // 'explicitReferenceTargets' will return:
957 // 1. valias with mask 'Alias'.
958 // 2. 'vector<int>' with mask 'Underlying'.
959 // we want to return only #1 in this case.
960 Ref = ReferenceLoc{
961 NestedNameSpecifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
962 explicitReferenceTargets(DynTypedNode::create(L.getType()),
963 DeclRelation::Alias)};
964 }
965 void VisitDeducedTemplateSpecializationTypeLoc(
966 DeducedTemplateSpecializationTypeLoc L) {
967 Ref = ReferenceLoc{
968 NestedNameSpecifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
969 explicitReferenceTargets(DynTypedNode::create(L.getType()),
970 DeclRelation::Alias)};
971 }
972
973 void VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
974 Ref = ReferenceLoc{NestedNameSpecifierLoc(),
975 TL.getNameLoc(),
976 /*IsDecl=*/false,
977 {TL.getDecl()}};
978 }
979
980 void VisitDependentTemplateSpecializationTypeLoc(
981 DependentTemplateSpecializationTypeLoc L) {
982 Ref = ReferenceLoc{
983 L.getQualifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
984 explicitReferenceTargets(DynTypedNode::create(L.getType()), {})};
985 }
986
987 void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
988 Ref = ReferenceLoc{
989 L.getQualifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
990 explicitReferenceTargets(DynTypedNode::create(L.getType()), {})};
991 }
992
993 void VisitTypedefTypeLoc(TypedefTypeLoc L) {
994 Ref = ReferenceLoc{NestedNameSpecifierLoc(),
995 L.getNameLoc(),
996 /*IsDecl=*/false,
997 {L.getTypedefNameDecl()}};
998 }
999 };
1000
1001 Visitor V;
1002 V.Visit(L.getUnqualifiedLoc());
1003 if (!V.Ref)
1004 return {};
1005 return {*V.Ref};
1006 }
1007
1008 class ExplicitReferenceCollector
1009 : public RecursiveASTVisitor<ExplicitReferenceCollector> {
1010 public:
ExplicitReferenceCollector(llvm::function_ref<void (ReferenceLoc)> Out)1011 ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out)
1012 : Out(Out) {
1013 assert(Out);
1014 }
1015
VisitTypeLoc(TypeLoc TTL)1016 bool VisitTypeLoc(TypeLoc TTL) {
1017 if (TypeLocsToSkip.count(TTL.getBeginLoc()))
1018 return true;
1019 visitNode(DynTypedNode::create(TTL));
1020 return true;
1021 }
1022
TraverseElaboratedTypeLoc(ElaboratedTypeLoc L)1023 bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc L) {
1024 // ElaboratedTypeLoc will reports information for its inner type loc.
1025 // Otherwise we loose information about inner types loc's qualifier.
1026 TypeLoc Inner = L.getNamedTypeLoc().getUnqualifiedLoc();
1027 TypeLocsToSkip.insert(Inner.getBeginLoc());
1028 return RecursiveASTVisitor::TraverseElaboratedTypeLoc(L);
1029 }
1030
VisitStmt(Stmt * S)1031 bool VisitStmt(Stmt *S) {
1032 visitNode(DynTypedNode::create(*S));
1033 return true;
1034 }
1035
TraverseOpaqueValueExpr(OpaqueValueExpr * OVE)1036 bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
1037 visitNode(DynTypedNode::create(*OVE));
1038 // Not clear why the source expression is skipped by default...
1039 // FIXME: can we just make RecursiveASTVisitor do this?
1040 return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
1041 }
1042
TraversePseudoObjectExpr(PseudoObjectExpr * POE)1043 bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
1044 visitNode(DynTypedNode::create(*POE));
1045 // Traverse only the syntactic form to find the *written* references.
1046 // (The semantic form also contains lots of duplication)
1047 return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
1048 }
1049
1050 // We re-define Traverse*, since there's no corresponding Visit*.
1051 // TemplateArgumentLoc is the only way to get locations for references to
1052 // template template parameters.
TraverseTemplateArgumentLoc(TemplateArgumentLoc A)1053 bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
1054 llvm::SmallVector<const NamedDecl *, 1> Targets;
1055 switch (A.getArgument().getKind()) {
1056 case TemplateArgument::Template:
1057 case TemplateArgument::TemplateExpansion:
1058 if (const auto *D = A.getArgument()
1059 .getAsTemplateOrTemplatePattern()
1060 .getAsTemplateDecl())
1061 Targets.push_back(D);
1062 reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
1063 A.getTemplateNameLoc(),
1064 /*IsDecl=*/false, Targets},
1065 DynTypedNode::create(A.getArgument()));
1066 break;
1067 case TemplateArgument::Declaration:
1068 break; // FIXME: can this actually happen in TemplateArgumentLoc?
1069 case TemplateArgument::Integral:
1070 case TemplateArgument::Null:
1071 case TemplateArgument::NullPtr:
1072 break; // no references.
1073 case TemplateArgument::Pack:
1074 case TemplateArgument::Type:
1075 case TemplateArgument::Expression:
1076 break; // Handled by VisitType and VisitExpression.
1077 };
1078 return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
1079 }
1080
VisitDecl(Decl * D)1081 bool VisitDecl(Decl *D) {
1082 visitNode(DynTypedNode::create(*D));
1083 return true;
1084 }
1085
1086 // We have to use Traverse* because there is no corresponding Visit*.
TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L)1087 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
1088 if (!L.getNestedNameSpecifier())
1089 return true;
1090 visitNode(DynTypedNode::create(L));
1091 // Inner type is missing information about its qualifier, skip it.
1092 if (auto TL = L.getTypeLoc())
1093 TypeLocsToSkip.insert(TL.getBeginLoc());
1094 return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
1095 }
1096
TraverseConstructorInitializer(CXXCtorInitializer * Init)1097 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
1098 visitNode(DynTypedNode::create(*Init));
1099 return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
1100 }
1101
1102 private:
1103 /// Obtain information about a reference directly defined in \p N. Does not
1104 /// recurse into child nodes, e.g. do not expect references for constructor
1105 /// initializers
1106 ///
1107 /// Any of the fields in the returned structure can be empty, but not all of
1108 /// them, e.g.
1109 /// - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
1110 /// source location information may be missing,
1111 /// - for dependent code, targets may be empty.
1112 ///
1113 /// (!) For the purposes of this function declarations are not considered to
1114 /// be references. However, declarations can have references inside them,
1115 /// e.g. 'namespace foo = std' references namespace 'std' and this
1116 /// function will return the corresponding reference.
explicitReference(DynTypedNode N)1117 llvm::SmallVector<ReferenceLoc, 2> explicitReference(DynTypedNode N) {
1118 if (auto *D = N.get<Decl>())
1119 return refInDecl(D);
1120 if (auto *S = N.get<Stmt>())
1121 return refInStmt(S);
1122 if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
1123 // (!) 'DeclRelation::Alias' ensures we do not loose namespace aliases.
1124 return {ReferenceLoc{
1125 NNSL->getPrefix(), NNSL->getLocalBeginLoc(), false,
1126 explicitReferenceTargets(
1127 DynTypedNode::create(*NNSL->getNestedNameSpecifier()),
1128 DeclRelation::Alias)}};
1129 }
1130 if (const TypeLoc *TL = N.get<TypeLoc>())
1131 return refInTypeLoc(*TL);
1132 if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
1133 // Other type initializers (e.g. base initializer) are handled by visiting
1134 // the typeLoc.
1135 if (CCI->isAnyMemberInitializer()) {
1136 return {ReferenceLoc{NestedNameSpecifierLoc(),
1137 CCI->getMemberLocation(),
1138 /*IsDecl=*/false,
1139 {CCI->getAnyMember()}}};
1140 }
1141 }
1142 // We do not have location information for other nodes (QualType, etc)
1143 return {};
1144 }
1145
visitNode(DynTypedNode N)1146 void visitNode(DynTypedNode N) {
1147 for (const auto &R : explicitReference(N))
1148 reportReference(R, N);
1149 }
1150
reportReference(const ReferenceLoc & Ref,DynTypedNode N)1151 void reportReference(const ReferenceLoc &Ref, DynTypedNode N) {
1152 // Our promise is to return only references from the source code. If we lack
1153 // location information, skip these nodes.
1154 // Normally this should not happen in practice, unless there are bugs in the
1155 // traversals or users started the traversal at an implicit node.
1156 if (Ref.NameLoc.isInvalid()) {
1157 dlog("invalid location at node {0}", nodeToString(N));
1158 return;
1159 }
1160 Out(Ref);
1161 }
1162
1163 llvm::function_ref<void(ReferenceLoc)> Out;
1164 /// TypeLocs starting at these locations must be skipped, see
1165 /// TraverseElaboratedTypeSpecifierLoc for details.
1166 llvm::DenseSet<SourceLocation> TypeLocsToSkip;
1167 };
1168 } // namespace
1169
findExplicitReferences(const Stmt * S,llvm::function_ref<void (ReferenceLoc)> Out)1170 void findExplicitReferences(const Stmt *S,
1171 llvm::function_ref<void(ReferenceLoc)> Out) {
1172 assert(S);
1173 ExplicitReferenceCollector(Out).TraverseStmt(const_cast<Stmt *>(S));
1174 }
findExplicitReferences(const Decl * D,llvm::function_ref<void (ReferenceLoc)> Out)1175 void findExplicitReferences(const Decl *D,
1176 llvm::function_ref<void(ReferenceLoc)> Out) {
1177 assert(D);
1178 ExplicitReferenceCollector(Out).TraverseDecl(const_cast<Decl *>(D));
1179 }
findExplicitReferences(const ASTContext & AST,llvm::function_ref<void (ReferenceLoc)> Out)1180 void findExplicitReferences(const ASTContext &AST,
1181 llvm::function_ref<void(ReferenceLoc)> Out) {
1182 ExplicitReferenceCollector(Out).TraverseAST(const_cast<ASTContext &>(AST));
1183 }
1184
operator <<(llvm::raw_ostream & OS,DeclRelation R)1185 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
1186 switch (R) {
1187 #define REL_CASE(X) \
1188 case DeclRelation::X: \
1189 return OS << #X;
1190 REL_CASE(Alias);
1191 REL_CASE(Underlying);
1192 REL_CASE(TemplateInstantiation);
1193 REL_CASE(TemplatePattern);
1194 #undef REL_CASE
1195 }
1196 llvm_unreachable("Unhandled DeclRelation enum");
1197 }
operator <<(llvm::raw_ostream & OS,DeclRelationSet RS)1198 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
1199 const char *Sep = "";
1200 for (unsigned I = 0; I < RS.S.size(); ++I) {
1201 if (RS.S.test(I)) {
1202 OS << Sep << static_cast<DeclRelation>(I);
1203 Sep = "|";
1204 }
1205 }
1206 return OS;
1207 }
1208
operator <<(llvm::raw_ostream & OS,ReferenceLoc R)1209 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
1210 // note we cannot print R.NameLoc without a source manager.
1211 OS << "targets = {";
1212 bool First = true;
1213 for (const NamedDecl *T : R.Targets) {
1214 if (!First)
1215 OS << ", ";
1216 else
1217 First = false;
1218 OS << printQualifiedName(*T) << printTemplateSpecializationArgs(*T);
1219 }
1220 OS << "}";
1221 if (R.Qualifier) {
1222 OS << ", qualifier = '";
1223 R.Qualifier.getNestedNameSpecifier()->print(OS,
1224 PrintingPolicy(LangOptions()));
1225 OS << "'";
1226 }
1227 if (R.IsDecl)
1228 OS << ", decl";
1229 return OS;
1230 }
1231
1232 } // namespace clangd
1233 } // namespace clang
1234