1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 
30 #include "util/mesa-sha1.h"
31 #include "util/os_time.h"
32 #include "common/gen_l3_config.h"
33 #include "common/gen_disasm.h"
34 #include "anv_private.h"
35 #include "compiler/brw_nir.h"
36 #include "anv_nir.h"
37 #include "nir/nir_xfb_info.h"
38 #include "spirv/nir_spirv.h"
39 #include "vk_util.h"
40 
41 /* Needed for SWIZZLE macros */
42 #include "program/prog_instruction.h"
43 
44 // Shader functions
45 
anv_CreateShaderModule(VkDevice _device,const VkShaderModuleCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkShaderModule * pShaderModule)46 VkResult anv_CreateShaderModule(
47     VkDevice                                    _device,
48     const VkShaderModuleCreateInfo*             pCreateInfo,
49     const VkAllocationCallbacks*                pAllocator,
50     VkShaderModule*                             pShaderModule)
51 {
52    ANV_FROM_HANDLE(anv_device, device, _device);
53    struct anv_shader_module *module;
54 
55    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
56    assert(pCreateInfo->flags == 0);
57 
58    module = vk_alloc2(&device->vk.alloc, pAllocator,
59                        sizeof(*module) + pCreateInfo->codeSize, 8,
60                        VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
61    if (module == NULL)
62       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
63 
64    vk_object_base_init(&device->vk, &module->base,
65                        VK_OBJECT_TYPE_SHADER_MODULE);
66    module->size = pCreateInfo->codeSize;
67    memcpy(module->data, pCreateInfo->pCode, module->size);
68 
69    _mesa_sha1_compute(module->data, module->size, module->sha1);
70 
71    *pShaderModule = anv_shader_module_to_handle(module);
72 
73    return VK_SUCCESS;
74 }
75 
anv_DestroyShaderModule(VkDevice _device,VkShaderModule _module,const VkAllocationCallbacks * pAllocator)76 void anv_DestroyShaderModule(
77     VkDevice                                    _device,
78     VkShaderModule                              _module,
79     const VkAllocationCallbacks*                pAllocator)
80 {
81    ANV_FROM_HANDLE(anv_device, device, _device);
82    ANV_FROM_HANDLE(anv_shader_module, module, _module);
83 
84    if (!module)
85       return;
86 
87    vk_object_base_finish(&module->base);
88    vk_free2(&device->vk.alloc, pAllocator, module);
89 }
90 
91 #define SPIR_V_MAGIC_NUMBER 0x07230203
92 
93 struct anv_spirv_debug_data {
94    struct anv_device *device;
95    const struct anv_shader_module *module;
96 };
97 
anv_spirv_nir_debug(void * private_data,enum nir_spirv_debug_level level,size_t spirv_offset,const char * message)98 static void anv_spirv_nir_debug(void *private_data,
99                                 enum nir_spirv_debug_level level,
100                                 size_t spirv_offset,
101                                 const char *message)
102 {
103    struct anv_spirv_debug_data *debug_data = private_data;
104    struct anv_instance *instance = debug_data->device->physical->instance;
105 
106    static const VkDebugReportFlagsEXT vk_flags[] = {
107       [NIR_SPIRV_DEBUG_LEVEL_INFO] = VK_DEBUG_REPORT_INFORMATION_BIT_EXT,
108       [NIR_SPIRV_DEBUG_LEVEL_WARNING] = VK_DEBUG_REPORT_WARNING_BIT_EXT,
109       [NIR_SPIRV_DEBUG_LEVEL_ERROR] = VK_DEBUG_REPORT_ERROR_BIT_EXT,
110    };
111    char buffer[256];
112 
113    snprintf(buffer, sizeof(buffer), "SPIR-V offset %lu: %s", (unsigned long) spirv_offset, message);
114 
115    vk_debug_report(&instance->debug_report_callbacks,
116                    vk_flags[level],
117                    VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
118                    (uint64_t) (uintptr_t) debug_data->module,
119                    0, 0, "anv", buffer);
120 }
121 
122 /* Eventually, this will become part of anv_CreateShader.  Unfortunately,
123  * we can't do that yet because we don't have the ability to copy nir.
124  */
125 static nir_shader *
anv_shader_compile_to_nir(struct anv_device * device,void * mem_ctx,const struct anv_shader_module * module,const char * entrypoint_name,gl_shader_stage stage,const VkSpecializationInfo * spec_info)126 anv_shader_compile_to_nir(struct anv_device *device,
127                           void *mem_ctx,
128                           const struct anv_shader_module *module,
129                           const char *entrypoint_name,
130                           gl_shader_stage stage,
131                           const VkSpecializationInfo *spec_info)
132 {
133    const struct anv_physical_device *pdevice = device->physical;
134    const struct brw_compiler *compiler = pdevice->compiler;
135    const nir_shader_compiler_options *nir_options =
136       compiler->glsl_compiler_options[stage].NirOptions;
137 
138    uint32_t *spirv = (uint32_t *) module->data;
139    assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
140    assert(module->size % 4 == 0);
141 
142    uint32_t num_spec_entries = 0;
143    struct nir_spirv_specialization *spec_entries = NULL;
144    if (spec_info && spec_info->mapEntryCount > 0) {
145       num_spec_entries = spec_info->mapEntryCount;
146       spec_entries = calloc(num_spec_entries, sizeof(*spec_entries));
147       for (uint32_t i = 0; i < num_spec_entries; i++) {
148          VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
149          const void *data = spec_info->pData + entry.offset;
150          assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
151 
152          spec_entries[i].id = spec_info->pMapEntries[i].constantID;
153          switch (entry.size) {
154          case 8:
155             spec_entries[i].value.u64 = *(const uint64_t *)data;
156             break;
157          case 4:
158             spec_entries[i].value.u32 = *(const uint32_t *)data;
159             break;
160          case 2:
161             spec_entries[i].value.u16 = *(const uint16_t *)data;
162             break;
163          case 1:
164             spec_entries[i].value.u8 = *(const uint8_t *)data;
165             break;
166          default:
167             assert(!"Invalid spec constant size");
168             break;
169          }
170       }
171    }
172 
173    struct anv_spirv_debug_data spirv_debug_data = {
174       .device = device,
175       .module = module,
176    };
177    struct spirv_to_nir_options spirv_options = {
178       .frag_coord_is_sysval = true,
179       .caps = {
180          .demote_to_helper_invocation = true,
181          .derivative_group = true,
182          .descriptor_array_dynamic_indexing = true,
183          .descriptor_array_non_uniform_indexing = true,
184          .descriptor_indexing = true,
185          .device_group = true,
186          .draw_parameters = true,
187          .float16 = pdevice->info.gen >= 8,
188          .float64 = pdevice->info.gen >= 8,
189          .fragment_shader_sample_interlock = pdevice->info.gen >= 9,
190          .fragment_shader_pixel_interlock = pdevice->info.gen >= 9,
191          .geometry_streams = true,
192          .image_write_without_format = true,
193          .int8 = pdevice->info.gen >= 8,
194          .int16 = pdevice->info.gen >= 8,
195          .int64 = pdevice->info.gen >= 8,
196          .int64_atomics = pdevice->info.gen >= 9 && pdevice->use_softpin,
197          .integer_functions2 = pdevice->info.gen >= 8,
198          .min_lod = true,
199          .multiview = true,
200          .physical_storage_buffer_address = pdevice->has_a64_buffer_access,
201          .post_depth_coverage = pdevice->info.gen >= 9,
202          .runtime_descriptor_array = true,
203          .float_controls = pdevice->info.gen >= 8,
204          .shader_clock = true,
205          .shader_viewport_index_layer = true,
206          .stencil_export = pdevice->info.gen >= 9,
207          .storage_8bit = pdevice->info.gen >= 8,
208          .storage_16bit = pdevice->info.gen >= 8,
209          .subgroup_arithmetic = true,
210          .subgroup_basic = true,
211          .subgroup_ballot = true,
212          .subgroup_quad = true,
213          .subgroup_shuffle = true,
214          .subgroup_vote = true,
215          .tessellation = true,
216          .transform_feedback = pdevice->info.gen >= 8,
217          .variable_pointers = true,
218          .vk_memory_model = true,
219          .vk_memory_model_device_scope = true,
220       },
221       .ubo_addr_format = nir_address_format_32bit_index_offset,
222       .ssbo_addr_format =
223           anv_nir_ssbo_addr_format(pdevice, device->robust_buffer_access),
224       .phys_ssbo_addr_format = nir_address_format_64bit_global,
225       .push_const_addr_format = nir_address_format_logical,
226 
227       /* TODO: Consider changing this to an address format that has the NULL
228        * pointer equals to 0.  That might be a better format to play nice
229        * with certain code / code generators.
230        */
231       .shared_addr_format = nir_address_format_32bit_offset,
232       .debug = {
233          .func = anv_spirv_nir_debug,
234          .private_data = &spirv_debug_data,
235       },
236    };
237 
238 
239    nir_shader *nir =
240       spirv_to_nir(spirv, module->size / 4,
241                    spec_entries, num_spec_entries,
242                    stage, entrypoint_name, &spirv_options, nir_options);
243    assert(nir->info.stage == stage);
244    nir_validate_shader(nir, "after spirv_to_nir");
245    nir_validate_ssa_dominance(nir, "after spirv_to_nir");
246    ralloc_steal(mem_ctx, nir);
247 
248    free(spec_entries);
249 
250    if (INTEL_DEBUG & intel_debug_flag_for_shader_stage(stage)) {
251       fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
252               gl_shader_stage_name(stage));
253       nir_print_shader(nir, stderr);
254    }
255 
256    /* We have to lower away local constant initializers right before we
257     * inline functions.  That way they get properly initialized at the top
258     * of the function and not at the top of its caller.
259     */
260    NIR_PASS_V(nir, nir_lower_variable_initializers, nir_var_function_temp);
261    NIR_PASS_V(nir, nir_lower_returns);
262    NIR_PASS_V(nir, nir_inline_functions);
263    NIR_PASS_V(nir, nir_copy_prop);
264    NIR_PASS_V(nir, nir_opt_deref);
265 
266    /* Pick off the single entrypoint that we want */
267    foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
268       if (!func->is_entrypoint)
269          exec_node_remove(&func->node);
270    }
271    assert(exec_list_length(&nir->functions) == 1);
272 
273    /* Now that we've deleted all but the main function, we can go ahead and
274     * lower the rest of the constant initializers.  We do this here so that
275     * nir_remove_dead_variables and split_per_member_structs below see the
276     * corresponding stores.
277     */
278    NIR_PASS_V(nir, nir_lower_variable_initializers, ~0);
279 
280    /* Split member structs.  We do this before lower_io_to_temporaries so that
281     * it doesn't lower system values to temporaries by accident.
282     */
283    NIR_PASS_V(nir, nir_split_var_copies);
284    NIR_PASS_V(nir, nir_split_per_member_structs);
285 
286    NIR_PASS_V(nir, nir_remove_dead_variables,
287               nir_var_shader_in | nir_var_shader_out | nir_var_system_value,
288               NULL);
289 
290    NIR_PASS_V(nir, nir_propagate_invariant);
291    NIR_PASS_V(nir, nir_lower_io_to_temporaries,
292               nir_shader_get_entrypoint(nir), true, false);
293 
294    NIR_PASS_V(nir, nir_lower_frexp);
295 
296    /* Vulkan uses the separate-shader linking model */
297    nir->info.separate_shader = true;
298 
299    brw_preprocess_nir(compiler, nir, NULL);
300 
301    return nir;
302 }
303 
304 VkResult
anv_pipeline_init(struct anv_pipeline * pipeline,struct anv_device * device,enum anv_pipeline_type type,VkPipelineCreateFlags flags,const VkAllocationCallbacks * pAllocator)305 anv_pipeline_init(struct anv_pipeline *pipeline,
306                   struct anv_device *device,
307                   enum anv_pipeline_type type,
308                   VkPipelineCreateFlags flags,
309                   const VkAllocationCallbacks *pAllocator)
310 {
311    VkResult result;
312 
313    memset(pipeline, 0, sizeof(*pipeline));
314 
315    vk_object_base_init(&device->vk, &pipeline->base,
316                        VK_OBJECT_TYPE_PIPELINE);
317    pipeline->device = device;
318 
319    /* It's the job of the child class to provide actual backing storage for
320     * the batch by setting batch.start, batch.next, and batch.end.
321     */
322    pipeline->batch.alloc = pAllocator ? pAllocator : &device->vk.alloc;
323    pipeline->batch.relocs = &pipeline->batch_relocs;
324    pipeline->batch.status = VK_SUCCESS;
325 
326    result = anv_reloc_list_init(&pipeline->batch_relocs,
327                                 pipeline->batch.alloc);
328    if (result != VK_SUCCESS)
329       return result;
330 
331    pipeline->mem_ctx = ralloc_context(NULL);
332 
333    pipeline->type = type;
334    pipeline->flags = flags;
335 
336    util_dynarray_init(&pipeline->executables, pipeline->mem_ctx);
337 
338    return VK_SUCCESS;
339 }
340 
341 void
anv_pipeline_finish(struct anv_pipeline * pipeline,struct anv_device * device,const VkAllocationCallbacks * pAllocator)342 anv_pipeline_finish(struct anv_pipeline *pipeline,
343                     struct anv_device *device,
344                     const VkAllocationCallbacks *pAllocator)
345 {
346    anv_reloc_list_finish(&pipeline->batch_relocs,
347                          pAllocator ? pAllocator : &device->vk.alloc);
348    ralloc_free(pipeline->mem_ctx);
349    vk_object_base_finish(&pipeline->base);
350 }
351 
anv_DestroyPipeline(VkDevice _device,VkPipeline _pipeline,const VkAllocationCallbacks * pAllocator)352 void anv_DestroyPipeline(
353     VkDevice                                    _device,
354     VkPipeline                                  _pipeline,
355     const VkAllocationCallbacks*                pAllocator)
356 {
357    ANV_FROM_HANDLE(anv_device, device, _device);
358    ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
359 
360    if (!pipeline)
361       return;
362 
363    switch (pipeline->type) {
364    case ANV_PIPELINE_GRAPHICS: {
365       struct anv_graphics_pipeline *gfx_pipeline =
366          anv_pipeline_to_graphics(pipeline);
367 
368       if (gfx_pipeline->blend_state.map)
369          anv_state_pool_free(&device->dynamic_state_pool, gfx_pipeline->blend_state);
370 
371       for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
372          if (gfx_pipeline->shaders[s])
373             anv_shader_bin_unref(device, gfx_pipeline->shaders[s]);
374       }
375       break;
376    }
377 
378    case ANV_PIPELINE_COMPUTE: {
379       struct anv_compute_pipeline *compute_pipeline =
380          anv_pipeline_to_compute(pipeline);
381 
382       if (compute_pipeline->cs)
383          anv_shader_bin_unref(device, compute_pipeline->cs);
384 
385       break;
386    }
387 
388    default:
389       unreachable("invalid pipeline type");
390    }
391 
392    anv_pipeline_finish(pipeline, device, pAllocator);
393    vk_free2(&device->vk.alloc, pAllocator, pipeline);
394 }
395 
396 static const uint32_t vk_to_gen_primitive_type[] = {
397    [VK_PRIMITIVE_TOPOLOGY_POINT_LIST]                    = _3DPRIM_POINTLIST,
398    [VK_PRIMITIVE_TOPOLOGY_LINE_LIST]                     = _3DPRIM_LINELIST,
399    [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP]                    = _3DPRIM_LINESTRIP,
400    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST]                 = _3DPRIM_TRILIST,
401    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP]                = _3DPRIM_TRISTRIP,
402    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN]                  = _3DPRIM_TRIFAN,
403    [VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY]      = _3DPRIM_LINELIST_ADJ,
404    [VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY]     = _3DPRIM_LINESTRIP_ADJ,
405    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY]  = _3DPRIM_TRILIST_ADJ,
406    [VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
407 };
408 
409 static void
populate_sampler_prog_key(const struct gen_device_info * devinfo,struct brw_sampler_prog_key_data * key)410 populate_sampler_prog_key(const struct gen_device_info *devinfo,
411                           struct brw_sampler_prog_key_data *key)
412 {
413    /* Almost all multisampled textures are compressed.  The only time when we
414     * don't compress a multisampled texture is for 16x MSAA with a surface
415     * width greater than 8k which is a bit of an edge case.  Since the sampler
416     * just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
417     * to tell the compiler to always assume compression.
418     */
419    key->compressed_multisample_layout_mask = ~0;
420 
421    /* SkyLake added support for 16x MSAA.  With this came a new message for
422     * reading from a 16x MSAA surface with compression.  The new message was
423     * needed because now the MCS data is 64 bits instead of 32 or lower as is
424     * the case for 8x, 4x, and 2x.  The key->msaa_16 bit-field controls which
425     * message we use.  Fortunately, the 16x message works for 8x, 4x, and 2x
426     * so we can just use it unconditionally.  This may not be quite as
427     * efficient but it saves us from recompiling.
428     */
429    if (devinfo->gen >= 9)
430       key->msaa_16 = ~0;
431 
432    /* XXX: Handle texture swizzle on HSW- */
433    for (int i = 0; i < MAX_SAMPLERS; i++) {
434       /* Assume color sampler, no swizzling. (Works for BDW+) */
435       key->swizzles[i] = SWIZZLE_XYZW;
436    }
437 }
438 
439 static void
populate_base_prog_key(const struct gen_device_info * devinfo,VkPipelineShaderStageCreateFlags flags,struct brw_base_prog_key * key)440 populate_base_prog_key(const struct gen_device_info *devinfo,
441                        VkPipelineShaderStageCreateFlags flags,
442                        struct brw_base_prog_key *key)
443 {
444    if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
445       key->subgroup_size_type = BRW_SUBGROUP_SIZE_VARYING;
446    else
447       key->subgroup_size_type = BRW_SUBGROUP_SIZE_API_CONSTANT;
448 
449    populate_sampler_prog_key(devinfo, &key->tex);
450 }
451 
452 static void
populate_vs_prog_key(const struct gen_device_info * devinfo,VkPipelineShaderStageCreateFlags flags,struct brw_vs_prog_key * key)453 populate_vs_prog_key(const struct gen_device_info *devinfo,
454                      VkPipelineShaderStageCreateFlags flags,
455                      struct brw_vs_prog_key *key)
456 {
457    memset(key, 0, sizeof(*key));
458 
459    populate_base_prog_key(devinfo, flags, &key->base);
460 
461    /* XXX: Handle vertex input work-arounds */
462 
463    /* XXX: Handle sampler_prog_key */
464 }
465 
466 static void
populate_tcs_prog_key(const struct gen_device_info * devinfo,VkPipelineShaderStageCreateFlags flags,unsigned input_vertices,struct brw_tcs_prog_key * key)467 populate_tcs_prog_key(const struct gen_device_info *devinfo,
468                       VkPipelineShaderStageCreateFlags flags,
469                       unsigned input_vertices,
470                       struct brw_tcs_prog_key *key)
471 {
472    memset(key, 0, sizeof(*key));
473 
474    populate_base_prog_key(devinfo, flags, &key->base);
475 
476    key->input_vertices = input_vertices;
477 }
478 
479 static void
populate_tes_prog_key(const struct gen_device_info * devinfo,VkPipelineShaderStageCreateFlags flags,struct brw_tes_prog_key * key)480 populate_tes_prog_key(const struct gen_device_info *devinfo,
481                       VkPipelineShaderStageCreateFlags flags,
482                       struct brw_tes_prog_key *key)
483 {
484    memset(key, 0, sizeof(*key));
485 
486    populate_base_prog_key(devinfo, flags, &key->base);
487 }
488 
489 static void
populate_gs_prog_key(const struct gen_device_info * devinfo,VkPipelineShaderStageCreateFlags flags,struct brw_gs_prog_key * key)490 populate_gs_prog_key(const struct gen_device_info *devinfo,
491                      VkPipelineShaderStageCreateFlags flags,
492                      struct brw_gs_prog_key *key)
493 {
494    memset(key, 0, sizeof(*key));
495 
496    populate_base_prog_key(devinfo, flags, &key->base);
497 }
498 
499 static void
populate_wm_prog_key(const struct gen_device_info * devinfo,VkPipelineShaderStageCreateFlags flags,const struct anv_subpass * subpass,const VkPipelineMultisampleStateCreateInfo * ms_info,struct brw_wm_prog_key * key)500 populate_wm_prog_key(const struct gen_device_info *devinfo,
501                      VkPipelineShaderStageCreateFlags flags,
502                      const struct anv_subpass *subpass,
503                      const VkPipelineMultisampleStateCreateInfo *ms_info,
504                      struct brw_wm_prog_key *key)
505 {
506    memset(key, 0, sizeof(*key));
507 
508    populate_base_prog_key(devinfo, flags, &key->base);
509 
510    /* We set this to 0 here and set to the actual value before we call
511     * brw_compile_fs.
512     */
513    key->input_slots_valid = 0;
514 
515    /* Vulkan doesn't specify a default */
516    key->high_quality_derivatives = false;
517 
518    /* XXX Vulkan doesn't appear to specify */
519    key->clamp_fragment_color = false;
520 
521    key->ignore_sample_mask_out = false;
522 
523    assert(subpass->color_count <= MAX_RTS);
524    for (uint32_t i = 0; i < subpass->color_count; i++) {
525       if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
526          key->color_outputs_valid |= (1 << i);
527    }
528 
529    key->nr_color_regions = subpass->color_count;
530 
531    /* To reduce possible shader recompilations we would need to know if
532     * there is a SampleMask output variable to compute if we should emit
533     * code to workaround the issue that hardware disables alpha to coverage
534     * when there is SampleMask output.
535     */
536    key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable;
537 
538    /* Vulkan doesn't support fixed-function alpha test */
539    key->alpha_test_replicate_alpha = false;
540 
541    if (ms_info) {
542       /* We should probably pull this out of the shader, but it's fairly
543        * harmless to compute it and then let dead-code take care of it.
544        */
545       if (ms_info->rasterizationSamples > 1) {
546          key->persample_interp = ms_info->sampleShadingEnable &&
547             (ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
548          key->multisample_fbo = true;
549       }
550 
551       key->frag_coord_adds_sample_pos = key->persample_interp;
552    }
553 }
554 
555 static void
populate_cs_prog_key(const struct gen_device_info * devinfo,VkPipelineShaderStageCreateFlags flags,const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT * rss_info,struct brw_cs_prog_key * key)556 populate_cs_prog_key(const struct gen_device_info *devinfo,
557                      VkPipelineShaderStageCreateFlags flags,
558                      const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info,
559                      struct brw_cs_prog_key *key)
560 {
561    memset(key, 0, sizeof(*key));
562 
563    populate_base_prog_key(devinfo, flags, &key->base);
564 
565    if (rss_info) {
566       assert(key->base.subgroup_size_type != BRW_SUBGROUP_SIZE_VARYING);
567 
568       /* These enum values are expressly chosen to be equal to the subgroup
569        * size that they require.
570        */
571       assert(rss_info->requiredSubgroupSize == 8 ||
572              rss_info->requiredSubgroupSize == 16 ||
573              rss_info->requiredSubgroupSize == 32);
574       key->base.subgroup_size_type = rss_info->requiredSubgroupSize;
575    } else if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT_EXT) {
576       /* If the client expressly requests full subgroups and they don't
577        * specify a subgroup size, we need to pick one.  If they're requested
578        * varying subgroup sizes, we set it to UNIFORM and let the back-end
579        * compiler pick.  Otherwise, we specify the API value of 32.
580        * Performance will likely be terrible in this case but there's nothing
581        * we can do about that.  The client should have chosen a size.
582        */
583       if (flags & VK_PIPELINE_SHADER_STAGE_CREATE_ALLOW_VARYING_SUBGROUP_SIZE_BIT_EXT)
584          key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_UNIFORM;
585       else
586          key->base.subgroup_size_type = BRW_SUBGROUP_SIZE_REQUIRE_32;
587    }
588 }
589 
590 struct anv_pipeline_stage {
591    gl_shader_stage stage;
592 
593    const struct anv_shader_module *module;
594    const char *entrypoint;
595    const VkSpecializationInfo *spec_info;
596 
597    unsigned char shader_sha1[20];
598 
599    union brw_any_prog_key key;
600 
601    struct {
602       gl_shader_stage stage;
603       unsigned char sha1[20];
604    } cache_key;
605 
606    nir_shader *nir;
607 
608    struct anv_pipeline_binding surface_to_descriptor[256];
609    struct anv_pipeline_binding sampler_to_descriptor[256];
610    struct anv_pipeline_bind_map bind_map;
611 
612    union brw_any_prog_data prog_data;
613 
614    uint32_t num_stats;
615    struct brw_compile_stats stats[3];
616    char *disasm[3];
617 
618    VkPipelineCreationFeedbackEXT feedback;
619 
620    const unsigned *code;
621 };
622 
623 static void
anv_pipeline_hash_shader(const struct anv_shader_module * module,const char * entrypoint,gl_shader_stage stage,const VkSpecializationInfo * spec_info,unsigned char * sha1_out)624 anv_pipeline_hash_shader(const struct anv_shader_module *module,
625                          const char *entrypoint,
626                          gl_shader_stage stage,
627                          const VkSpecializationInfo *spec_info,
628                          unsigned char *sha1_out)
629 {
630    struct mesa_sha1 ctx;
631    _mesa_sha1_init(&ctx);
632 
633    _mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
634    _mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
635    _mesa_sha1_update(&ctx, &stage, sizeof(stage));
636    if (spec_info) {
637       _mesa_sha1_update(&ctx, spec_info->pMapEntries,
638                         spec_info->mapEntryCount *
639                         sizeof(*spec_info->pMapEntries));
640       _mesa_sha1_update(&ctx, spec_info->pData,
641                         spec_info->dataSize);
642    }
643 
644    _mesa_sha1_final(&ctx, sha1_out);
645 }
646 
647 static void
anv_pipeline_hash_graphics(struct anv_graphics_pipeline * pipeline,struct anv_pipeline_layout * layout,struct anv_pipeline_stage * stages,unsigned char * sha1_out)648 anv_pipeline_hash_graphics(struct anv_graphics_pipeline *pipeline,
649                            struct anv_pipeline_layout *layout,
650                            struct anv_pipeline_stage *stages,
651                            unsigned char *sha1_out)
652 {
653    struct mesa_sha1 ctx;
654    _mesa_sha1_init(&ctx);
655 
656    _mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
657                      sizeof(pipeline->subpass->view_mask));
658 
659    if (layout)
660       _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
661 
662    const bool rba = pipeline->base.device->robust_buffer_access;
663    _mesa_sha1_update(&ctx, &rba, sizeof(rba));
664 
665    for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
666       if (stages[s].entrypoint) {
667          _mesa_sha1_update(&ctx, stages[s].shader_sha1,
668                            sizeof(stages[s].shader_sha1));
669          _mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
670       }
671    }
672 
673    _mesa_sha1_final(&ctx, sha1_out);
674 }
675 
676 static void
anv_pipeline_hash_compute(struct anv_compute_pipeline * pipeline,struct anv_pipeline_layout * layout,struct anv_pipeline_stage * stage,unsigned char * sha1_out)677 anv_pipeline_hash_compute(struct anv_compute_pipeline *pipeline,
678                           struct anv_pipeline_layout *layout,
679                           struct anv_pipeline_stage *stage,
680                           unsigned char *sha1_out)
681 {
682    struct mesa_sha1 ctx;
683    _mesa_sha1_init(&ctx);
684 
685    if (layout)
686       _mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
687 
688    const bool rba = pipeline->base.device->robust_buffer_access;
689    _mesa_sha1_update(&ctx, &rba, sizeof(rba));
690 
691    _mesa_sha1_update(&ctx, stage->shader_sha1,
692                      sizeof(stage->shader_sha1));
693    _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
694 
695    _mesa_sha1_final(&ctx, sha1_out);
696 }
697 
698 static nir_shader *
anv_pipeline_stage_get_nir(struct anv_pipeline * pipeline,struct anv_pipeline_cache * cache,void * mem_ctx,struct anv_pipeline_stage * stage)699 anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
700                            struct anv_pipeline_cache *cache,
701                            void *mem_ctx,
702                            struct anv_pipeline_stage *stage)
703 {
704    const struct brw_compiler *compiler =
705       pipeline->device->physical->compiler;
706    const nir_shader_compiler_options *nir_options =
707       compiler->glsl_compiler_options[stage->stage].NirOptions;
708    nir_shader *nir;
709 
710    nir = anv_device_search_for_nir(pipeline->device, cache,
711                                    nir_options,
712                                    stage->shader_sha1,
713                                    mem_ctx);
714    if (nir) {
715       assert(nir->info.stage == stage->stage);
716       return nir;
717    }
718 
719    nir = anv_shader_compile_to_nir(pipeline->device,
720                                    mem_ctx,
721                                    stage->module,
722                                    stage->entrypoint,
723                                    stage->stage,
724                                    stage->spec_info);
725    if (nir) {
726       anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
727       return nir;
728    }
729 
730    return NULL;
731 }
732 
733 static void
anv_pipeline_lower_nir(struct anv_pipeline * pipeline,void * mem_ctx,struct anv_pipeline_stage * stage,struct anv_pipeline_layout * layout)734 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
735                        void *mem_ctx,
736                        struct anv_pipeline_stage *stage,
737                        struct anv_pipeline_layout *layout)
738 {
739    const struct anv_physical_device *pdevice = pipeline->device->physical;
740    const struct brw_compiler *compiler = pdevice->compiler;
741 
742    struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
743    nir_shader *nir = stage->nir;
744 
745    if (nir->info.stage == MESA_SHADER_FRAGMENT) {
746       NIR_PASS_V(nir, nir_lower_wpos_center,
747                  anv_pipeline_to_graphics(pipeline)->sample_shading_enable);
748       NIR_PASS_V(nir, nir_lower_input_attachments,
749                  &(nir_input_attachment_options) {
750                      .use_fragcoord_sysval = true,
751                      .use_layer_id_sysval = true,
752                  });
753    }
754 
755    NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
756 
757    if (pipeline->type == ANV_PIPELINE_GRAPHICS) {
758       NIR_PASS_V(nir, anv_nir_lower_multiview,
759                  anv_pipeline_to_graphics(pipeline));
760    }
761 
762    nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
763 
764    NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo, NULL);
765 
766    NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global,
767               nir_address_format_64bit_global);
768    NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_push_const,
769               nir_address_format_32bit_offset);
770 
771    /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
772    anv_nir_apply_pipeline_layout(pdevice,
773                                  pipeline->device->robust_buffer_access,
774                                  layout, nir, &stage->bind_map);
775 
776    NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ubo,
777               nir_address_format_32bit_index_offset);
778    NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_ssbo,
779               anv_nir_ssbo_addr_format(pdevice,
780                  pipeline->device->robust_buffer_access));
781 
782    NIR_PASS_V(nir, nir_opt_constant_folding);
783 
784    /* We don't support non-uniform UBOs and non-uniform SSBO access is
785     * handled naturally by falling back to A64 messages.
786     */
787    NIR_PASS_V(nir, nir_lower_non_uniform_access,
788               nir_lower_non_uniform_texture_access |
789               nir_lower_non_uniform_image_access);
790 
791    anv_nir_compute_push_layout(pdevice, pipeline->device->robust_buffer_access,
792                                nir, prog_data, &stage->bind_map, mem_ctx);
793 
794    stage->nir = nir;
795 }
796 
797 static void
anv_pipeline_link_vs(const struct brw_compiler * compiler,struct anv_pipeline_stage * vs_stage,struct anv_pipeline_stage * next_stage)798 anv_pipeline_link_vs(const struct brw_compiler *compiler,
799                      struct anv_pipeline_stage *vs_stage,
800                      struct anv_pipeline_stage *next_stage)
801 {
802    if (next_stage)
803       brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
804 }
805 
806 static void
anv_pipeline_compile_vs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_graphics_pipeline * pipeline,struct anv_pipeline_stage * vs_stage)807 anv_pipeline_compile_vs(const struct brw_compiler *compiler,
808                         void *mem_ctx,
809                         struct anv_graphics_pipeline *pipeline,
810                         struct anv_pipeline_stage *vs_stage)
811 {
812    /* When using Primitive Replication for multiview, each view gets its own
813     * position slot.
814     */
815    uint32_t pos_slots = pipeline->use_primitive_replication ?
816       anv_subpass_view_count(pipeline->subpass) : 1;
817 
818    brw_compute_vue_map(compiler->devinfo,
819                        &vs_stage->prog_data.vs.base.vue_map,
820                        vs_stage->nir->info.outputs_written,
821                        vs_stage->nir->info.separate_shader,
822                        pos_slots);
823 
824    vs_stage->num_stats = 1;
825    vs_stage->code = brw_compile_vs(compiler, pipeline->base.device, mem_ctx,
826                                    &vs_stage->key.vs,
827                                    &vs_stage->prog_data.vs,
828                                    vs_stage->nir, -1,
829                                    vs_stage->stats, NULL);
830 }
831 
832 static void
merge_tess_info(struct shader_info * tes_info,const struct shader_info * tcs_info)833 merge_tess_info(struct shader_info *tes_info,
834                 const struct shader_info *tcs_info)
835 {
836    /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
837     *
838     *    "PointMode. Controls generation of points rather than triangles
839     *     or lines. This functionality defaults to disabled, and is
840     *     enabled if either shader stage includes the execution mode.
841     *
842     * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
843     * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
844     * and OutputVertices, it says:
845     *
846     *    "One mode must be set in at least one of the tessellation
847     *     shader stages."
848     *
849     * So, the fields can be set in either the TCS or TES, but they must
850     * agree if set in both.  Our backend looks at TES, so bitwise-or in
851     * the values from the TCS.
852     */
853    assert(tcs_info->tess.tcs_vertices_out == 0 ||
854           tes_info->tess.tcs_vertices_out == 0 ||
855           tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
856    tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
857 
858    assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
859           tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
860           tcs_info->tess.spacing == tes_info->tess.spacing);
861    tes_info->tess.spacing |= tcs_info->tess.spacing;
862 
863    assert(tcs_info->tess.primitive_mode == 0 ||
864           tes_info->tess.primitive_mode == 0 ||
865           tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
866    tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
867    tes_info->tess.ccw |= tcs_info->tess.ccw;
868    tes_info->tess.point_mode |= tcs_info->tess.point_mode;
869 }
870 
871 static void
anv_pipeline_link_tcs(const struct brw_compiler * compiler,struct anv_pipeline_stage * tcs_stage,struct anv_pipeline_stage * tes_stage)872 anv_pipeline_link_tcs(const struct brw_compiler *compiler,
873                       struct anv_pipeline_stage *tcs_stage,
874                       struct anv_pipeline_stage *tes_stage)
875 {
876    assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
877 
878    brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
879 
880    nir_lower_patch_vertices(tes_stage->nir,
881                             tcs_stage->nir->info.tess.tcs_vertices_out,
882                             NULL);
883 
884    /* Copy TCS info into the TES info */
885    merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
886 
887    /* Whacking the key after cache lookup is a bit sketchy, but all of
888     * this comes from the SPIR-V, which is part of the hash used for the
889     * pipeline cache.  So it should be safe.
890     */
891    tcs_stage->key.tcs.tes_primitive_mode =
892       tes_stage->nir->info.tess.primitive_mode;
893    tcs_stage->key.tcs.quads_workaround =
894       compiler->devinfo->gen < 9 &&
895       tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
896       tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
897 }
898 
899 static void
anv_pipeline_compile_tcs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * tcs_stage,struct anv_pipeline_stage * prev_stage)900 anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
901                          void *mem_ctx,
902                          struct anv_device *device,
903                          struct anv_pipeline_stage *tcs_stage,
904                          struct anv_pipeline_stage *prev_stage)
905 {
906    tcs_stage->key.tcs.outputs_written =
907       tcs_stage->nir->info.outputs_written;
908    tcs_stage->key.tcs.patch_outputs_written =
909       tcs_stage->nir->info.patch_outputs_written;
910 
911    tcs_stage->num_stats = 1;
912    tcs_stage->code = brw_compile_tcs(compiler, device, mem_ctx,
913                                      &tcs_stage->key.tcs,
914                                      &tcs_stage->prog_data.tcs,
915                                      tcs_stage->nir, -1,
916                                      tcs_stage->stats, NULL);
917 }
918 
919 static void
anv_pipeline_link_tes(const struct brw_compiler * compiler,struct anv_pipeline_stage * tes_stage,struct anv_pipeline_stage * next_stage)920 anv_pipeline_link_tes(const struct brw_compiler *compiler,
921                       struct anv_pipeline_stage *tes_stage,
922                       struct anv_pipeline_stage *next_stage)
923 {
924    if (next_stage)
925       brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
926 }
927 
928 static void
anv_pipeline_compile_tes(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * tes_stage,struct anv_pipeline_stage * tcs_stage)929 anv_pipeline_compile_tes(const struct brw_compiler *compiler,
930                          void *mem_ctx,
931                          struct anv_device *device,
932                          struct anv_pipeline_stage *tes_stage,
933                          struct anv_pipeline_stage *tcs_stage)
934 {
935    tes_stage->key.tes.inputs_read =
936       tcs_stage->nir->info.outputs_written;
937    tes_stage->key.tes.patch_inputs_read =
938       tcs_stage->nir->info.patch_outputs_written;
939 
940    tes_stage->num_stats = 1;
941    tes_stage->code = brw_compile_tes(compiler, device, mem_ctx,
942                                      &tes_stage->key.tes,
943                                      &tcs_stage->prog_data.tcs.base.vue_map,
944                                      &tes_stage->prog_data.tes,
945                                      tes_stage->nir, -1,
946                                      tes_stage->stats, NULL);
947 }
948 
949 static void
anv_pipeline_link_gs(const struct brw_compiler * compiler,struct anv_pipeline_stage * gs_stage,struct anv_pipeline_stage * next_stage)950 anv_pipeline_link_gs(const struct brw_compiler *compiler,
951                      struct anv_pipeline_stage *gs_stage,
952                      struct anv_pipeline_stage *next_stage)
953 {
954    if (next_stage)
955       brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
956 }
957 
958 static void
anv_pipeline_compile_gs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * gs_stage,struct anv_pipeline_stage * prev_stage)959 anv_pipeline_compile_gs(const struct brw_compiler *compiler,
960                         void *mem_ctx,
961                         struct anv_device *device,
962                         struct anv_pipeline_stage *gs_stage,
963                         struct anv_pipeline_stage *prev_stage)
964 {
965    brw_compute_vue_map(compiler->devinfo,
966                        &gs_stage->prog_data.gs.base.vue_map,
967                        gs_stage->nir->info.outputs_written,
968                        gs_stage->nir->info.separate_shader, 1);
969 
970    gs_stage->num_stats = 1;
971    gs_stage->code = brw_compile_gs(compiler, device, mem_ctx,
972                                    &gs_stage->key.gs,
973                                    &gs_stage->prog_data.gs,
974                                    gs_stage->nir, NULL, -1,
975                                    gs_stage->stats, NULL);
976 }
977 
978 static void
anv_pipeline_link_fs(const struct brw_compiler * compiler,struct anv_pipeline_stage * stage)979 anv_pipeline_link_fs(const struct brw_compiler *compiler,
980                      struct anv_pipeline_stage *stage)
981 {
982    unsigned num_rt_bindings;
983    struct anv_pipeline_binding rt_bindings[MAX_RTS];
984    if (stage->key.wm.nr_color_regions > 0) {
985       assert(stage->key.wm.nr_color_regions <= MAX_RTS);
986       for (unsigned rt = 0; rt < stage->key.wm.nr_color_regions; rt++) {
987          if (stage->key.wm.color_outputs_valid & BITFIELD_BIT(rt)) {
988             rt_bindings[rt] = (struct anv_pipeline_binding) {
989                .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
990                .index = rt,
991             };
992          } else {
993             /* Setup a null render target */
994             rt_bindings[rt] = (struct anv_pipeline_binding) {
995                .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
996                .index = UINT32_MAX,
997             };
998          }
999       }
1000       num_rt_bindings = stage->key.wm.nr_color_regions;
1001    } else {
1002       /* Setup a null render target */
1003       rt_bindings[0] = (struct anv_pipeline_binding) {
1004          .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
1005          .index = UINT32_MAX,
1006       };
1007       num_rt_bindings = 1;
1008    }
1009 
1010    assert(num_rt_bindings <= MAX_RTS);
1011    assert(stage->bind_map.surface_count == 0);
1012    typed_memcpy(stage->bind_map.surface_to_descriptor,
1013                 rt_bindings, num_rt_bindings);
1014    stage->bind_map.surface_count += num_rt_bindings;
1015 
1016    /* Now that we've set up the color attachments, we can go through and
1017     * eliminate any shader outputs that map to VK_ATTACHMENT_UNUSED in the
1018     * hopes that dead code can clean them up in this and any earlier shader
1019     * stages.
1020     */
1021    nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
1022    bool deleted_output = false;
1023    nir_foreach_shader_out_variable_safe(var, stage->nir) {
1024       /* TODO: We don't delete depth/stencil writes.  We probably could if the
1025        * subpass doesn't have a depth/stencil attachment.
1026        */
1027       if (var->data.location < FRAG_RESULT_DATA0)
1028          continue;
1029 
1030       const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
1031 
1032       /* If this is the RT at location 0 and we have alpha to coverage
1033        * enabled we still need that write because it will affect the coverage
1034        * mask even if it's never written to a color target.
1035        */
1036       if (rt == 0 && stage->key.wm.alpha_to_coverage)
1037          continue;
1038 
1039       const unsigned array_len =
1040          glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
1041       assert(rt + array_len <= MAX_RTS);
1042 
1043       if (rt >= MAX_RTS || !(stage->key.wm.color_outputs_valid &
1044                              BITFIELD_RANGE(rt, array_len))) {
1045          deleted_output = true;
1046          var->data.mode = nir_var_function_temp;
1047          exec_node_remove(&var->node);
1048          exec_list_push_tail(&impl->locals, &var->node);
1049       }
1050    }
1051 
1052    if (deleted_output)
1053       nir_fixup_deref_modes(stage->nir);
1054 
1055    /* We stored the number of subpass color attachments in nr_color_regions
1056     * when calculating the key for caching.  Now that we've computed the bind
1057     * map, we can reduce this to the actual max before we go into the back-end
1058     * compiler.
1059     */
1060    stage->key.wm.nr_color_regions =
1061       util_last_bit(stage->key.wm.color_outputs_valid);
1062 }
1063 
1064 static void
anv_pipeline_compile_fs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * fs_stage,struct anv_pipeline_stage * prev_stage)1065 anv_pipeline_compile_fs(const struct brw_compiler *compiler,
1066                         void *mem_ctx,
1067                         struct anv_device *device,
1068                         struct anv_pipeline_stage *fs_stage,
1069                         struct anv_pipeline_stage *prev_stage)
1070 {
1071    /* TODO: we could set this to 0 based on the information in nir_shader, but
1072     * we need this before we call spirv_to_nir.
1073     */
1074    assert(prev_stage);
1075    fs_stage->key.wm.input_slots_valid =
1076       prev_stage->prog_data.vue.vue_map.slots_valid;
1077 
1078    fs_stage->code = brw_compile_fs(compiler, device, mem_ctx,
1079                                    &fs_stage->key.wm,
1080                                    &fs_stage->prog_data.wm,
1081                                    fs_stage->nir, -1, -1, -1,
1082                                    true, false, NULL,
1083                                    fs_stage->stats, NULL);
1084 
1085    fs_stage->num_stats = (uint32_t)fs_stage->prog_data.wm.dispatch_8 +
1086                          (uint32_t)fs_stage->prog_data.wm.dispatch_16 +
1087                          (uint32_t)fs_stage->prog_data.wm.dispatch_32;
1088 
1089    if (fs_stage->key.wm.color_outputs_valid == 0 &&
1090        !fs_stage->prog_data.wm.has_side_effects &&
1091        !fs_stage->prog_data.wm.uses_omask &&
1092        !fs_stage->key.wm.alpha_to_coverage &&
1093        !fs_stage->prog_data.wm.uses_kill &&
1094        fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
1095        !fs_stage->prog_data.wm.computed_stencil) {
1096       /* This fragment shader has no outputs and no side effects.  Go ahead
1097        * and return the code pointer so we don't accidentally think the
1098        * compile failed but zero out prog_data which will set program_size to
1099        * zero and disable the stage.
1100        */
1101       memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
1102    }
1103 }
1104 
1105 static void
anv_pipeline_add_executable(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage,struct brw_compile_stats * stats,uint32_t code_offset)1106 anv_pipeline_add_executable(struct anv_pipeline *pipeline,
1107                             struct anv_pipeline_stage *stage,
1108                             struct brw_compile_stats *stats,
1109                             uint32_t code_offset)
1110 {
1111    char *nir = NULL;
1112    if (stage->nir &&
1113        (pipeline->flags &
1114         VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1115       char *stream_data = NULL;
1116       size_t stream_size = 0;
1117       FILE *stream = open_memstream(&stream_data, &stream_size);
1118 
1119       nir_print_shader(stage->nir, stream);
1120 
1121       fclose(stream);
1122 
1123       /* Copy it to a ralloc'd thing */
1124       nir = ralloc_size(pipeline->mem_ctx, stream_size + 1);
1125       memcpy(nir, stream_data, stream_size);
1126       nir[stream_size] = 0;
1127 
1128       free(stream_data);
1129    }
1130 
1131    char *disasm = NULL;
1132    if (stage->code &&
1133        (pipeline->flags &
1134         VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1135       char *stream_data = NULL;
1136       size_t stream_size = 0;
1137       FILE *stream = open_memstream(&stream_data, &stream_size);
1138 
1139       uint32_t push_size = 0;
1140       for (unsigned i = 0; i < 4; i++)
1141          push_size += stage->bind_map.push_ranges[i].length;
1142       if (push_size > 0) {
1143          fprintf(stream, "Push constant ranges:\n");
1144          for (unsigned i = 0; i < 4; i++) {
1145             if (stage->bind_map.push_ranges[i].length == 0)
1146                continue;
1147 
1148             fprintf(stream, "    RANGE%d (%dB): ", i,
1149                     stage->bind_map.push_ranges[i].length * 32);
1150 
1151             switch (stage->bind_map.push_ranges[i].set) {
1152             case ANV_DESCRIPTOR_SET_NULL:
1153                fprintf(stream, "NULL");
1154                break;
1155 
1156             case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
1157                fprintf(stream, "Vulkan push constants and API params");
1158                break;
1159 
1160             case ANV_DESCRIPTOR_SET_DESCRIPTORS:
1161                fprintf(stream, "Descriptor buffer for set %d (start=%dB)",
1162                        stage->bind_map.push_ranges[i].index,
1163                        stage->bind_map.push_ranges[i].start * 32);
1164                break;
1165 
1166             case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS:
1167                unreachable("gl_NumWorkgroups is never pushed");
1168 
1169             case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS:
1170                fprintf(stream, "Inline shader constant data (start=%dB)",
1171                        stage->bind_map.push_ranges[i].start * 32);
1172                break;
1173 
1174             case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
1175                unreachable("Color attachments can't be pushed");
1176 
1177             default:
1178                fprintf(stream, "UBO (set=%d binding=%d start=%dB)",
1179                        stage->bind_map.push_ranges[i].set,
1180                        stage->bind_map.push_ranges[i].index,
1181                        stage->bind_map.push_ranges[i].start * 32);
1182                break;
1183             }
1184             fprintf(stream, "\n");
1185          }
1186          fprintf(stream, "\n");
1187       }
1188 
1189       /* Creating this is far cheaper than it looks.  It's perfectly fine to
1190        * do it for every binary.
1191        */
1192       gen_disassemble(&pipeline->device->info,
1193                       stage->code, code_offset, stream);
1194 
1195       fclose(stream);
1196 
1197       /* Copy it to a ralloc'd thing */
1198       disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
1199       memcpy(disasm, stream_data, stream_size);
1200       disasm[stream_size] = 0;
1201 
1202       free(stream_data);
1203    }
1204 
1205    const struct anv_pipeline_executable exe = {
1206       .stage = stage->stage,
1207       .stats = *stats,
1208       .nir = nir,
1209       .disasm = disasm,
1210    };
1211    util_dynarray_append(&pipeline->executables,
1212                         struct anv_pipeline_executable, exe);
1213 }
1214 
1215 static void
anv_pipeline_add_executables(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage,struct anv_shader_bin * bin)1216 anv_pipeline_add_executables(struct anv_pipeline *pipeline,
1217                              struct anv_pipeline_stage *stage,
1218                              struct anv_shader_bin *bin)
1219 {
1220    if (stage->stage == MESA_SHADER_FRAGMENT) {
1221       /* We pull the prog data and stats out of the anv_shader_bin because
1222        * the anv_pipeline_stage may not be fully populated if we successfully
1223        * looked up the shader in a cache.
1224        */
1225       const struct brw_wm_prog_data *wm_prog_data =
1226          (const struct brw_wm_prog_data *)bin->prog_data;
1227       struct brw_compile_stats *stats = bin->stats;
1228 
1229       if (wm_prog_data->dispatch_8) {
1230          anv_pipeline_add_executable(pipeline, stage, stats++, 0);
1231       }
1232 
1233       if (wm_prog_data->dispatch_16) {
1234          anv_pipeline_add_executable(pipeline, stage, stats++,
1235                                      wm_prog_data->prog_offset_16);
1236       }
1237 
1238       if (wm_prog_data->dispatch_32) {
1239          anv_pipeline_add_executable(pipeline, stage, stats++,
1240                                      wm_prog_data->prog_offset_32);
1241       }
1242    } else {
1243       anv_pipeline_add_executable(pipeline, stage, bin->stats, 0);
1244    }
1245 }
1246 
1247 static void
anv_pipeline_init_from_cached_graphics(struct anv_graphics_pipeline * pipeline)1248 anv_pipeline_init_from_cached_graphics(struct anv_graphics_pipeline *pipeline)
1249 {
1250    /* TODO: Cache this pipeline-wide information. */
1251 
1252    /* Primitive replication depends on information from all the shaders.
1253     * Recover this bit from the fact that we have more than one position slot
1254     * in the vertex shader when using it.
1255     */
1256    assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1257    int pos_slots = 0;
1258    const struct brw_vue_prog_data *vue_prog_data =
1259       (const void *) pipeline->shaders[MESA_SHADER_VERTEX]->prog_data;
1260    const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
1261    for (int i = 0; i < vue_map->num_slots; i++) {
1262       if (vue_map->slot_to_varying[i] == VARYING_SLOT_POS)
1263          pos_slots++;
1264    }
1265    pipeline->use_primitive_replication = pos_slots > 1;
1266 }
1267 
1268 static VkResult
anv_pipeline_compile_graphics(struct anv_graphics_pipeline * pipeline,struct anv_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * info)1269 anv_pipeline_compile_graphics(struct anv_graphics_pipeline *pipeline,
1270                               struct anv_pipeline_cache *cache,
1271                               const VkGraphicsPipelineCreateInfo *info)
1272 {
1273    VkPipelineCreationFeedbackEXT pipeline_feedback = {
1274       .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1275    };
1276    int64_t pipeline_start = os_time_get_nano();
1277 
1278    const struct brw_compiler *compiler = pipeline->base.device->physical->compiler;
1279    struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
1280 
1281    pipeline->active_stages = 0;
1282 
1283    VkResult result;
1284    for (uint32_t i = 0; i < info->stageCount; i++) {
1285       const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
1286       gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
1287 
1288       pipeline->active_stages |= sinfo->stage;
1289 
1290       int64_t stage_start = os_time_get_nano();
1291 
1292       stages[stage].stage = stage;
1293       stages[stage].module = anv_shader_module_from_handle(sinfo->module);
1294       stages[stage].entrypoint = sinfo->pName;
1295       stages[stage].spec_info = sinfo->pSpecializationInfo;
1296       anv_pipeline_hash_shader(stages[stage].module,
1297                                stages[stage].entrypoint,
1298                                stage,
1299                                stages[stage].spec_info,
1300                                stages[stage].shader_sha1);
1301 
1302       const struct gen_device_info *devinfo = &pipeline->base.device->info;
1303       switch (stage) {
1304       case MESA_SHADER_VERTEX:
1305          populate_vs_prog_key(devinfo, sinfo->flags, &stages[stage].key.vs);
1306          break;
1307       case MESA_SHADER_TESS_CTRL:
1308          populate_tcs_prog_key(devinfo, sinfo->flags,
1309                                info->pTessellationState->patchControlPoints,
1310                                &stages[stage].key.tcs);
1311          break;
1312       case MESA_SHADER_TESS_EVAL:
1313          populate_tes_prog_key(devinfo, sinfo->flags, &stages[stage].key.tes);
1314          break;
1315       case MESA_SHADER_GEOMETRY:
1316          populate_gs_prog_key(devinfo, sinfo->flags, &stages[stage].key.gs);
1317          break;
1318       case MESA_SHADER_FRAGMENT: {
1319          const bool raster_enabled =
1320             !info->pRasterizationState->rasterizerDiscardEnable;
1321          populate_wm_prog_key(devinfo, sinfo->flags,
1322                               pipeline->subpass,
1323                               raster_enabled ? info->pMultisampleState : NULL,
1324                               &stages[stage].key.wm);
1325          break;
1326       }
1327       default:
1328          unreachable("Invalid graphics shader stage");
1329       }
1330 
1331       stages[stage].feedback.duration += os_time_get_nano() - stage_start;
1332       stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
1333    }
1334 
1335    if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
1336       pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
1337 
1338    assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
1339 
1340    ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1341 
1342    unsigned char sha1[20];
1343    anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
1344 
1345    for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1346       if (!stages[s].entrypoint)
1347          continue;
1348 
1349       stages[s].cache_key.stage = s;
1350       memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
1351    }
1352 
1353    const bool skip_cache_lookup =
1354       (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
1355 
1356    if (!skip_cache_lookup) {
1357       unsigned found = 0;
1358       unsigned cache_hits = 0;
1359       for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1360          if (!stages[s].entrypoint)
1361             continue;
1362 
1363          int64_t stage_start = os_time_get_nano();
1364 
1365          bool cache_hit;
1366          struct anv_shader_bin *bin =
1367             anv_device_search_for_kernel(pipeline->base.device, cache,
1368                                          &stages[s].cache_key,
1369                                          sizeof(stages[s].cache_key), &cache_hit);
1370          if (bin) {
1371             found++;
1372             pipeline->shaders[s] = bin;
1373          }
1374 
1375          if (cache_hit) {
1376             cache_hits++;
1377             stages[s].feedback.flags |=
1378                VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1379          }
1380          stages[s].feedback.duration += os_time_get_nano() - stage_start;
1381       }
1382 
1383       if (found == __builtin_popcount(pipeline->active_stages)) {
1384          if (cache_hits == found) {
1385             pipeline_feedback.flags |=
1386                VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1387          }
1388          /* We found all our shaders in the cache.  We're done. */
1389          for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1390             if (!stages[s].entrypoint)
1391                continue;
1392 
1393             anv_pipeline_add_executables(&pipeline->base, &stages[s],
1394                                          pipeline->shaders[s]);
1395          }
1396          anv_pipeline_init_from_cached_graphics(pipeline);
1397          goto done;
1398       } else if (found > 0) {
1399          /* We found some but not all of our shaders.  This shouldn't happen
1400           * most of the time but it can if we have a partially populated
1401           * pipeline cache.
1402           */
1403          assert(found < __builtin_popcount(pipeline->active_stages));
1404 
1405          vk_debug_report(&pipeline->base.device->physical->instance->debug_report_callbacks,
1406                          VK_DEBUG_REPORT_WARNING_BIT_EXT |
1407                          VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
1408                          VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
1409                          (uint64_t)(uintptr_t)cache,
1410                          0, 0, "anv",
1411                          "Found a partial pipeline in the cache.  This is "
1412                          "most likely caused by an incomplete pipeline cache "
1413                          "import or export");
1414 
1415          /* We're going to have to recompile anyway, so just throw away our
1416           * references to the shaders in the cache.  We'll get them out of the
1417           * cache again as part of the compilation process.
1418           */
1419          for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1420             stages[s].feedback.flags = 0;
1421             if (pipeline->shaders[s]) {
1422                anv_shader_bin_unref(pipeline->base.device, pipeline->shaders[s]);
1423                pipeline->shaders[s] = NULL;
1424             }
1425          }
1426       }
1427    }
1428 
1429    if (info->flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_EXT)
1430       return VK_PIPELINE_COMPILE_REQUIRED_EXT;
1431 
1432    void *pipeline_ctx = ralloc_context(NULL);
1433 
1434    for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1435       if (!stages[s].entrypoint)
1436          continue;
1437 
1438       int64_t stage_start = os_time_get_nano();
1439 
1440       assert(stages[s].stage == s);
1441       assert(pipeline->shaders[s] == NULL);
1442 
1443       stages[s].bind_map = (struct anv_pipeline_bind_map) {
1444          .surface_to_descriptor = stages[s].surface_to_descriptor,
1445          .sampler_to_descriptor = stages[s].sampler_to_descriptor
1446       };
1447 
1448       stages[s].nir = anv_pipeline_stage_get_nir(&pipeline->base, cache,
1449                                                  pipeline_ctx,
1450                                                  &stages[s]);
1451       if (stages[s].nir == NULL) {
1452          result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1453          goto fail;
1454       }
1455 
1456       stages[s].feedback.duration += os_time_get_nano() - stage_start;
1457    }
1458 
1459    /* Walk backwards to link */
1460    struct anv_pipeline_stage *next_stage = NULL;
1461    for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
1462       if (!stages[s].entrypoint)
1463          continue;
1464 
1465       switch (s) {
1466       case MESA_SHADER_VERTEX:
1467          anv_pipeline_link_vs(compiler, &stages[s], next_stage);
1468          break;
1469       case MESA_SHADER_TESS_CTRL:
1470          anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
1471          break;
1472       case MESA_SHADER_TESS_EVAL:
1473          anv_pipeline_link_tes(compiler, &stages[s], next_stage);
1474          break;
1475       case MESA_SHADER_GEOMETRY:
1476          anv_pipeline_link_gs(compiler, &stages[s], next_stage);
1477          break;
1478       case MESA_SHADER_FRAGMENT:
1479          anv_pipeline_link_fs(compiler, &stages[s]);
1480          break;
1481       default:
1482          unreachable("Invalid graphics shader stage");
1483       }
1484 
1485       next_stage = &stages[s];
1486    }
1487 
1488    if (pipeline->base.device->info.gen >= 12 &&
1489        pipeline->subpass->view_mask != 0) {
1490       /* For some pipelines HW Primitive Replication can be used instead of
1491        * instancing to implement Multiview.  This depend on how viewIndex is
1492        * used in all the active shaders, so this check can't be done per
1493        * individual shaders.
1494        */
1495       nir_shader *shaders[MESA_SHADER_STAGES] = {};
1496       for (unsigned s = 0; s < MESA_SHADER_STAGES; s++)
1497          shaders[s] = stages[s].nir;
1498 
1499       pipeline->use_primitive_replication =
1500          anv_check_for_primitive_replication(shaders, pipeline);
1501    } else {
1502       pipeline->use_primitive_replication = false;
1503    }
1504 
1505    struct anv_pipeline_stage *prev_stage = NULL;
1506    for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1507       if (!stages[s].entrypoint)
1508          continue;
1509 
1510       int64_t stage_start = os_time_get_nano();
1511 
1512       void *stage_ctx = ralloc_context(NULL);
1513 
1514       anv_pipeline_lower_nir(&pipeline->base, stage_ctx, &stages[s], layout);
1515 
1516       if (prev_stage && compiler->glsl_compiler_options[s].NirOptions->unify_interfaces) {
1517          prev_stage->nir->info.outputs_written |= stages[s].nir->info.inputs_read &
1518                   ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
1519          stages[s].nir->info.inputs_read |= prev_stage->nir->info.outputs_written &
1520                   ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
1521          prev_stage->nir->info.patch_outputs_written |= stages[s].nir->info.patch_inputs_read;
1522          stages[s].nir->info.patch_inputs_read |= prev_stage->nir->info.patch_outputs_written;
1523       }
1524 
1525       ralloc_free(stage_ctx);
1526 
1527       stages[s].feedback.duration += os_time_get_nano() - stage_start;
1528 
1529       prev_stage = &stages[s];
1530    }
1531 
1532    prev_stage = NULL;
1533    for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1534       if (!stages[s].entrypoint)
1535          continue;
1536 
1537       int64_t stage_start = os_time_get_nano();
1538 
1539       void *stage_ctx = ralloc_context(NULL);
1540 
1541       nir_xfb_info *xfb_info = NULL;
1542       if (s == MESA_SHADER_VERTEX ||
1543           s == MESA_SHADER_TESS_EVAL ||
1544           s == MESA_SHADER_GEOMETRY)
1545          xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx);
1546 
1547       switch (s) {
1548       case MESA_SHADER_VERTEX:
1549          anv_pipeline_compile_vs(compiler, stage_ctx, pipeline,
1550                                  &stages[s]);
1551          break;
1552       case MESA_SHADER_TESS_CTRL:
1553          anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->base.device,
1554                                   &stages[s], prev_stage);
1555          break;
1556       case MESA_SHADER_TESS_EVAL:
1557          anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->base.device,
1558                                   &stages[s], prev_stage);
1559          break;
1560       case MESA_SHADER_GEOMETRY:
1561          anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->base.device,
1562                                  &stages[s], prev_stage);
1563          break;
1564       case MESA_SHADER_FRAGMENT:
1565          anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->base.device,
1566                                  &stages[s], prev_stage);
1567          break;
1568       default:
1569          unreachable("Invalid graphics shader stage");
1570       }
1571       if (stages[s].code == NULL) {
1572          ralloc_free(stage_ctx);
1573          result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1574          goto fail;
1575       }
1576 
1577       anv_nir_validate_push_layout(&stages[s].prog_data.base,
1578                                    &stages[s].bind_map);
1579 
1580       struct anv_shader_bin *bin =
1581          anv_device_upload_kernel(pipeline->base.device, cache, s,
1582                                   &stages[s].cache_key,
1583                                   sizeof(stages[s].cache_key),
1584                                   stages[s].code,
1585                                   stages[s].prog_data.base.program_size,
1586                                   &stages[s].prog_data.base,
1587                                   brw_prog_data_size(s),
1588                                   stages[s].stats, stages[s].num_stats,
1589                                   xfb_info, &stages[s].bind_map);
1590       if (!bin) {
1591          ralloc_free(stage_ctx);
1592          result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1593          goto fail;
1594       }
1595 
1596       anv_pipeline_add_executables(&pipeline->base, &stages[s], bin);
1597 
1598       pipeline->shaders[s] = bin;
1599       ralloc_free(stage_ctx);
1600 
1601       stages[s].feedback.duration += os_time_get_nano() - stage_start;
1602 
1603       prev_stage = &stages[s];
1604    }
1605 
1606    ralloc_free(pipeline_ctx);
1607 
1608 done:
1609 
1610    if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
1611        pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
1612       /* This can happen if we decided to implicitly disable the fragment
1613        * shader.  See anv_pipeline_compile_fs().
1614        */
1615       anv_shader_bin_unref(pipeline->base.device,
1616                            pipeline->shaders[MESA_SHADER_FRAGMENT]);
1617       pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
1618       pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
1619    }
1620 
1621    pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1622 
1623    const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1624       vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1625    if (create_feedback) {
1626       *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1627 
1628       assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
1629       for (uint32_t i = 0; i < info->stageCount; i++) {
1630          gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
1631          create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
1632       }
1633    }
1634 
1635    return VK_SUCCESS;
1636 
1637 fail:
1638    ralloc_free(pipeline_ctx);
1639 
1640    for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
1641       if (pipeline->shaders[s])
1642          anv_shader_bin_unref(pipeline->base.device, pipeline->shaders[s]);
1643    }
1644 
1645    return result;
1646 }
1647 
1648 static void
shared_type_info(const struct glsl_type * type,unsigned * size,unsigned * align)1649 shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
1650 {
1651    assert(glsl_type_is_vector_or_scalar(type));
1652 
1653    uint32_t comp_size = glsl_type_is_boolean(type)
1654       ? 4 : glsl_get_bit_size(type) / 8;
1655    unsigned length = glsl_get_vector_elements(type);
1656    *size = comp_size * length,
1657    *align = comp_size * (length == 3 ? 4 : length);
1658 }
1659 
1660 VkResult
anv_pipeline_compile_cs(struct anv_compute_pipeline * pipeline,struct anv_pipeline_cache * cache,const VkComputePipelineCreateInfo * info,const struct anv_shader_module * module,const char * entrypoint,const VkSpecializationInfo * spec_info)1661 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
1662                         struct anv_pipeline_cache *cache,
1663                         const VkComputePipelineCreateInfo *info,
1664                         const struct anv_shader_module *module,
1665                         const char *entrypoint,
1666                         const VkSpecializationInfo *spec_info)
1667 {
1668    VkPipelineCreationFeedbackEXT pipeline_feedback = {
1669       .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1670    };
1671    int64_t pipeline_start = os_time_get_nano();
1672 
1673    const struct brw_compiler *compiler = pipeline->base.device->physical->compiler;
1674 
1675    struct anv_pipeline_stage stage = {
1676       .stage = MESA_SHADER_COMPUTE,
1677       .module = module,
1678       .entrypoint = entrypoint,
1679       .spec_info = spec_info,
1680       .cache_key = {
1681          .stage = MESA_SHADER_COMPUTE,
1682       },
1683       .feedback = {
1684          .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
1685       },
1686    };
1687    anv_pipeline_hash_shader(stage.module,
1688                             stage.entrypoint,
1689                             MESA_SHADER_COMPUTE,
1690                             stage.spec_info,
1691                             stage.shader_sha1);
1692 
1693    struct anv_shader_bin *bin = NULL;
1694 
1695    const VkPipelineShaderStageRequiredSubgroupSizeCreateInfoEXT *rss_info =
1696       vk_find_struct_const(info->stage.pNext,
1697                            PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO_EXT);
1698 
1699    populate_cs_prog_key(&pipeline->base.device->info, info->stage.flags,
1700                         rss_info, &stage.key.cs);
1701 
1702    ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
1703 
1704    const bool skip_cache_lookup =
1705       (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
1706 
1707    anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
1708 
1709    bool cache_hit = false;
1710    if (!skip_cache_lookup) {
1711       bin = anv_device_search_for_kernel(pipeline->base.device, cache,
1712                                          &stage.cache_key,
1713                                          sizeof(stage.cache_key),
1714                                          &cache_hit);
1715    }
1716 
1717    if (bin == NULL &&
1718        (info->flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_EXT))
1719       return VK_PIPELINE_COMPILE_REQUIRED_EXT;
1720 
1721    void *mem_ctx = ralloc_context(NULL);
1722    if (bin == NULL) {
1723       int64_t stage_start = os_time_get_nano();
1724 
1725       stage.bind_map = (struct anv_pipeline_bind_map) {
1726          .surface_to_descriptor = stage.surface_to_descriptor,
1727          .sampler_to_descriptor = stage.sampler_to_descriptor
1728       };
1729 
1730       /* Set up a binding for the gl_NumWorkGroups */
1731       stage.bind_map.surface_count = 1;
1732       stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
1733          .set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
1734       };
1735 
1736       stage.nir = anv_pipeline_stage_get_nir(&pipeline->base, cache, mem_ctx, &stage);
1737       if (stage.nir == NULL) {
1738          ralloc_free(mem_ctx);
1739          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1740       }
1741 
1742       NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id);
1743 
1744       anv_pipeline_lower_nir(&pipeline->base, mem_ctx, &stage, layout);
1745 
1746       NIR_PASS_V(stage.nir, nir_lower_vars_to_explicit_types,
1747                  nir_var_mem_shared, shared_type_info);
1748       NIR_PASS_V(stage.nir, nir_lower_explicit_io,
1749                  nir_var_mem_shared, nir_address_format_32bit_offset);
1750       NIR_PASS_V(stage.nir, brw_nir_lower_cs_intrinsics);
1751 
1752       stage.num_stats = 1;
1753       stage.code = brw_compile_cs(compiler, pipeline->base.device, mem_ctx,
1754                                   &stage.key.cs, &stage.prog_data.cs,
1755                                   stage.nir, -1, stage.stats, NULL);
1756       if (stage.code == NULL) {
1757          ralloc_free(mem_ctx);
1758          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1759       }
1760 
1761       anv_nir_validate_push_layout(&stage.prog_data.base, &stage.bind_map);
1762 
1763       if (!stage.prog_data.cs.uses_num_work_groups) {
1764          assert(stage.bind_map.surface_to_descriptor[0].set ==
1765                 ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS);
1766          stage.bind_map.surface_to_descriptor[0].set = ANV_DESCRIPTOR_SET_NULL;
1767       }
1768 
1769       const unsigned code_size = stage.prog_data.base.program_size;
1770       bin = anv_device_upload_kernel(pipeline->base.device, cache,
1771                                      MESA_SHADER_COMPUTE,
1772                                      &stage.cache_key, sizeof(stage.cache_key),
1773                                      stage.code, code_size,
1774                                      &stage.prog_data.base,
1775                                      sizeof(stage.prog_data.cs),
1776                                      stage.stats, stage.num_stats,
1777                                      NULL, &stage.bind_map);
1778       if (!bin) {
1779          ralloc_free(mem_ctx);
1780          return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1781       }
1782 
1783       stage.feedback.duration = os_time_get_nano() - stage_start;
1784    }
1785 
1786    anv_pipeline_add_executables(&pipeline->base, &stage, bin);
1787 
1788    ralloc_free(mem_ctx);
1789 
1790    if (cache_hit) {
1791       stage.feedback.flags |=
1792          VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1793       pipeline_feedback.flags |=
1794          VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
1795    }
1796    pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
1797 
1798    const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
1799       vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
1800    if (create_feedback) {
1801       *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
1802 
1803       assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
1804       create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
1805    }
1806 
1807    pipeline->cs = bin;
1808 
1809    return VK_SUCCESS;
1810 }
1811 
1812 struct anv_cs_parameters
anv_cs_parameters(const struct anv_compute_pipeline * pipeline)1813 anv_cs_parameters(const struct anv_compute_pipeline *pipeline)
1814 {
1815    const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
1816 
1817    struct anv_cs_parameters cs_params = {};
1818 
1819    cs_params.group_size = cs_prog_data->local_size[0] *
1820                           cs_prog_data->local_size[1] *
1821                           cs_prog_data->local_size[2];
1822    cs_params.simd_size =
1823       brw_cs_simd_size_for_group_size(&pipeline->base.device->info,
1824                                       cs_prog_data, cs_params.group_size);
1825    cs_params.threads = DIV_ROUND_UP(cs_params.group_size, cs_params.simd_size);
1826 
1827    return cs_params;
1828 }
1829 
1830 /**
1831  * Copy pipeline state not marked as dynamic.
1832  * Dynamic state is pipeline state which hasn't been provided at pipeline
1833  * creation time, but is dynamically provided afterwards using various
1834  * vkCmdSet* functions.
1835  *
1836  * The set of state considered "non_dynamic" is determined by the pieces of
1837  * state that have their corresponding VkDynamicState enums omitted from
1838  * VkPipelineDynamicStateCreateInfo::pDynamicStates.
1839  *
1840  * @param[out] pipeline    Destination non_dynamic state.
1841  * @param[in]  pCreateInfo Source of non_dynamic state to be copied.
1842  */
1843 static void
copy_non_dynamic_state(struct anv_graphics_pipeline * pipeline,const VkGraphicsPipelineCreateInfo * pCreateInfo)1844 copy_non_dynamic_state(struct anv_graphics_pipeline *pipeline,
1845                        const VkGraphicsPipelineCreateInfo *pCreateInfo)
1846 {
1847    anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
1848    struct anv_subpass *subpass = pipeline->subpass;
1849 
1850    pipeline->dynamic_state = default_dynamic_state;
1851 
1852    if (pCreateInfo->pDynamicState) {
1853       /* Remove all of the states that are marked as dynamic */
1854       uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
1855       for (uint32_t s = 0; s < count; s++) {
1856          states &= ~anv_cmd_dirty_bit_for_vk_dynamic_state(
1857             pCreateInfo->pDynamicState->pDynamicStates[s]);
1858       }
1859    }
1860 
1861    struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
1862 
1863    /* Section 9.2 of the Vulkan 1.0.15 spec says:
1864     *
1865     *    pViewportState is [...] NULL if the pipeline
1866     *    has rasterization disabled.
1867     */
1868    if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1869       assert(pCreateInfo->pViewportState);
1870 
1871       dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
1872       if (states & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT) {
1873          typed_memcpy(dynamic->viewport.viewports,
1874                      pCreateInfo->pViewportState->pViewports,
1875                      pCreateInfo->pViewportState->viewportCount);
1876       }
1877 
1878       dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
1879       if (states & ANV_CMD_DIRTY_DYNAMIC_SCISSOR) {
1880          typed_memcpy(dynamic->scissor.scissors,
1881                      pCreateInfo->pViewportState->pScissors,
1882                      pCreateInfo->pViewportState->scissorCount);
1883       }
1884    }
1885 
1886    if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH) {
1887       assert(pCreateInfo->pRasterizationState);
1888       dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
1889    }
1890 
1891    if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS) {
1892       assert(pCreateInfo->pRasterizationState);
1893       dynamic->depth_bias.bias =
1894          pCreateInfo->pRasterizationState->depthBiasConstantFactor;
1895       dynamic->depth_bias.clamp =
1896          pCreateInfo->pRasterizationState->depthBiasClamp;
1897       dynamic->depth_bias.slope =
1898          pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
1899    }
1900 
1901    if (states & ANV_CMD_DIRTY_DYNAMIC_CULL_MODE) {
1902       assert(pCreateInfo->pRasterizationState);
1903       dynamic->cull_mode =
1904          pCreateInfo->pRasterizationState->cullMode;
1905    }
1906 
1907    if (states & ANV_CMD_DIRTY_DYNAMIC_FRONT_FACE) {
1908       assert(pCreateInfo->pRasterizationState);
1909       dynamic->front_face =
1910          pCreateInfo->pRasterizationState->frontFace;
1911    }
1912 
1913    if (states & ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY) {
1914       assert(pCreateInfo->pInputAssemblyState);
1915       bool has_tess = false;
1916       for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
1917          const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i];
1918          gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
1919          if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL)
1920             has_tess = true;
1921       }
1922        if (has_tess) {
1923           const VkPipelineTessellationStateCreateInfo *tess_info =
1924              pCreateInfo->pTessellationState;
1925           dynamic->primitive_topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
1926        } else {
1927          dynamic->primitive_topology = pCreateInfo->pInputAssemblyState->topology;
1928        }
1929    }
1930 
1931    /* Section 9.2 of the Vulkan 1.0.15 spec says:
1932     *
1933     *    pColorBlendState is [...] NULL if the pipeline has rasterization
1934     *    disabled or if the subpass of the render pass the pipeline is
1935     *    created against does not use any color attachments.
1936     */
1937    bool uses_color_att = false;
1938    for (unsigned i = 0; i < subpass->color_count; ++i) {
1939       if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
1940          uses_color_att = true;
1941          break;
1942       }
1943    }
1944 
1945    if (uses_color_att &&
1946        !pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
1947       assert(pCreateInfo->pColorBlendState);
1948 
1949       if (states & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS)
1950          typed_memcpy(dynamic->blend_constants,
1951                      pCreateInfo->pColorBlendState->blendConstants, 4);
1952    }
1953 
1954    /* If there is no depthstencil attachment, then don't read
1955     * pDepthStencilState. The Vulkan spec states that pDepthStencilState may
1956     * be NULL in this case. Even if pDepthStencilState is non-NULL, there is
1957     * no need to override the depthstencil defaults in
1958     * anv_pipeline::dynamic_state when there is no depthstencil attachment.
1959     *
1960     * Section 9.2 of the Vulkan 1.0.15 spec says:
1961     *
1962     *    pDepthStencilState is [...] NULL if the pipeline has rasterization
1963     *    disabled or if the subpass of the render pass the pipeline is created
1964     *    against does not use a depth/stencil attachment.
1965     */
1966    if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
1967        subpass->depth_stencil_attachment) {
1968       assert(pCreateInfo->pDepthStencilState);
1969 
1970       if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS) {
1971          dynamic->depth_bounds.min =
1972             pCreateInfo->pDepthStencilState->minDepthBounds;
1973          dynamic->depth_bounds.max =
1974             pCreateInfo->pDepthStencilState->maxDepthBounds;
1975       }
1976 
1977       if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK) {
1978          dynamic->stencil_compare_mask.front =
1979             pCreateInfo->pDepthStencilState->front.compareMask;
1980          dynamic->stencil_compare_mask.back =
1981             pCreateInfo->pDepthStencilState->back.compareMask;
1982       }
1983 
1984       if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK) {
1985          dynamic->stencil_write_mask.front =
1986             pCreateInfo->pDepthStencilState->front.writeMask;
1987          dynamic->stencil_write_mask.back =
1988             pCreateInfo->pDepthStencilState->back.writeMask;
1989       }
1990 
1991       if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE) {
1992          dynamic->stencil_reference.front =
1993             pCreateInfo->pDepthStencilState->front.reference;
1994          dynamic->stencil_reference.back =
1995             pCreateInfo->pDepthStencilState->back.reference;
1996       }
1997 
1998       if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE) {
1999          dynamic->depth_test_enable =
2000             pCreateInfo->pDepthStencilState->depthTestEnable;
2001       }
2002 
2003       if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE) {
2004          dynamic->depth_write_enable =
2005             pCreateInfo->pDepthStencilState->depthWriteEnable;
2006       }
2007 
2008       if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP) {
2009          dynamic->depth_compare_op =
2010             pCreateInfo->pDepthStencilState->depthCompareOp;
2011       }
2012 
2013       if (states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) {
2014          dynamic->depth_bounds_test_enable =
2015             pCreateInfo->pDepthStencilState->depthBoundsTestEnable;
2016       }
2017 
2018       if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE) {
2019          dynamic->stencil_test_enable =
2020             pCreateInfo->pDepthStencilState->stencilTestEnable;
2021       }
2022 
2023       if (states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_OP) {
2024          const VkPipelineDepthStencilStateCreateInfo *info =
2025             pCreateInfo->pDepthStencilState;
2026          memcpy(&dynamic->stencil_op.front, &info->front,
2027                 sizeof(dynamic->stencil_op.front));
2028          memcpy(&dynamic->stencil_op.back, &info->back,
2029                 sizeof(dynamic->stencil_op.back));
2030       }
2031    }
2032 
2033    const VkPipelineRasterizationLineStateCreateInfoEXT *line_state =
2034       vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
2035                            PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
2036    if (line_state) {
2037       if (states & ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE) {
2038          dynamic->line_stipple.factor = line_state->lineStippleFactor;
2039          dynamic->line_stipple.pattern = line_state->lineStipplePattern;
2040       }
2041    }
2042 
2043    pipeline->dynamic_state_mask = states;
2044 }
2045 
2046 static void
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo * info)2047 anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
2048 {
2049 #ifdef DEBUG
2050    struct anv_render_pass *renderpass = NULL;
2051    struct anv_subpass *subpass = NULL;
2052 
2053    /* Assert that all required members of VkGraphicsPipelineCreateInfo are
2054     * present.  See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
2055     */
2056    assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
2057 
2058    renderpass = anv_render_pass_from_handle(info->renderPass);
2059    assert(renderpass);
2060 
2061    assert(info->subpass < renderpass->subpass_count);
2062    subpass = &renderpass->subpasses[info->subpass];
2063 
2064    assert(info->stageCount >= 1);
2065    assert(info->pVertexInputState);
2066    assert(info->pInputAssemblyState);
2067    assert(info->pRasterizationState);
2068    if (!info->pRasterizationState->rasterizerDiscardEnable) {
2069       assert(info->pViewportState);
2070       assert(info->pMultisampleState);
2071 
2072       if (subpass && subpass->depth_stencil_attachment)
2073          assert(info->pDepthStencilState);
2074 
2075       if (subpass && subpass->color_count > 0) {
2076          bool all_color_unused = true;
2077          for (int i = 0; i < subpass->color_count; i++) {
2078             if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
2079                all_color_unused = false;
2080          }
2081          /* pColorBlendState is ignored if the pipeline has rasterization
2082           * disabled or if the subpass of the render pass the pipeline is
2083           * created against does not use any color attachments.
2084           */
2085          assert(info->pColorBlendState || all_color_unused);
2086       }
2087    }
2088 
2089    for (uint32_t i = 0; i < info->stageCount; ++i) {
2090       switch (info->pStages[i].stage) {
2091       case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
2092       case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
2093          assert(info->pTessellationState);
2094          break;
2095       default:
2096          break;
2097       }
2098    }
2099 #endif
2100 }
2101 
2102 /**
2103  * Calculate the desired L3 partitioning based on the current state of the
2104  * pipeline.  For now this simply returns the conservative defaults calculated
2105  * by get_default_l3_weights(), but we could probably do better by gathering
2106  * more statistics from the pipeline state (e.g. guess of expected URB usage
2107  * and bound surfaces), or by using feed-back from performance counters.
2108  */
2109 void
anv_pipeline_setup_l3_config(struct anv_pipeline * pipeline,bool needs_slm)2110 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
2111 {
2112    const struct gen_device_info *devinfo = &pipeline->device->info;
2113 
2114    const struct gen_l3_weights w =
2115       gen_get_default_l3_weights(devinfo, true, needs_slm);
2116 
2117    pipeline->l3_config = gen_get_l3_config(devinfo, w);
2118 }
2119 
2120 VkResult
anv_graphics_pipeline_init(struct anv_graphics_pipeline * pipeline,struct anv_device * device,struct anv_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * alloc)2121 anv_graphics_pipeline_init(struct anv_graphics_pipeline *pipeline,
2122                            struct anv_device *device,
2123                            struct anv_pipeline_cache *cache,
2124                            const VkGraphicsPipelineCreateInfo *pCreateInfo,
2125                            const VkAllocationCallbacks *alloc)
2126 {
2127    VkResult result;
2128 
2129    anv_pipeline_validate_create_info(pCreateInfo);
2130 
2131    result = anv_pipeline_init(&pipeline->base, device,
2132                               ANV_PIPELINE_GRAPHICS, pCreateInfo->flags,
2133                               alloc);
2134    if (result != VK_SUCCESS)
2135       return result;
2136 
2137    anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
2138                          pipeline->batch_data, sizeof(pipeline->batch_data));
2139 
2140    ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
2141    assert(pCreateInfo->subpass < render_pass->subpass_count);
2142    pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
2143 
2144    assert(pCreateInfo->pRasterizationState);
2145 
2146    copy_non_dynamic_state(pipeline, pCreateInfo);
2147    pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState->depthClampEnable;
2148 
2149    /* Previously we enabled depth clipping when !depthClampEnable.
2150     * DepthClipStateCreateInfo now makes depth clipping explicit so if the
2151     * clipping info is available, use its enable value to determine clipping,
2152     * otherwise fallback to the previous !depthClampEnable logic.
2153     */
2154    const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
2155       vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
2156                            PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
2157    pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable;
2158 
2159    pipeline->sample_shading_enable =
2160       !pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
2161       pCreateInfo->pMultisampleState &&
2162       pCreateInfo->pMultisampleState->sampleShadingEnable;
2163 
2164    /* When we free the pipeline, we detect stages based on the NULL status
2165     * of various prog_data pointers.  Make them NULL by default.
2166     */
2167    memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
2168 
2169    result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
2170    if (result != VK_SUCCESS) {
2171       anv_pipeline_finish(&pipeline->base, device, alloc);
2172       return result;
2173    }
2174 
2175    assert(pipeline->shaders[MESA_SHADER_VERTEX]);
2176 
2177    anv_pipeline_setup_l3_config(&pipeline->base, false);
2178 
2179    const VkPipelineVertexInputStateCreateInfo *vi_info =
2180       pCreateInfo->pVertexInputState;
2181 
2182    const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
2183 
2184    pipeline->vb_used = 0;
2185    for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
2186       const VkVertexInputAttributeDescription *desc =
2187          &vi_info->pVertexAttributeDescriptions[i];
2188 
2189       if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
2190          pipeline->vb_used |= 1 << desc->binding;
2191    }
2192 
2193    for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
2194       const VkVertexInputBindingDescription *desc =
2195          &vi_info->pVertexBindingDescriptions[i];
2196 
2197       pipeline->vb[desc->binding].stride = desc->stride;
2198 
2199       /* Step rate is programmed per vertex element (attribute), not
2200        * binding. Set up a map of which bindings step per instance, for
2201        * reference by vertex element setup. */
2202       switch (desc->inputRate) {
2203       default:
2204       case VK_VERTEX_INPUT_RATE_VERTEX:
2205          pipeline->vb[desc->binding].instanced = false;
2206          break;
2207       case VK_VERTEX_INPUT_RATE_INSTANCE:
2208          pipeline->vb[desc->binding].instanced = true;
2209          break;
2210       }
2211 
2212       pipeline->vb[desc->binding].instance_divisor = 1;
2213    }
2214 
2215    const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
2216       vk_find_struct_const(vi_info->pNext,
2217                            PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
2218    if (vi_div_state) {
2219       for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
2220          const VkVertexInputBindingDivisorDescriptionEXT *desc =
2221             &vi_div_state->pVertexBindingDivisors[i];
2222 
2223          pipeline->vb[desc->binding].instance_divisor = desc->divisor;
2224       }
2225    }
2226 
2227    /* Our implementation of VK_KHR_multiview uses instancing to draw the
2228     * different views.  If the client asks for instancing, we need to multiply
2229     * the instance divisor by the number of views ensure that we repeat the
2230     * client's per-instance data once for each view.
2231     */
2232    if (pipeline->subpass->view_mask && !pipeline->use_primitive_replication) {
2233       const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
2234       for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
2235          if (pipeline->vb[vb].instanced)
2236             pipeline->vb[vb].instance_divisor *= view_count;
2237       }
2238    }
2239 
2240    const VkPipelineInputAssemblyStateCreateInfo *ia_info =
2241       pCreateInfo->pInputAssemblyState;
2242    const VkPipelineTessellationStateCreateInfo *tess_info =
2243       pCreateInfo->pTessellationState;
2244    pipeline->primitive_restart = ia_info->primitiveRestartEnable;
2245 
2246    if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2247       pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
2248    else
2249       pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
2250 
2251    return VK_SUCCESS;
2252 }
2253 
2254 #define WRITE_STR(field, ...) ({                               \
2255    memset(field, 0, sizeof(field));                            \
2256    UNUSED int i = snprintf(field, sizeof(field), __VA_ARGS__); \
2257    assert(i > 0 && i < sizeof(field));                         \
2258 })
2259 
anv_GetPipelineExecutablePropertiesKHR(VkDevice device,const VkPipelineInfoKHR * pPipelineInfo,uint32_t * pExecutableCount,VkPipelineExecutablePropertiesKHR * pProperties)2260 VkResult anv_GetPipelineExecutablePropertiesKHR(
2261     VkDevice                                    device,
2262     const VkPipelineInfoKHR*                    pPipelineInfo,
2263     uint32_t*                                   pExecutableCount,
2264     VkPipelineExecutablePropertiesKHR*          pProperties)
2265 {
2266    ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
2267    VK_OUTARRAY_MAKE(out, pProperties, pExecutableCount);
2268 
2269    util_dynarray_foreach (&pipeline->executables, struct anv_pipeline_executable, exe) {
2270       vk_outarray_append(&out, props) {
2271          gl_shader_stage stage = exe->stage;
2272          props->stages = mesa_to_vk_shader_stage(stage);
2273 
2274          unsigned simd_width = exe->stats.dispatch_width;
2275          if (stage == MESA_SHADER_FRAGMENT) {
2276             WRITE_STR(props->name, "%s%d %s",
2277                       simd_width ? "SIMD" : "vec",
2278                       simd_width ? simd_width : 4,
2279                       _mesa_shader_stage_to_string(stage));
2280          } else {
2281             WRITE_STR(props->name, "%s", _mesa_shader_stage_to_string(stage));
2282          }
2283          WRITE_STR(props->description, "%s%d %s shader",
2284                    simd_width ? "SIMD" : "vec",
2285                    simd_width ? simd_width : 4,
2286                    _mesa_shader_stage_to_string(stage));
2287 
2288          /* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
2289           * wants a subgroup size of 1.
2290           */
2291          props->subgroupSize = MAX2(simd_width, 1);
2292       }
2293    }
2294 
2295    return vk_outarray_status(&out);
2296 }
2297 
2298 static const struct anv_pipeline_executable *
anv_pipeline_get_executable(struct anv_pipeline * pipeline,uint32_t index)2299 anv_pipeline_get_executable(struct anv_pipeline *pipeline, uint32_t index)
2300 {
2301    assert(index < util_dynarray_num_elements(&pipeline->executables,
2302                                              struct anv_pipeline_executable));
2303    return util_dynarray_element(
2304       &pipeline->executables, struct anv_pipeline_executable, index);
2305 }
2306 
anv_GetPipelineExecutableStatisticsKHR(VkDevice device,const VkPipelineExecutableInfoKHR * pExecutableInfo,uint32_t * pStatisticCount,VkPipelineExecutableStatisticKHR * pStatistics)2307 VkResult anv_GetPipelineExecutableStatisticsKHR(
2308     VkDevice                                    device,
2309     const VkPipelineExecutableInfoKHR*          pExecutableInfo,
2310     uint32_t*                                   pStatisticCount,
2311     VkPipelineExecutableStatisticKHR*           pStatistics)
2312 {
2313    ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
2314    VK_OUTARRAY_MAKE(out, pStatistics, pStatisticCount);
2315 
2316    const struct anv_pipeline_executable *exe =
2317       anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
2318 
2319    const struct brw_stage_prog_data *prog_data;
2320    switch (pipeline->type) {
2321    case ANV_PIPELINE_GRAPHICS: {
2322       prog_data = anv_pipeline_to_graphics(pipeline)->shaders[exe->stage]->prog_data;
2323       break;
2324    }
2325    case ANV_PIPELINE_COMPUTE: {
2326       prog_data = anv_pipeline_to_compute(pipeline)->cs->prog_data;
2327       break;
2328    }
2329    default:
2330       unreachable("invalid pipeline type");
2331    }
2332 
2333    vk_outarray_append(&out, stat) {
2334       WRITE_STR(stat->name, "Instruction Count");
2335       WRITE_STR(stat->description,
2336                 "Number of GEN instructions in the final generated "
2337                 "shader executable.");
2338       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2339       stat->value.u64 = exe->stats.instructions;
2340    }
2341 
2342    vk_outarray_append(&out, stat) {
2343       WRITE_STR(stat->name, "SEND Count");
2344       WRITE_STR(stat->description,
2345                 "Number of instructions in the final generated shader "
2346                 "executable which access external units such as the "
2347                 "constant cache or the sampler.");
2348       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2349       stat->value.u64 = exe->stats.sends;
2350    }
2351 
2352    vk_outarray_append(&out, stat) {
2353       WRITE_STR(stat->name, "Loop Count");
2354       WRITE_STR(stat->description,
2355                 "Number of loops (not unrolled) in the final generated "
2356                 "shader executable.");
2357       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2358       stat->value.u64 = exe->stats.loops;
2359    }
2360 
2361    vk_outarray_append(&out, stat) {
2362       WRITE_STR(stat->name, "Cycle Count");
2363       WRITE_STR(stat->description,
2364                 "Estimate of the number of EU cycles required to execute "
2365                 "the final generated executable.  This is an estimate only "
2366                 "and may vary greatly from actual run-time performance.");
2367       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2368       stat->value.u64 = exe->stats.cycles;
2369    }
2370 
2371    vk_outarray_append(&out, stat) {
2372       WRITE_STR(stat->name, "Spill Count");
2373       WRITE_STR(stat->description,
2374                 "Number of scratch spill operations.  This gives a rough "
2375                 "estimate of the cost incurred due to spilling temporary "
2376                 "values to memory.  If this is non-zero, you may want to "
2377                 "adjust your shader to reduce register pressure.");
2378       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2379       stat->value.u64 = exe->stats.spills;
2380    }
2381 
2382    vk_outarray_append(&out, stat) {
2383       WRITE_STR(stat->name, "Fill Count");
2384       WRITE_STR(stat->description,
2385                 "Number of scratch fill operations.  This gives a rough "
2386                 "estimate of the cost incurred due to spilling temporary "
2387                 "values to memory.  If this is non-zero, you may want to "
2388                 "adjust your shader to reduce register pressure.");
2389       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2390       stat->value.u64 = exe->stats.fills;
2391    }
2392 
2393    vk_outarray_append(&out, stat) {
2394       WRITE_STR(stat->name, "Scratch Memory Size");
2395       WRITE_STR(stat->description,
2396                 "Number of bytes of scratch memory required by the "
2397                 "generated shader executable.  If this is non-zero, you "
2398                 "may want to adjust your shader to reduce register "
2399                 "pressure.");
2400       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2401       stat->value.u64 = prog_data->total_scratch;
2402    }
2403 
2404    if (exe->stage == MESA_SHADER_COMPUTE) {
2405       vk_outarray_append(&out, stat) {
2406          WRITE_STR(stat->name, "Workgroup Memory Size");
2407          WRITE_STR(stat->description,
2408                    "Number of bytes of workgroup shared memory used by this "
2409                    "compute shader including any padding.");
2410          stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
2411          stat->value.u64 = prog_data->total_shared;
2412       }
2413    }
2414 
2415    return vk_outarray_status(&out);
2416 }
2417 
2418 static bool
write_ir_text(VkPipelineExecutableInternalRepresentationKHR * ir,const char * data)2419 write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
2420               const char *data)
2421 {
2422    ir->isText = VK_TRUE;
2423 
2424    size_t data_len = strlen(data) + 1;
2425 
2426    if (ir->pData == NULL) {
2427       ir->dataSize = data_len;
2428       return true;
2429    }
2430 
2431    strncpy(ir->pData, data, ir->dataSize);
2432    if (ir->dataSize < data_len)
2433       return false;
2434 
2435    ir->dataSize = data_len;
2436    return true;
2437 }
2438 
anv_GetPipelineExecutableInternalRepresentationsKHR(VkDevice device,const VkPipelineExecutableInfoKHR * pExecutableInfo,uint32_t * pInternalRepresentationCount,VkPipelineExecutableInternalRepresentationKHR * pInternalRepresentations)2439 VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
2440     VkDevice                                    device,
2441     const VkPipelineExecutableInfoKHR*          pExecutableInfo,
2442     uint32_t*                                   pInternalRepresentationCount,
2443     VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
2444 {
2445    ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
2446    VK_OUTARRAY_MAKE(out, pInternalRepresentations,
2447                     pInternalRepresentationCount);
2448    bool incomplete_text = false;
2449 
2450    const struct anv_pipeline_executable *exe =
2451       anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
2452 
2453    if (exe->nir) {
2454       vk_outarray_append(&out, ir) {
2455          WRITE_STR(ir->name, "Final NIR");
2456          WRITE_STR(ir->description,
2457                    "Final NIR before going into the back-end compiler");
2458 
2459          if (!write_ir_text(ir, exe->nir))
2460             incomplete_text = true;
2461       }
2462    }
2463 
2464    if (exe->disasm) {
2465       vk_outarray_append(&out, ir) {
2466          WRITE_STR(ir->name, "GEN Assembly");
2467          WRITE_STR(ir->description,
2468                    "Final GEN assembly for the generated shader binary");
2469 
2470          if (!write_ir_text(ir, exe->disasm))
2471             incomplete_text = true;
2472       }
2473    }
2474 
2475    return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
2476 }
2477