1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *   http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * The above license covers additions and changes by AOSP authors.
19  * The original code is licensed as follows:
20  */
21 
22 //
23 // Copyright (c) 1999, Silicon Graphics, Inc. -- ALL RIGHTS RESERVED
24 //
25 // Permission is granted free of charge to copy, modify, use and distribute
26 // this software  provided you include the entirety of this notice in all
27 // copies made.
28 //
29 // THIS SOFTWARE IS PROVIDED ON AN AS IS BASIS, WITHOUT WARRANTY OF ANY
30 // KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION,
31 // WARRANTIES THAT THE SUBJECT SOFTWARE IS FREE OF DEFECTS, MERCHANTABLE, FIT
32 // FOR A PARTICULAR PURPOSE OR NON-INFRINGING.   SGI ASSUMES NO RISK AS TO THE
33 // QUALITY AND PERFORMANCE OF THE SOFTWARE.   SHOULD THE SOFTWARE PROVE
34 // DEFECTIVE IN ANY RESPECT, SGI ASSUMES NO COST OR LIABILITY FOR ANY
35 // SERVICING, REPAIR OR CORRECTION.  THIS DISCLAIMER OF WARRANTY CONSTITUTES
36 // AN ESSENTIAL PART OF THIS LICENSE. NO USE OF ANY SUBJECT SOFTWARE IS
37 // AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.
38 //
39 // UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT (INCLUDING,
40 // WITHOUT LIMITATION, NEGLIGENCE OR STRICT LIABILITY), CONTRACT, OR
41 // OTHERWISE, SHALL SGI BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
42 // INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER WITH RESPECT TO THE
43 // SOFTWARE INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK
44 // STOPPAGE, LOSS OF DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL
45 // OTHER COMMERCIAL DAMAGES OR LOSSES, EVEN IF SGI SHALL HAVE BEEN INFORMED OF
46 // THE POSSIBILITY OF SUCH DAMAGES.  THIS LIMITATION OF LIABILITY SHALL NOT
47 // APPLY TO LIABILITY RESULTING FROM SGI's NEGLIGENCE TO THE EXTENT APPLICABLE
48 // LAW PROHIBITS SUCH LIMITATION.  SOME JURISDICTIONS DO NOT ALLOW THE
49 // EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THAT
50 // EXCLUSION AND LIMITATION MAY NOT APPLY TO YOU.
51 //
52 // These license terms shall be governed by and construed in accordance with
53 // the laws of the United States and the State of California as applied to
54 // agreements entered into and to be performed entirely within California
55 // between California residents.  Any litigation relating to these license
56 // terms shall be subject to the exclusive jurisdiction of the Federal Courts
57 // of the Northern District of California (or, absent subject matter
58 // jurisdiction in such courts, the courts of the State of California), with
59 // venue lying exclusively in Santa Clara County, California.
60 
61 // Copyright (c) 2001-2004, Hewlett-Packard Development Company, L.P.
62 //
63 // Permission is granted free of charge to copy, modify, use and distribute
64 // this software  provided you include the entirety of this notice in all
65 // copies made.
66 //
67 // THIS SOFTWARE IS PROVIDED ON AN AS IS BASIS, WITHOUT WARRANTY OF ANY
68 // KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION,
69 // WARRANTIES THAT THE SUBJECT SOFTWARE IS FREE OF DEFECTS, MERCHANTABLE, FIT
70 // FOR A PARTICULAR PURPOSE OR NON-INFRINGING.   HEWLETT-PACKARD ASSUMES
71 // NO RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE.
72 // SHOULD THE SOFTWARE PROVE DEFECTIVE IN ANY RESPECT,
73 // HEWLETT-PACKARD ASSUMES NO COST OR LIABILITY FOR ANY
74 // SERVICING, REPAIR OR CORRECTION.  THIS DISCLAIMER OF WARRANTY CONSTITUTES
75 // AN ESSENTIAL PART OF THIS LICENSE. NO USE OF ANY SUBJECT SOFTWARE IS
76 // AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.
77 //
78 // UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT (INCLUDING,
79 // WITHOUT LIMITATION, NEGLIGENCE OR STRICT LIABILITY), CONTRACT, OR
80 // OTHERWISE, SHALL HEWLETT-PACKARD BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
81 // INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER WITH RESPECT TO THE
82 // SOFTWARE INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK
83 // STOPPAGE, LOSS OF DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL
84 // OTHER COMMERCIAL DAMAGES OR LOSSES, EVEN IF HEWLETT-PACKARD SHALL
85 // HAVE BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES.
86 // THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO LIABILITY RESULTING
87 // FROM HEWLETT-PACKARD's NEGLIGENCE TO THE EXTENT APPLICABLE
88 // LAW PROHIBITS SUCH LIMITATION.  SOME JURISDICTIONS DO NOT ALLOW THE
89 // EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THAT
90 // EXCLUSION AND LIMITATION MAY NOT APPLY TO YOU.
91 //
92 
93 // Added valueOf(string, radix), fixed some documentation comments.
94 //              Hans_Boehm@hp.com 1/12/2001
95 // Fixed a serious typo in inv_CR():  For negative arguments it produced
96 //              the wrong sign.  This affected the sign of divisions.
97 // Added byteValue and fixed some comments.  Hans.Boehm@hp.com 12/17/2002
98 // Added toStringFloatRep.      Hans.Boehm@hp.com 4/1/2004
99 // Added get_appr() synchronization to allow access from multiple threads
100 // hboehm@google.com 4/25/2014
101 // Changed cos() prescaling to avoid logarithmic depth tree.
102 // hboehm@google.com 6/30/2014
103 // Added explicit asin() implementation.  Remove one.  Add ZERO and ONE and
104 // make them public.  hboehm@google.com 5/21/2015
105 // Added Gauss-Legendre PI implementation.  Removed two.
106 // hboehm@google.com 4/12/2016
107 // Fix shift operation in doubleValue. That produced incorrect values for
108 // large negative exponents.
109 // Don't negate argument and compute inverse for exp(). That causes severe
110 // performance problems for (-huge).exp()
111 // hboehm@google.com 8/21/2017
112 // Have comparison check for interruption. hboehm@google.com 10/31/2017
113 // Fix precision overflow issue in most general compareTo function.
114 // Fix a couple of unused variable bugs. Notably selector_sign was
115 // accidentally locally redeclared. (This turns out to be safe but useless.)
116 // hboehm@google.com 11/20/2018.
117 // Fix an exception-safety issue in gl_pi_CR.approximate.
118 // hboehm@google.com 3/3/2019.
119 // Near-overflow floating point exponents were not handled correctly in
120 // doubleValue(). Fixed.
121 // hboehm@google.com 7/23/2019.
122 
123 package com.hp.creals;
124 
125 import java.math.BigInteger;
126 import java.util.ArrayList;
127 
128 /**
129 * Constructive real numbers, also known as recursive, or computable reals.
130 * Each recursive real number is represented as an object that provides an
131 * approximation function for the real number.
132 * The approximation function guarantees that the generated approximation
133 * is accurate to the specified precision.
134 * Arithmetic operations on constructive reals produce new such objects;
135 * they typically do not perform any real computation.
136 * In this sense, arithmetic computations are exact: They produce
137 * a description which describes the exact answer, and can be used to
138 * later approximate it to arbitrary precision.
139 * <P>
140 * When approximations are generated, <I>e.g.</i> for output, they are
141 * accurate to the requested precision; no cumulative rounding errors
142 * are visible.
143 * In order to achieve this precision, the approximation function will often
144 * need to approximate subexpressions to greater precision than was originally
145 * demanded.  Thus the approximation of a constructive real number
146 * generated through a complex sequence of operations may eventually require
147 * evaluation to very high precision.  This usually makes such computations
148 * prohibitively expensive for large numerical problems.
149 * But it is perfectly appropriate for use in a desk calculator,
150 * for small numerical problems, for the evaluation of expressions
151 * computated by a symbolic algebra system, for testing of accuracy claims
152 * for floating point code on small inputs, or the like.
153 * <P>
154 * We expect that the vast majority of uses will ignore the particular
155 * implementation, and the member functons <TT>approximate</tt>
156 * and <TT>get_appr</tt>.  Such applications will treat <TT>CR</tt> as
157 * a conventional numerical type, with an interface modelled on
158 * <TT>java.math.BigInteger</tt>.  No subclasses of <TT>CR</tt>
159 * will be explicitly mentioned by such a program.
160 * <P>
161 * All standard arithmetic operations, as well as a few algebraic
162 * and transcendal functions are provided.  Constructive reals are
163 * immutable; thus all of these operations return a new constructive real.
164 * <P>
165 * A few uses will require explicit construction of approximation functions.
166 * The requires the construction of a subclass of <TT>CR</tt> with
167 * an overridden <TT>approximate</tt> function.  Note that <TT>approximate</tt>
168 * should only be defined, but never called.  <TT>get_appr</tt>
169 * provides the same functionality, but adds the caching necessary to obtain
170 * reasonable performance.
171 * <P>
172 * Any operation may throw <TT>com.hp.creals.AbortedException</tt> if the thread
173 * in which it is executing is interrupted.  (<TT>InterruptedException</tt>
174 * cannot be used for this purpose, since CR inherits from <TT>Number</tt>.)
175 * <P>
176 * Any operation may also throw <TT>com.hp.creals.PrecisionOverflowException</tt>
177 * If the precision request generated during any subcalculation overflows
178 * a 28-bit integer.  (This should be extremely unlikely, except as an
179 * outcome of a division by zero, or other erroneous computation.)
180 *
181 */
182 public abstract class CR extends Number {
183     // CR is the basic representation of a number.
184     // Abstractly this is a function for computing an approximation
185     // plus the current best approximation.
186     // We could do without the latter, but that would
187     // be atrociously slow.
188 
189 /**
190  * Indicates a constructive real operation was interrupted.
191  * Most constructive real operations may throw such an exception.
192  * This is unchecked, since Number methods may not raise checked
193  * exceptions.
194 */
195 public static class AbortedException extends RuntimeException {
AbortedException()196     public AbortedException() { super(); }
AbortedException(String s)197     public AbortedException(String s) { super(s); }
198 }
199 
200 /**
201  * Indicates that the number of bits of precision requested by
202  * a computation on constructive reals required more than 28 bits,
203  * and was thus in danger of overflowing an int.
204  * This is likely to be a symptom of a diverging computation,
205  * <I>e.g.</i> division by zero.
206 */
207 public static class PrecisionOverflowException extends RuntimeException {
PrecisionOverflowException()208     public PrecisionOverflowException() { super(); }
PrecisionOverflowException(String s)209     public PrecisionOverflowException(String s) { super(s); }
210 }
211 
212     // First some frequently used constants, so we don't have to
213     // recompute these all over the place.
214       static final BigInteger big0 = BigInteger.ZERO;
215       static final BigInteger big1 = BigInteger.ONE;
216       static final BigInteger bigm1 = BigInteger.valueOf(-1);
217       static final BigInteger big2 = BigInteger.valueOf(2);
218       static final BigInteger bigm2 = BigInteger.valueOf(-2);
219       static final BigInteger big3 = BigInteger.valueOf(3);
220       static final BigInteger big6 = BigInteger.valueOf(6);
221       static final BigInteger big8 = BigInteger.valueOf(8);
222       static final BigInteger big10 = BigInteger.TEN;
223       static final BigInteger big750 = BigInteger.valueOf(750);
224       static final BigInteger bigm750 = BigInteger.valueOf(-750);
225 
226 /**
227 * Setting this to true requests that  all computations be aborted by
228 * throwing AbortedException.  Must be rest to false before any further
229 * computation.  Ideally Thread.interrupt() should be used instead, but
230 * that doesn't appear to be consistently supported by browser VMs.
231 */
232 public volatile static boolean please_stop = false;
233 
234 /**
235 * Must be defined in subclasses of <TT>CR</tt>.
236 * Most users can ignore the existence of this method, and will
237 * not ever need to define a <TT>CR</tt> subclass.
238 * Returns value / 2 ** precision rounded to an integer.
239 * The error in the result is strictly < 1.
240 * Informally, approximate(n) gives a scaled approximation
241 * accurate to 2**n.
242 * Implementations may safely assume that precision is
243 * at least a factor of 8 away from overflow.
244 * Called only with the lock on the <TT>CR</tt> object
245 * already held.
246 */
approximate(int precision)247       protected abstract BigInteger approximate(int precision);
248       transient int min_prec;
249         // The smallest precision value with which the above
250         // has been called.
251       transient BigInteger max_appr;
252         // The scaled approximation corresponding to min_prec.
253       transient boolean appr_valid = false;
254         // min_prec and max_val are valid.
255 
256     // Helper functions
bound_log2(int n)257       static int bound_log2(int n) {
258         int abs_n = Math.abs(n);
259         return (int)Math.ceil(Math.log((double)(abs_n + 1))/Math.log(2.0));
260       }
261       // Check that a precision is at least a factor of 8 away from
262       // overflowng the integer used to hold a precision spec.
263       // We generally perform this check early on, and then convince
264       // ourselves that none of the operations performed on precisions
265       // inside a function can generate an overflow.
check_prec(int n)266       static void check_prec(int n) {
267         int high = n >> 28;
268         // if n is not in danger of overflowing, then the 4 high order
269         // bits should be identical.  Thus high is either 0 or -1.
270         // The rest of this is to test for either of those in a way
271         // that should be as cheap as possible.
272         int high_shifted = n >> 29;
273         if (0 != (high ^ high_shifted)) {
274             throw new PrecisionOverflowException();
275         }
276       }
277 
278 /**
279 * The constructive real number corresponding to a
280 * <TT>BigInteger</tt>.
281 */
valueOf(BigInteger n)282       public static CR valueOf(BigInteger n) {
283         return new int_CR(n);
284       }
285 
286 /**
287 * The constructive real number corresponding to a
288 * Java <TT>int</tt>.
289 */
valueOf(int n)290       public static CR valueOf(int n) {
291         return valueOf(BigInteger.valueOf(n));
292       }
293 
294 /**
295 * The constructive real number corresponding to a
296 * Java <TT>long</tt>.
297 */
valueOf(long n)298       public static CR valueOf(long n) {
299         return valueOf(BigInteger.valueOf(n));
300       }
301 
302 /**
303 * The constructive real number corresponding to a
304 * Java <TT>double</tt>.
305 * The result is undefined if argument is infinite or NaN.
306 */
valueOf(double n)307       public static CR valueOf(double n) {
308         if (Double.isNaN(n)) throw new ArithmeticException("Nan argument");
309         if (Double.isInfinite(n)) {
310             throw new ArithmeticException("Infinite argument");
311         }
312         boolean negative = (n < 0.0);
313         long bits = Double.doubleToLongBits(Math.abs(n));
314         long mantissa = (bits & 0xfffffffffffffL);
315         int biased_exp = (int)(bits >> 52);
316         int exp = biased_exp - 1075;
317         if (biased_exp != 0) {
318             mantissa += (1L << 52);
319         } else {
320             mantissa <<= 1;
321         }
322         CR result = valueOf(mantissa).shiftLeft(exp);
323         if (negative) result = result.negate();
324         return result;
325       }
326 
327 /**
328 * The constructive real number corresponding to a
329 * Java <TT>float</tt>.
330 * The result is undefined if argument is infinite or NaN.
331 */
valueOf(float n)332       public static CR valueOf(float n) {
333         return valueOf((double) n);
334       }
335 
336       public static CR ZERO = valueOf(0);
337       public static CR ONE = valueOf(1);
338 
339     // Multiply k by 2**n.
shift(BigInteger k, int n)340       static BigInteger shift(BigInteger k, int n) {
341         if (n == 0) return k;
342         if (n < 0) return k.shiftRight(-n);
343         return k.shiftLeft(n);
344       }
345 
346     // Multiply by 2**n, rounding result
scale(BigInteger k, int n)347       static BigInteger scale(BigInteger k, int n) {
348         if (n >= 0) {
349             return k.shiftLeft(n);
350         } else {
351             BigInteger adj_k = shift(k, n+1).add(big1);
352             return adj_k.shiftRight(1);
353         }
354       }
355 
356     // Identical to approximate(), but maintain and update cache.
357 /**
358 * Returns value / 2 ** prec rounded to an integer.
359 * The error in the result is strictly < 1.
360 * Produces the same answer as <TT>approximate</tt>, but uses and
361 * maintains a cached approximation.
362 * Normally not overridden, and called only from <TT>approximate</tt>
363 * methods in subclasses.  Not needed if the provided operations
364 * on constructive reals suffice.
365 */
get_appr(int precision)366       public synchronized BigInteger get_appr(int precision) {
367         check_prec(precision);
368         if (appr_valid && precision >= min_prec) {
369             return scale(max_appr, min_prec - precision);
370         } else {
371             BigInteger result = approximate(precision);
372             min_prec = precision;
373             max_appr = result;
374             appr_valid = true;
375             return result;
376         }
377       }
378 
379     // Return the position of the msd.
380     // If x.msd() == n then
381     // 2**(n-1) < abs(x) < 2**(n+1)
382     // This initial version assumes that max_appr is valid
383     // and sufficiently removed from zero
384     // that the msd is determined.
known_msd()385       int known_msd() {
386         int first_digit;
387         int length;
388         if (max_appr.signum() >= 0) {
389             length = max_appr.bitLength();
390         } else {
391             length = max_appr.negate().bitLength();
392         }
393         first_digit = min_prec + length - 1;
394         return first_digit;
395       }
396 
397     // This version may return Integer.MIN_VALUE if the correct
398     // answer is < n.
msd(int n)399       int msd(int n) {
400         if (!appr_valid ||
401                 max_appr.compareTo(big1) <= 0
402                 && max_appr.compareTo(bigm1) >= 0) {
403             get_appr(n - 1);
404             if (max_appr.abs().compareTo(big1) <= 0) {
405                 // msd could still be arbitrarily far to the right.
406                 return Integer.MIN_VALUE;
407             }
408         }
409         return known_msd();
410       }
411 
412 
413     // Functionally equivalent, but iteratively evaluates to higher
414     // precision.
iter_msd(int n)415       int iter_msd(int n)
416       {
417         int prec = 0;
418 
419         for (; prec > n + 30; prec = (prec * 3)/2 - 16) {
420             int msd = msd(prec);
421             if (msd != Integer.MIN_VALUE) return msd;
422             check_prec(prec);
423             if (Thread.interrupted() || please_stop) {
424                 throw new AbortedException();
425             }
426         }
427         return msd(n);
428       }
429 
430     // This version returns a correct answer eventually, except
431     // that it loops forever (or throws an exception when the
432     // requested precision overflows) if this constructive real is zero.
msd()433       int msd() {
434           return iter_msd(Integer.MIN_VALUE);
435       }
436 
437     // A helper function for toString.
438     // Generate a String containing n zeroes.
zeroes(int n)439       private static String zeroes(int n) {
440         char[] a = new char[n];
441         for (int i = 0; i < n; ++i) {
442             a[i] = '0';
443         }
444         return new String(a);
445       }
446 
447     // Natural log of 2.  Needed for some prescaling below.
448     // ln(2) = 7ln(10/9) - 2ln(25/24) + 3ln(81/80)
simple_ln()449         CR simple_ln() {
450             return new prescaled_ln_CR(this.subtract(ONE));
451         }
452         static CR ten_ninths = valueOf(10).divide(valueOf(9));
453         static CR twentyfive_twentyfourths = valueOf(25).divide(valueOf(24));
454         static CR eightyone_eightyeths = valueOf(81).divide(valueOf(80));
455         static CR ln2_1 = valueOf(7).multiply(ten_ninths.simple_ln());
456         static CR ln2_2 =
457                 valueOf(2).multiply(twentyfive_twentyfourths.simple_ln());
458         static CR ln2_3 = valueOf(3).multiply(eightyone_eightyeths.simple_ln());
459         static CR ln2 = ln2_1.subtract(ln2_2).add(ln2_3);
460 
461     // Atan of integer reciprocal.  Used for atan_PI.  Could perhaps be made
462     // public.
atan_reciprocal(int n)463         static CR atan_reciprocal(int n) {
464             return new integral_atan_CR(n);
465         }
466     // Other constants used for PI computation.
467         static CR four = valueOf(4);
468 
469   // Public operations.
470 /**
471 * Return 0 if x = y to within the indicated tolerance,
472 * -1 if x < y, and +1 if x > y.  If x and y are indeed
473 * equal, it is guaranteed that 0 will be returned.  If
474 * they differ by less than the tolerance, anything
475 * may happen.  The tolerance allowed is
476 * the maximum of (abs(this)+abs(x))*(2**r) and 2**a
477 *       @param x        The other constructive real
478 *       @param r        Relative tolerance in bits
479 *       @param a        Absolute tolerance in bits
480 */
compareTo(CR x, int r, int a)481       public int compareTo(CR x, int r, int a) {
482         int this_msd = iter_msd(a);
483         int x_msd = x.iter_msd(this_msd > a? this_msd : a);
484         int max_msd = (x_msd > this_msd? x_msd : this_msd);
485         if (max_msd == Integer.MIN_VALUE) {
486           return 0;
487         }
488         check_prec(r);
489         int rel = max_msd + r;
490         int abs_prec = (rel > a? rel : a);
491         return compareTo(x, abs_prec);
492       }
493 
494 /**
495 * Approximate comparison with only an absolute tolerance.
496 * Identical to the three argument version, but without a relative
497 * tolerance.
498 * Result is 0 if both constructive reals are equal, indeterminate
499 * if they differ by less than 2**a.
500 *
501 *       @param x        The other constructive real
502 *       @param a        Absolute tolerance in bits
503 */
compareTo(CR x, int a)504       public int compareTo(CR x, int a) {
505         int needed_prec = a - 1;
506         BigInteger this_appr = get_appr(needed_prec);
507         BigInteger x_appr = x.get_appr(needed_prec);
508         int comp1 = this_appr.compareTo(x_appr.add(big1));
509         if (comp1 > 0) return 1;
510         int comp2 = this_appr.compareTo(x_appr.subtract(big1));
511         if (comp2 < 0) return -1;
512         return 0;
513       }
514 
515 /**
516 * Return -1 if <TT>this &lt; x</tt>, or +1 if <TT>this &gt; x</tt>.
517 * Should be called only if <TT>this != x</tt>.
518 * If <TT>this == x</tt>, this will not terminate correctly; typically it
519 * will run until it exhausts memory.
520 * If the two constructive reals may be equal, the two or 3 argument
521 * version of compareTo should be used.
522 */
compareTo(CR x)523       public int compareTo(CR x) {
524         for (int a = -20; ; a *= 2) {
525             check_prec(a);
526             int result = compareTo(x, a);
527             if (0 != result) return result;
528             if (Thread.interrupted() || please_stop) {
529                 throw new AbortedException();
530             }
531         }
532       }
533 
534 /**
535 * Equivalent to <TT>compareTo(CR.valueOf(0), a)</tt>
536 */
signum(int a)537       public int signum(int a) {
538         if (appr_valid) {
539             int quick_try = max_appr.signum();
540             if (0 != quick_try) return quick_try;
541         }
542         int needed_prec = a - 1;
543         BigInteger this_appr = get_appr(needed_prec);
544         return this_appr.signum();
545       }
546 
547 /**
548 * Return -1 if negative, +1 if positive.
549 * Should be called only if <TT>this != 0</tt>.
550 * In the 0 case, this will not terminate correctly; typically it
551 * will run until it exhausts memory.
552 * If the two constructive reals may be equal, the one or two argument
553 * version of signum should be used.
554 */
signum()555       public int signum() {
556         for (int a = -20; ; a *= 2) {
557             check_prec(a);
558             int result = signum(a);
559             if (0 != result) return result;
560             if (Thread.interrupted() || please_stop) {
561                 throw new AbortedException();
562             }
563         }
564       }
565 
566 /**
567 * Return the constructive real number corresponding to the given
568 * textual representation and radix.
569 *
570 *       @param s        [-] digit* [. digit*]
571 *       @param radix
572 */
573 
valueOf(String s, int radix)574       public static CR valueOf(String s, int radix)
575              throws NumberFormatException {
576           int len = s.length();
577           int start_pos = 0, point_pos;
578           String fraction;
579           while (s.charAt(start_pos) == ' ') ++start_pos;
580           while (s.charAt(len - 1) == ' ') --len;
581           point_pos = s.indexOf('.', start_pos);
582           if (point_pos == -1) {
583               point_pos = len;
584               fraction = "0";
585           } else {
586               fraction = s.substring(point_pos + 1, len);
587           }
588           String whole = s.substring(start_pos, point_pos);
589           BigInteger scaled_result = new BigInteger(whole + fraction, radix);
590           BigInteger divisor = BigInteger.valueOf(radix).pow(fraction.length());
591           return CR.valueOf(scaled_result).divide(CR.valueOf(divisor));
592       }
593 
594 /**
595 * Return a textual representation accurate to <TT>n</tt> places
596 * to the right of the decimal point.  <TT>n</tt> must be nonnegative.
597 *
598 *       @param  n       Number of digits (>= 0) included to the right of decimal point
599 *       @param  radix   Base ( >= 2, <= 16) for the resulting representation.
600 */
toString(int n, int radix)601       public String toString(int n, int radix) {
602           CR scaled_CR;
603           if (16 == radix) {
604             scaled_CR = shiftLeft(4*n);
605           } else {
606             BigInteger scale_factor = BigInteger.valueOf(radix).pow(n);
607             scaled_CR = multiply(new int_CR(scale_factor));
608           }
609           BigInteger scaled_int = scaled_CR.get_appr(0);
610           String scaled_string = scaled_int.abs().toString(radix);
611           String result;
612           if (0 == n) {
613               result = scaled_string;
614           } else {
615               int len = scaled_string.length();
616               if (len <= n) {
617                 // Add sufficient leading zeroes
618                   String z = zeroes(n + 1 - len);
619                   scaled_string = z + scaled_string;
620                   len = n + 1;
621               }
622               String whole = scaled_string.substring(0, len - n);
623               String fraction = scaled_string.substring(len - n);
624               result = whole + "." + fraction;
625           }
626           if (scaled_int.signum() < 0) {
627               result = "-" + result;
628           }
629           return result;
630       }
631 
632 
633 /**
634 * Equivalent to <TT>toString(n,10)</tt>
635 *
636 *       @param  n       Number of digits included to the right of decimal point
637 */
toString(int n)638     public String toString(int n) {
639         return toString(n, 10);
640     }
641 
642 /**
643 * Equivalent to <TT>toString(10, 10)</tt>
644 */
toString()645     public String toString() {
646         return toString(10);
647     }
648 
649     static double doubleLog2 = Math.log(2.0);
650 /**
651 * Return a textual scientific notation representation accurate
652 * to <TT>n</tt> places to the right of the decimal point.
653 * <TT>n</tt> must be nonnegative.  A value smaller than
654 * <TT>radix</tt>**-<TT>m</tt> may be displayed as 0.
655 * The <TT>mantissa</tt> component of the result is either "0"
656 * or exactly <TT>n</tt> digits long.  The <TT>sign</tt>
657 * component is zero exactly when the mantissa is "0".
658 *
659 *       @param  n       Number of digits (&gt; 0) included to the right of decimal point.
660 *       @param  radix   Base ( &ge; 2, &le; 16) for the resulting representation.
661 *       @param  m       Precision used to distinguish number from zero.
662 *                       Expressed as a power of m.
663 */
toStringFloatRep(int n, int radix, int m)664     public StringFloatRep toStringFloatRep(int n, int radix, int m) {
665         if (n <= 0) throw new ArithmeticException("Bad precision argument");
666         double log2_radix = Math.log((double)radix)/doubleLog2;
667         BigInteger big_radix = BigInteger.valueOf(radix);
668         long long_msd_prec = (long)(log2_radix * (double)m);
669         if (long_msd_prec > (long)Integer.MAX_VALUE
670             || long_msd_prec < (long)Integer.MIN_VALUE)
671             throw new PrecisionOverflowException();
672         int msd_prec = (int)long_msd_prec;
673         check_prec(msd_prec);
674         int msd = iter_msd(msd_prec - 2);
675         if (msd == Integer.MIN_VALUE)
676             return new StringFloatRep(0, "0", radix, 0);
677         int exponent = (int)Math.ceil((double)msd / log2_radix);
678                 // Guess for the exponent.  Try to get it usually right.
679         int scale_exp = exponent - n;
680         CR scale;
681         if (scale_exp > 0) {
682             scale = CR.valueOf(big_radix.pow(scale_exp)).inverse();
683         } else {
684             scale = CR.valueOf(big_radix.pow(-scale_exp));
685         }
686         CR scaled_res = multiply(scale);
687         BigInteger scaled_int = scaled_res.get_appr(0);
688         int sign = scaled_int.signum();
689         String scaled_string = scaled_int.abs().toString(radix);
690         while (scaled_string.length() < n) {
691             // exponent was too large.  Adjust.
692             scaled_res = scaled_res.multiply(CR.valueOf(big_radix));
693             exponent -= 1;
694             scaled_int = scaled_res.get_appr(0);
695             sign = scaled_int.signum();
696             scaled_string = scaled_int.abs().toString(radix);
697         }
698         if (scaled_string.length() > n) {
699             // exponent was too small.  Adjust by truncating.
700             exponent += (scaled_string.length() - n);
701             scaled_string = scaled_string.substring(0, n);
702         }
703         return new StringFloatRep(sign, scaled_string, radix, exponent);
704     }
705 
706 /**
707 * Return a BigInteger which differs by less than one from the
708 * constructive real.
709 */
BigIntegerValue()710     public BigInteger BigIntegerValue() {
711         return get_appr(0);
712     }
713 
714 /**
715 * Return an int which differs by less than one from the
716 * constructive real.  Behavior on overflow is undefined.
717 */
intValue()718     public int intValue() {
719         return BigIntegerValue().intValue();
720     }
721 
722 /**
723 * Return an int which differs by less than one from the
724 * constructive real.  Behavior on overflow is undefined.
725 */
byteValue()726     public byte byteValue() {
727         return BigIntegerValue().byteValue();
728     }
729 
730 /**
731 * Return a long which differs by less than one from the
732 * constructive real.  Behavior on overflow is undefined.
733 */
longValue()734     public long longValue() {
735         return BigIntegerValue().longValue();
736     }
737 
738 /**
739 * Return a double which differs by less than one in the least
740 * represented bit from the constructive real.
741 * (We're in fact closer to round-to-nearest than that, but we can't and
742 * don't promise correct rounding.)
743 */
doubleValue()744     public double doubleValue() {
745         int my_msd = iter_msd(-1080 /* slightly > exp. range */);
746         if (Integer.MIN_VALUE == my_msd) return 0.0;
747         int needed_prec = my_msd - 60;
748         double scaled_int = get_appr(needed_prec).doubleValue();
749         boolean may_underflow = (needed_prec < -1000);
750         long scaled_int_rep = Double.doubleToLongBits(scaled_int);
751         long exp_adj = may_underflow? needed_prec + 96 : needed_prec;
752         long orig_exp = (scaled_int_rep >> 52) & 0x7ff;
753         // Original unbiased exponent is > 50. Exp_adj > -1050.
754         // Thus the sum must be > the smallest representable exponent
755         // of -1023.
756         if (orig_exp + exp_adj >= 0x7ff) {
757             // Exponent overflowed.
758             if (scaled_int < 0.0) {
759                 return Double.NEGATIVE_INFINITY;
760             } else {
761                 return Double.POSITIVE_INFINITY;
762             }
763         }
764         scaled_int_rep += exp_adj << 52;
765         double result = Double.longBitsToDouble(scaled_int_rep);
766         if (may_underflow) {
767             // Exponent is too large by 96. Compensate, relying on fp arithmetic
768             // to handle gradual underflow correctly.
769             double two48 = (double)(1L << 48);
770             return result/two48/two48;
771         } else {
772             return result;
773         }
774     }
775 
776 /**
777 * Return a float which differs by less than one in the least
778 * represented bit from the constructive real.
779 */
floatValue()780     public float floatValue() {
781         return (float)doubleValue();
782         // Note that double-rounding is not a problem here, since we
783         // cannot, and do not, guarantee correct rounding.
784     }
785 
786 /**
787 * Add two constructive reals.
788 */
add(CR x)789     public CR add(CR x) {
790         return new add_CR(this, x);
791     }
792 
793 /**
794 * Multiply a constructive real by 2**n.
795 * @param n      shift count, may be negative
796 */
shiftLeft(int n)797     public CR shiftLeft(int n) {
798         check_prec(n);
799         return new shifted_CR(this, n);
800     }
801 
802 /**
803 * Multiply a constructive real by 2**(-n).
804 * @param n      shift count, may be negative
805 */
shiftRight(int n)806     public CR shiftRight(int n) {
807         check_prec(n);
808         return new shifted_CR(this, -n);
809     }
810 
811 /**
812 * Produce a constructive real equivalent to the original, assuming
813 * the original was an integer.  Undefined results if the original
814 * was not an integer.  Prevents evaluation of digits to the right
815 * of the decimal point, and may thus improve performance.
816 */
assumeInt()817     public CR assumeInt() {
818         return new assumed_int_CR(this);
819     }
820 
821 /**
822 * The additive inverse of a constructive real
823 */
negate()824     public CR negate() {
825         return new neg_CR(this);
826     }
827 
828 /**
829 * The difference between two constructive reals
830 */
subtract(CR x)831     public CR subtract(CR x) {
832         return new add_CR(this, x.negate());
833     }
834 
835 /**
836 * The product of two constructive reals
837 */
multiply(CR x)838     public CR multiply(CR x) {
839         return new mult_CR(this, x);
840     }
841 
842 /**
843 * The multiplicative inverse of a constructive real.
844 * <TT>x.inverse()</tt> is equivalent to <TT>CR.valueOf(1).divide(x)</tt>.
845 */
inverse()846     public CR inverse() {
847         return new inv_CR(this);
848     }
849 
850 /**
851 * The quotient of two constructive reals.
852 */
divide(CR x)853     public CR divide(CR x) {
854         return new mult_CR(this, x.inverse());
855     }
856 
857 /**
858 * The real number <TT>x</tt> if <TT>this</tt> < 0, or <TT>y</tt> otherwise.
859 * Requires <TT>x</tt> = <TT>y</tt> if <TT>this</tt> = 0.
860 * Since comparisons may diverge, this is often
861 * a useful alternative to conditionals.
862 */
select(CR x, CR y)863     public CR select(CR x, CR y) {
864         return new select_CR(this, x, y);
865     }
866 
867 /**
868 * The maximum of two constructive reals.
869 */
max(CR x)870     public CR max(CR x) {
871         return subtract(x).select(x, this);
872     }
873 
874 /**
875 * The minimum of two constructive reals.
876 */
min(CR x)877     public CR min(CR x) {
878         return subtract(x).select(this, x);
879     }
880 
881 /**
882 * The absolute value of a constructive reals.
883 * Note that this cannot be written as a conditional.
884 */
abs()885     public CR abs() {
886         return select(negate(), this);
887     }
888 
889 /**
890 * The exponential function, that is e**<TT>this</tt>.
891 */
exp()892     public CR exp() {
893         final int low_prec = -10;
894         BigInteger rough_appr = get_appr(low_prec);
895         // Handle negative arguments directly; negating and computing inverse
896         // can be very expensive.
897         if (rough_appr.compareTo(big2) > 0 || rough_appr.compareTo(bigm2) < 0) {
898             CR square_root = shiftRight(1).exp();
899             return square_root.multiply(square_root);
900         } else {
901             return new prescaled_exp_CR(this);
902         }
903     }
904 
905 /**
906 * The ratio of a circle's circumference to its diameter.
907 */
908     public static CR PI = new gl_pi_CR();
909 
910     // Our old PI implementation. Keep this around for now to allow checking.
911     // This implementation may also be faster for BigInteger implementations
912     // that support only quadratic multiplication, but exhibit high performance
913     // for small computations.  (The standard Android 6 implementation supports
914     // subquadratic multiplication, but has high constant overhead.) Many other
915     // atan-based formulas are possible, but based on superficial
916     // experimentation, this is roughly as good as the more complex formulas.
917     public static CR atan_PI = four.multiply(four.multiply(atan_reciprocal(5))
918                                             .subtract(atan_reciprocal(239)));
919         // pi/4 = 4*atan(1/5) - atan(1/239)
920     static CR half_pi = PI.shiftRight(1);
921 
922 /**
923 * The trigonometric cosine function.
924 */
cos()925     public CR cos() {
926         BigInteger halfpi_multiples = divide(PI).get_appr(-1);
927         BigInteger abs_halfpi_multiples = halfpi_multiples.abs();
928         if (abs_halfpi_multiples.compareTo(big2) >= 0) {
929             // Subtract multiples of PI
930             BigInteger pi_multiples = scale(halfpi_multiples, -1);
931             CR adjustment = PI.multiply(CR.valueOf(pi_multiples));
932             if (pi_multiples.and(big1).signum() != 0) {
933                 return subtract(adjustment).cos().negate();
934             } else {
935                 return subtract(adjustment).cos();
936             }
937         } else if (get_appr(-1).abs().compareTo(big2) >= 0) {
938             // Scale further with double angle formula
939             CR cos_half = shiftRight(1).cos();
940             return cos_half.multiply(cos_half).shiftLeft(1).subtract(ONE);
941         } else {
942             return new prescaled_cos_CR(this);
943         }
944     }
945 
946 /**
947 * The trigonometric sine function.
948 */
sin()949     public CR sin() {
950         return half_pi.subtract(this).cos();
951     }
952 
953 /**
954 * The trignonometric arc (inverse) sine function.
955 */
asin()956     public CR asin() {
957         BigInteger rough_appr = get_appr(-10);
958         if (rough_appr.compareTo(big750) /* 1/sqrt(2) + a bit */ > 0){
959             CR new_arg = ONE.subtract(multiply(this)).sqrt();
960             return new_arg.acos();
961         } else if (rough_appr.compareTo(bigm750) < 0) {
962             return negate().asin().negate();
963         } else {
964             return new prescaled_asin_CR(this);
965         }
966     }
967 
968 /**
969 * The trignonometric arc (inverse) cosine function.
970 */
acos()971     public CR acos() {
972         return half_pi.subtract(asin());
973     }
974 
975     static final BigInteger low_ln_limit = big8; /* sixteenths, i.e. 1/2 */
976     static final BigInteger high_ln_limit =
977                         BigInteger.valueOf(16 + 8 /* 1.5 */);
978     static final BigInteger scaled_4 =
979                         BigInteger.valueOf(4*16);
980 
981 /**
982 * The natural (base e) logarithm.
983 */
ln()984     public CR ln() {
985         final int low_prec = -4;
986         BigInteger rough_appr = get_appr(low_prec); /* In sixteenths */
987         if (rough_appr.compareTo(big0) < 0) {
988             throw new ArithmeticException("ln(negative)");
989         }
990         if (rough_appr.compareTo(low_ln_limit) <= 0) {
991             return inverse().ln().negate();
992         }
993         if (rough_appr.compareTo(high_ln_limit) >= 0) {
994             if (rough_appr.compareTo(scaled_4) <= 0) {
995                 CR quarter = sqrt().sqrt().ln();
996                 return quarter.shiftLeft(2);
997             } else {
998                 int extra_bits = rough_appr.bitLength() - 3;
999                 CR scaled_result = shiftRight(extra_bits).ln();
1000                 return scaled_result.add(CR.valueOf(extra_bits).multiply(ln2));
1001             }
1002         }
1003         return simple_ln();
1004     }
1005 
1006 /**
1007 * The square root of a constructive real.
1008 */
sqrt()1009     public CR sqrt() {
1010         return new sqrt_CR(this);
1011     }
1012 
1013 }  // end of CR
1014 
1015 
1016 //
1017 // A specialization of CR for cases in which approximate() calls
1018 // to increase evaluation precision are somewhat expensive.
1019 // If we need to (re)evaluate, we speculatively evaluate to slightly
1020 // higher precision, miminimizing reevaluations.
1021 // Note that this requires any arguments to be evaluated to higher
1022 // precision than absolutely necessary.  It can thus potentially
1023 // result in lots of wasted effort, and should be used judiciously.
1024 // This assumes that the order of magnitude of the number is roughly one.
1025 //
1026 abstract class slow_CR extends CR {
1027     static int max_prec = -64;
1028     static int prec_incr = 32;
get_appr(int precision)1029     public synchronized BigInteger get_appr(int precision) {
1030         check_prec(precision);
1031         if (appr_valid && precision >= min_prec) {
1032             return scale(max_appr, min_prec - precision);
1033         } else {
1034             int eval_prec = (precision >= max_prec? max_prec :
1035                              (precision - prec_incr + 1) & ~(prec_incr - 1));
1036             BigInteger result = approximate(eval_prec);
1037             min_prec = eval_prec;
1038             max_appr = result;
1039             appr_valid = true;
1040             return scale(result, eval_prec - precision);
1041         }
1042     }
1043 }
1044 
1045 
1046 // Representation of an integer constant.  Private.
1047 class int_CR extends CR {
1048     BigInteger value;
int_CR(BigInteger n)1049     int_CR(BigInteger n) {
1050         value = n;
1051     }
approximate(int p)1052     protected BigInteger approximate(int p) {
1053         return scale(value, -p) ;
1054     }
1055 }
1056 
1057 // Representation of a number that may not have been completely
1058 // evaluated, but is assumed to be an integer.  Hence we never
1059 // evaluate beyond the decimal point.
1060 class assumed_int_CR extends CR {
1061     CR value;
assumed_int_CR(CR x)1062     assumed_int_CR(CR x) {
1063         value = x;
1064     }
approximate(int p)1065     protected BigInteger approximate(int p) {
1066         if (p >= 0) {
1067             return value.get_appr(p);
1068         } else {
1069             return scale(value.get_appr(0), -p) ;
1070         }
1071     }
1072 }
1073 
1074 // Representation of the sum of 2 constructive reals.  Private.
1075 class add_CR extends CR {
1076     CR op1;
1077     CR op2;
add_CR(CR x, CR y)1078     add_CR(CR x, CR y) {
1079         op1 = x;
1080         op2 = y;
1081     }
approximate(int p)1082     protected BigInteger approximate(int p) {
1083         // Args need to be evaluated so that each error is < 1/4 ulp.
1084         // Rounding error from the cale call is <= 1/2 ulp, so that
1085         // final error is < 1 ulp.
1086         return scale(op1.get_appr(p-2).add(op2.get_appr(p-2)), -2);
1087     }
1088 }
1089 
1090 // Representation of a CR multiplied by 2**n
1091 class shifted_CR extends CR {
1092     CR op;
1093     int count;
shifted_CR(CR x, int n)1094     shifted_CR(CR x, int n) {
1095         op = x;
1096         count = n;
1097     }
approximate(int p)1098     protected BigInteger approximate(int p) {
1099         return op.get_appr(p - count);
1100     }
1101 }
1102 
1103 // Representation of the negation of a constructive real.  Private.
1104 class neg_CR extends CR {
1105     CR op;
neg_CR(CR x)1106     neg_CR(CR x) {
1107         op = x;
1108     }
approximate(int p)1109     protected BigInteger approximate(int p) {
1110         return op.get_appr(p).negate();
1111     }
1112 }
1113 
1114 // Representation of:
1115 //      op1     if selector < 0
1116 //      op2     if selector >= 0
1117 // Assumes x = y if s = 0
1118 class select_CR extends CR {
1119     CR selector;
1120     int selector_sign;
1121     CR op1;
1122     CR op2;
select_CR(CR s, CR x, CR y)1123     select_CR(CR s, CR x, CR y) {
1124         selector = s;
1125         selector_sign = selector.get_appr(-20).signum();
1126         op1 = x;
1127         op2 = y;
1128     }
approximate(int p)1129     protected BigInteger approximate(int p) {
1130         if (selector_sign < 0) return op1.get_appr(p);
1131         if (selector_sign > 0) return op2.get_appr(p);
1132         BigInteger op1_appr = op1.get_appr(p-1);
1133         BigInteger op2_appr = op2.get_appr(p-1);
1134         BigInteger diff = op1_appr.subtract(op2_appr).abs();
1135         if (diff.compareTo(big1) <= 0) {
1136             // close enough; use either
1137             return scale(op1_appr, -1);
1138         }
1139         // op1 and op2 are different; selector != 0;
1140         // safe to get sign of selector.
1141         if (selector.signum() < 0) {
1142             selector_sign = -1;
1143             return scale(op1_appr, -1);
1144         } else {
1145             selector_sign = 1;
1146             return scale(op2_appr, -1);
1147         }
1148     }
1149 }
1150 
1151 // Representation of the product of 2 constructive reals. Private.
1152 class mult_CR extends CR {
1153     CR op1;
1154     CR op2;
mult_CR(CR x, CR y)1155     mult_CR(CR x, CR y) {
1156         op1 = x;
1157         op2 = y;
1158     }
approximate(int p)1159     protected BigInteger approximate(int p) {
1160         int half_prec = (p >> 1) - 1;
1161         int msd_op1 = op1.msd(half_prec);
1162         int msd_op2;
1163 
1164         if (msd_op1 == Integer.MIN_VALUE) {
1165             msd_op2 = op2.msd(half_prec);
1166             if (msd_op2 == Integer.MIN_VALUE) {
1167                 // Product is small enough that zero will do as an
1168                 // approximation.
1169                 return big0;
1170             } else {
1171                 // Swap them, so the larger operand (in absolute value)
1172                 // is first.
1173                 CR tmp;
1174                 tmp = op1;
1175                 op1 = op2;
1176                 op2 = tmp;
1177                 msd_op1 = msd_op2;
1178             }
1179         }
1180         // msd_op1 is valid at this point.
1181         int prec2 = p - msd_op1 - 3;    // Precision needed for op2.
1182                 // The appr. error is multiplied by at most
1183                 // 2 ** (msd_op1 + 1)
1184                 // Thus each approximation contributes 1/4 ulp
1185                 // to the rounding error, and the final rounding adds
1186                 // another 1/2 ulp.
1187         BigInteger appr2 = op2.get_appr(prec2);
1188         if (appr2.signum() == 0) return big0;
1189         msd_op2 = op2.known_msd();
1190         int prec1 = p - msd_op2 - 3;    // Precision needed for op1.
1191         BigInteger appr1 = op1.get_appr(prec1);
1192         int scale_digits =  prec1 + prec2 - p;
1193         return scale(appr1.multiply(appr2), scale_digits);
1194     }
1195 }
1196 
1197 // Representation of the multiplicative inverse of a constructive
1198 // real.  Private.  Should use Newton iteration to refine estimates.
1199 class inv_CR extends CR {
1200     CR op;
inv_CR(CR x)1201     inv_CR(CR x) { op = x; }
approximate(int p)1202     protected BigInteger approximate(int p) {
1203         int msd = op.msd();
1204         int inv_msd = 1 - msd;
1205         int digits_needed = inv_msd - p + 3;
1206                                 // Number of SIGNIFICANT digits needed for
1207                                 // argument, excl. msd position, which may
1208                                 // be fictitious, since msd routine can be
1209                                 // off by 1.  Roughly 1 extra digit is
1210                                 // needed since the relative error is the
1211                                 // same in the argument and result, but
1212                                 // this isn't quite the same as the number
1213                                 // of significant digits.  Another digit
1214                                 // is needed to compensate for slop in the
1215                                 // calculation.
1216                                 // One further bit is required, since the
1217                                 // final rounding introduces a 0.5 ulp
1218                                 // error.
1219         int prec_needed = msd - digits_needed;
1220         int log_scale_factor = -p - prec_needed;
1221         if (log_scale_factor < 0) return big0;
1222         BigInteger dividend = big1.shiftLeft(log_scale_factor);
1223         BigInteger scaled_divisor = op.get_appr(prec_needed);
1224         BigInteger abs_scaled_divisor = scaled_divisor.abs();
1225         BigInteger adj_dividend = dividend.add(
1226                                         abs_scaled_divisor.shiftRight(1));
1227                 // Adjustment so that final result is rounded.
1228         BigInteger result = adj_dividend.divide(abs_scaled_divisor);
1229         if (scaled_divisor.signum() < 0) {
1230           return result.negate();
1231         } else {
1232           return result;
1233         }
1234     }
1235 }
1236 
1237 
1238 // Representation of the exponential of a constructive real.  Private.
1239 // Uses a Taylor series expansion.  Assumes |x| < 1/2.
1240 // Note: this is known to be a bad algorithm for
1241 // floating point.  Unfortunately, other alternatives
1242 // appear to require precomputed information.
1243 class prescaled_exp_CR extends CR {
1244     CR op;
prescaled_exp_CR(CR x)1245     prescaled_exp_CR(CR x) { op = x; }
approximate(int p)1246     protected BigInteger approximate(int p) {
1247         if (p >= 1) return big0;
1248         int iterations_needed = -p/2 + 2;  // conservative estimate > 0.
1249           //  Claim: each intermediate term is accurate
1250           //  to 2*2^calc_precision.
1251           //  Total rounding error in series computation is
1252           //  2*iterations_needed*2^calc_precision,
1253           //  exclusive of error in op.
1254         int calc_precision = p - bound_log2(2*iterations_needed)
1255                                - 4; // for error in op, truncation.
1256         int op_prec = p - 3;
1257         BigInteger op_appr = op.get_appr(op_prec);
1258           // Error in argument results in error of < 3/8 ulp.
1259           // Sum of term eval. rounding error is < 1/16 ulp.
1260           // Series truncation error < 1/16 ulp.
1261           // Final rounding error is <= 1/2 ulp.
1262           // Thus final error is < 1 ulp.
1263         BigInteger scaled_1 = big1.shiftLeft(-calc_precision);
1264         BigInteger current_term = scaled_1;
1265         BigInteger current_sum = scaled_1;
1266         int n = 0;
1267         BigInteger max_trunc_error =
1268                 big1.shiftLeft(p - 4 - calc_precision);
1269         while (current_term.abs().compareTo(max_trunc_error) >= 0) {
1270           if (Thread.interrupted() || please_stop) throw new AbortedException();
1271           n += 1;
1272           /* current_term = current_term * op / n */
1273           current_term = scale(current_term.multiply(op_appr), op_prec);
1274           current_term = current_term.divide(BigInteger.valueOf(n));
1275           current_sum = current_sum.add(current_term);
1276         }
1277         return scale(current_sum, calc_precision - p);
1278     }
1279 }
1280 
1281 // Representation of the cosine of a constructive real.  Private.
1282 // Uses a Taylor series expansion.  Assumes |x| < 1.
1283 class prescaled_cos_CR extends slow_CR {
1284     CR op;
prescaled_cos_CR(CR x)1285     prescaled_cos_CR(CR x) {
1286         op = x;
1287     }
approximate(int p)1288     protected BigInteger approximate(int p) {
1289         if (p >= 1) return big0;
1290         int iterations_needed = -p/2 + 4;  // conservative estimate > 0.
1291           //  Claim: each intermediate term is accurate
1292           //  to 2*2^calc_precision.
1293           //  Total rounding error in series computation is
1294           //  2*iterations_needed*2^calc_precision,
1295           //  exclusive of error in op.
1296         int calc_precision = p - bound_log2(2*iterations_needed)
1297                                - 4; // for error in op, truncation.
1298         int op_prec = p - 2;
1299         BigInteger op_appr = op.get_appr(op_prec);
1300           // Error in argument results in error of < 1/4 ulp.
1301           // Cumulative arithmetic rounding error is < 1/16 ulp.
1302           // Series truncation error < 1/16 ulp.
1303           // Final rounding error is <= 1/2 ulp.
1304           // Thus final error is < 1 ulp.
1305         BigInteger current_term;
1306         int n;
1307         BigInteger max_trunc_error =
1308                 big1.shiftLeft(p - 4 - calc_precision);
1309         n = 0;
1310         current_term = big1.shiftLeft(-calc_precision);
1311         BigInteger current_sum = current_term;
1312         while (current_term.abs().compareTo(max_trunc_error) >= 0) {
1313           if (Thread.interrupted() || please_stop) throw new AbortedException();
1314           n += 2;
1315           /* current_term = - current_term * op * op / n * (n - 1)   */
1316           current_term = scale(current_term.multiply(op_appr), op_prec);
1317           current_term = scale(current_term.multiply(op_appr), op_prec);
1318           BigInteger divisor = BigInteger.valueOf(-n)
1319                                   .multiply(BigInteger.valueOf(n-1));
1320           current_term = current_term.divide(divisor);
1321           current_sum = current_sum.add(current_term);
1322         }
1323         return scale(current_sum, calc_precision - p);
1324     }
1325 }
1326 
1327 // The constructive real atan(1/n), where n is a small integer
1328 // > base.
1329 // This gives a simple and moderately fast way to compute PI.
1330 class integral_atan_CR extends slow_CR {
1331     int op;
integral_atan_CR(int x)1332     integral_atan_CR(int x) { op = x; }
approximate(int p)1333     protected BigInteger approximate(int p) {
1334         if (p >= 1) return big0;
1335         int iterations_needed = -p/2 + 2;  // conservative estimate > 0.
1336           //  Claim: each intermediate term is accurate
1337           //  to 2*base^calc_precision.
1338           //  Total rounding error in series computation is
1339           //  2*iterations_needed*base^calc_precision,
1340           //  exclusive of error in op.
1341         int calc_precision = p - bound_log2(2*iterations_needed)
1342                                - 2; // for error in op, truncation.
1343           // Error in argument results in error of < 3/8 ulp.
1344           // Cumulative arithmetic rounding error is < 1/4 ulp.
1345           // Series truncation error < 1/4 ulp.
1346           // Final rounding error is <= 1/2 ulp.
1347           // Thus final error is < 1 ulp.
1348         BigInteger scaled_1 = big1.shiftLeft(-calc_precision);
1349         BigInteger big_op = BigInteger.valueOf(op);
1350         BigInteger big_op_squared = BigInteger.valueOf(op*op);
1351         BigInteger op_inverse = scaled_1.divide(big_op);
1352         BigInteger current_power = op_inverse;
1353         BigInteger current_term = op_inverse;
1354         BigInteger current_sum = op_inverse;
1355         int current_sign = 1;
1356         int n = 1;
1357         BigInteger max_trunc_error =
1358                 big1.shiftLeft(p - 2 - calc_precision);
1359         while (current_term.abs().compareTo(max_trunc_error) >= 0) {
1360           if (Thread.interrupted() || please_stop) throw new AbortedException();
1361           n += 2;
1362           current_power = current_power.divide(big_op_squared);
1363           current_sign = -current_sign;
1364           current_term =
1365             current_power.divide(BigInteger.valueOf(current_sign*n));
1366           current_sum = current_sum.add(current_term);
1367         }
1368         return scale(current_sum, calc_precision - p);
1369     }
1370 }
1371 
1372 // Representation for ln(1 + op)
1373 class prescaled_ln_CR extends slow_CR {
1374     CR op;
prescaled_ln_CR(CR x)1375     prescaled_ln_CR(CR x) { op = x; }
1376     // Compute an approximation of ln(1+x) to precision
1377     // prec. This assumes |x| < 1/2.
1378     // It uses a Taylor series expansion.
1379     // Unfortunately there appears to be no way to take
1380     // advantage of old information.
1381     // Note: this is known to be a bad algorithm for
1382     // floating point.  Unfortunately, other alternatives
1383     // appear to require precomputed tabular information.
approximate(int p)1384     protected BigInteger approximate(int p) {
1385         if (p >= 0) return big0;
1386         int iterations_needed = -p;  // conservative estimate > 0.
1387           //  Claim: each intermediate term is accurate
1388           //  to 2*2^calc_precision.  Total error is
1389           //  2*iterations_needed*2^calc_precision
1390           //  exclusive of error in op.
1391         int calc_precision = p - bound_log2(2*iterations_needed)
1392                                - 4; // for error in op, truncation.
1393         int op_prec = p - 3;
1394         BigInteger op_appr = op.get_appr(op_prec);
1395           // Error analysis as for exponential.
1396         BigInteger x_nth = scale(op_appr, op_prec - calc_precision);
1397         BigInteger current_term = x_nth;  // x**n
1398         BigInteger current_sum = current_term;
1399         int n = 1;
1400         int current_sign = 1;   // (-1)^(n-1)
1401         BigInteger max_trunc_error =
1402                 big1.shiftLeft(p - 4 - calc_precision);
1403         while (current_term.abs().compareTo(max_trunc_error) >= 0) {
1404           if (Thread.interrupted() || please_stop) throw new AbortedException();
1405           n += 1;
1406           current_sign = -current_sign;
1407           x_nth = scale(x_nth.multiply(op_appr), op_prec);
1408           current_term = x_nth.divide(BigInteger.valueOf(n * current_sign));
1409                                 // x**n / (n * (-1)**(n-1))
1410           current_sum = current_sum.add(current_term);
1411         }
1412         return scale(current_sum, calc_precision - p);
1413     }
1414 }
1415 
1416 // Representation of the arcsine of a constructive real.  Private.
1417 // Uses a Taylor series expansion.  Assumes |x| < (1/2)^(1/3).
1418 class prescaled_asin_CR extends slow_CR {
1419     CR op;
prescaled_asin_CR(CR x)1420     prescaled_asin_CR(CR x) {
1421         op = x;
1422     }
approximate(int p)1423     protected BigInteger approximate(int p) {
1424         // The Taylor series is the sum of x^(2n+1) * (2n)!/(4^n n!^2 (2n+1))
1425         // Note that (2n)!/(4^n n!^2) is always less than one.
1426         // (The denominator is effectively 2n*2n*(2n-2)*(2n-2)*...*2*2
1427         // which is clearly > (2n)!)
1428         // Thus all terms are bounded by x^(2n+1).
1429         // Unfortunately, there's no easy way to prescale the argument
1430         // to less than 1/sqrt(2), and we can only approximate that.
1431         // Thus the worst case iteration count is fairly high.
1432         // But it doesn't make much difference.
1433         if (p >= 2) return big0;  // Never bigger than 4.
1434         int iterations_needed = -3 * p / 2 + 4;
1435                                 // conservative estimate > 0.
1436                                 // Follows from assumed bound on x and
1437                                 // the fact that only every other Taylor
1438                                 // Series term is present.
1439           //  Claim: each intermediate term is accurate
1440           //  to 2*2^calc_precision.
1441           //  Total rounding error in series computation is
1442           //  2*iterations_needed*2^calc_precision,
1443           //  exclusive of error in op.
1444         int calc_precision = p - bound_log2(2*iterations_needed)
1445                                - 4; // for error in op, truncation.
1446         int op_prec = p - 3;  // always <= -2
1447         BigInteger op_appr = op.get_appr(op_prec);
1448           // Error in argument results in error of < 1/4 ulp.
1449           // (Derivative is bounded by 2 in the specified range and we use
1450           // 3 extra digits.)
1451           // Ignoring the argument error, each term has an error of
1452           // < 3ulps relative to calc_precision, which is more precise than p.
1453           // Cumulative arithmetic rounding error is < 3/16 ulp (relative to p).
1454           // Series truncation error < 2/16 ulp.  (Each computed term
1455           // is at most 2/3 of last one, so some of remaining series <
1456           // 3/2 * current term.)
1457           // Final rounding error is <= 1/2 ulp.
1458           // Thus final error is < 1 ulp (relative to p).
1459         BigInteger max_last_term =
1460                 big1.shiftLeft(p - 4 - calc_precision);
1461         int exp = 1; // Current exponent, = 2n+1 in above expression
1462         BigInteger current_term = op_appr.shiftLeft(op_prec - calc_precision);
1463         BigInteger current_sum = current_term;
1464         BigInteger current_factor = current_term;
1465                                     // Current scaled Taylor series term
1466                                     // before division by the exponent.
1467                                     // Accurate to 3 ulp at calc_precision.
1468         while (current_term.abs().compareTo(max_last_term) >= 0) {
1469           if (Thread.interrupted() || please_stop) throw new AbortedException();
1470           exp += 2;
1471           // current_factor = current_factor * op * op * (exp-1) * (exp-2) /
1472           // (exp-1) * (exp-1), with the two exp-1 factors cancelling,
1473           // giving
1474           // current_factor = current_factor * op * op * (exp-2) / (exp-1)
1475           // Thus the error any in the previous term is multiplied by
1476           // op^2, adding an error of < (1/2)^(2/3) < 2/3 the original
1477           // error.
1478           current_factor = current_factor.multiply(BigInteger.valueOf(exp - 2));
1479           current_factor = scale(current_factor.multiply(op_appr), op_prec + 2);
1480                 // Carry 2 extra bits of precision forward; thus
1481                 // this effectively introduces 1/8 ulp error.
1482           current_factor = current_factor.multiply(op_appr);
1483           BigInteger divisor = BigInteger.valueOf(exp - 1);
1484           current_factor = current_factor.divide(divisor);
1485                 // Another 1/4 ulp error here.
1486           current_factor = scale(current_factor, op_prec - 2);
1487                 // Remove extra 2 bits.  1/2 ulp rounding error.
1488           // Current_factor has original 3 ulp rounding error, which we
1489           // reduced by 1, plus < 1 ulp new rounding error.
1490           current_term = current_factor.divide(BigInteger.valueOf(exp));
1491                 // Contributes 1 ulp error to sum plus at most 3 ulp
1492                 // from current_factor.
1493           current_sum = current_sum.add(current_term);
1494         }
1495         return scale(current_sum, calc_precision - p);
1496       }
1497   }
1498 
1499 
1500 class sqrt_CR extends CR {
1501     CR op;
sqrt_CR(CR x)1502     sqrt_CR(CR x) { op = x; }
1503     // Explicitly provide an initial approximation.
1504     // Useful for arithmetic geometric mean algorithms, where we've previously
1505     // computed a very similar square root.
sqrt_CR(CR x, int min_p, BigInteger max_a)1506     sqrt_CR(CR x, int min_p, BigInteger max_a) {
1507         op = x;
1508         min_prec = min_p;
1509         max_appr = max_a;
1510         appr_valid = true;
1511     }
1512     final int fp_prec = 50;     // Conservative estimate of number of
1513                                 // significant bits in double precision
1514                                 // computation.
1515     final int fp_op_prec = 60;
approximate(int p)1516     protected BigInteger approximate(int p) {
1517         int max_op_prec_needed = 2*p - 1;
1518         int msd = op.iter_msd(max_op_prec_needed);
1519         if (msd <= max_op_prec_needed) return big0;
1520         int result_msd = msd/2;                 // +- 1
1521         int result_digits = result_msd - p;     // +- 2
1522         if (result_digits > fp_prec) {
1523           // Compute less precise approximation and use a Newton iter.
1524             int appr_digits = result_digits/2 + 6;
1525                 // This should be conservative.  Is fewer enough?
1526             int appr_prec = result_msd - appr_digits;
1527             int prod_prec = 2*appr_prec;
1528             // First compute the argument to maximal precision, so we don't end up
1529             // reevaluating it incrementally.
1530             BigInteger op_appr = op.get_appr(prod_prec);
1531             BigInteger last_appr = get_appr(appr_prec);
1532             // Compute (last_appr * last_appr + op_appr) / last_appr / 2
1533             // while adjusting the scaling to make everything work
1534             BigInteger prod_prec_scaled_numerator =
1535                 last_appr.multiply(last_appr).add(op_appr);
1536             BigInteger scaled_numerator =
1537                 scale(prod_prec_scaled_numerator, appr_prec - p);
1538             BigInteger shifted_result = scaled_numerator.divide(last_appr);
1539             return shifted_result.add(big1).shiftRight(1);
1540         } else {
1541           // Use a double precision floating point approximation.
1542             // Make sure all precisions are even
1543             int op_prec = (msd - fp_op_prec) & ~1;
1544             int working_prec = op_prec - fp_op_prec;
1545             BigInteger scaled_bi_appr = op.get_appr(op_prec)
1546                                         .shiftLeft(fp_op_prec);
1547             double scaled_appr = scaled_bi_appr.doubleValue();
1548             if (scaled_appr < 0.0)
1549                 throw new ArithmeticException("sqrt(negative)");
1550             double scaled_fp_sqrt = Math.sqrt(scaled_appr);
1551             BigInteger scaled_sqrt = BigInteger.valueOf((long)scaled_fp_sqrt);
1552             int shift_count = working_prec/2 - p;
1553             return shift(scaled_sqrt, shift_count);
1554         }
1555     }
1556 }
1557 
1558 // The constant PI, computed using the Gauss-Legendre alternating
1559 // arithmetic-geometric mean algorithm:
1560 //      a[0] = 1
1561 //      b[0] = 1/sqrt(2)
1562 //      t[0] = 1/4
1563 //      p[0] = 1
1564 //
1565 //      a[n+1] = (a[n] + b[n])/2        (arithmetic mean, between 0.8 and 1)
1566 //      b[n+1] = sqrt(a[n] * b[n])      (geometric mean, between 0.7 and 1)
1567 //      t[n+1] = t[n] - (2^n)(a[n]-a[n+1])^2,  (always between 0.2 and 0.25)
1568 //
1569 //      pi is then approximated as (a[n+1]+b[n+1])^2 / 4*t[n+1].
1570 //
1571 class gl_pi_CR extends slow_CR {
1572     // In addition to the best approximation kept by the CR base class, we keep
1573     // the entire sequence b[n], to the extent we've needed it so far.  Each
1574     // reevaluation leads to slightly different sqrt arguments, but the
1575     // previous result can be used to avoid repeating low precision Newton
1576     // iterations for the sqrt approximation.
1577     ArrayList<Integer> b_prec = new ArrayList<Integer>();
1578     ArrayList<BigInteger> b_val = new ArrayList<BigInteger>();
gl_pi_CR()1579     gl_pi_CR() {
1580         b_prec.add(null);  // Zeroth entry unused.
1581         b_val.add(null);
1582     }
1583     private static BigInteger TOLERANCE = BigInteger.valueOf(4);
1584     // sqrt(1/2)
1585     private static CR SQRT_HALF = new sqrt_CR(ONE.shiftRight(1));
1586 
approximate(int p)1587     protected BigInteger approximate(int p) {
1588         // Get us back into a consistent state if the last computation
1589         // was interrupted after pushing onto b_prec.
1590         if (b_prec.size() > b_val.size()) {
1591             b_prec.remove(b_prec.size() - 1);
1592         }
1593         // Rough approximations are easy.
1594         if (p >= 0) return scale(BigInteger.valueOf(3), -p);
1595         // We need roughly log2(p) iterations.  Each iteration should
1596         // contribute no more than 2 ulps to the error in the corresponding
1597         // term (a[n], b[n], or t[n]).  Thus 2log2(n) bits plus a few for the
1598         // final calulation and rounding suffice.
1599         final int extra_eval_prec =
1600                 (int)Math.ceil(Math.log(-p) / Math.log(2)) + 10;
1601         // All our terms are implicitly scaled by eval_prec.
1602         final int eval_prec = p - extra_eval_prec;
1603         BigInteger a = BigInteger.ONE.shiftLeft(-eval_prec);
1604         BigInteger b = SQRT_HALF.get_appr(eval_prec);
1605         BigInteger t = BigInteger.ONE.shiftLeft(-eval_prec - 2);
1606         int n = 0;
1607         while (a.subtract(b).subtract(TOLERANCE).signum() > 0) {
1608             // Current values correspond to n, next_ values to n + 1
1609             // b_prec.size() == b_val.size() >= n + 1
1610             final BigInteger next_a = a.add(b).shiftRight(1);
1611             final BigInteger next_b;
1612             final BigInteger a_diff = a.subtract(next_a);
1613             final BigInteger b_prod = a.multiply(b).shiftRight(-eval_prec);
1614             // We compute square root approximations using a nested
1615             // temporary CR computation, to avoid implementing BigInteger
1616             // square roots separately.
1617             final CR b_prod_as_CR = CR.valueOf(b_prod).shiftRight(-eval_prec);
1618             if (b_prec.size() == n + 1) {
1619                 // Add an n+1st slot.
1620                 // Take care to make this exception-safe; b_prec and b_val
1621                 // must remain consistent, even if we are interrupted, or run
1622                 // out of memory. It's OK to just push on b_prec in that case.
1623                 final CR next_b_as_CR = b_prod_as_CR.sqrt();
1624                 next_b = next_b_as_CR.get_appr(eval_prec);
1625                 final BigInteger scaled_next_b = scale(next_b, -extra_eval_prec);
1626                 b_prec.add(p);
1627                 b_val.add(scaled_next_b);
1628             } else {
1629                 // Reuse previous approximation to reduce sqrt iterations,
1630                 // hopefully to one.
1631                 final CR next_b_as_CR =
1632                         new sqrt_CR(b_prod_as_CR,
1633                                     b_prec.get(n + 1), b_val.get(n + 1));
1634                 next_b = next_b_as_CR.get_appr(eval_prec);
1635                 // We assume that set() doesn't throw for any reason.
1636                 b_prec.set(n + 1, p);
1637                 b_val.set(n + 1, scale(next_b, -extra_eval_prec));
1638             }
1639             // b_prec.size() == b_val.size() >= n + 2
1640             final BigInteger next_t =
1641                     t.subtract(a_diff.multiply(a_diff)
1642                      .shiftLeft(n + eval_prec));  // shift dist. usually neg.
1643             a = next_a;
1644             b = next_b;
1645             t = next_t;
1646             ++n;
1647         }
1648         final BigInteger sum = a.add(b);
1649         final BigInteger result = sum.multiply(sum).divide(t).shiftRight(2);
1650         return scale(result, -extra_eval_prec);
1651     }
1652 }
1653