1# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Input-pipeline utilities for Distribution strategies."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21from tensorflow.python.data.experimental.ops import distribute
22from tensorflow.python.data.experimental.ops.distribute_options import AutoShardPolicy
23from tensorflow.python.data.ops import dataset_ops
24from tensorflow.python.data.util import traverse
25from tensorflow.python.framework import op_def_registry
26from tensorflow.python.framework import ops
27
28
29# pylint: disable=protected-access
30def auto_shard_dataset(dataset, num_shards, index, num_replicas_in_sync=None):
31  """Shard the input pipeline by sharding the underlying list of files.
32
33  Args:
34    dataset: A `tf.data.Dataset` instance, typically the result of a bunch of
35      dataset transformations.
36    num_shards: A `tf.int64` scalar `tf.Tensor`, representing the number of
37        shards operating in parallel. Same usage as in `tf.data.Dataset.shard`.
38    index: A `tf.int64` scalar `tf.Tensor`, representing the worker index.
39      Same usage as in `tf.data.Dataset.shard`.
40    num_replicas_in_sync: An integer representing the total number of replicas
41      across all workers. This is used in the rewrite when sharding by data.
42
43  Returns:
44    A modified `Dataset` obtained by updating the pipeline sharded by the
45    files. The input dataset will be returned if we cannot automatically
46    determine a good way to shard the input dataset.
47  """
48  if (dataset.options().experimental_distribute.auto_shard_policy !=
49      AutoShardPolicy.OFF):
50    if num_replicas_in_sync is None:
51      num_replicas_in_sync = 1
52    if isinstance(dataset, dataset_ops.DatasetV1):
53      return distribute._AutoShardDatasetV1(dataset, num_shards, index,
54                                            num_replicas_in_sync)
55    else:
56      return distribute._AutoShardDataset(dataset, num_shards, index,
57                                          num_replicas_in_sync)
58  else:
59    return dataset
60
61
62def _clone_dataset(dataset):
63  """Returns a cloned version of `dataset`."""
64  variant_tensor_ops = traverse.obtain_all_variant_tensor_ops(dataset)
65  remap_dict = _clone_helper(dataset._variant_tensor.op, variant_tensor_ops)
66  new_variant_tensor = remap_dict[dataset._variant_tensor.op].outputs[0]
67  return dataset_ops._VariantDataset(new_variant_tensor, dataset.element_spec)
68
69
70def _get_op_def(op):
71  return op.op_def or op_def_registry.get(op.type)
72
73
74def _clone_helper(op_to_clone, variant_tensor_ops):
75  """Helper method that recursively clones `op_to_clone`.
76
77  Args:
78    op_to_clone: The op we want to clone.
79    variant_tensor_ops: A list of ops that we have to clone along the way.
80
81  Returns:
82    A dictionary mapping old_ops to new_ops created. Includes op_to_clone
83    as a key.
84  """
85  remap_dict = {}
86  for input_tensor in op_to_clone.inputs:
87    input_tensor_op = input_tensor.op
88    if input_tensor_op in variant_tensor_ops:
89      recursive_map = _clone_helper(input_tensor_op, variant_tensor_ops)
90      remap_dict.update(recursive_map)
91  inputs_list = []
92  for input_tensor in op_to_clone.inputs:
93    input_tensor_op = input_tensor.op
94    if input_tensor_op in remap_dict:
95      remapped_input = remap_dict[input_tensor_op].outputs[0]
96      inputs_list.append(remapped_input)
97    else:
98      inputs_list.append(input_tensor_op.outputs[input_tensor.value_index])
99  g = ops.get_default_graph()
100  new_op = g.create_op(
101      op_to_clone.type,
102      inputs_list, [o.dtype for o in op_to_clone.outputs],
103      name=op_to_clone.name,
104      attrs=op_to_clone.node_def.attr,
105      op_def=_get_op_def(op_to_clone))
106  remap_dict[op_to_clone] = new_op
107  return remap_dict
108