1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/core/kernels/gpu_utils.h"
17 
18 #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
19 
20 #include <iterator>
21 
22 #include "google/protobuf/any.pb.h"
23 #include "absl/algorithm/container.h"
24 #include "absl/base/call_once.h"
25 #include "tensorflow/core/platform/logger.h"
26 #include "tensorflow/core/protobuf/autotuning.pb.h"
27 #include "tensorflow/core/protobuf/conv_autotuning.pb.h"
28 #include "tensorflow/core/util/env_var.h"
29 #include "tensorflow/core/util/proto/proto_utils.h"
30 #include "tensorflow/stream_executor/gpu/asm_compiler.h"
31 #include "tensorflow/stream_executor/gpu/redzone_allocator.h"
32 
33 namespace tensorflow {
34 
RedzoneCheckDisabled()35 bool RedzoneCheckDisabled() {
36   const char* disable_rz_str = std::getenv("TF_DISABLE_RZ_CHECK");
37   return disable_rz_str != nullptr && std::strcmp(disable_rz_str, "1") == 0;
38 }
39 
WrapRedzoneBestEffort(se::RedzoneAllocator * rz_allocator,se::DeviceMemoryBase buffer)40 se::DeviceMemoryBase WrapRedzoneBestEffort(se::RedzoneAllocator* rz_allocator,
41                                            se::DeviceMemoryBase buffer) {
42   if (RedzoneCheckDisabled()) {
43     return buffer;
44   }
45   auto output_rz_or = rz_allocator->AllocateBytes(buffer.size());
46   if (!output_rz_or.ok()) {
47     static absl::once_flag rz_allocation_failure_logged;
48     absl::call_once(rz_allocation_failure_logged, []() {
49       LOG(WARNING) << "Failed to allocate memory for convolution redzone "
50                    << "checking; skipping this check. This is benign and only "
51                    << "means that we won't check cudnn for out-of-bounds reads "
52                    << "and writes. This message will only be printed once.";
53     });
54     return buffer;
55   }
56   return se::DeviceMemoryBase(output_rz_or.ValueOrDie());
57 }
58 
CheckRedzones(const se::RedzoneAllocator & rz_allocator,tensorflow::AutotuneResult * autotune_result)59 void CheckRedzones(const se::RedzoneAllocator& rz_allocator,
60                    tensorflow::AutotuneResult* autotune_result) {
61   if (RedzoneCheckDisabled()) {
62     return;
63   }
64   se::port::StatusOr<se::RedzoneAllocator::RedzoneCheckStatus> rz_status =
65       rz_allocator.CheckRedzones();
66   if (!rz_status.ok()) {
67     static absl::once_flag failure_logged;
68     absl::call_once(failure_logged, [&]() {
69       LOG(WARNING) << "Failed to check cudnn convolutions for out-of-bounds "
70                    << "reads and writes with an error message: '"
71                    << rz_status.status().error_message()
72                    << "'; skipping this check. This only means that we won't "
73                    << "check cudnn for out-of-bounds reads and writes. This "
74                    << "message will only be printed once.";
75     });
76     return;
77   }
78   auto rz_check_status = rz_status.ValueOrDie();
79   if (!rz_check_status.ok()) {
80     auto* fail = autotune_result->mutable_failure();
81     fail->set_msg(rz_check_status.RedzoneFailureMsg());
82     fail->set_kind(AutotuneResult::REDZONE_MODIFIED);
83     fail->set_buffer_address(
84         reinterpret_cast<uint64>(rz_check_status.user_buffer_address));
85     LOG(ERROR)
86         << "Detected cudnn out-of-bounds write in convolution buffer! This is "
87            "likely a cudnn bug. We will skip this algorithm in the future, but "
88            "your GPU state may already be corrupted, leading to incorrect "
89            "results. Within Google, no action is needed on your part. Outside "
90            "of Google, please ensure you're running the latest version of "
91            "cudnn. If that doesn't fix the problem, please file a bug with "
92            "this full error message and we'll contact nvidia.";
93     LOG(ERROR) << rz_check_status.RedzoneFailureMsg();
94   }
95 }
96 
97 namespace {
98 
GetCudnnVersion(se::StreamExecutor * stream_executor)99 tensorflow::CudnnVersion GetCudnnVersion(se::StreamExecutor* stream_executor) {
100   tensorflow::CudnnVersion cudnn_version;
101   if (auto* dnn = stream_executor->AsDnn()) {
102     se::port::StatusOr<se::dnn::VersionInfo> version_or = dnn->GetVersion();
103     if (version_or.ok()) {
104       const auto& version = version_or.ValueOrDie();
105       cudnn_version.set_major(version.major_version());
106       cudnn_version.set_minor(version.minor_version());
107       cudnn_version.set_patch(version.patch());
108     }
109   }
110   return cudnn_version;
111 }
112 
GetComputeCapability(se::StreamExecutor * stream_executor)113 tensorflow::ComputeCapability GetComputeCapability(
114     se::StreamExecutor* stream_executor) {
115   tensorflow::ComputeCapability cc;
116   int cc_major, cc_minor;
117   stream_executor->GetDeviceDescription().cuda_compute_capability(&cc_major,
118                                                                   &cc_minor);
119   cc.set_major(cc_major);
120   cc.set_minor(cc_minor);
121   return cc;
122 }
123 
124 }  // namespace
125 
LogConvAutotuneResults(se::dnn::ConvolutionKind kind,se::dnn::DataType element_type,se::DeviceMemoryBase input_buffer,se::DeviceMemoryBase filter_buffer,se::DeviceMemoryBase output_buffer,const se::dnn::BatchDescriptor & input_desc,const se::dnn::FilterDescriptor & filter_desc,const se::dnn::BatchDescriptor & output_desc,const se::dnn::ConvolutionDescriptor & conv_desc,se::StreamExecutor * stream_exec,absl::Span<const AutotuneResult> results)126 void LogConvAutotuneResults(se::dnn::ConvolutionKind kind,
127                             se::dnn::DataType element_type,
128                             se::DeviceMemoryBase input_buffer,
129                             se::DeviceMemoryBase filter_buffer,
130                             se::DeviceMemoryBase output_buffer,
131                             const se::dnn::BatchDescriptor& input_desc,
132                             const se::dnn::FilterDescriptor& filter_desc,
133                             const se::dnn::BatchDescriptor& output_desc,
134                             const se::dnn::ConvolutionDescriptor& conv_desc,
135                             se::StreamExecutor* stream_exec,
136                             absl::Span<const AutotuneResult> results) {
137   AutotuningLog log;
138   {
139     ConvolutionProto instr;
140     instr.set_kind(kind);
141     *instr.mutable_input() = input_desc.ToProto(element_type);
142     *instr.mutable_filter() = filter_desc.ToProto(element_type);
143     *instr.mutable_output() = output_desc.ToProto(element_type);
144     *instr.mutable_conv_desc() = conv_desc.ToProto();
145     instr.set_conv_scale(1);
146     instr.set_side_value_scale(0);
147     instr.set_input_address(reinterpret_cast<uint64>(input_buffer.opaque()));
148     instr.set_filter_address(reinterpret_cast<uint64>(filter_buffer.opaque()));
149     instr.set_output_address(reinterpret_cast<uint64>(output_buffer.opaque()));
150     log.mutable_instr()->PackFrom(std::move(instr));
151   }
152   *log.mutable_cudnn_version() = GetCudnnVersion(stream_exec);
153   *log.mutable_compute_capability() = GetComputeCapability(stream_exec);
154   log.set_device_pci_bus_id(stream_exec->GetDeviceDescription().pci_bus_id());
155   {
156     string blas_version;
157     if (auto* blas = stream_exec->AsBlas()) {
158       if (blas->GetVersion(&blas_version).ok()) {
159         log.set_blas_version(blas_version);
160       }
161     }
162   }
163   for (const auto& result : results) {
164     *log.add_results() = result;
165   }
166   VLOG(2) << log.DebugString();
167   Logger::GetSingleton()->LogProto(log);
168 }
169 
LogFusedConvForwardAutotuneResults(se::dnn::DataType element_type,se::DeviceMemoryBase input_buffer,se::DeviceMemoryBase filter_buffer,se::DeviceMemoryBase output_buffer,se::DeviceMemoryBase bias_buffer,se::DeviceMemoryBase side_input_buffer,const se::dnn::BatchDescriptor & input_desc,const se::dnn::FilterDescriptor & filter_desc,const se::dnn::BatchDescriptor & output_desc,const se::dnn::ConvolutionDescriptor & conv_desc,double conv_scale,double side_value_scale,se::dnn::ActivationMode activation_mode,se::StreamExecutor * stream_exec,absl::Span<const AutotuneResult> results)170 void LogFusedConvForwardAutotuneResults(
171     se::dnn::DataType element_type, se::DeviceMemoryBase input_buffer,
172     se::DeviceMemoryBase filter_buffer, se::DeviceMemoryBase output_buffer,
173     se::DeviceMemoryBase bias_buffer, se::DeviceMemoryBase side_input_buffer,
174     const se::dnn::BatchDescriptor& input_desc,
175     const se::dnn::FilterDescriptor& filter_desc,
176     const se::dnn::BatchDescriptor& output_desc,
177     const se::dnn::ConvolutionDescriptor& conv_desc, double conv_scale,
178     double side_value_scale, se::dnn::ActivationMode activation_mode,
179     se::StreamExecutor* stream_exec, absl::Span<const AutotuneResult> results) {
180   AutotuningLog log;
181   {
182     ConvolutionProto instr;
183     instr.set_kind(se::dnn::ConvolutionKind::FORWARD_BIAS_ACTIVATION);
184     *instr.mutable_input() = input_desc.ToProto(element_type);
185     *instr.mutable_filter() = filter_desc.ToProto(element_type);
186     *instr.mutable_output() = output_desc.ToProto(element_type);
187     *instr.mutable_conv_desc() = conv_desc.ToProto();
188     instr.set_conv_scale(conv_scale);
189     instr.set_side_value_scale(side_value_scale);
190     instr.set_activation(activation_mode);
191     instr.set_input_address(reinterpret_cast<uint64>(input_buffer.opaque()));
192     instr.set_filter_address(reinterpret_cast<uint64>(filter_buffer.opaque()));
193     instr.set_output_address(reinterpret_cast<uint64>(output_buffer.opaque()));
194     instr.set_bias_address(reinterpret_cast<uint64>(bias_buffer.opaque()));
195     instr.set_side_input_address(
196         reinterpret_cast<uint64>(side_input_buffer.opaque()));
197     log.mutable_instr()->PackFrom(std::move(instr));
198   }
199   *log.mutable_cudnn_version() = GetCudnnVersion(stream_exec);
200   *log.mutable_compute_capability() = GetComputeCapability(stream_exec);
201   log.set_device_pci_bus_id(stream_exec->GetDeviceDescription().pci_bus_id());
202   {
203     string blas_version;
204     if (auto* blas = stream_exec->AsBlas()) {
205       if (blas->GetVersion(&blas_version).ok()) {
206         log.set_blas_version(blas_version);
207       }
208     }
209   }
210   for (const auto& result : results) {
211     *log.add_results() = result;
212   }
213   VLOG(2) << log.DebugString();
214   Logger::GetSingleton()->LogProto(log);
215 }
216 
217 // The following function allows deterministic ops to be implemented relatively
218 // quickly using environment variables. It is intended to be temporary. The
219 // longer-term intention is to enable deterministic ops via tf.config and
220 // appropriate plumbing. See the discussion on PR 34951 for more information:
221 // https://github.com/tensorflow/tensorflow/pull/34951#discussion_r355682316
222 // This function and associated comment are replicated in the following three
223 // places:
224 //   1. tensorflow/compiler/xla/service/gpu/gpu_conv_algorithm_picker.cc
225 //   2. tensorflow/core/kernels/gpu_utils.cc
226 //   3. tensorflow/stream_executor/cuda/cuda_dnn.cc
227 // When implementing the plumbing, you should also search for the use of
228 // TF_DETERMINISTIC_OPS on its own.
229 // TODO(duncanriach): move to an API that uses tf.config and implement the first
230 //                    phase of plumbing.
RequireCudnnDeterminism()231 bool RequireCudnnDeterminism() {
232   static bool require_cudnn_determinism = [] {
233     bool deterministic_ops = false;
234     TF_CHECK_OK(tensorflow::ReadBoolFromEnvVar("TF_DETERMINISTIC_OPS",
235                                                /*default_val=*/false,
236                                                &deterministic_ops));
237     bool cudnn_deterministic = false;
238     TF_CHECK_OK(tensorflow::ReadBoolFromEnvVar("TF_CUDNN_DETERMINISTIC",
239                                                /*default_val=*/false,
240                                                &cudnn_deterministic));
241     return deterministic_ops || cudnn_deterministic;
242   }();
243   return require_cudnn_determinism;
244 }
245 
BestCudnnConvAlgorithm(absl::Span<const AutotuneResult> results,se::dnn::AlgorithmConfig * algo)246 Status BestCudnnConvAlgorithm(absl::Span<const AutotuneResult> results,
247                               se::dnn::AlgorithmConfig* algo) {
248   std::vector<AutotuneResult> filtered_results;
249   absl::c_copy_if(
250       results, std::back_inserter(filtered_results),
251       [](const AutotuneResult& result) { return !result.has_failure(); });
252   if (filtered_results.empty()) {
253     return errors::NotFound("No algorithm worked!");
254   }
255   std::vector<AutotuneResult> filtered_results_no_scratch;
256   absl::c_copy_if(
257       filtered_results, std::back_inserter(filtered_results_no_scratch),
258       [](const AutotuneResult& result) { return result.scratch_bytes() == 0; });
259 
260   auto selected_result = filtered_results.begin();
261   auto selected_result_no_scratch = filtered_results_no_scratch.begin();
262   if (!RequireCudnnDeterminism()) {
263     auto compare_run_times = [](const AutotuneResult& lhs,
264                                 const AutotuneResult& rhs) {
265       return proto_utils::FromDurationProto(lhs.run_time()) <
266              proto_utils::FromDurationProto(rhs.run_time());
267     };
268     selected_result = absl::c_min_element(filtered_results, compare_run_times);
269     selected_result_no_scratch =
270         absl::c_min_element(filtered_results_no_scratch, compare_run_times);
271   }
272 
273   algo->set_algorithm({selected_result->conv().algorithm(),
274                        selected_result->conv().tensor_ops_enabled()});
275   algo->set_scratch_size(selected_result->scratch_bytes());
276   if (selected_result_no_scratch != filtered_results_no_scratch.end()) {
277     algo->set_algorithm_no_scratch(
278         {selected_result_no_scratch->conv().algorithm(),
279          selected_result_no_scratch->conv().tensor_ops_enabled()});
280   }
281 
282   return Status::OK();
283 }
284 
285 }  // namespace tensorflow
286 
287 #endif  // GOOGLE_CUDA || TENSORFLOW_USE_ROCM
288