1 /*
2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3  Intel funded Tungsten Graphics to
4  develop this 3D driver.
5 
6  Permission is hereby granted, free of charge, to any person obtaining
7  a copy of this software and associated documentation files (the
8  "Software"), to deal in the Software without restriction, including
9  without limitation the rights to use, copy, modify, merge, publish,
10  distribute, sublicense, and/or sell copies of the Software, and to
11  permit persons to whom the Software is furnished to do so, subject to
12  the following conditions:
13 
14  The above copyright notice and this permission notice (including the
15  next paragraph) shall be included in all copies or substantial
16  portions of the Software.
17 
18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 
26  **********************************************************************/
27  /*
28   * Authors:
29   *   Keith Whitwell <keithw@vmware.com>
30   */
31 
32 /** @file brw_curbe.c
33  *
34  * Push constant handling for gen4/5.
35  *
36  * Push constants are constant values (such as GLSL uniforms) that are
37  * pre-loaded into a shader stage's register space at thread spawn time.  On
38  * gen4 and gen5, we create a blob in memory containing all the push constants
39  * for all the stages in order.  At CMD_CONST_BUFFER time that blob is loaded
40  * into URB space as a constant URB entry (CURBE) so that it can be accessed
41  * quickly at thread setup time.  Each individual fixed function unit's state
42  * (brw_vs_state.c for example) tells the hardware which subset of the CURBE
43  * it wants in its register space, and we calculate those areas here under the
44  * BRW_NEW_PUSH_CONSTANT_ALLOCATION state flag.  The brw_urb.c allocation will control
45  * how many CURBEs can be loaded into the hardware at once before a pipeline
46  * stall occurs at CMD_CONST_BUFFER time.
47  *
48  * On gen6+, constant handling becomes a much simpler set of per-unit state.
49  * See gen6_upload_vec4_push_constants() in gen6_vs_state.c for that code.
50  */
51 
52 
53 #include "compiler/nir/nir.h"
54 #include "main/context.h"
55 #include "main/macros.h"
56 #include "main/enums.h"
57 #include "program/prog_parameter.h"
58 #include "program/prog_print.h"
59 #include "program/prog_statevars.h"
60 #include "util/bitscan.h"
61 #include "intel_batchbuffer.h"
62 #include "intel_buffer_objects.h"
63 #include "brw_context.h"
64 #include "brw_defines.h"
65 #include "brw_state.h"
66 #include "brw_util.h"
67 #include "util/u_math.h"
68 
69 
70 /**
71  * Partition the CURBE between the various users of constant values.
72  *
73  * If the users all fit within the previous allocatation, we avoid changing
74  * the layout because that means reuploading all unit state and uploading new
75  * constant buffers.
76  */
calculate_curbe_offsets(struct brw_context * brw)77 static void calculate_curbe_offsets( struct brw_context *brw )
78 {
79    struct gl_context *ctx = &brw->ctx;
80    /* BRW_NEW_FS_PROG_DATA */
81    const GLuint nr_fp_regs = (brw->wm.base.prog_data->nr_params + 15) / 16;
82 
83    /* BRW_NEW_VS_PROG_DATA */
84    const GLuint nr_vp_regs = (brw->vs.base.prog_data->nr_params + 15) / 16;
85    GLuint nr_clip_regs = 0;
86    GLuint total_regs;
87 
88    /* _NEW_TRANSFORM */
89    if (ctx->Transform.ClipPlanesEnabled) {
90       GLuint nr_planes = 6 + util_bitcount(ctx->Transform.ClipPlanesEnabled);
91       nr_clip_regs = (nr_planes * 4 + 15) / 16;
92    }
93 
94 
95    total_regs = nr_fp_regs + nr_vp_regs + nr_clip_regs;
96 
97    /* The CURBE allocation size is limited to 32 512-bit units (128 EU
98     * registers, or 1024 floats).  See CS_URB_STATE in the gen4 or gen5
99     * (volume 1, part 1) PRMs.
100     *
101     * Note that in brw_fs.cpp we're only loading up to 16 EU registers of
102     * values as push constants before spilling to pull constants, and in
103     * brw_vec4.cpp we're loading up to 32 registers of push constants.  An EU
104     * register is 1/2 of one of these URB entry units, so that leaves us 16 EU
105     * regs for clip.
106     */
107    assert(total_regs <= 32);
108 
109    /* Lazy resize:
110     */
111    if (nr_fp_regs > brw->curbe.wm_size ||
112        nr_vp_regs > brw->curbe.vs_size ||
113        nr_clip_regs != brw->curbe.clip_size ||
114        (total_regs < brw->curbe.total_size / 4 &&
115 	brw->curbe.total_size > 16)) {
116 
117       GLuint reg = 0;
118 
119       /* Calculate a new layout:
120        */
121       reg = 0;
122       brw->curbe.wm_start = reg;
123       brw->curbe.wm_size = nr_fp_regs; reg += nr_fp_regs;
124       brw->curbe.clip_start = reg;
125       brw->curbe.clip_size = nr_clip_regs; reg += nr_clip_regs;
126       brw->curbe.vs_start = reg;
127       brw->curbe.vs_size = nr_vp_regs; reg += nr_vp_regs;
128       brw->curbe.total_size = reg;
129 
130       if (0)
131 	 fprintf(stderr, "curbe wm %d+%d clip %d+%d vs %d+%d\n",
132                  brw->curbe.wm_start,
133                  brw->curbe.wm_size,
134                  brw->curbe.clip_start,
135                  brw->curbe.clip_size,
136                  brw->curbe.vs_start,
137                  brw->curbe.vs_size );
138 
139       brw->ctx.NewDriverState |= BRW_NEW_PUSH_CONSTANT_ALLOCATION;
140    }
141 }
142 
143 
144 const struct brw_tracked_state brw_curbe_offsets = {
145    .dirty = {
146       .mesa = _NEW_TRANSFORM,
147       .brw  = BRW_NEW_CONTEXT |
148               BRW_NEW_BLORP |
149               BRW_NEW_FS_PROG_DATA |
150               BRW_NEW_VS_PROG_DATA,
151    },
152    .emit = calculate_curbe_offsets
153 };
154 
155 
156 
157 
158 /** Uploads the CS_URB_STATE packet.
159  *
160  * Just like brw_vs_state.c and brw_wm_state.c define a URB entry size and
161  * number of entries for their stages, constant buffers do so using this state
162  * packet.  Having multiple CURBEs in the URB at the same time allows the
163  * hardware to avoid a pipeline stall between primitives using different
164  * constant buffer contents.
165  */
brw_upload_cs_urb_state(struct brw_context * brw)166 void brw_upload_cs_urb_state(struct brw_context *brw)
167 {
168    BEGIN_BATCH(2);
169    OUT_BATCH(CMD_CS_URB_STATE << 16 | (2-2));
170 
171    /* BRW_NEW_URB_FENCE */
172    if (brw->urb.csize == 0) {
173       OUT_BATCH(0);
174    } else {
175       /* BRW_NEW_URB_FENCE */
176       assert(brw->urb.nr_cs_entries);
177       OUT_BATCH((brw->urb.csize - 1) << 4 | brw->urb.nr_cs_entries);
178    }
179    ADVANCE_BATCH();
180 }
181 
182 static const GLfloat fixed_plane[6][4] = {
183    { 0,    0,   -1, 1 },
184    { 0,    0,    1, 1 },
185    { 0,   -1,    0, 1 },
186    { 0,    1,    0, 1 },
187    {-1,    0,    0, 1 },
188    { 1,    0,    0, 1 }
189 };
190 
191 /**
192  * Gathers together all the uniform values into a block of memory to be
193  * uploaded into the CURBE, then emits the state packet telling the hardware
194  * the new location.
195  */
196 static void
brw_upload_constant_buffer(struct brw_context * brw)197 brw_upload_constant_buffer(struct brw_context *brw)
198 {
199    const struct gen_device_info *devinfo = &brw->screen->devinfo;
200    struct gl_context *ctx = &brw->ctx;
201    /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
202    const GLuint sz = brw->curbe.total_size;
203    const GLuint bufsz = sz * 16 * sizeof(GLfloat);
204    gl_constant_value *buf;
205    GLuint i;
206    gl_clip_plane *clip_planes;
207 
208    /* BRW_NEW_FRAGMENT_PROGRAM */
209    struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
210 
211    /* BRW_NEW_VERTEX_PROGRAM */
212    struct gl_program *vp = brw->programs[MESA_SHADER_VERTEX];
213 
214    if (sz == 0) {
215       goto emit;
216    }
217 
218    buf = brw_upload_space(&brw->upload, bufsz, 64,
219                           &brw->curbe.curbe_bo, &brw->curbe.curbe_offset);
220 
221    STATIC_ASSERT(sizeof(gl_constant_value) == sizeof(float));
222 
223    /* fragment shader constants */
224    if (brw->curbe.wm_size) {
225       _mesa_load_state_parameters(ctx, fp->Parameters);
226 
227       /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
228       GLuint offset = brw->curbe.wm_start * 16;
229 
230       /* BRW_NEW_FS_PROG_DATA | _NEW_PROGRAM_CONSTANTS: copy uniform values */
231       brw_populate_constant_data(brw, fp, &brw->wm.base, &buf[offset],
232                                  brw->wm.base.prog_data->param,
233                                  brw->wm.base.prog_data->nr_params);
234    }
235 
236    /* clipper constants */
237    if (brw->curbe.clip_size) {
238       GLuint offset = brw->curbe.clip_start * 16;
239       GLbitfield mask;
240 
241       /* If any planes are going this way, send them all this way:
242        */
243       for (i = 0; i < 6; i++) {
244 	 buf[offset + i * 4 + 0].f = fixed_plane[i][0];
245 	 buf[offset + i * 4 + 1].f = fixed_plane[i][1];
246 	 buf[offset + i * 4 + 2].f = fixed_plane[i][2];
247 	 buf[offset + i * 4 + 3].f = fixed_plane[i][3];
248       }
249 
250       /* Clip planes: _NEW_TRANSFORM plus _NEW_PROJECTION to get to
251        * clip-space:
252        */
253       clip_planes = brw_select_clip_planes(ctx);
254       mask = ctx->Transform.ClipPlanesEnabled;
255       while (mask) {
256          const int j = u_bit_scan(&mask);
257          buf[offset + i * 4 + 0].f = clip_planes[j][0];
258          buf[offset + i * 4 + 1].f = clip_planes[j][1];
259          buf[offset + i * 4 + 2].f = clip_planes[j][2];
260          buf[offset + i * 4 + 3].f = clip_planes[j][3];
261          i++;
262       }
263    }
264 
265    /* vertex shader constants */
266    if (brw->curbe.vs_size) {
267       _mesa_load_state_parameters(ctx, vp->Parameters);
268 
269       GLuint offset = brw->curbe.vs_start * 16;
270 
271       /* BRW_NEW_VS_PROG_DATA | _NEW_PROGRAM_CONSTANTS: copy uniform values */
272       brw_populate_constant_data(brw, vp, &brw->vs.base, &buf[offset],
273                                  brw->vs.base.prog_data->param,
274                                  brw->vs.base.prog_data->nr_params);
275    }
276 
277    if (0) {
278       for (i = 0; i < sz*16; i+=4)
279 	 fprintf(stderr, "curbe %d.%d: %f %f %f %f\n", i/8, i&4,
280                  buf[i+0].f, buf[i+1].f, buf[i+2].f, buf[i+3].f);
281    }
282 
283    /* Because this provokes an action (ie copy the constants into the
284     * URB), it shouldn't be shortcircuited if identical to the
285     * previous time - because eg. the urb destination may have
286     * changed, or the urb contents different to last time.
287     *
288     * Note that the data referred to is actually copied internally,
289     * not just used in place according to passed pointer.
290     *
291     * It appears that the CS unit takes care of using each available
292     * URB entry (Const URB Entry == CURBE) in turn, and issuing
293     * flushes as necessary when doublebuffering of CURBEs isn't
294     * possible.
295     */
296 
297 emit:
298    /* BRW_NEW_URB_FENCE: From the gen4 PRM, volume 1, section 3.9.8
299     * (CONSTANT_BUFFER (CURBE Load)):
300     *
301     *     "Modifying the CS URB allocation via URB_FENCE invalidates any
302     *      previous CURBE entries. Therefore software must subsequently
303     *      [re]issue a CONSTANT_BUFFER command before CURBE data can be used
304     *      in the pipeline."
305     */
306    BEGIN_BATCH(2);
307    if (brw->curbe.total_size == 0) {
308       OUT_BATCH((CMD_CONST_BUFFER << 16) | (2 - 2));
309       OUT_BATCH(0);
310    } else {
311       OUT_BATCH((CMD_CONST_BUFFER << 16) | (1 << 8) | (2 - 2));
312       OUT_RELOC(brw->curbe.curbe_bo, 0,
313 		(brw->curbe.total_size - 1) + brw->curbe.curbe_offset);
314    }
315    ADVANCE_BATCH();
316 
317    /* Work around a Broadwater/Crestline depth interpolator bug.  The
318     * following sequence will cause GPU hangs:
319     *
320     * 1. Change state so that all depth related fields in CC_STATE are
321     *    disabled, and in WM_STATE, only "PS Use Source Depth" is enabled.
322     * 2. Emit a CONSTANT_BUFFER packet.
323     * 3. Draw via 3DPRIMITIVE.
324     *
325     * The recommended workaround is to emit a non-pipelined state change after
326     * emitting CONSTANT_BUFFER, in order to drain the windowizer pipeline.
327     *
328     * We arbitrarily choose 3DSTATE_GLOBAL_DEPTH_CLAMP_OFFSET (as it's small),
329     * and always emit it when "PS Use Source Depth" is set.  We could be more
330     * precise, but the additional complexity is probably not worth it.
331     *
332     * BRW_NEW_FRAGMENT_PROGRAM
333     */
334    if (devinfo->gen == 4 && !devinfo->is_g4x &&
335        BITSET_TEST(fp->info.system_values_read, SYSTEM_VALUE_FRAG_COORD)) {
336       BEGIN_BATCH(2);
337       OUT_BATCH(_3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP << 16 | (2 - 2));
338       OUT_BATCH(0);
339       ADVANCE_BATCH();
340    }
341 }
342 
343 const struct brw_tracked_state brw_constant_buffer = {
344    .dirty = {
345       .mesa = _NEW_PROGRAM_CONSTANTS,
346       .brw  = BRW_NEW_BATCH |
347               BRW_NEW_BLORP |
348               BRW_NEW_PUSH_CONSTANT_ALLOCATION |
349               BRW_NEW_FRAGMENT_PROGRAM |
350               BRW_NEW_FS_PROG_DATA |
351               BRW_NEW_PSP | /* Implicit - hardware requires this, not used above */
352               BRW_NEW_URB_FENCE |
353               BRW_NEW_VS_PROG_DATA,
354    },
355    .emit = brw_upload_constant_buffer,
356 };
357