1 //===- LoopFusionUtils.cpp ---- Utilities for loop fusion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements loop fusion transformation utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Transforms/LoopFusionUtils.h"
14 
15 #include "mlir/Analysis/AffineAnalysis.h"
16 #include "mlir/Analysis/AffineStructures.h"
17 #include "mlir/Analysis/LoopAnalysis.h"
18 #include "mlir/Analysis/Utils.h"
19 #include "mlir/Dialect/Affine/IR/AffineOps.h"
20 #include "mlir/IR/AffineExpr.h"
21 #include "mlir/IR/AffineMap.h"
22 #include "mlir/IR/BlockAndValueMapping.h"
23 #include "mlir/IR/Builders.h"
24 #include "mlir/IR/BuiltinOps.h"
25 #include "mlir/IR/Operation.h"
26 #include "mlir/Transforms/LoopUtils.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 #define DEBUG_TYPE "loop-fusion-utils"
33 
34 using namespace mlir;
35 
36 // Gathers all load and store memref accesses in 'opA' into 'values', where
37 // 'values[memref] == true' for each store operation.
getLoadAndStoreMemRefAccesses(Operation * opA,DenseMap<Value,bool> & values)38 static void getLoadAndStoreMemRefAccesses(Operation *opA,
39                                           DenseMap<Value, bool> &values) {
40   opA->walk([&](Operation *op) {
41     if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
42       if (values.count(loadOp.getMemRef()) == 0)
43         values[loadOp.getMemRef()] = false;
44     } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
45       values[storeOp.getMemRef()] = true;
46     }
47   });
48 }
49 
50 /// Returns true if 'op' is a load or store operation which access a memref
51 /// accessed 'values' and at least one of the access is a store operation.
52 /// Returns false otherwise.
isDependentLoadOrStoreOp(Operation * op,DenseMap<Value,bool> & values)53 static bool isDependentLoadOrStoreOp(Operation *op,
54                                      DenseMap<Value, bool> &values) {
55   if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
56     return values.count(loadOp.getMemRef()) > 0 &&
57            values[loadOp.getMemRef()] == true;
58   } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
59     return values.count(storeOp.getMemRef()) > 0;
60   }
61   return false;
62 }
63 
64 // Returns the first operation in range ('opA', 'opB') which has a data
65 // dependence on 'opA'. Returns 'nullptr' of no dependence exists.
getFirstDependentOpInRange(Operation * opA,Operation * opB)66 static Operation *getFirstDependentOpInRange(Operation *opA, Operation *opB) {
67   // Record memref values from all loads/store in loop nest rooted at 'opA'.
68   // Map from memref value to bool which is true if store, false otherwise.
69   DenseMap<Value, bool> values;
70   getLoadAndStoreMemRefAccesses(opA, values);
71 
72   // For each 'opX' in block in range ('opA', 'opB'), check if there is a data
73   // dependence from 'opA' to 'opX' ('opA' and 'opX' access the same memref
74   // and at least one of the accesses is a store).
75   Operation *firstDepOp = nullptr;
76   for (Block::iterator it = std::next(Block::iterator(opA));
77        it != Block::iterator(opB); ++it) {
78     Operation *opX = &(*it);
79     opX->walk([&](Operation *op) {
80       if (!firstDepOp && isDependentLoadOrStoreOp(op, values))
81         firstDepOp = opX;
82     });
83     if (firstDepOp)
84       break;
85   }
86   return firstDepOp;
87 }
88 
89 // Returns the last operation 'opX' in range ('opA', 'opB'), for which there
90 // exists a data dependence from 'opX' to 'opB'.
91 // Returns 'nullptr' of no dependence exists.
getLastDependentOpInRange(Operation * opA,Operation * opB)92 static Operation *getLastDependentOpInRange(Operation *opA, Operation *opB) {
93   // Record memref values from all loads/store in loop nest rooted at 'opB'.
94   // Map from memref value to bool which is true if store, false otherwise.
95   DenseMap<Value, bool> values;
96   getLoadAndStoreMemRefAccesses(opB, values);
97 
98   // For each 'opX' in block in range ('opA', 'opB') in reverse order,
99   // check if there is a data dependence from 'opX' to 'opB':
100   // *) 'opX' and 'opB' access the same memref and at least one of the accesses
101   //    is a store.
102   // *) 'opX' produces an SSA Value which is used by 'opB'.
103   Operation *lastDepOp = nullptr;
104   for (Block::reverse_iterator it = std::next(Block::reverse_iterator(opB));
105        it != Block::reverse_iterator(opA); ++it) {
106     Operation *opX = &(*it);
107     opX->walk([&](Operation *op) {
108       if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) {
109         if (isDependentLoadOrStoreOp(op, values)) {
110           lastDepOp = opX;
111           return WalkResult::interrupt();
112         }
113         return WalkResult::advance();
114       }
115       for (auto value : op->getResults()) {
116         for (Operation *user : value.getUsers()) {
117           SmallVector<AffineForOp, 4> loops;
118           // Check if any loop in loop nest surrounding 'user' is 'opB'.
119           getLoopIVs(*user, &loops);
120           if (llvm::is_contained(loops, cast<AffineForOp>(opB))) {
121             lastDepOp = opX;
122             return WalkResult::interrupt();
123           }
124         }
125       }
126       return WalkResult::advance();
127     });
128     if (lastDepOp)
129       break;
130   }
131   return lastDepOp;
132 }
133 
134 // Computes and returns an insertion point operation, before which the
135 // the fused <srcForOp, dstForOp> loop nest can be inserted while preserving
136 // dependences. Returns nullptr if no such insertion point is found.
getFusedLoopNestInsertionPoint(AffineForOp srcForOp,AffineForOp dstForOp)137 static Operation *getFusedLoopNestInsertionPoint(AffineForOp srcForOp,
138                                                  AffineForOp dstForOp) {
139   bool isSrcForOpBeforeDstForOp =
140       srcForOp->isBeforeInBlock(dstForOp.getOperation());
141   auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp;
142   auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp;
143 
144   auto *firstDepOpA =
145       getFirstDependentOpInRange(forOpA.getOperation(), forOpB.getOperation());
146   auto *lastDepOpB =
147       getLastDependentOpInRange(forOpA.getOperation(), forOpB.getOperation());
148   // Block:
149   //      ...
150   //  |-- opA
151   //  |   ...
152   //  |   lastDepOpB --|
153   //  |   ...          |
154   //  |-> firstDepOpA  |
155   //      ...          |
156   //      opB <---------
157   //
158   // Valid insertion point range: (lastDepOpB, firstDepOpA)
159   //
160   if (firstDepOpA != nullptr) {
161     if (lastDepOpB != nullptr) {
162       if (firstDepOpA->isBeforeInBlock(lastDepOpB) || firstDepOpA == lastDepOpB)
163         // No valid insertion point exists which preserves dependences.
164         return nullptr;
165     }
166     // Return insertion point in valid range closest to 'opB'.
167     // TODO: Consider other insertion points in valid range.
168     return firstDepOpA;
169   }
170   // No dependences from 'opA' to operation in range ('opA', 'opB'), return
171   // 'opB' insertion point.
172   return forOpB.getOperation();
173 }
174 
175 // Gathers all load and store ops in loop nest rooted at 'forOp' into
176 // 'loadAndStoreOps'.
177 static bool
gatherLoadsAndStores(AffineForOp forOp,SmallVectorImpl<Operation * > & loadAndStoreOps)178 gatherLoadsAndStores(AffineForOp forOp,
179                      SmallVectorImpl<Operation *> &loadAndStoreOps) {
180   bool hasIfOp = false;
181   forOp.walk([&](Operation *op) {
182     if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op))
183       loadAndStoreOps.push_back(op);
184     else if (isa<AffineIfOp>(op))
185       hasIfOp = true;
186   });
187   return !hasIfOp;
188 }
189 
190 /// Returns the maximum loop depth at which we could fuse producer loop
191 /// 'srcForOp' into consumer loop 'dstForOp' without violating data dependences.
192 // TODO: Generalize this check for sibling and more generic fusion scenarios.
193 // TODO: Support forward slice fusion.
getMaxLoopDepth(ArrayRef<Operation * > dstOps,FusionStrategy fusionStrategy)194 static unsigned getMaxLoopDepth(ArrayRef<Operation *> dstOps,
195                                 FusionStrategy fusionStrategy) {
196   assert(fusionStrategy.strategy == FusionStrategy::ProducerConsumer &&
197          "Fusion strategy not supported");
198 
199   if (dstOps.empty())
200     // Expected at least one memory operation.
201     // TODO: Revisit this case with a specific example.
202     return 0;
203 
204   // Filter out ops in 'dstOps' that do not use the producer-consumer memref so
205   // that they are not considered for analysis.
206   // TODO: Currently, we pass the producer-consumer memref through
207   // fusionStrategy. We will retrieve the memrefs from 'srcOps' once we
208   // generalize the algorithm.
209   SmallVector<Operation *, 4> targetDstOps;
210   for (Operation *dstOp : dstOps) {
211     auto loadOp = dyn_cast<AffineReadOpInterface>(dstOp);
212     Value memref = loadOp ? loadOp.getMemRef()
213                           : cast<AffineWriteOpInterface>(dstOp).getMemRef();
214     if (memref == fusionStrategy.memref)
215       targetDstOps.push_back(dstOp);
216   }
217 
218   assert(!targetDstOps.empty() &&
219          "No dependences between 'srcForOp' and 'dstForOp'?");
220 
221   // Compute the innermost common loop depth for loads and stores.
222   unsigned loopDepth = getInnermostCommonLoopDepth(targetDstOps);
223 
224   // Return common loop depth for loads if there are no store ops.
225   if (all_of(targetDstOps,
226              [&](Operation *op) { return isa<AffineReadOpInterface>(op); }))
227     return loopDepth;
228 
229   // Check dependences on all pairs of ops in 'targetDstOps' and store the
230   // minimum loop depth at which a dependence is satisfied.
231   for (unsigned i = 0, e = targetDstOps.size(); i < e; ++i) {
232     auto *srcOpInst = targetDstOps[i];
233     MemRefAccess srcAccess(srcOpInst);
234     for (unsigned j = 0; j < e; ++j) {
235       auto *dstOpInst = targetDstOps[j];
236       MemRefAccess dstAccess(dstOpInst);
237 
238       unsigned numCommonLoops =
239           getNumCommonSurroundingLoops(*srcOpInst, *dstOpInst);
240       for (unsigned d = 1; d <= numCommonLoops + 1; ++d) {
241         FlatAffineConstraints dependenceConstraints;
242         // TODO: Cache dependence analysis results, check cache here.
243         DependenceResult result = checkMemrefAccessDependence(
244             srcAccess, dstAccess, d, &dependenceConstraints,
245             /*dependenceComponents=*/nullptr);
246         if (hasDependence(result)) {
247           // Store minimum loop depth and break because we want the min 'd' at
248           // which there is a dependence.
249           loopDepth = std::min(loopDepth, d - 1);
250           break;
251         }
252       }
253     }
254   }
255 
256   return loopDepth;
257 }
258 
259 // TODO: Prevent fusion of loop nests with side-effecting operations.
260 // TODO: This pass performs some computation that is the same for all the depths
261 // (e.g., getMaxLoopDepth). Implement a version of this utility that processes
262 // all the depths at once or only the legal maximal depth for maximal fusion.
canFuseLoops(AffineForOp srcForOp,AffineForOp dstForOp,unsigned dstLoopDepth,ComputationSliceState * srcSlice,FusionStrategy fusionStrategy)263 FusionResult mlir::canFuseLoops(AffineForOp srcForOp, AffineForOp dstForOp,
264                                 unsigned dstLoopDepth,
265                                 ComputationSliceState *srcSlice,
266                                 FusionStrategy fusionStrategy) {
267   // Return 'failure' if 'dstLoopDepth == 0'.
268   if (dstLoopDepth == 0) {
269     LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests at depth 0\n");
270     return FusionResult::FailPrecondition;
271   }
272   // Return 'failure' if 'srcForOp' and 'dstForOp' are not in the same block.
273   auto *block = srcForOp->getBlock();
274   if (block != dstForOp->getBlock()) {
275     LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests in different blocks\n");
276     return FusionResult::FailPrecondition;
277   }
278 
279   // Return 'failure' if no valid insertion point for fused loop nest in 'block'
280   // exists which would preserve dependences.
281   if (!getFusedLoopNestInsertionPoint(srcForOp, dstForOp)) {
282     LLVM_DEBUG(llvm::dbgs() << "Fusion would violate dependences in block\n");
283     return FusionResult::FailBlockDependence;
284   }
285 
286   // Check if 'srcForOp' precedes 'dstForOp' in 'block'.
287   bool isSrcForOpBeforeDstForOp =
288       srcForOp->isBeforeInBlock(dstForOp.getOperation());
289   // 'forOpA' executes before 'forOpB' in 'block'.
290   auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp;
291   auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp;
292 
293   // Gather all load and store from 'forOpA' which precedes 'forOpB' in 'block'.
294   SmallVector<Operation *, 4> opsA;
295   if (!gatherLoadsAndStores(forOpA, opsA)) {
296     LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported\n");
297     return FusionResult::FailPrecondition;
298   }
299 
300   // Gather all load and store from 'forOpB' which succeeds 'forOpA' in 'block'.
301   SmallVector<Operation *, 4> opsB;
302   if (!gatherLoadsAndStores(forOpB, opsB)) {
303     LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported\n");
304     return FusionResult::FailPrecondition;
305   }
306 
307   // Return 'failure' if fusing loops at depth 'dstLoopDepth' wouldn't preserve
308   // loop dependences.
309   // TODO: Enable this check for sibling and more generic loop fusion
310   // strategies.
311   if (fusionStrategy.strategy == FusionStrategy::ProducerConsumer) {
312     // TODO: 'getMaxLoopDepth' does not support forward slice fusion.
313     assert(isSrcForOpBeforeDstForOp && "Unexpected forward slice fusion");
314     if (getMaxLoopDepth(opsB, fusionStrategy) < dstLoopDepth) {
315       LLVM_DEBUG(llvm::dbgs() << "Fusion would violate loop dependences\n");
316       return FusionResult::FailFusionDependence;
317     }
318   }
319 
320   // Calculate the number of common loops surrounding 'srcForOp' and 'dstForOp'.
321   unsigned numCommonLoops = mlir::getNumCommonSurroundingLoops(
322       *srcForOp.getOperation(), *dstForOp.getOperation());
323 
324   // Filter out ops in 'opsA' to compute the slice union based on the
325   // assumptions made by the fusion strategy.
326   SmallVector<Operation *, 4> strategyOpsA;
327   switch (fusionStrategy.strategy) {
328   case FusionStrategy::Generic:
329     // Generic fusion. Take into account all the memory operations to compute
330     // the slice union.
331     strategyOpsA.append(opsA.begin(), opsA.end());
332     break;
333   case FusionStrategy::ProducerConsumer:
334     // Producer-consumer fusion (AffineLoopFusion pass) only takes into
335     // account stores to 'memref' in 'srcForOp' to compute the slice union.
336     for (Operation *op : opsA) {
337       auto store = dyn_cast<AffineWriteOpInterface>(op);
338       if (store && store.getMemRef() == fusionStrategy.memref)
339         strategyOpsA.push_back(op);
340     }
341     break;
342   case FusionStrategy::Sibling:
343     // Sibling fusion (AffineLoopFusion pass) only takes into account the loads
344     // to 'memref' in 'srcForOp' to compute the slice union.
345     for (Operation *op : opsA) {
346       auto load = dyn_cast<AffineReadOpInterface>(op);
347       if (load && load.getMemRef() == fusionStrategy.memref)
348         strategyOpsA.push_back(op);
349     }
350     break;
351   }
352 
353   // Compute union of computation slices computed between all pairs of ops
354   // from 'forOpA' and 'forOpB'.
355   if (failed(mlir::computeSliceUnion(strategyOpsA, opsB, dstLoopDepth,
356                                      numCommonLoops, isSrcForOpBeforeDstForOp,
357                                      srcSlice))) {
358     LLVM_DEBUG(llvm::dbgs() << "computeSliceUnion failed\n");
359     return FusionResult::FailPrecondition;
360   }
361 
362   return FusionResult::Success;
363 }
364 
365 /// Fuses 'srcForOp' into 'dstForOp' with destination loop block insertion point
366 /// and source slice loop bounds specified in 'srcSlice'.
fuseLoops(AffineForOp srcForOp,AffineForOp dstForOp,const ComputationSliceState & srcSlice)367 void mlir::fuseLoops(AffineForOp srcForOp, AffineForOp dstForOp,
368                      const ComputationSliceState &srcSlice) {
369   // Clone 'srcForOp' into 'dstForOp' at 'srcSlice->insertPoint'.
370   OpBuilder b(srcSlice.insertPoint->getBlock(), srcSlice.insertPoint);
371   BlockAndValueMapping mapper;
372   b.clone(*srcForOp, mapper);
373 
374   // Update 'sliceLoopNest' upper and lower bounds from computed 'srcSlice'.
375   SmallVector<AffineForOp, 4> sliceLoops;
376   for (unsigned i = 0, e = srcSlice.ivs.size(); i < e; ++i) {
377     auto loopIV = mapper.lookupOrNull(srcSlice.ivs[i]);
378     if (!loopIV)
379       continue;
380     auto forOp = getForInductionVarOwner(loopIV);
381     sliceLoops.push_back(forOp);
382     if (AffineMap lbMap = srcSlice.lbs[i]) {
383       auto lbOperands = srcSlice.lbOperands[i];
384       canonicalizeMapAndOperands(&lbMap, &lbOperands);
385       forOp.setLowerBound(lbOperands, lbMap);
386     }
387     if (AffineMap ubMap = srcSlice.ubs[i]) {
388       auto ubOperands = srcSlice.ubOperands[i];
389       canonicalizeMapAndOperands(&ubMap, &ubOperands);
390       forOp.setUpperBound(ubOperands, ubMap);
391     }
392   }
393 
394   // Promote any single iteration slice loops.
395   for (AffineForOp forOp : sliceLoops)
396     promoteIfSingleIteration(forOp);
397 }
398 
399 /// Collect loop nest statistics (eg. loop trip count and operation count)
400 /// in 'stats' for loop nest rooted at 'forOp'. Returns true on success,
401 /// returns false otherwise.
getLoopNestStats(AffineForOp forOpRoot,LoopNestStats * stats)402 bool mlir::getLoopNestStats(AffineForOp forOpRoot, LoopNestStats *stats) {
403   auto walkResult = forOpRoot.walk([&](AffineForOp forOp) {
404     auto *childForOp = forOp.getOperation();
405     auto *parentForOp = forOp->getParentOp();
406     if (!llvm::isa<FuncOp>(parentForOp)) {
407       if (!isa<AffineForOp>(parentForOp)) {
408         LLVM_DEBUG(llvm::dbgs() << "Expected parent AffineForOp");
409         return WalkResult::interrupt();
410       }
411       // Add mapping to 'forOp' from its parent AffineForOp.
412       stats->loopMap[parentForOp].push_back(forOp);
413     }
414 
415     // Record the number of op operations in the body of 'forOp'.
416     unsigned count = 0;
417     stats->opCountMap[childForOp] = 0;
418     for (auto &op : *forOp.getBody()) {
419       if (!isa<AffineForOp, AffineIfOp>(op))
420         ++count;
421     }
422     stats->opCountMap[childForOp] = count;
423 
424     // Record trip count for 'forOp'. Set flag if trip count is not
425     // constant.
426     Optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp);
427     if (!maybeConstTripCount.hasValue()) {
428       // Currently only constant trip count loop nests are supported.
429       LLVM_DEBUG(llvm::dbgs() << "Non-constant trip count unsupported");
430       return WalkResult::interrupt();
431     }
432 
433     stats->tripCountMap[childForOp] = maybeConstTripCount.getValue();
434     return WalkResult::advance();
435   });
436   return !walkResult.wasInterrupted();
437 }
438 
439 // Computes the total cost of the loop nest rooted at 'forOp'.
440 // Currently, the total cost is computed by counting the total operation
441 // instance count (i.e. total number of operations in the loop bodyloop
442 // operation count * loop trip count) for the entire loop nest.
443 // If 'tripCountOverrideMap' is non-null, overrides the trip count for loops
444 // specified in the map when computing the total op instance count.
445 // NOTEs: 1) This is used to compute the cost of computation slices, which are
446 // sliced along the iteration dimension, and thus reduce the trip count.
447 // If 'computeCostMap' is non-null, the total op count for forOps specified
448 // in the map is increased (not overridden) by adding the op count from the
449 // map to the existing op count for the for loop. This is done before
450 // multiplying by the loop's trip count, and is used to model the cost of
451 // inserting a sliced loop nest of known cost into the loop's body.
452 // 2) This is also used to compute the cost of fusing a slice of some loop nest
453 // within another loop.
getComputeCostHelper(Operation * forOp,LoopNestStats & stats,llvm::SmallDenseMap<Operation *,uint64_t,8> * tripCountOverrideMap,DenseMap<Operation *,int64_t> * computeCostMap)454 static int64_t getComputeCostHelper(
455     Operation *forOp, LoopNestStats &stats,
456     llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountOverrideMap,
457     DenseMap<Operation *, int64_t> *computeCostMap) {
458   // 'opCount' is the total number operations in one iteration of 'forOp' body,
459   // minus terminator op which is a no-op.
460   int64_t opCount = stats.opCountMap[forOp] - 1;
461   if (stats.loopMap.count(forOp) > 0) {
462     for (auto childForOp : stats.loopMap[forOp]) {
463       opCount += getComputeCostHelper(childForOp.getOperation(), stats,
464                                       tripCountOverrideMap, computeCostMap);
465     }
466   }
467   // Add in additional op instances from slice (if specified in map).
468   if (computeCostMap != nullptr) {
469     auto it = computeCostMap->find(forOp);
470     if (it != computeCostMap->end()) {
471       opCount += it->second;
472     }
473   }
474   // Override trip count (if specified in map).
475   int64_t tripCount = stats.tripCountMap[forOp];
476   if (tripCountOverrideMap != nullptr) {
477     auto it = tripCountOverrideMap->find(forOp);
478     if (it != tripCountOverrideMap->end()) {
479       tripCount = it->second;
480     }
481   }
482   // Returns the total number of dynamic instances of operations in loop body.
483   return tripCount * opCount;
484 }
485 
486 // TODO: extend this to handle multiple result maps.
getConstDifference(AffineMap lbMap,AffineMap ubMap)487 static Optional<uint64_t> getConstDifference(AffineMap lbMap, AffineMap ubMap) {
488   assert(lbMap.getNumResults() == 1 && "expected single result bound map");
489   assert(ubMap.getNumResults() == 1 && "expected single result bound map");
490   assert(lbMap.getNumDims() == ubMap.getNumDims());
491   assert(lbMap.getNumSymbols() == ubMap.getNumSymbols());
492   AffineExpr lbExpr(lbMap.getResult(0));
493   AffineExpr ubExpr(ubMap.getResult(0));
494   auto loopSpanExpr = simplifyAffineExpr(ubExpr - lbExpr, lbMap.getNumDims(),
495                                          lbMap.getNumSymbols());
496   auto cExpr = loopSpanExpr.dyn_cast<AffineConstantExpr>();
497   if (!cExpr)
498     return None;
499   return cExpr.getValue();
500 }
501 
502 // Return the number of iterations in the given slice.
getSliceIterationCount(const llvm::SmallDenseMap<Operation *,uint64_t,8> & sliceTripCountMap)503 static uint64_t getSliceIterationCount(
504     const llvm::SmallDenseMap<Operation *, uint64_t, 8> &sliceTripCountMap) {
505   uint64_t iterCount = 1;
506   for (const auto &count : sliceTripCountMap) {
507     iterCount *= count.second;
508   }
509   return iterCount;
510 }
511 
512 // Builds a map 'tripCountMap' from AffineForOp to constant trip count for loop
513 // nest surrounding represented by slice loop bounds in 'slice'.
514 // Returns true on success, false otherwise (if a non-constant trip count
515 // was encountered).
516 // TODO: Make this work with non-unit step loops.
buildSliceTripCountMap(const ComputationSliceState & slice,llvm::SmallDenseMap<Operation *,uint64_t,8> * tripCountMap)517 static bool buildSliceTripCountMap(
518     const ComputationSliceState &slice,
519     llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountMap) {
520   unsigned numSrcLoopIVs = slice.ivs.size();
521   // Populate map from AffineForOp -> trip count
522   for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
523     AffineForOp forOp = getForInductionVarOwner(slice.ivs[i]);
524     auto *op = forOp.getOperation();
525     AffineMap lbMap = slice.lbs[i];
526     AffineMap ubMap = slice.ubs[i];
527     if (lbMap == AffineMap() || ubMap == AffineMap()) {
528       // The iteration of src loop IV 'i' was not sliced. Use full loop bounds.
529       if (forOp.hasConstantLowerBound() && forOp.hasConstantUpperBound()) {
530         (*tripCountMap)[op] =
531             forOp.getConstantUpperBound() - forOp.getConstantLowerBound();
532         continue;
533       }
534       Optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp);
535       if (maybeConstTripCount.hasValue()) {
536         (*tripCountMap)[op] = maybeConstTripCount.getValue();
537         continue;
538       }
539       return false;
540     }
541     Optional<uint64_t> tripCount = getConstDifference(lbMap, ubMap);
542     // Slice bounds are created with a constant ub - lb difference.
543     if (!tripCount.hasValue())
544       return false;
545     (*tripCountMap)[op] = tripCount.getValue();
546   }
547   return true;
548 }
549 
550 /// Computes the total cost of the loop nest rooted at 'forOp' using 'stats'.
551 /// Currently, the total cost is computed by counting the total operation
552 /// instance count (i.e. total number of operations in the loop body * loop
553 /// trip count) for the entire loop nest.
getComputeCost(AffineForOp forOp,LoopNestStats & stats)554 int64_t mlir::getComputeCost(AffineForOp forOp, LoopNestStats &stats) {
555   return getComputeCostHelper(forOp.getOperation(), stats,
556                               /*tripCountOverrideMap=*/nullptr,
557                               /*computeCostMap=*/nullptr);
558 }
559 
560 /// Computes and returns in 'computeCost', the total compute cost of fusing the
561 /// 'slice' of the loop nest rooted at 'srcForOp' into 'dstForOp'. Currently,
562 /// the total cost is computed by counting the total operation instance count
563 /// (i.e. total number of operations in the loop body * loop trip count) for
564 /// the entire loop nest.
getFusionComputeCost(AffineForOp srcForOp,LoopNestStats & srcStats,AffineForOp dstForOp,LoopNestStats & dstStats,const ComputationSliceState & slice,int64_t * computeCost)565 bool mlir::getFusionComputeCost(AffineForOp srcForOp, LoopNestStats &srcStats,
566                                 AffineForOp dstForOp, LoopNestStats &dstStats,
567                                 const ComputationSliceState &slice,
568                                 int64_t *computeCost) {
569   llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap;
570   DenseMap<Operation *, int64_t> computeCostMap;
571 
572   // Build trip count map for computation slice.
573   if (!buildSliceTripCountMap(slice, &sliceTripCountMap))
574     return false;
575   // Checks whether a store to load forwarding will happen.
576   int64_t sliceIterationCount = getSliceIterationCount(sliceTripCountMap);
577   assert(sliceIterationCount > 0);
578   bool storeLoadFwdGuaranteed = (sliceIterationCount == 1);
579   auto *insertPointParent = slice.insertPoint->getParentOp();
580 
581   // The store and loads to this memref will disappear.
582   // TODO: Add load coalescing to memref data flow opt pass.
583   if (storeLoadFwdGuaranteed) {
584     // Subtract from operation count the loads/store we expect load/store
585     // forwarding to remove.
586     unsigned storeCount = 0;
587     llvm::SmallDenseSet<Value, 4> storeMemrefs;
588     srcForOp.walk([&](Operation *op) {
589       if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
590         storeMemrefs.insert(storeOp.getMemRef());
591         ++storeCount;
592       }
593     });
594     // Subtract out any store ops in single-iteration src slice loop nest.
595     if (storeCount > 0)
596       computeCostMap[insertPointParent] = -storeCount;
597     // Subtract out any load users of 'storeMemrefs' nested below
598     // 'insertPointParent'.
599     for (auto value : storeMemrefs) {
600       for (auto *user : value.getUsers()) {
601         if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) {
602           SmallVector<AffineForOp, 4> loops;
603           // Check if any loop in loop nest surrounding 'user' is
604           // 'insertPointParent'.
605           getLoopIVs(*user, &loops);
606           if (llvm::is_contained(loops, cast<AffineForOp>(insertPointParent))) {
607             if (auto forOp =
608                     dyn_cast_or_null<AffineForOp>(user->getParentOp())) {
609               if (computeCostMap.count(forOp) == 0)
610                 computeCostMap[forOp] = 0;
611               computeCostMap[forOp] -= 1;
612             }
613           }
614         }
615       }
616     }
617   }
618 
619   // Compute op instance count for the src loop nest with iteration slicing.
620   int64_t sliceComputeCost = getComputeCostHelper(
621       srcForOp.getOperation(), srcStats, &sliceTripCountMap, &computeCostMap);
622 
623   // Compute cost of fusion for this depth.
624   computeCostMap[insertPointParent] = sliceComputeCost;
625 
626   *computeCost =
627       getComputeCostHelper(dstForOp.getOperation(), dstStats,
628                            /*tripCountOverrideMap=*/nullptr, &computeCostMap);
629   return true;
630 }
631