1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/Designator.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/SemaInternal.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30
31 using namespace clang;
32
33 //===----------------------------------------------------------------------===//
34 // Sema Initialization Checking
35 //===----------------------------------------------------------------------===//
36
37 /// Check whether T is compatible with a wide character type (wchar_t,
38 /// char16_t or char32_t).
IsWideCharCompatible(QualType T,ASTContext & Context)39 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
40 if (Context.typesAreCompatible(Context.getWideCharType(), T))
41 return true;
42 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
43 return Context.typesAreCompatible(Context.Char16Ty, T) ||
44 Context.typesAreCompatible(Context.Char32Ty, T);
45 }
46 return false;
47 }
48
49 enum StringInitFailureKind {
50 SIF_None,
51 SIF_NarrowStringIntoWideChar,
52 SIF_WideStringIntoChar,
53 SIF_IncompatWideStringIntoWideChar,
54 SIF_UTF8StringIntoPlainChar,
55 SIF_PlainStringIntoUTF8Char,
56 SIF_Other
57 };
58
59 /// Check whether the array of type AT can be initialized by the Init
60 /// expression by means of string initialization. Returns SIF_None if so,
61 /// otherwise returns a StringInitFailureKind that describes why the
62 /// initialization would not work.
IsStringInit(Expr * Init,const ArrayType * AT,ASTContext & Context)63 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
64 ASTContext &Context) {
65 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
66 return SIF_Other;
67
68 // See if this is a string literal or @encode.
69 Init = Init->IgnoreParens();
70
71 // Handle @encode, which is a narrow string.
72 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
73 return SIF_None;
74
75 // Otherwise we can only handle string literals.
76 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
77 if (!SL)
78 return SIF_Other;
79
80 const QualType ElemTy =
81 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
82
83 switch (SL->getKind()) {
84 case StringLiteral::UTF8:
85 // char8_t array can be initialized with a UTF-8 string.
86 if (ElemTy->isChar8Type())
87 return SIF_None;
88 LLVM_FALLTHROUGH;
89 case StringLiteral::Ascii:
90 // char array can be initialized with a narrow string.
91 // Only allow char x[] = "foo"; not char x[] = L"foo";
92 if (ElemTy->isCharType())
93 return (SL->getKind() == StringLiteral::UTF8 &&
94 Context.getLangOpts().Char8)
95 ? SIF_UTF8StringIntoPlainChar
96 : SIF_None;
97 if (ElemTy->isChar8Type())
98 return SIF_PlainStringIntoUTF8Char;
99 if (IsWideCharCompatible(ElemTy, Context))
100 return SIF_NarrowStringIntoWideChar;
101 return SIF_Other;
102 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
103 // "An array with element type compatible with a qualified or unqualified
104 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
105 // string literal with the corresponding encoding prefix (L, u, or U,
106 // respectively), optionally enclosed in braces.
107 case StringLiteral::UTF16:
108 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
109 return SIF_None;
110 if (ElemTy->isCharType() || ElemTy->isChar8Type())
111 return SIF_WideStringIntoChar;
112 if (IsWideCharCompatible(ElemTy, Context))
113 return SIF_IncompatWideStringIntoWideChar;
114 return SIF_Other;
115 case StringLiteral::UTF32:
116 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
117 return SIF_None;
118 if (ElemTy->isCharType() || ElemTy->isChar8Type())
119 return SIF_WideStringIntoChar;
120 if (IsWideCharCompatible(ElemTy, Context))
121 return SIF_IncompatWideStringIntoWideChar;
122 return SIF_Other;
123 case StringLiteral::Wide:
124 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
125 return SIF_None;
126 if (ElemTy->isCharType() || ElemTy->isChar8Type())
127 return SIF_WideStringIntoChar;
128 if (IsWideCharCompatible(ElemTy, Context))
129 return SIF_IncompatWideStringIntoWideChar;
130 return SIF_Other;
131 }
132
133 llvm_unreachable("missed a StringLiteral kind?");
134 }
135
IsStringInit(Expr * init,QualType declType,ASTContext & Context)136 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
137 ASTContext &Context) {
138 const ArrayType *arrayType = Context.getAsArrayType(declType);
139 if (!arrayType)
140 return SIF_Other;
141 return IsStringInit(init, arrayType, Context);
142 }
143
IsStringInit(Expr * Init,const ArrayType * AT)144 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
145 return ::IsStringInit(Init, AT, Context) == SIF_None;
146 }
147
148 /// Update the type of a string literal, including any surrounding parentheses,
149 /// to match the type of the object which it is initializing.
updateStringLiteralType(Expr * E,QualType Ty)150 static void updateStringLiteralType(Expr *E, QualType Ty) {
151 while (true) {
152 E->setType(Ty);
153 E->setValueKind(VK_RValue);
154 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
155 break;
156 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
157 E = PE->getSubExpr();
158 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
159 assert(UO->getOpcode() == UO_Extension);
160 E = UO->getSubExpr();
161 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
162 E = GSE->getResultExpr();
163 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
164 E = CE->getChosenSubExpr();
165 } else {
166 llvm_unreachable("unexpected expr in string literal init");
167 }
168 }
169 }
170
171 /// Fix a compound literal initializing an array so it's correctly marked
172 /// as an rvalue.
updateGNUCompoundLiteralRValue(Expr * E)173 static void updateGNUCompoundLiteralRValue(Expr *E) {
174 while (true) {
175 E->setValueKind(VK_RValue);
176 if (isa<CompoundLiteralExpr>(E)) {
177 break;
178 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
179 E = PE->getSubExpr();
180 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
181 assert(UO->getOpcode() == UO_Extension);
182 E = UO->getSubExpr();
183 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
184 E = GSE->getResultExpr();
185 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
186 E = CE->getChosenSubExpr();
187 } else {
188 llvm_unreachable("unexpected expr in array compound literal init");
189 }
190 }
191 }
192
CheckStringInit(Expr * Str,QualType & DeclT,const ArrayType * AT,Sema & S)193 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
194 Sema &S) {
195 // Get the length of the string as parsed.
196 auto *ConstantArrayTy =
197 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
198 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
199
200 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
201 // C99 6.7.8p14. We have an array of character type with unknown size
202 // being initialized to a string literal.
203 llvm::APInt ConstVal(32, StrLength);
204 // Return a new array type (C99 6.7.8p22).
205 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
206 ConstVal, nullptr,
207 ArrayType::Normal, 0);
208 updateStringLiteralType(Str, DeclT);
209 return;
210 }
211
212 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
213
214 // We have an array of character type with known size. However,
215 // the size may be smaller or larger than the string we are initializing.
216 // FIXME: Avoid truncation for 64-bit length strings.
217 if (S.getLangOpts().CPlusPlus) {
218 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
219 // For Pascal strings it's OK to strip off the terminating null character,
220 // so the example below is valid:
221 //
222 // unsigned char a[2] = "\pa";
223 if (SL->isPascal())
224 StrLength--;
225 }
226
227 // [dcl.init.string]p2
228 if (StrLength > CAT->getSize().getZExtValue())
229 S.Diag(Str->getBeginLoc(),
230 diag::err_initializer_string_for_char_array_too_long)
231 << Str->getSourceRange();
232 } else {
233 // C99 6.7.8p14.
234 if (StrLength-1 > CAT->getSize().getZExtValue())
235 S.Diag(Str->getBeginLoc(),
236 diag::ext_initializer_string_for_char_array_too_long)
237 << Str->getSourceRange();
238 }
239
240 // Set the type to the actual size that we are initializing. If we have
241 // something like:
242 // char x[1] = "foo";
243 // then this will set the string literal's type to char[1].
244 updateStringLiteralType(Str, DeclT);
245 }
246
247 //===----------------------------------------------------------------------===//
248 // Semantic checking for initializer lists.
249 //===----------------------------------------------------------------------===//
250
251 namespace {
252
253 /// Semantic checking for initializer lists.
254 ///
255 /// The InitListChecker class contains a set of routines that each
256 /// handle the initialization of a certain kind of entity, e.g.,
257 /// arrays, vectors, struct/union types, scalars, etc. The
258 /// InitListChecker itself performs a recursive walk of the subobject
259 /// structure of the type to be initialized, while stepping through
260 /// the initializer list one element at a time. The IList and Index
261 /// parameters to each of the Check* routines contain the active
262 /// (syntactic) initializer list and the index into that initializer
263 /// list that represents the current initializer. Each routine is
264 /// responsible for moving that Index forward as it consumes elements.
265 ///
266 /// Each Check* routine also has a StructuredList/StructuredIndex
267 /// arguments, which contains the current "structured" (semantic)
268 /// initializer list and the index into that initializer list where we
269 /// are copying initializers as we map them over to the semantic
270 /// list. Once we have completed our recursive walk of the subobject
271 /// structure, we will have constructed a full semantic initializer
272 /// list.
273 ///
274 /// C99 designators cause changes in the initializer list traversal,
275 /// because they make the initialization "jump" into a specific
276 /// subobject and then continue the initialization from that
277 /// point. CheckDesignatedInitializer() recursively steps into the
278 /// designated subobject and manages backing out the recursion to
279 /// initialize the subobjects after the one designated.
280 ///
281 /// If an initializer list contains any designators, we build a placeholder
282 /// structured list even in 'verify only' mode, so that we can track which
283 /// elements need 'empty' initializtion.
284 class InitListChecker {
285 Sema &SemaRef;
286 bool hadError = false;
287 bool VerifyOnly; // No diagnostics.
288 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
289 bool InOverloadResolution;
290 InitListExpr *FullyStructuredList = nullptr;
291 NoInitExpr *DummyExpr = nullptr;
292
getDummyInit()293 NoInitExpr *getDummyInit() {
294 if (!DummyExpr)
295 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
296 return DummyExpr;
297 }
298
299 void CheckImplicitInitList(const InitializedEntity &Entity,
300 InitListExpr *ParentIList, QualType T,
301 unsigned &Index, InitListExpr *StructuredList,
302 unsigned &StructuredIndex);
303 void CheckExplicitInitList(const InitializedEntity &Entity,
304 InitListExpr *IList, QualType &T,
305 InitListExpr *StructuredList,
306 bool TopLevelObject = false);
307 void CheckListElementTypes(const InitializedEntity &Entity,
308 InitListExpr *IList, QualType &DeclType,
309 bool SubobjectIsDesignatorContext,
310 unsigned &Index,
311 InitListExpr *StructuredList,
312 unsigned &StructuredIndex,
313 bool TopLevelObject = false);
314 void CheckSubElementType(const InitializedEntity &Entity,
315 InitListExpr *IList, QualType ElemType,
316 unsigned &Index,
317 InitListExpr *StructuredList,
318 unsigned &StructuredIndex);
319 void CheckComplexType(const InitializedEntity &Entity,
320 InitListExpr *IList, QualType DeclType,
321 unsigned &Index,
322 InitListExpr *StructuredList,
323 unsigned &StructuredIndex);
324 void CheckScalarType(const InitializedEntity &Entity,
325 InitListExpr *IList, QualType DeclType,
326 unsigned &Index,
327 InitListExpr *StructuredList,
328 unsigned &StructuredIndex);
329 void CheckReferenceType(const InitializedEntity &Entity,
330 InitListExpr *IList, QualType DeclType,
331 unsigned &Index,
332 InitListExpr *StructuredList,
333 unsigned &StructuredIndex);
334 void CheckVectorType(const InitializedEntity &Entity,
335 InitListExpr *IList, QualType DeclType, unsigned &Index,
336 InitListExpr *StructuredList,
337 unsigned &StructuredIndex);
338 void CheckStructUnionTypes(const InitializedEntity &Entity,
339 InitListExpr *IList, QualType DeclType,
340 CXXRecordDecl::base_class_range Bases,
341 RecordDecl::field_iterator Field,
342 bool SubobjectIsDesignatorContext, unsigned &Index,
343 InitListExpr *StructuredList,
344 unsigned &StructuredIndex,
345 bool TopLevelObject = false);
346 void CheckArrayType(const InitializedEntity &Entity,
347 InitListExpr *IList, QualType &DeclType,
348 llvm::APSInt elementIndex,
349 bool SubobjectIsDesignatorContext, unsigned &Index,
350 InitListExpr *StructuredList,
351 unsigned &StructuredIndex);
352 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
353 InitListExpr *IList, DesignatedInitExpr *DIE,
354 unsigned DesigIdx,
355 QualType &CurrentObjectType,
356 RecordDecl::field_iterator *NextField,
357 llvm::APSInt *NextElementIndex,
358 unsigned &Index,
359 InitListExpr *StructuredList,
360 unsigned &StructuredIndex,
361 bool FinishSubobjectInit,
362 bool TopLevelObject);
363 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
364 QualType CurrentObjectType,
365 InitListExpr *StructuredList,
366 unsigned StructuredIndex,
367 SourceRange InitRange,
368 bool IsFullyOverwritten = false);
369 void UpdateStructuredListElement(InitListExpr *StructuredList,
370 unsigned &StructuredIndex,
371 Expr *expr);
372 InitListExpr *createInitListExpr(QualType CurrentObjectType,
373 SourceRange InitRange,
374 unsigned ExpectedNumInits);
375 int numArrayElements(QualType DeclType);
376 int numStructUnionElements(QualType DeclType);
377
378 ExprResult PerformEmptyInit(SourceLocation Loc,
379 const InitializedEntity &Entity);
380
381 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
diagnoseInitOverride(Expr * OldInit,SourceRange NewInitRange,bool FullyOverwritten=true)382 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
383 bool FullyOverwritten = true) {
384 // Overriding an initializer via a designator is valid with C99 designated
385 // initializers, but ill-formed with C++20 designated initializers.
386 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
387 ? diag::ext_initializer_overrides
388 : diag::warn_initializer_overrides;
389
390 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
391 // In overload resolution, we have to strictly enforce the rules, and so
392 // don't allow any overriding of prior initializers. This matters for a
393 // case such as:
394 //
395 // union U { int a, b; };
396 // struct S { int a, b; };
397 // void f(U), f(S);
398 //
399 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
400 // consistency, we disallow all overriding of prior initializers in
401 // overload resolution, not only overriding of union members.
402 hadError = true;
403 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
404 // If we'll be keeping around the old initializer but overwriting part of
405 // the object it initialized, and that object is not trivially
406 // destructible, this can leak. Don't allow that, not even as an
407 // extension.
408 //
409 // FIXME: It might be reasonable to allow this in cases where the part of
410 // the initializer that we're overriding has trivial destruction.
411 DiagID = diag::err_initializer_overrides_destructed;
412 } else if (!OldInit->getSourceRange().isValid()) {
413 // We need to check on source range validity because the previous
414 // initializer does not have to be an explicit initializer. e.g.,
415 //
416 // struct P { int a, b; };
417 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
418 //
419 // There is an overwrite taking place because the first braced initializer
420 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
421 //
422 // Such overwrites are harmless, so we don't diagnose them. (Note that in
423 // C++, this cannot be reached unless we've already seen and diagnosed a
424 // different conformance issue, such as a mixture of designated and
425 // non-designated initializers or a multi-level designator.)
426 return;
427 }
428
429 if (!VerifyOnly) {
430 SemaRef.Diag(NewInitRange.getBegin(), DiagID)
431 << NewInitRange << FullyOverwritten << OldInit->getType();
432 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
433 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
434 << OldInit->getSourceRange();
435 }
436 }
437
438 // Explanation on the "FillWithNoInit" mode:
439 //
440 // Assume we have the following definitions (Case#1):
441 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
442 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
443 //
444 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
445 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
446 //
447 // But if we have (Case#2):
448 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
449 //
450 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
451 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
452 //
453 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
454 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
455 // initializers but with special "NoInitExpr" place holders, which tells the
456 // CodeGen not to generate any initializers for these parts.
457 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
458 const InitializedEntity &ParentEntity,
459 InitListExpr *ILE, bool &RequiresSecondPass,
460 bool FillWithNoInit);
461 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
462 const InitializedEntity &ParentEntity,
463 InitListExpr *ILE, bool &RequiresSecondPass,
464 bool FillWithNoInit = false);
465 void FillInEmptyInitializations(const InitializedEntity &Entity,
466 InitListExpr *ILE, bool &RequiresSecondPass,
467 InitListExpr *OuterILE, unsigned OuterIndex,
468 bool FillWithNoInit = false);
469 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
470 Expr *InitExpr, FieldDecl *Field,
471 bool TopLevelObject);
472 void CheckEmptyInitializable(const InitializedEntity &Entity,
473 SourceLocation Loc);
474
475 public:
476 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
477 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
478 bool InOverloadResolution = false);
HadError()479 bool HadError() { return hadError; }
480
481 // Retrieves the fully-structured initializer list used for
482 // semantic analysis and code generation.
getFullyStructuredList() const483 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
484 };
485
486 } // end anonymous namespace
487
PerformEmptyInit(SourceLocation Loc,const InitializedEntity & Entity)488 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
489 const InitializedEntity &Entity) {
490 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
491 true);
492 MultiExprArg SubInit;
493 Expr *InitExpr;
494 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
495
496 // C++ [dcl.init.aggr]p7:
497 // If there are fewer initializer-clauses in the list than there are
498 // members in the aggregate, then each member not explicitly initialized
499 // ...
500 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
501 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
502 if (EmptyInitList) {
503 // C++1y / DR1070:
504 // shall be initialized [...] from an empty initializer list.
505 //
506 // We apply the resolution of this DR to C++11 but not C++98, since C++98
507 // does not have useful semantics for initialization from an init list.
508 // We treat this as copy-initialization, because aggregate initialization
509 // always performs copy-initialization on its elements.
510 //
511 // Only do this if we're initializing a class type, to avoid filling in
512 // the initializer list where possible.
513 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
514 InitListExpr(SemaRef.Context, Loc, None, Loc);
515 InitExpr->setType(SemaRef.Context.VoidTy);
516 SubInit = InitExpr;
517 Kind = InitializationKind::CreateCopy(Loc, Loc);
518 } else {
519 // C++03:
520 // shall be value-initialized.
521 }
522
523 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
524 // libstdc++4.6 marks the vector default constructor as explicit in
525 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
526 // stlport does so too. Look for std::__debug for libstdc++, and for
527 // std:: for stlport. This is effectively a compiler-side implementation of
528 // LWG2193.
529 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
530 InitializationSequence::FK_ExplicitConstructor) {
531 OverloadCandidateSet::iterator Best;
532 OverloadingResult O =
533 InitSeq.getFailedCandidateSet()
534 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
535 (void)O;
536 assert(O == OR_Success && "Inconsistent overload resolution");
537 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
538 CXXRecordDecl *R = CtorDecl->getParent();
539
540 if (CtorDecl->getMinRequiredArguments() == 0 &&
541 CtorDecl->isExplicit() && R->getDeclName() &&
542 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
543 bool IsInStd = false;
544 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
545 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
546 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
547 IsInStd = true;
548 }
549
550 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
551 .Cases("basic_string", "deque", "forward_list", true)
552 .Cases("list", "map", "multimap", "multiset", true)
553 .Cases("priority_queue", "queue", "set", "stack", true)
554 .Cases("unordered_map", "unordered_set", "vector", true)
555 .Default(false)) {
556 InitSeq.InitializeFrom(
557 SemaRef, Entity,
558 InitializationKind::CreateValue(Loc, Loc, Loc, true),
559 MultiExprArg(), /*TopLevelOfInitList=*/false,
560 TreatUnavailableAsInvalid);
561 // Emit a warning for this. System header warnings aren't shown
562 // by default, but people working on system headers should see it.
563 if (!VerifyOnly) {
564 SemaRef.Diag(CtorDecl->getLocation(),
565 diag::warn_invalid_initializer_from_system_header);
566 if (Entity.getKind() == InitializedEntity::EK_Member)
567 SemaRef.Diag(Entity.getDecl()->getLocation(),
568 diag::note_used_in_initialization_here);
569 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
570 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
571 }
572 }
573 }
574 }
575 if (!InitSeq) {
576 if (!VerifyOnly) {
577 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
578 if (Entity.getKind() == InitializedEntity::EK_Member)
579 SemaRef.Diag(Entity.getDecl()->getLocation(),
580 diag::note_in_omitted_aggregate_initializer)
581 << /*field*/1 << Entity.getDecl();
582 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
583 bool IsTrailingArrayNewMember =
584 Entity.getParent() &&
585 Entity.getParent()->isVariableLengthArrayNew();
586 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
587 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
588 << Entity.getElementIndex();
589 }
590 }
591 hadError = true;
592 return ExprError();
593 }
594
595 return VerifyOnly ? ExprResult()
596 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
597 }
598
CheckEmptyInitializable(const InitializedEntity & Entity,SourceLocation Loc)599 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
600 SourceLocation Loc) {
601 // If we're building a fully-structured list, we'll check this at the end
602 // once we know which elements are actually initialized. Otherwise, we know
603 // that there are no designators so we can just check now.
604 if (FullyStructuredList)
605 return;
606 PerformEmptyInit(Loc, Entity);
607 }
608
FillInEmptyInitForBase(unsigned Init,const CXXBaseSpecifier & Base,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass,bool FillWithNoInit)609 void InitListChecker::FillInEmptyInitForBase(
610 unsigned Init, const CXXBaseSpecifier &Base,
611 const InitializedEntity &ParentEntity, InitListExpr *ILE,
612 bool &RequiresSecondPass, bool FillWithNoInit) {
613 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
614 SemaRef.Context, &Base, false, &ParentEntity);
615
616 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
617 ExprResult BaseInit = FillWithNoInit
618 ? new (SemaRef.Context) NoInitExpr(Base.getType())
619 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
620 if (BaseInit.isInvalid()) {
621 hadError = true;
622 return;
623 }
624
625 if (!VerifyOnly) {
626 assert(Init < ILE->getNumInits() && "should have been expanded");
627 ILE->setInit(Init, BaseInit.getAs<Expr>());
628 }
629 } else if (InitListExpr *InnerILE =
630 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
631 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
632 ILE, Init, FillWithNoInit);
633 } else if (DesignatedInitUpdateExpr *InnerDIUE =
634 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
635 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
636 RequiresSecondPass, ILE, Init,
637 /*FillWithNoInit =*/true);
638 }
639 }
640
FillInEmptyInitForField(unsigned Init,FieldDecl * Field,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass,bool FillWithNoInit)641 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
642 const InitializedEntity &ParentEntity,
643 InitListExpr *ILE,
644 bool &RequiresSecondPass,
645 bool FillWithNoInit) {
646 SourceLocation Loc = ILE->getEndLoc();
647 unsigned NumInits = ILE->getNumInits();
648 InitializedEntity MemberEntity
649 = InitializedEntity::InitializeMember(Field, &ParentEntity);
650
651 if (Init >= NumInits || !ILE->getInit(Init)) {
652 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
653 if (!RType->getDecl()->isUnion())
654 assert((Init < NumInits || VerifyOnly) &&
655 "This ILE should have been expanded");
656
657 if (FillWithNoInit) {
658 assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
659 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
660 if (Init < NumInits)
661 ILE->setInit(Init, Filler);
662 else
663 ILE->updateInit(SemaRef.Context, Init, Filler);
664 return;
665 }
666 // C++1y [dcl.init.aggr]p7:
667 // If there are fewer initializer-clauses in the list than there are
668 // members in the aggregate, then each member not explicitly initialized
669 // shall be initialized from its brace-or-equal-initializer [...]
670 if (Field->hasInClassInitializer()) {
671 if (VerifyOnly)
672 return;
673
674 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
675 if (DIE.isInvalid()) {
676 hadError = true;
677 return;
678 }
679 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
680 if (Init < NumInits)
681 ILE->setInit(Init, DIE.get());
682 else {
683 ILE->updateInit(SemaRef.Context, Init, DIE.get());
684 RequiresSecondPass = true;
685 }
686 return;
687 }
688
689 if (Field->getType()->isReferenceType()) {
690 if (!VerifyOnly) {
691 // C++ [dcl.init.aggr]p9:
692 // If an incomplete or empty initializer-list leaves a
693 // member of reference type uninitialized, the program is
694 // ill-formed.
695 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
696 << Field->getType()
697 << ILE->getSyntacticForm()->getSourceRange();
698 SemaRef.Diag(Field->getLocation(),
699 diag::note_uninit_reference_member);
700 }
701 hadError = true;
702 return;
703 }
704
705 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
706 if (MemberInit.isInvalid()) {
707 hadError = true;
708 return;
709 }
710
711 if (hadError || VerifyOnly) {
712 // Do nothing
713 } else if (Init < NumInits) {
714 ILE->setInit(Init, MemberInit.getAs<Expr>());
715 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
716 // Empty initialization requires a constructor call, so
717 // extend the initializer list to include the constructor
718 // call and make a note that we'll need to take another pass
719 // through the initializer list.
720 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
721 RequiresSecondPass = true;
722 }
723 } else if (InitListExpr *InnerILE
724 = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
725 FillInEmptyInitializations(MemberEntity, InnerILE,
726 RequiresSecondPass, ILE, Init, FillWithNoInit);
727 } else if (DesignatedInitUpdateExpr *InnerDIUE =
728 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
729 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
730 RequiresSecondPass, ILE, Init,
731 /*FillWithNoInit =*/true);
732 }
733 }
734
735 /// Recursively replaces NULL values within the given initializer list
736 /// with expressions that perform value-initialization of the
737 /// appropriate type, and finish off the InitListExpr formation.
738 void
FillInEmptyInitializations(const InitializedEntity & Entity,InitListExpr * ILE,bool & RequiresSecondPass,InitListExpr * OuterILE,unsigned OuterIndex,bool FillWithNoInit)739 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
740 InitListExpr *ILE,
741 bool &RequiresSecondPass,
742 InitListExpr *OuterILE,
743 unsigned OuterIndex,
744 bool FillWithNoInit) {
745 assert((ILE->getType() != SemaRef.Context.VoidTy) &&
746 "Should not have void type");
747
748 // We don't need to do any checks when just filling NoInitExprs; that can't
749 // fail.
750 if (FillWithNoInit && VerifyOnly)
751 return;
752
753 // If this is a nested initializer list, we might have changed its contents
754 // (and therefore some of its properties, such as instantiation-dependence)
755 // while filling it in. Inform the outer initializer list so that its state
756 // can be updated to match.
757 // FIXME: We should fully build the inner initializers before constructing
758 // the outer InitListExpr instead of mutating AST nodes after they have
759 // been used as subexpressions of other nodes.
760 struct UpdateOuterILEWithUpdatedInit {
761 InitListExpr *Outer;
762 unsigned OuterIndex;
763 ~UpdateOuterILEWithUpdatedInit() {
764 if (Outer)
765 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
766 }
767 } UpdateOuterRAII = {OuterILE, OuterIndex};
768
769 // A transparent ILE is not performing aggregate initialization and should
770 // not be filled in.
771 if (ILE->isTransparent())
772 return;
773
774 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
775 const RecordDecl *RDecl = RType->getDecl();
776 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
777 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
778 Entity, ILE, RequiresSecondPass, FillWithNoInit);
779 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
780 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
781 for (auto *Field : RDecl->fields()) {
782 if (Field->hasInClassInitializer()) {
783 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
784 FillWithNoInit);
785 break;
786 }
787 }
788 } else {
789 // The fields beyond ILE->getNumInits() are default initialized, so in
790 // order to leave them uninitialized, the ILE is expanded and the extra
791 // fields are then filled with NoInitExpr.
792 unsigned NumElems = numStructUnionElements(ILE->getType());
793 if (RDecl->hasFlexibleArrayMember())
794 ++NumElems;
795 if (!VerifyOnly && ILE->getNumInits() < NumElems)
796 ILE->resizeInits(SemaRef.Context, NumElems);
797
798 unsigned Init = 0;
799
800 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
801 for (auto &Base : CXXRD->bases()) {
802 if (hadError)
803 return;
804
805 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
806 FillWithNoInit);
807 ++Init;
808 }
809 }
810
811 for (auto *Field : RDecl->fields()) {
812 if (Field->isUnnamedBitfield())
813 continue;
814
815 if (hadError)
816 return;
817
818 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
819 FillWithNoInit);
820 if (hadError)
821 return;
822
823 ++Init;
824
825 // Only look at the first initialization of a union.
826 if (RDecl->isUnion())
827 break;
828 }
829 }
830
831 return;
832 }
833
834 QualType ElementType;
835
836 InitializedEntity ElementEntity = Entity;
837 unsigned NumInits = ILE->getNumInits();
838 unsigned NumElements = NumInits;
839 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
840 ElementType = AType->getElementType();
841 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
842 NumElements = CAType->getSize().getZExtValue();
843 // For an array new with an unknown bound, ask for one additional element
844 // in order to populate the array filler.
845 if (Entity.isVariableLengthArrayNew())
846 ++NumElements;
847 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
848 0, Entity);
849 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
850 ElementType = VType->getElementType();
851 NumElements = VType->getNumElements();
852 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
853 0, Entity);
854 } else
855 ElementType = ILE->getType();
856
857 bool SkipEmptyInitChecks = false;
858 for (unsigned Init = 0; Init != NumElements; ++Init) {
859 if (hadError)
860 return;
861
862 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
863 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
864 ElementEntity.setElementIndex(Init);
865
866 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
867 return;
868
869 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
870 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
871 ILE->setInit(Init, ILE->getArrayFiller());
872 else if (!InitExpr && !ILE->hasArrayFiller()) {
873 // In VerifyOnly mode, there's no point performing empty initialization
874 // more than once.
875 if (SkipEmptyInitChecks)
876 continue;
877
878 Expr *Filler = nullptr;
879
880 if (FillWithNoInit)
881 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
882 else {
883 ExprResult ElementInit =
884 PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
885 if (ElementInit.isInvalid()) {
886 hadError = true;
887 return;
888 }
889
890 Filler = ElementInit.getAs<Expr>();
891 }
892
893 if (hadError) {
894 // Do nothing
895 } else if (VerifyOnly) {
896 SkipEmptyInitChecks = true;
897 } else if (Init < NumInits) {
898 // For arrays, just set the expression used for value-initialization
899 // of the "holes" in the array.
900 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
901 ILE->setArrayFiller(Filler);
902 else
903 ILE->setInit(Init, Filler);
904 } else {
905 // For arrays, just set the expression used for value-initialization
906 // of the rest of elements and exit.
907 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
908 ILE->setArrayFiller(Filler);
909 return;
910 }
911
912 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
913 // Empty initialization requires a constructor call, so
914 // extend the initializer list to include the constructor
915 // call and make a note that we'll need to take another pass
916 // through the initializer list.
917 ILE->updateInit(SemaRef.Context, Init, Filler);
918 RequiresSecondPass = true;
919 }
920 }
921 } else if (InitListExpr *InnerILE
922 = dyn_cast_or_null<InitListExpr>(InitExpr)) {
923 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
924 ILE, Init, FillWithNoInit);
925 } else if (DesignatedInitUpdateExpr *InnerDIUE =
926 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
927 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
928 RequiresSecondPass, ILE, Init,
929 /*FillWithNoInit =*/true);
930 }
931 }
932 }
933
hasAnyDesignatedInits(const InitListExpr * IL)934 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
935 for (const Stmt *Init : *IL)
936 if (Init && isa<DesignatedInitExpr>(Init))
937 return true;
938 return false;
939 }
940
InitListChecker(Sema & S,const InitializedEntity & Entity,InitListExpr * IL,QualType & T,bool VerifyOnly,bool TreatUnavailableAsInvalid,bool InOverloadResolution)941 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
942 InitListExpr *IL, QualType &T, bool VerifyOnly,
943 bool TreatUnavailableAsInvalid,
944 bool InOverloadResolution)
945 : SemaRef(S), VerifyOnly(VerifyOnly),
946 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
947 InOverloadResolution(InOverloadResolution) {
948 if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
949 FullyStructuredList =
950 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
951
952 // FIXME: Check that IL isn't already the semantic form of some other
953 // InitListExpr. If it is, we'd create a broken AST.
954 if (!VerifyOnly)
955 FullyStructuredList->setSyntacticForm(IL);
956 }
957
958 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
959 /*TopLevelObject=*/true);
960
961 if (!hadError && FullyStructuredList) {
962 bool RequiresSecondPass = false;
963 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
964 /*OuterILE=*/nullptr, /*OuterIndex=*/0);
965 if (RequiresSecondPass && !hadError)
966 FillInEmptyInitializations(Entity, FullyStructuredList,
967 RequiresSecondPass, nullptr, 0);
968 }
969 if (hadError && FullyStructuredList)
970 FullyStructuredList->markError();
971 }
972
numArrayElements(QualType DeclType)973 int InitListChecker::numArrayElements(QualType DeclType) {
974 // FIXME: use a proper constant
975 int maxElements = 0x7FFFFFFF;
976 if (const ConstantArrayType *CAT =
977 SemaRef.Context.getAsConstantArrayType(DeclType)) {
978 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
979 }
980 return maxElements;
981 }
982
numStructUnionElements(QualType DeclType)983 int InitListChecker::numStructUnionElements(QualType DeclType) {
984 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
985 int InitializableMembers = 0;
986 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
987 InitializableMembers += CXXRD->getNumBases();
988 for (const auto *Field : structDecl->fields())
989 if (!Field->isUnnamedBitfield())
990 ++InitializableMembers;
991
992 if (structDecl->isUnion())
993 return std::min(InitializableMembers, 1);
994 return InitializableMembers - structDecl->hasFlexibleArrayMember();
995 }
996
997 /// Determine whether Entity is an entity for which it is idiomatic to elide
998 /// the braces in aggregate initialization.
isIdiomaticBraceElisionEntity(const InitializedEntity & Entity)999 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1000 // Recursive initialization of the one and only field within an aggregate
1001 // class is considered idiomatic. This case arises in particular for
1002 // initialization of std::array, where the C++ standard suggests the idiom of
1003 //
1004 // std::array<T, N> arr = {1, 2, 3};
1005 //
1006 // (where std::array is an aggregate struct containing a single array field.
1007
1008 // FIXME: Should aggregate initialization of a struct with a single
1009 // base class and no members also suppress the warning?
1010 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
1011 return false;
1012
1013 auto *ParentRD =
1014 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1015 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
1016 if (CXXRD->getNumBases())
1017 return false;
1018
1019 auto FieldIt = ParentRD->field_begin();
1020 assert(FieldIt != ParentRD->field_end() &&
1021 "no fields but have initializer for member?");
1022 return ++FieldIt == ParentRD->field_end();
1023 }
1024
1025 /// Check whether the range of the initializer \p ParentIList from element
1026 /// \p Index onwards can be used to initialize an object of type \p T. Update
1027 /// \p Index to indicate how many elements of the list were consumed.
1028 ///
1029 /// This also fills in \p StructuredList, from element \p StructuredIndex
1030 /// onwards, with the fully-braced, desugared form of the initialization.
CheckImplicitInitList(const InitializedEntity & Entity,InitListExpr * ParentIList,QualType T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1031 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1032 InitListExpr *ParentIList,
1033 QualType T, unsigned &Index,
1034 InitListExpr *StructuredList,
1035 unsigned &StructuredIndex) {
1036 int maxElements = 0;
1037
1038 if (T->isArrayType())
1039 maxElements = numArrayElements(T);
1040 else if (T->isRecordType())
1041 maxElements = numStructUnionElements(T);
1042 else if (T->isVectorType())
1043 maxElements = T->castAs<VectorType>()->getNumElements();
1044 else
1045 llvm_unreachable("CheckImplicitInitList(): Illegal type");
1046
1047 if (maxElements == 0) {
1048 if (!VerifyOnly)
1049 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1050 diag::err_implicit_empty_initializer);
1051 ++Index;
1052 hadError = true;
1053 return;
1054 }
1055
1056 // Build a structured initializer list corresponding to this subobject.
1057 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1058 ParentIList, Index, T, StructuredList, StructuredIndex,
1059 SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1060 ParentIList->getSourceRange().getEnd()));
1061 unsigned StructuredSubobjectInitIndex = 0;
1062
1063 // Check the element types and build the structural subobject.
1064 unsigned StartIndex = Index;
1065 CheckListElementTypes(Entity, ParentIList, T,
1066 /*SubobjectIsDesignatorContext=*/false, Index,
1067 StructuredSubobjectInitList,
1068 StructuredSubobjectInitIndex);
1069
1070 if (StructuredSubobjectInitList) {
1071 StructuredSubobjectInitList->setType(T);
1072
1073 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1074 // Update the structured sub-object initializer so that it's ending
1075 // range corresponds with the end of the last initializer it used.
1076 if (EndIndex < ParentIList->getNumInits() &&
1077 ParentIList->getInit(EndIndex)) {
1078 SourceLocation EndLoc
1079 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1080 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1081 }
1082
1083 // Complain about missing braces.
1084 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1085 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1086 !isIdiomaticBraceElisionEntity(Entity)) {
1087 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1088 diag::warn_missing_braces)
1089 << StructuredSubobjectInitList->getSourceRange()
1090 << FixItHint::CreateInsertion(
1091 StructuredSubobjectInitList->getBeginLoc(), "{")
1092 << FixItHint::CreateInsertion(
1093 SemaRef.getLocForEndOfToken(
1094 StructuredSubobjectInitList->getEndLoc()),
1095 "}");
1096 }
1097
1098 // Warn if this type won't be an aggregate in future versions of C++.
1099 auto *CXXRD = T->getAsCXXRecordDecl();
1100 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1101 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1102 diag::warn_cxx20_compat_aggregate_init_with_ctors)
1103 << StructuredSubobjectInitList->getSourceRange() << T;
1104 }
1105 }
1106 }
1107
1108 /// Warn that \p Entity was of scalar type and was initialized by a
1109 /// single-element braced initializer list.
warnBracedScalarInit(Sema & S,const InitializedEntity & Entity,SourceRange Braces)1110 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1111 SourceRange Braces) {
1112 // Don't warn during template instantiation. If the initialization was
1113 // non-dependent, we warned during the initial parse; otherwise, the
1114 // type might not be scalar in some uses of the template.
1115 if (S.inTemplateInstantiation())
1116 return;
1117
1118 unsigned DiagID = 0;
1119
1120 switch (Entity.getKind()) {
1121 case InitializedEntity::EK_VectorElement:
1122 case InitializedEntity::EK_ComplexElement:
1123 case InitializedEntity::EK_ArrayElement:
1124 case InitializedEntity::EK_Parameter:
1125 case InitializedEntity::EK_Parameter_CF_Audited:
1126 case InitializedEntity::EK_TemplateParameter:
1127 case InitializedEntity::EK_Result:
1128 // Extra braces here are suspicious.
1129 DiagID = diag::warn_braces_around_init;
1130 break;
1131
1132 case InitializedEntity::EK_Member:
1133 // Warn on aggregate initialization but not on ctor init list or
1134 // default member initializer.
1135 if (Entity.getParent())
1136 DiagID = diag::warn_braces_around_init;
1137 break;
1138
1139 case InitializedEntity::EK_Variable:
1140 case InitializedEntity::EK_LambdaCapture:
1141 // No warning, might be direct-list-initialization.
1142 // FIXME: Should we warn for copy-list-initialization in these cases?
1143 break;
1144
1145 case InitializedEntity::EK_New:
1146 case InitializedEntity::EK_Temporary:
1147 case InitializedEntity::EK_CompoundLiteralInit:
1148 // No warning, braces are part of the syntax of the underlying construct.
1149 break;
1150
1151 case InitializedEntity::EK_RelatedResult:
1152 // No warning, we already warned when initializing the result.
1153 break;
1154
1155 case InitializedEntity::EK_Exception:
1156 case InitializedEntity::EK_Base:
1157 case InitializedEntity::EK_Delegating:
1158 case InitializedEntity::EK_BlockElement:
1159 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1160 case InitializedEntity::EK_Binding:
1161 case InitializedEntity::EK_StmtExprResult:
1162 llvm_unreachable("unexpected braced scalar init");
1163 }
1164
1165 if (DiagID) {
1166 S.Diag(Braces.getBegin(), DiagID)
1167 << Entity.getType()->isSizelessBuiltinType() << Braces
1168 << FixItHint::CreateRemoval(Braces.getBegin())
1169 << FixItHint::CreateRemoval(Braces.getEnd());
1170 }
1171 }
1172
1173 /// Check whether the initializer \p IList (that was written with explicit
1174 /// braces) can be used to initialize an object of type \p T.
1175 ///
1176 /// This also fills in \p StructuredList with the fully-braced, desugared
1177 /// form of the initialization.
CheckExplicitInitList(const InitializedEntity & Entity,InitListExpr * IList,QualType & T,InitListExpr * StructuredList,bool TopLevelObject)1178 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1179 InitListExpr *IList, QualType &T,
1180 InitListExpr *StructuredList,
1181 bool TopLevelObject) {
1182 unsigned Index = 0, StructuredIndex = 0;
1183 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1184 Index, StructuredList, StructuredIndex, TopLevelObject);
1185 if (StructuredList) {
1186 QualType ExprTy = T;
1187 if (!ExprTy->isArrayType())
1188 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1189 if (!VerifyOnly)
1190 IList->setType(ExprTy);
1191 StructuredList->setType(ExprTy);
1192 }
1193 if (hadError)
1194 return;
1195
1196 // Don't complain for incomplete types, since we'll get an error elsewhere.
1197 if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1198 // We have leftover initializers
1199 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1200 (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1201 hadError = ExtraInitsIsError;
1202 if (VerifyOnly) {
1203 return;
1204 } else if (StructuredIndex == 1 &&
1205 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1206 SIF_None) {
1207 unsigned DK =
1208 ExtraInitsIsError
1209 ? diag::err_excess_initializers_in_char_array_initializer
1210 : diag::ext_excess_initializers_in_char_array_initializer;
1211 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1212 << IList->getInit(Index)->getSourceRange();
1213 } else if (T->isSizelessBuiltinType()) {
1214 unsigned DK = ExtraInitsIsError
1215 ? diag::err_excess_initializers_for_sizeless_type
1216 : diag::ext_excess_initializers_for_sizeless_type;
1217 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1218 << T << IList->getInit(Index)->getSourceRange();
1219 } else {
1220 int initKind = T->isArrayType() ? 0 :
1221 T->isVectorType() ? 1 :
1222 T->isScalarType() ? 2 :
1223 T->isUnionType() ? 3 :
1224 4;
1225
1226 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1227 : diag::ext_excess_initializers;
1228 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1229 << initKind << IList->getInit(Index)->getSourceRange();
1230 }
1231 }
1232
1233 if (!VerifyOnly) {
1234 if (T->isScalarType() && IList->getNumInits() == 1 &&
1235 !isa<InitListExpr>(IList->getInit(0)))
1236 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1237
1238 // Warn if this is a class type that won't be an aggregate in future
1239 // versions of C++.
1240 auto *CXXRD = T->getAsCXXRecordDecl();
1241 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1242 // Don't warn if there's an equivalent default constructor that would be
1243 // used instead.
1244 bool HasEquivCtor = false;
1245 if (IList->getNumInits() == 0) {
1246 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1247 HasEquivCtor = CD && !CD->isDeleted();
1248 }
1249
1250 if (!HasEquivCtor) {
1251 SemaRef.Diag(IList->getBeginLoc(),
1252 diag::warn_cxx20_compat_aggregate_init_with_ctors)
1253 << IList->getSourceRange() << T;
1254 }
1255 }
1256 }
1257 }
1258
CheckListElementTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1259 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1260 InitListExpr *IList,
1261 QualType &DeclType,
1262 bool SubobjectIsDesignatorContext,
1263 unsigned &Index,
1264 InitListExpr *StructuredList,
1265 unsigned &StructuredIndex,
1266 bool TopLevelObject) {
1267 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1268 // Explicitly braced initializer for complex type can be real+imaginary
1269 // parts.
1270 CheckComplexType(Entity, IList, DeclType, Index,
1271 StructuredList, StructuredIndex);
1272 } else if (DeclType->isScalarType()) {
1273 CheckScalarType(Entity, IList, DeclType, Index,
1274 StructuredList, StructuredIndex);
1275 } else if (DeclType->isVectorType()) {
1276 CheckVectorType(Entity, IList, DeclType, Index,
1277 StructuredList, StructuredIndex);
1278 } else if (DeclType->isRecordType()) {
1279 assert(DeclType->isAggregateType() &&
1280 "non-aggregate records should be handed in CheckSubElementType");
1281 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1282 auto Bases =
1283 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1284 CXXRecordDecl::base_class_iterator());
1285 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1286 Bases = CXXRD->bases();
1287 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1288 SubobjectIsDesignatorContext, Index, StructuredList,
1289 StructuredIndex, TopLevelObject);
1290 } else if (DeclType->isArrayType()) {
1291 llvm::APSInt Zero(
1292 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1293 false);
1294 CheckArrayType(Entity, IList, DeclType, Zero,
1295 SubobjectIsDesignatorContext, Index,
1296 StructuredList, StructuredIndex);
1297 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1298 // This type is invalid, issue a diagnostic.
1299 ++Index;
1300 if (!VerifyOnly)
1301 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1302 << DeclType;
1303 hadError = true;
1304 } else if (DeclType->isReferenceType()) {
1305 CheckReferenceType(Entity, IList, DeclType, Index,
1306 StructuredList, StructuredIndex);
1307 } else if (DeclType->isObjCObjectType()) {
1308 if (!VerifyOnly)
1309 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1310 hadError = true;
1311 } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1312 DeclType->isSizelessBuiltinType()) {
1313 // Checks for scalar type are sufficient for these types too.
1314 CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1315 StructuredIndex);
1316 } else {
1317 if (!VerifyOnly)
1318 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1319 << DeclType;
1320 hadError = true;
1321 }
1322 }
1323
CheckSubElementType(const InitializedEntity & Entity,InitListExpr * IList,QualType ElemType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1324 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1325 InitListExpr *IList,
1326 QualType ElemType,
1327 unsigned &Index,
1328 InitListExpr *StructuredList,
1329 unsigned &StructuredIndex) {
1330 Expr *expr = IList->getInit(Index);
1331
1332 if (ElemType->isReferenceType())
1333 return CheckReferenceType(Entity, IList, ElemType, Index,
1334 StructuredList, StructuredIndex);
1335
1336 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1337 if (SubInitList->getNumInits() == 1 &&
1338 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1339 SIF_None) {
1340 // FIXME: It would be more faithful and no less correct to include an
1341 // InitListExpr in the semantic form of the initializer list in this case.
1342 expr = SubInitList->getInit(0);
1343 }
1344 // Nested aggregate initialization and C++ initialization are handled later.
1345 } else if (isa<ImplicitValueInitExpr>(expr)) {
1346 // This happens during template instantiation when we see an InitListExpr
1347 // that we've already checked once.
1348 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1349 "found implicit initialization for the wrong type");
1350 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1351 ++Index;
1352 return;
1353 }
1354
1355 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1356 // C++ [dcl.init.aggr]p2:
1357 // Each member is copy-initialized from the corresponding
1358 // initializer-clause.
1359
1360 // FIXME: Better EqualLoc?
1361 InitializationKind Kind =
1362 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1363
1364 // Vector elements can be initialized from other vectors in which case
1365 // we need initialization entity with a type of a vector (and not a vector
1366 // element!) initializing multiple vector elements.
1367 auto TmpEntity =
1368 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1369 ? InitializedEntity::InitializeTemporary(ElemType)
1370 : Entity;
1371
1372 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1373 /*TopLevelOfInitList*/ true);
1374
1375 // C++14 [dcl.init.aggr]p13:
1376 // If the assignment-expression can initialize a member, the member is
1377 // initialized. Otherwise [...] brace elision is assumed
1378 //
1379 // Brace elision is never performed if the element is not an
1380 // assignment-expression.
1381 if (Seq || isa<InitListExpr>(expr)) {
1382 if (!VerifyOnly) {
1383 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1384 if (Result.isInvalid())
1385 hadError = true;
1386
1387 UpdateStructuredListElement(StructuredList, StructuredIndex,
1388 Result.getAs<Expr>());
1389 } else if (!Seq) {
1390 hadError = true;
1391 } else if (StructuredList) {
1392 UpdateStructuredListElement(StructuredList, StructuredIndex,
1393 getDummyInit());
1394 }
1395 ++Index;
1396 return;
1397 }
1398
1399 // Fall through for subaggregate initialization
1400 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1401 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1402 return CheckScalarType(Entity, IList, ElemType, Index,
1403 StructuredList, StructuredIndex);
1404 } else if (const ArrayType *arrayType =
1405 SemaRef.Context.getAsArrayType(ElemType)) {
1406 // arrayType can be incomplete if we're initializing a flexible
1407 // array member. There's nothing we can do with the completed
1408 // type here, though.
1409
1410 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1411 // FIXME: Should we do this checking in verify-only mode?
1412 if (!VerifyOnly)
1413 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1414 if (StructuredList)
1415 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1416 ++Index;
1417 return;
1418 }
1419
1420 // Fall through for subaggregate initialization.
1421
1422 } else {
1423 assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1424 ElemType->isOpenCLSpecificType()) && "Unexpected type");
1425
1426 // C99 6.7.8p13:
1427 //
1428 // The initializer for a structure or union object that has
1429 // automatic storage duration shall be either an initializer
1430 // list as described below, or a single expression that has
1431 // compatible structure or union type. In the latter case, the
1432 // initial value of the object, including unnamed members, is
1433 // that of the expression.
1434 ExprResult ExprRes = expr;
1435 if (SemaRef.CheckSingleAssignmentConstraints(
1436 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1437 if (ExprRes.isInvalid())
1438 hadError = true;
1439 else {
1440 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1441 if (ExprRes.isInvalid())
1442 hadError = true;
1443 }
1444 UpdateStructuredListElement(StructuredList, StructuredIndex,
1445 ExprRes.getAs<Expr>());
1446 ++Index;
1447 return;
1448 }
1449 ExprRes.get();
1450 // Fall through for subaggregate initialization
1451 }
1452
1453 // C++ [dcl.init.aggr]p12:
1454 //
1455 // [...] Otherwise, if the member is itself a non-empty
1456 // subaggregate, brace elision is assumed and the initializer is
1457 // considered for the initialization of the first member of
1458 // the subaggregate.
1459 // OpenCL vector initializer is handled elsewhere.
1460 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1461 ElemType->isAggregateType()) {
1462 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1463 StructuredIndex);
1464 ++StructuredIndex;
1465 } else {
1466 if (!VerifyOnly) {
1467 // We cannot initialize this element, so let PerformCopyInitialization
1468 // produce the appropriate diagnostic. We already checked that this
1469 // initialization will fail.
1470 ExprResult Copy =
1471 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1472 /*TopLevelOfInitList=*/true);
1473 (void)Copy;
1474 assert(Copy.isInvalid() &&
1475 "expected non-aggregate initialization to fail");
1476 }
1477 hadError = true;
1478 ++Index;
1479 ++StructuredIndex;
1480 }
1481 }
1482
CheckComplexType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1483 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1484 InitListExpr *IList, QualType DeclType,
1485 unsigned &Index,
1486 InitListExpr *StructuredList,
1487 unsigned &StructuredIndex) {
1488 assert(Index == 0 && "Index in explicit init list must be zero");
1489
1490 // As an extension, clang supports complex initializers, which initialize
1491 // a complex number component-wise. When an explicit initializer list for
1492 // a complex number contains two two initializers, this extension kicks in:
1493 // it exepcts the initializer list to contain two elements convertible to
1494 // the element type of the complex type. The first element initializes
1495 // the real part, and the second element intitializes the imaginary part.
1496
1497 if (IList->getNumInits() != 2)
1498 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1499 StructuredIndex);
1500
1501 // This is an extension in C. (The builtin _Complex type does not exist
1502 // in the C++ standard.)
1503 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1504 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1505 << IList->getSourceRange();
1506
1507 // Initialize the complex number.
1508 QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1509 InitializedEntity ElementEntity =
1510 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1511
1512 for (unsigned i = 0; i < 2; ++i) {
1513 ElementEntity.setElementIndex(Index);
1514 CheckSubElementType(ElementEntity, IList, elementType, Index,
1515 StructuredList, StructuredIndex);
1516 }
1517 }
1518
CheckScalarType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1519 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1520 InitListExpr *IList, QualType DeclType,
1521 unsigned &Index,
1522 InitListExpr *StructuredList,
1523 unsigned &StructuredIndex) {
1524 if (Index >= IList->getNumInits()) {
1525 if (!VerifyOnly) {
1526 if (DeclType->isSizelessBuiltinType())
1527 SemaRef.Diag(IList->getBeginLoc(),
1528 SemaRef.getLangOpts().CPlusPlus11
1529 ? diag::warn_cxx98_compat_empty_sizeless_initializer
1530 : diag::err_empty_sizeless_initializer)
1531 << DeclType << IList->getSourceRange();
1532 else
1533 SemaRef.Diag(IList->getBeginLoc(),
1534 SemaRef.getLangOpts().CPlusPlus11
1535 ? diag::warn_cxx98_compat_empty_scalar_initializer
1536 : diag::err_empty_scalar_initializer)
1537 << IList->getSourceRange();
1538 }
1539 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1540 ++Index;
1541 ++StructuredIndex;
1542 return;
1543 }
1544
1545 Expr *expr = IList->getInit(Index);
1546 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1547 // FIXME: This is invalid, and accepting it causes overload resolution
1548 // to pick the wrong overload in some corner cases.
1549 if (!VerifyOnly)
1550 SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1551 << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1552
1553 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1554 StructuredIndex);
1555 return;
1556 } else if (isa<DesignatedInitExpr>(expr)) {
1557 if (!VerifyOnly)
1558 SemaRef.Diag(expr->getBeginLoc(),
1559 diag::err_designator_for_scalar_or_sizeless_init)
1560 << DeclType->isSizelessBuiltinType() << DeclType
1561 << expr->getSourceRange();
1562 hadError = true;
1563 ++Index;
1564 ++StructuredIndex;
1565 return;
1566 }
1567
1568 ExprResult Result;
1569 if (VerifyOnly) {
1570 if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1571 Result = getDummyInit();
1572 else
1573 Result = ExprError();
1574 } else {
1575 Result =
1576 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1577 /*TopLevelOfInitList=*/true);
1578 }
1579
1580 Expr *ResultExpr = nullptr;
1581
1582 if (Result.isInvalid())
1583 hadError = true; // types weren't compatible.
1584 else {
1585 ResultExpr = Result.getAs<Expr>();
1586
1587 if (ResultExpr != expr && !VerifyOnly) {
1588 // The type was promoted, update initializer list.
1589 // FIXME: Why are we updating the syntactic init list?
1590 IList->setInit(Index, ResultExpr);
1591 }
1592 }
1593 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1594 ++Index;
1595 }
1596
CheckReferenceType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1597 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1598 InitListExpr *IList, QualType DeclType,
1599 unsigned &Index,
1600 InitListExpr *StructuredList,
1601 unsigned &StructuredIndex) {
1602 if (Index >= IList->getNumInits()) {
1603 // FIXME: It would be wonderful if we could point at the actual member. In
1604 // general, it would be useful to pass location information down the stack,
1605 // so that we know the location (or decl) of the "current object" being
1606 // initialized.
1607 if (!VerifyOnly)
1608 SemaRef.Diag(IList->getBeginLoc(),
1609 diag::err_init_reference_member_uninitialized)
1610 << DeclType << IList->getSourceRange();
1611 hadError = true;
1612 ++Index;
1613 ++StructuredIndex;
1614 return;
1615 }
1616
1617 Expr *expr = IList->getInit(Index);
1618 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1619 if (!VerifyOnly)
1620 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1621 << DeclType << IList->getSourceRange();
1622 hadError = true;
1623 ++Index;
1624 ++StructuredIndex;
1625 return;
1626 }
1627
1628 ExprResult Result;
1629 if (VerifyOnly) {
1630 if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1631 Result = getDummyInit();
1632 else
1633 Result = ExprError();
1634 } else {
1635 Result =
1636 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1637 /*TopLevelOfInitList=*/true);
1638 }
1639
1640 if (Result.isInvalid())
1641 hadError = true;
1642
1643 expr = Result.getAs<Expr>();
1644 // FIXME: Why are we updating the syntactic init list?
1645 if (!VerifyOnly && expr)
1646 IList->setInit(Index, expr);
1647
1648 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1649 ++Index;
1650 }
1651
CheckVectorType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1652 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1653 InitListExpr *IList, QualType DeclType,
1654 unsigned &Index,
1655 InitListExpr *StructuredList,
1656 unsigned &StructuredIndex) {
1657 const VectorType *VT = DeclType->castAs<VectorType>();
1658 unsigned maxElements = VT->getNumElements();
1659 unsigned numEltsInit = 0;
1660 QualType elementType = VT->getElementType();
1661
1662 if (Index >= IList->getNumInits()) {
1663 // Make sure the element type can be value-initialized.
1664 CheckEmptyInitializable(
1665 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1666 IList->getEndLoc());
1667 return;
1668 }
1669
1670 if (!SemaRef.getLangOpts().OpenCL) {
1671 // If the initializing element is a vector, try to copy-initialize
1672 // instead of breaking it apart (which is doomed to failure anyway).
1673 Expr *Init = IList->getInit(Index);
1674 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1675 ExprResult Result;
1676 if (VerifyOnly) {
1677 if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1678 Result = getDummyInit();
1679 else
1680 Result = ExprError();
1681 } else {
1682 Result =
1683 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1684 /*TopLevelOfInitList=*/true);
1685 }
1686
1687 Expr *ResultExpr = nullptr;
1688 if (Result.isInvalid())
1689 hadError = true; // types weren't compatible.
1690 else {
1691 ResultExpr = Result.getAs<Expr>();
1692
1693 if (ResultExpr != Init && !VerifyOnly) {
1694 // The type was promoted, update initializer list.
1695 // FIXME: Why are we updating the syntactic init list?
1696 IList->setInit(Index, ResultExpr);
1697 }
1698 }
1699 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1700 ++Index;
1701 return;
1702 }
1703
1704 InitializedEntity ElementEntity =
1705 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1706
1707 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1708 // Don't attempt to go past the end of the init list
1709 if (Index >= IList->getNumInits()) {
1710 CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1711 break;
1712 }
1713
1714 ElementEntity.setElementIndex(Index);
1715 CheckSubElementType(ElementEntity, IList, elementType, Index,
1716 StructuredList, StructuredIndex);
1717 }
1718
1719 if (VerifyOnly)
1720 return;
1721
1722 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1723 const VectorType *T = Entity.getType()->castAs<VectorType>();
1724 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1725 T->getVectorKind() == VectorType::NeonPolyVector)) {
1726 // The ability to use vector initializer lists is a GNU vector extension
1727 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1728 // endian machines it works fine, however on big endian machines it
1729 // exhibits surprising behaviour:
1730 //
1731 // uint32x2_t x = {42, 64};
1732 // return vget_lane_u32(x, 0); // Will return 64.
1733 //
1734 // Because of this, explicitly call out that it is non-portable.
1735 //
1736 SemaRef.Diag(IList->getBeginLoc(),
1737 diag::warn_neon_vector_initializer_non_portable);
1738
1739 const char *typeCode;
1740 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1741
1742 if (elementType->isFloatingType())
1743 typeCode = "f";
1744 else if (elementType->isSignedIntegerType())
1745 typeCode = "s";
1746 else if (elementType->isUnsignedIntegerType())
1747 typeCode = "u";
1748 else
1749 llvm_unreachable("Invalid element type!");
1750
1751 SemaRef.Diag(IList->getBeginLoc(),
1752 SemaRef.Context.getTypeSize(VT) > 64
1753 ? diag::note_neon_vector_initializer_non_portable_q
1754 : diag::note_neon_vector_initializer_non_portable)
1755 << typeCode << typeSize;
1756 }
1757
1758 return;
1759 }
1760
1761 InitializedEntity ElementEntity =
1762 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1763
1764 // OpenCL initializers allows vectors to be constructed from vectors.
1765 for (unsigned i = 0; i < maxElements; ++i) {
1766 // Don't attempt to go past the end of the init list
1767 if (Index >= IList->getNumInits())
1768 break;
1769
1770 ElementEntity.setElementIndex(Index);
1771
1772 QualType IType = IList->getInit(Index)->getType();
1773 if (!IType->isVectorType()) {
1774 CheckSubElementType(ElementEntity, IList, elementType, Index,
1775 StructuredList, StructuredIndex);
1776 ++numEltsInit;
1777 } else {
1778 QualType VecType;
1779 const VectorType *IVT = IType->castAs<VectorType>();
1780 unsigned numIElts = IVT->getNumElements();
1781
1782 if (IType->isExtVectorType())
1783 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1784 else
1785 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1786 IVT->getVectorKind());
1787 CheckSubElementType(ElementEntity, IList, VecType, Index,
1788 StructuredList, StructuredIndex);
1789 numEltsInit += numIElts;
1790 }
1791 }
1792
1793 // OpenCL requires all elements to be initialized.
1794 if (numEltsInit != maxElements) {
1795 if (!VerifyOnly)
1796 SemaRef.Diag(IList->getBeginLoc(),
1797 diag::err_vector_incorrect_num_initializers)
1798 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1799 hadError = true;
1800 }
1801 }
1802
1803 /// Check if the type of a class element has an accessible destructor, and marks
1804 /// it referenced. Returns true if we shouldn't form a reference to the
1805 /// destructor.
1806 ///
1807 /// Aggregate initialization requires a class element's destructor be
1808 /// accessible per 11.6.1 [dcl.init.aggr]:
1809 ///
1810 /// The destructor for each element of class type is potentially invoked
1811 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1812 /// occurs.
checkDestructorReference(QualType ElementType,SourceLocation Loc,Sema & SemaRef)1813 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1814 Sema &SemaRef) {
1815 auto *CXXRD = ElementType->getAsCXXRecordDecl();
1816 if (!CXXRD)
1817 return false;
1818
1819 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1820 SemaRef.CheckDestructorAccess(Loc, Destructor,
1821 SemaRef.PDiag(diag::err_access_dtor_temp)
1822 << ElementType);
1823 SemaRef.MarkFunctionReferenced(Loc, Destructor);
1824 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1825 }
1826
CheckArrayType(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,llvm::APSInt elementIndex,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1827 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1828 InitListExpr *IList, QualType &DeclType,
1829 llvm::APSInt elementIndex,
1830 bool SubobjectIsDesignatorContext,
1831 unsigned &Index,
1832 InitListExpr *StructuredList,
1833 unsigned &StructuredIndex) {
1834 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1835
1836 if (!VerifyOnly) {
1837 if (checkDestructorReference(arrayType->getElementType(),
1838 IList->getEndLoc(), SemaRef)) {
1839 hadError = true;
1840 return;
1841 }
1842 }
1843
1844 // Check for the special-case of initializing an array with a string.
1845 if (Index < IList->getNumInits()) {
1846 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1847 SIF_None) {
1848 // We place the string literal directly into the resulting
1849 // initializer list. This is the only place where the structure
1850 // of the structured initializer list doesn't match exactly,
1851 // because doing so would involve allocating one character
1852 // constant for each string.
1853 // FIXME: Should we do these checks in verify-only mode too?
1854 if (!VerifyOnly)
1855 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1856 if (StructuredList) {
1857 UpdateStructuredListElement(StructuredList, StructuredIndex,
1858 IList->getInit(Index));
1859 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1860 }
1861 ++Index;
1862 return;
1863 }
1864 }
1865 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1866 // Check for VLAs; in standard C it would be possible to check this
1867 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1868 // them in all sorts of strange places).
1869 if (!VerifyOnly)
1870 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1871 diag::err_variable_object_no_init)
1872 << VAT->getSizeExpr()->getSourceRange();
1873 hadError = true;
1874 ++Index;
1875 ++StructuredIndex;
1876 return;
1877 }
1878
1879 // We might know the maximum number of elements in advance.
1880 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1881 elementIndex.isUnsigned());
1882 bool maxElementsKnown = false;
1883 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1884 maxElements = CAT->getSize();
1885 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1886 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1887 maxElementsKnown = true;
1888 }
1889
1890 QualType elementType = arrayType->getElementType();
1891 while (Index < IList->getNumInits()) {
1892 Expr *Init = IList->getInit(Index);
1893 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1894 // If we're not the subobject that matches up with the '{' for
1895 // the designator, we shouldn't be handling the
1896 // designator. Return immediately.
1897 if (!SubobjectIsDesignatorContext)
1898 return;
1899
1900 // Handle this designated initializer. elementIndex will be
1901 // updated to be the next array element we'll initialize.
1902 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1903 DeclType, nullptr, &elementIndex, Index,
1904 StructuredList, StructuredIndex, true,
1905 false)) {
1906 hadError = true;
1907 continue;
1908 }
1909
1910 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1911 maxElements = maxElements.extend(elementIndex.getBitWidth());
1912 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1913 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1914 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1915
1916 // If the array is of incomplete type, keep track of the number of
1917 // elements in the initializer.
1918 if (!maxElementsKnown && elementIndex > maxElements)
1919 maxElements = elementIndex;
1920
1921 continue;
1922 }
1923
1924 // If we know the maximum number of elements, and we've already
1925 // hit it, stop consuming elements in the initializer list.
1926 if (maxElementsKnown && elementIndex == maxElements)
1927 break;
1928
1929 InitializedEntity ElementEntity =
1930 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1931 Entity);
1932 // Check this element.
1933 CheckSubElementType(ElementEntity, IList, elementType, Index,
1934 StructuredList, StructuredIndex);
1935 ++elementIndex;
1936
1937 // If the array is of incomplete type, keep track of the number of
1938 // elements in the initializer.
1939 if (!maxElementsKnown && elementIndex > maxElements)
1940 maxElements = elementIndex;
1941 }
1942 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1943 // If this is an incomplete array type, the actual type needs to
1944 // be calculated here.
1945 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1946 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1947 // Sizing an array implicitly to zero is not allowed by ISO C,
1948 // but is supported by GNU.
1949 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1950 }
1951
1952 DeclType = SemaRef.Context.getConstantArrayType(
1953 elementType, maxElements, nullptr, ArrayType::Normal, 0);
1954 }
1955 if (!hadError) {
1956 // If there are any members of the array that get value-initialized, check
1957 // that is possible. That happens if we know the bound and don't have
1958 // enough elements, or if we're performing an array new with an unknown
1959 // bound.
1960 if ((maxElementsKnown && elementIndex < maxElements) ||
1961 Entity.isVariableLengthArrayNew())
1962 CheckEmptyInitializable(
1963 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1964 IList->getEndLoc());
1965 }
1966 }
1967
CheckFlexibleArrayInit(const InitializedEntity & Entity,Expr * InitExpr,FieldDecl * Field,bool TopLevelObject)1968 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1969 Expr *InitExpr,
1970 FieldDecl *Field,
1971 bool TopLevelObject) {
1972 // Handle GNU flexible array initializers.
1973 unsigned FlexArrayDiag;
1974 if (isa<InitListExpr>(InitExpr) &&
1975 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1976 // Empty flexible array init always allowed as an extension
1977 FlexArrayDiag = diag::ext_flexible_array_init;
1978 } else if (SemaRef.getLangOpts().CPlusPlus) {
1979 // Disallow flexible array init in C++; it is not required for gcc
1980 // compatibility, and it needs work to IRGen correctly in general.
1981 FlexArrayDiag = diag::err_flexible_array_init;
1982 } else if (!TopLevelObject) {
1983 // Disallow flexible array init on non-top-level object
1984 FlexArrayDiag = diag::err_flexible_array_init;
1985 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1986 // Disallow flexible array init on anything which is not a variable.
1987 FlexArrayDiag = diag::err_flexible_array_init;
1988 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1989 // Disallow flexible array init on local variables.
1990 FlexArrayDiag = diag::err_flexible_array_init;
1991 } else {
1992 // Allow other cases.
1993 FlexArrayDiag = diag::ext_flexible_array_init;
1994 }
1995
1996 if (!VerifyOnly) {
1997 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1998 << InitExpr->getBeginLoc();
1999 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2000 << Field;
2001 }
2002
2003 return FlexArrayDiag != diag::ext_flexible_array_init;
2004 }
2005
CheckStructUnionTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,CXXRecordDecl::base_class_range Bases,RecordDecl::field_iterator Field,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)2006 void InitListChecker::CheckStructUnionTypes(
2007 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2008 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2009 bool SubobjectIsDesignatorContext, unsigned &Index,
2010 InitListExpr *StructuredList, unsigned &StructuredIndex,
2011 bool TopLevelObject) {
2012 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2013
2014 // If the record is invalid, some of it's members are invalid. To avoid
2015 // confusion, we forgo checking the intializer for the entire record.
2016 if (structDecl->isInvalidDecl()) {
2017 // Assume it was supposed to consume a single initializer.
2018 ++Index;
2019 hadError = true;
2020 return;
2021 }
2022
2023 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2024 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2025
2026 if (!VerifyOnly)
2027 for (FieldDecl *FD : RD->fields()) {
2028 QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2029 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2030 hadError = true;
2031 return;
2032 }
2033 }
2034
2035 // If there's a default initializer, use it.
2036 if (isa<CXXRecordDecl>(RD) &&
2037 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2038 if (!StructuredList)
2039 return;
2040 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2041 Field != FieldEnd; ++Field) {
2042 if (Field->hasInClassInitializer()) {
2043 StructuredList->setInitializedFieldInUnion(*Field);
2044 // FIXME: Actually build a CXXDefaultInitExpr?
2045 return;
2046 }
2047 }
2048 }
2049
2050 // Value-initialize the first member of the union that isn't an unnamed
2051 // bitfield.
2052 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2053 Field != FieldEnd; ++Field) {
2054 if (!Field->isUnnamedBitfield()) {
2055 CheckEmptyInitializable(
2056 InitializedEntity::InitializeMember(*Field, &Entity),
2057 IList->getEndLoc());
2058 if (StructuredList)
2059 StructuredList->setInitializedFieldInUnion(*Field);
2060 break;
2061 }
2062 }
2063 return;
2064 }
2065
2066 bool InitializedSomething = false;
2067
2068 // If we have any base classes, they are initialized prior to the fields.
2069 for (auto &Base : Bases) {
2070 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2071
2072 // Designated inits always initialize fields, so if we see one, all
2073 // remaining base classes have no explicit initializer.
2074 if (Init && isa<DesignatedInitExpr>(Init))
2075 Init = nullptr;
2076
2077 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2078 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2079 SemaRef.Context, &Base, false, &Entity);
2080 if (Init) {
2081 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2082 StructuredList, StructuredIndex);
2083 InitializedSomething = true;
2084 } else {
2085 CheckEmptyInitializable(BaseEntity, InitLoc);
2086 }
2087
2088 if (!VerifyOnly)
2089 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2090 hadError = true;
2091 return;
2092 }
2093 }
2094
2095 // If structDecl is a forward declaration, this loop won't do
2096 // anything except look at designated initializers; That's okay,
2097 // because an error should get printed out elsewhere. It might be
2098 // worthwhile to skip over the rest of the initializer, though.
2099 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2100 RecordDecl::field_iterator FieldEnd = RD->field_end();
2101 bool CheckForMissingFields =
2102 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2103 bool HasDesignatedInit = false;
2104
2105 while (Index < IList->getNumInits()) {
2106 Expr *Init = IList->getInit(Index);
2107 SourceLocation InitLoc = Init->getBeginLoc();
2108
2109 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2110 // If we're not the subobject that matches up with the '{' for
2111 // the designator, we shouldn't be handling the
2112 // designator. Return immediately.
2113 if (!SubobjectIsDesignatorContext)
2114 return;
2115
2116 HasDesignatedInit = true;
2117
2118 // Handle this designated initializer. Field will be updated to
2119 // the next field that we'll be initializing.
2120 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2121 DeclType, &Field, nullptr, Index,
2122 StructuredList, StructuredIndex,
2123 true, TopLevelObject))
2124 hadError = true;
2125 else if (!VerifyOnly) {
2126 // Find the field named by the designated initializer.
2127 RecordDecl::field_iterator F = RD->field_begin();
2128 while (std::next(F) != Field)
2129 ++F;
2130 QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2131 if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2132 hadError = true;
2133 return;
2134 }
2135 }
2136
2137 InitializedSomething = true;
2138
2139 // Disable check for missing fields when designators are used.
2140 // This matches gcc behaviour.
2141 CheckForMissingFields = false;
2142 continue;
2143 }
2144
2145 if (Field == FieldEnd) {
2146 // We've run out of fields. We're done.
2147 break;
2148 }
2149
2150 // We've already initialized a member of a union. We're done.
2151 if (InitializedSomething && DeclType->isUnionType())
2152 break;
2153
2154 // If we've hit the flexible array member at the end, we're done.
2155 if (Field->getType()->isIncompleteArrayType())
2156 break;
2157
2158 if (Field->isUnnamedBitfield()) {
2159 // Don't initialize unnamed bitfields, e.g. "int : 20;"
2160 ++Field;
2161 continue;
2162 }
2163
2164 // Make sure we can use this declaration.
2165 bool InvalidUse;
2166 if (VerifyOnly)
2167 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2168 else
2169 InvalidUse = SemaRef.DiagnoseUseOfDecl(
2170 *Field, IList->getInit(Index)->getBeginLoc());
2171 if (InvalidUse) {
2172 ++Index;
2173 ++Field;
2174 hadError = true;
2175 continue;
2176 }
2177
2178 if (!VerifyOnly) {
2179 QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2180 if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2181 hadError = true;
2182 return;
2183 }
2184 }
2185
2186 InitializedEntity MemberEntity =
2187 InitializedEntity::InitializeMember(*Field, &Entity);
2188 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2189 StructuredList, StructuredIndex);
2190 InitializedSomething = true;
2191
2192 if (DeclType->isUnionType() && StructuredList) {
2193 // Initialize the first field within the union.
2194 StructuredList->setInitializedFieldInUnion(*Field);
2195 }
2196
2197 ++Field;
2198 }
2199
2200 // Emit warnings for missing struct field initializers.
2201 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2202 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2203 !DeclType->isUnionType()) {
2204 // It is possible we have one or more unnamed bitfields remaining.
2205 // Find first (if any) named field and emit warning.
2206 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2207 it != end; ++it) {
2208 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2209 SemaRef.Diag(IList->getSourceRange().getEnd(),
2210 diag::warn_missing_field_initializers) << *it;
2211 break;
2212 }
2213 }
2214 }
2215
2216 // Check that any remaining fields can be value-initialized if we're not
2217 // building a structured list. (If we are, we'll check this later.)
2218 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2219 !Field->getType()->isIncompleteArrayType()) {
2220 for (; Field != FieldEnd && !hadError; ++Field) {
2221 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2222 CheckEmptyInitializable(
2223 InitializedEntity::InitializeMember(*Field, &Entity),
2224 IList->getEndLoc());
2225 }
2226 }
2227
2228 // Check that the types of the remaining fields have accessible destructors.
2229 if (!VerifyOnly) {
2230 // If the initializer expression has a designated initializer, check the
2231 // elements for which a designated initializer is not provided too.
2232 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2233 : Field;
2234 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2235 QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2236 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2237 hadError = true;
2238 return;
2239 }
2240 }
2241 }
2242
2243 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2244 Index >= IList->getNumInits())
2245 return;
2246
2247 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2248 TopLevelObject)) {
2249 hadError = true;
2250 ++Index;
2251 return;
2252 }
2253
2254 InitializedEntity MemberEntity =
2255 InitializedEntity::InitializeMember(*Field, &Entity);
2256
2257 if (isa<InitListExpr>(IList->getInit(Index)))
2258 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2259 StructuredList, StructuredIndex);
2260 else
2261 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2262 StructuredList, StructuredIndex);
2263 }
2264
2265 /// Expand a field designator that refers to a member of an
2266 /// anonymous struct or union into a series of field designators that
2267 /// refers to the field within the appropriate subobject.
2268 ///
ExpandAnonymousFieldDesignator(Sema & SemaRef,DesignatedInitExpr * DIE,unsigned DesigIdx,IndirectFieldDecl * IndirectField)2269 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2270 DesignatedInitExpr *DIE,
2271 unsigned DesigIdx,
2272 IndirectFieldDecl *IndirectField) {
2273 typedef DesignatedInitExpr::Designator Designator;
2274
2275 // Build the replacement designators.
2276 SmallVector<Designator, 4> Replacements;
2277 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2278 PE = IndirectField->chain_end(); PI != PE; ++PI) {
2279 if (PI + 1 == PE)
2280 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2281 DIE->getDesignator(DesigIdx)->getDotLoc(),
2282 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2283 else
2284 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2285 SourceLocation(), SourceLocation()));
2286 assert(isa<FieldDecl>(*PI));
2287 Replacements.back().setField(cast<FieldDecl>(*PI));
2288 }
2289
2290 // Expand the current designator into the set of replacement
2291 // designators, so we have a full subobject path down to where the
2292 // member of the anonymous struct/union is actually stored.
2293 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2294 &Replacements[0] + Replacements.size());
2295 }
2296
CloneDesignatedInitExpr(Sema & SemaRef,DesignatedInitExpr * DIE)2297 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2298 DesignatedInitExpr *DIE) {
2299 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2300 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2301 for (unsigned I = 0; I < NumIndexExprs; ++I)
2302 IndexExprs[I] = DIE->getSubExpr(I + 1);
2303 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2304 IndexExprs,
2305 DIE->getEqualOrColonLoc(),
2306 DIE->usesGNUSyntax(), DIE->getInit());
2307 }
2308
2309 namespace {
2310
2311 // Callback to only accept typo corrections that are for field members of
2312 // the given struct or union.
2313 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2314 public:
FieldInitializerValidatorCCC(RecordDecl * RD)2315 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2316 : Record(RD) {}
2317
ValidateCandidate(const TypoCorrection & candidate)2318 bool ValidateCandidate(const TypoCorrection &candidate) override {
2319 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2320 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2321 }
2322
clone()2323 std::unique_ptr<CorrectionCandidateCallback> clone() override {
2324 return std::make_unique<FieldInitializerValidatorCCC>(*this);
2325 }
2326
2327 private:
2328 RecordDecl *Record;
2329 };
2330
2331 } // end anonymous namespace
2332
2333 /// Check the well-formedness of a C99 designated initializer.
2334 ///
2335 /// Determines whether the designated initializer @p DIE, which
2336 /// resides at the given @p Index within the initializer list @p
2337 /// IList, is well-formed for a current object of type @p DeclType
2338 /// (C99 6.7.8). The actual subobject that this designator refers to
2339 /// within the current subobject is returned in either
2340 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2341 ///
2342 /// @param IList The initializer list in which this designated
2343 /// initializer occurs.
2344 ///
2345 /// @param DIE The designated initializer expression.
2346 ///
2347 /// @param DesigIdx The index of the current designator.
2348 ///
2349 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2350 /// into which the designation in @p DIE should refer.
2351 ///
2352 /// @param NextField If non-NULL and the first designator in @p DIE is
2353 /// a field, this will be set to the field declaration corresponding
2354 /// to the field named by the designator. On input, this is expected to be
2355 /// the next field that would be initialized in the absence of designation,
2356 /// if the complete object being initialized is a struct.
2357 ///
2358 /// @param NextElementIndex If non-NULL and the first designator in @p
2359 /// DIE is an array designator or GNU array-range designator, this
2360 /// will be set to the last index initialized by this designator.
2361 ///
2362 /// @param Index Index into @p IList where the designated initializer
2363 /// @p DIE occurs.
2364 ///
2365 /// @param StructuredList The initializer list expression that
2366 /// describes all of the subobject initializers in the order they'll
2367 /// actually be initialized.
2368 ///
2369 /// @returns true if there was an error, false otherwise.
2370 bool
CheckDesignatedInitializer(const InitializedEntity & Entity,InitListExpr * IList,DesignatedInitExpr * DIE,unsigned DesigIdx,QualType & CurrentObjectType,RecordDecl::field_iterator * NextField,llvm::APSInt * NextElementIndex,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool FinishSubobjectInit,bool TopLevelObject)2371 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2372 InitListExpr *IList,
2373 DesignatedInitExpr *DIE,
2374 unsigned DesigIdx,
2375 QualType &CurrentObjectType,
2376 RecordDecl::field_iterator *NextField,
2377 llvm::APSInt *NextElementIndex,
2378 unsigned &Index,
2379 InitListExpr *StructuredList,
2380 unsigned &StructuredIndex,
2381 bool FinishSubobjectInit,
2382 bool TopLevelObject) {
2383 if (DesigIdx == DIE->size()) {
2384 // C++20 designated initialization can result in direct-list-initialization
2385 // of the designated subobject. This is the only way that we can end up
2386 // performing direct initialization as part of aggregate initialization, so
2387 // it needs special handling.
2388 if (DIE->isDirectInit()) {
2389 Expr *Init = DIE->getInit();
2390 assert(isa<InitListExpr>(Init) &&
2391 "designator result in direct non-list initialization?");
2392 InitializationKind Kind = InitializationKind::CreateDirectList(
2393 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2394 InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2395 /*TopLevelOfInitList*/ true);
2396 if (StructuredList) {
2397 ExprResult Result = VerifyOnly
2398 ? getDummyInit()
2399 : Seq.Perform(SemaRef, Entity, Kind, Init);
2400 UpdateStructuredListElement(StructuredList, StructuredIndex,
2401 Result.get());
2402 }
2403 ++Index;
2404 return !Seq;
2405 }
2406
2407 // Check the actual initialization for the designated object type.
2408 bool prevHadError = hadError;
2409
2410 // Temporarily remove the designator expression from the
2411 // initializer list that the child calls see, so that we don't try
2412 // to re-process the designator.
2413 unsigned OldIndex = Index;
2414 IList->setInit(OldIndex, DIE->getInit());
2415
2416 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2417 StructuredList, StructuredIndex);
2418
2419 // Restore the designated initializer expression in the syntactic
2420 // form of the initializer list.
2421 if (IList->getInit(OldIndex) != DIE->getInit())
2422 DIE->setInit(IList->getInit(OldIndex));
2423 IList->setInit(OldIndex, DIE);
2424
2425 return hadError && !prevHadError;
2426 }
2427
2428 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2429 bool IsFirstDesignator = (DesigIdx == 0);
2430 if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2431 // Determine the structural initializer list that corresponds to the
2432 // current subobject.
2433 if (IsFirstDesignator)
2434 StructuredList = FullyStructuredList;
2435 else {
2436 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2437 StructuredList->getInit(StructuredIndex) : nullptr;
2438 if (!ExistingInit && StructuredList->hasArrayFiller())
2439 ExistingInit = StructuredList->getArrayFiller();
2440
2441 if (!ExistingInit)
2442 StructuredList = getStructuredSubobjectInit(
2443 IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2444 SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2445 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2446 StructuredList = Result;
2447 else {
2448 // We are creating an initializer list that initializes the
2449 // subobjects of the current object, but there was already an
2450 // initialization that completely initialized the current
2451 // subobject, e.g., by a compound literal:
2452 //
2453 // struct X { int a, b; };
2454 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2455 //
2456 // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2457 // designated initializer re-initializes only its current object
2458 // subobject [0].b.
2459 diagnoseInitOverride(ExistingInit,
2460 SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2461 /*FullyOverwritten=*/false);
2462
2463 if (!VerifyOnly) {
2464 if (DesignatedInitUpdateExpr *E =
2465 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2466 StructuredList = E->getUpdater();
2467 else {
2468 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2469 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2470 ExistingInit, DIE->getEndLoc());
2471 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2472 StructuredList = DIUE->getUpdater();
2473 }
2474 } else {
2475 // We don't need to track the structured representation of a
2476 // designated init update of an already-fully-initialized object in
2477 // verify-only mode. The only reason we would need the structure is
2478 // to determine where the uninitialized "holes" are, and in this
2479 // case, we know there aren't any and we can't introduce any.
2480 StructuredList = nullptr;
2481 }
2482 }
2483 }
2484 }
2485
2486 if (D->isFieldDesignator()) {
2487 // C99 6.7.8p7:
2488 //
2489 // If a designator has the form
2490 //
2491 // . identifier
2492 //
2493 // then the current object (defined below) shall have
2494 // structure or union type and the identifier shall be the
2495 // name of a member of that type.
2496 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2497 if (!RT) {
2498 SourceLocation Loc = D->getDotLoc();
2499 if (Loc.isInvalid())
2500 Loc = D->getFieldLoc();
2501 if (!VerifyOnly)
2502 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2503 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2504 ++Index;
2505 return true;
2506 }
2507
2508 FieldDecl *KnownField = D->getField();
2509 if (!KnownField) {
2510 IdentifierInfo *FieldName = D->getFieldName();
2511 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2512 for (NamedDecl *ND : Lookup) {
2513 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2514 KnownField = FD;
2515 break;
2516 }
2517 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2518 // In verify mode, don't modify the original.
2519 if (VerifyOnly)
2520 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2521 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2522 D = DIE->getDesignator(DesigIdx);
2523 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2524 break;
2525 }
2526 }
2527 if (!KnownField) {
2528 if (VerifyOnly) {
2529 ++Index;
2530 return true; // No typo correction when just trying this out.
2531 }
2532
2533 // Name lookup found something, but it wasn't a field.
2534 if (!Lookup.empty()) {
2535 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2536 << FieldName;
2537 SemaRef.Diag(Lookup.front()->getLocation(),
2538 diag::note_field_designator_found);
2539 ++Index;
2540 return true;
2541 }
2542
2543 // Name lookup didn't find anything.
2544 // Determine whether this was a typo for another field name.
2545 FieldInitializerValidatorCCC CCC(RT->getDecl());
2546 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2547 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2548 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2549 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2550 SemaRef.diagnoseTypo(
2551 Corrected,
2552 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2553 << FieldName << CurrentObjectType);
2554 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2555 hadError = true;
2556 } else {
2557 // Typo correction didn't find anything.
2558 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2559 << FieldName << CurrentObjectType;
2560 ++Index;
2561 return true;
2562 }
2563 }
2564 }
2565
2566 unsigned NumBases = 0;
2567 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2568 NumBases = CXXRD->getNumBases();
2569
2570 unsigned FieldIndex = NumBases;
2571
2572 for (auto *FI : RT->getDecl()->fields()) {
2573 if (FI->isUnnamedBitfield())
2574 continue;
2575 if (declaresSameEntity(KnownField, FI)) {
2576 KnownField = FI;
2577 break;
2578 }
2579 ++FieldIndex;
2580 }
2581
2582 RecordDecl::field_iterator Field =
2583 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2584
2585 // All of the fields of a union are located at the same place in
2586 // the initializer list.
2587 if (RT->getDecl()->isUnion()) {
2588 FieldIndex = 0;
2589 if (StructuredList) {
2590 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2591 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2592 assert(StructuredList->getNumInits() == 1
2593 && "A union should never have more than one initializer!");
2594
2595 Expr *ExistingInit = StructuredList->getInit(0);
2596 if (ExistingInit) {
2597 // We're about to throw away an initializer, emit warning.
2598 diagnoseInitOverride(
2599 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2600 }
2601
2602 // remove existing initializer
2603 StructuredList->resizeInits(SemaRef.Context, 0);
2604 StructuredList->setInitializedFieldInUnion(nullptr);
2605 }
2606
2607 StructuredList->setInitializedFieldInUnion(*Field);
2608 }
2609 }
2610
2611 // Make sure we can use this declaration.
2612 bool InvalidUse;
2613 if (VerifyOnly)
2614 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2615 else
2616 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2617 if (InvalidUse) {
2618 ++Index;
2619 return true;
2620 }
2621
2622 // C++20 [dcl.init.list]p3:
2623 // The ordered identifiers in the designators of the designated-
2624 // initializer-list shall form a subsequence of the ordered identifiers
2625 // in the direct non-static data members of T.
2626 //
2627 // Note that this is not a condition on forming the aggregate
2628 // initialization, only on actually performing initialization,
2629 // so it is not checked in VerifyOnly mode.
2630 //
2631 // FIXME: This is the only reordering diagnostic we produce, and it only
2632 // catches cases where we have a top-level field designator that jumps
2633 // backwards. This is the only such case that is reachable in an
2634 // otherwise-valid C++20 program, so is the only case that's required for
2635 // conformance, but for consistency, we should diagnose all the other
2636 // cases where a designator takes us backwards too.
2637 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2638 NextField &&
2639 (*NextField == RT->getDecl()->field_end() ||
2640 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2641 // Find the field that we just initialized.
2642 FieldDecl *PrevField = nullptr;
2643 for (auto FI = RT->getDecl()->field_begin();
2644 FI != RT->getDecl()->field_end(); ++FI) {
2645 if (FI->isUnnamedBitfield())
2646 continue;
2647 if (*NextField != RT->getDecl()->field_end() &&
2648 declaresSameEntity(*FI, **NextField))
2649 break;
2650 PrevField = *FI;
2651 }
2652
2653 if (PrevField &&
2654 PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2655 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2656 << KnownField << PrevField << DIE->getSourceRange();
2657
2658 unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2659 if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2660 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2661 SemaRef.Diag(PrevInit->getBeginLoc(),
2662 diag::note_previous_field_init)
2663 << PrevField << PrevInit->getSourceRange();
2664 }
2665 }
2666 }
2667 }
2668
2669
2670 // Update the designator with the field declaration.
2671 if (!VerifyOnly)
2672 D->setField(*Field);
2673
2674 // Make sure that our non-designated initializer list has space
2675 // for a subobject corresponding to this field.
2676 if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2677 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2678
2679 // This designator names a flexible array member.
2680 if (Field->getType()->isIncompleteArrayType()) {
2681 bool Invalid = false;
2682 if ((DesigIdx + 1) != DIE->size()) {
2683 // We can't designate an object within the flexible array
2684 // member (because GCC doesn't allow it).
2685 if (!VerifyOnly) {
2686 DesignatedInitExpr::Designator *NextD
2687 = DIE->getDesignator(DesigIdx + 1);
2688 SemaRef.Diag(NextD->getBeginLoc(),
2689 diag::err_designator_into_flexible_array_member)
2690 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2691 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2692 << *Field;
2693 }
2694 Invalid = true;
2695 }
2696
2697 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2698 !isa<StringLiteral>(DIE->getInit())) {
2699 // The initializer is not an initializer list.
2700 if (!VerifyOnly) {
2701 SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2702 diag::err_flexible_array_init_needs_braces)
2703 << DIE->getInit()->getSourceRange();
2704 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2705 << *Field;
2706 }
2707 Invalid = true;
2708 }
2709
2710 // Check GNU flexible array initializer.
2711 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2712 TopLevelObject))
2713 Invalid = true;
2714
2715 if (Invalid) {
2716 ++Index;
2717 return true;
2718 }
2719
2720 // Initialize the array.
2721 bool prevHadError = hadError;
2722 unsigned newStructuredIndex = FieldIndex;
2723 unsigned OldIndex = Index;
2724 IList->setInit(Index, DIE->getInit());
2725
2726 InitializedEntity MemberEntity =
2727 InitializedEntity::InitializeMember(*Field, &Entity);
2728 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2729 StructuredList, newStructuredIndex);
2730
2731 IList->setInit(OldIndex, DIE);
2732 if (hadError && !prevHadError) {
2733 ++Field;
2734 ++FieldIndex;
2735 if (NextField)
2736 *NextField = Field;
2737 StructuredIndex = FieldIndex;
2738 return true;
2739 }
2740 } else {
2741 // Recurse to check later designated subobjects.
2742 QualType FieldType = Field->getType();
2743 unsigned newStructuredIndex = FieldIndex;
2744
2745 InitializedEntity MemberEntity =
2746 InitializedEntity::InitializeMember(*Field, &Entity);
2747 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2748 FieldType, nullptr, nullptr, Index,
2749 StructuredList, newStructuredIndex,
2750 FinishSubobjectInit, false))
2751 return true;
2752 }
2753
2754 // Find the position of the next field to be initialized in this
2755 // subobject.
2756 ++Field;
2757 ++FieldIndex;
2758
2759 // If this the first designator, our caller will continue checking
2760 // the rest of this struct/class/union subobject.
2761 if (IsFirstDesignator) {
2762 if (NextField)
2763 *NextField = Field;
2764 StructuredIndex = FieldIndex;
2765 return false;
2766 }
2767
2768 if (!FinishSubobjectInit)
2769 return false;
2770
2771 // We've already initialized something in the union; we're done.
2772 if (RT->getDecl()->isUnion())
2773 return hadError;
2774
2775 // Check the remaining fields within this class/struct/union subobject.
2776 bool prevHadError = hadError;
2777
2778 auto NoBases =
2779 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2780 CXXRecordDecl::base_class_iterator());
2781 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2782 false, Index, StructuredList, FieldIndex);
2783 return hadError && !prevHadError;
2784 }
2785
2786 // C99 6.7.8p6:
2787 //
2788 // If a designator has the form
2789 //
2790 // [ constant-expression ]
2791 //
2792 // then the current object (defined below) shall have array
2793 // type and the expression shall be an integer constant
2794 // expression. If the array is of unknown size, any
2795 // nonnegative value is valid.
2796 //
2797 // Additionally, cope with the GNU extension that permits
2798 // designators of the form
2799 //
2800 // [ constant-expression ... constant-expression ]
2801 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2802 if (!AT) {
2803 if (!VerifyOnly)
2804 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2805 << CurrentObjectType;
2806 ++Index;
2807 return true;
2808 }
2809
2810 Expr *IndexExpr = nullptr;
2811 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2812 if (D->isArrayDesignator()) {
2813 IndexExpr = DIE->getArrayIndex(*D);
2814 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2815 DesignatedEndIndex = DesignatedStartIndex;
2816 } else {
2817 assert(D->isArrayRangeDesignator() && "Need array-range designator");
2818
2819 DesignatedStartIndex =
2820 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2821 DesignatedEndIndex =
2822 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2823 IndexExpr = DIE->getArrayRangeEnd(*D);
2824
2825 // Codegen can't handle evaluating array range designators that have side
2826 // effects, because we replicate the AST value for each initialized element.
2827 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2828 // elements with something that has a side effect, so codegen can emit an
2829 // "error unsupported" error instead of miscompiling the app.
2830 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2831 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2832 FullyStructuredList->sawArrayRangeDesignator();
2833 }
2834
2835 if (isa<ConstantArrayType>(AT)) {
2836 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2837 DesignatedStartIndex
2838 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2839 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2840 DesignatedEndIndex
2841 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2842 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2843 if (DesignatedEndIndex >= MaxElements) {
2844 if (!VerifyOnly)
2845 SemaRef.Diag(IndexExpr->getBeginLoc(),
2846 diag::err_array_designator_too_large)
2847 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2848 << IndexExpr->getSourceRange();
2849 ++Index;
2850 return true;
2851 }
2852 } else {
2853 unsigned DesignatedIndexBitWidth =
2854 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2855 DesignatedStartIndex =
2856 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2857 DesignatedEndIndex =
2858 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2859 DesignatedStartIndex.setIsUnsigned(true);
2860 DesignatedEndIndex.setIsUnsigned(true);
2861 }
2862
2863 bool IsStringLiteralInitUpdate =
2864 StructuredList && StructuredList->isStringLiteralInit();
2865 if (IsStringLiteralInitUpdate && VerifyOnly) {
2866 // We're just verifying an update to a string literal init. We don't need
2867 // to split the string up into individual characters to do that.
2868 StructuredList = nullptr;
2869 } else if (IsStringLiteralInitUpdate) {
2870 // We're modifying a string literal init; we have to decompose the string
2871 // so we can modify the individual characters.
2872 ASTContext &Context = SemaRef.Context;
2873 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2874
2875 // Compute the character type
2876 QualType CharTy = AT->getElementType();
2877
2878 // Compute the type of the integer literals.
2879 QualType PromotedCharTy = CharTy;
2880 if (CharTy->isPromotableIntegerType())
2881 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2882 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2883
2884 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2885 // Get the length of the string.
2886 uint64_t StrLen = SL->getLength();
2887 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2888 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2889 StructuredList->resizeInits(Context, StrLen);
2890
2891 // Build a literal for each character in the string, and put them into
2892 // the init list.
2893 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2894 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2895 Expr *Init = new (Context) IntegerLiteral(
2896 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2897 if (CharTy != PromotedCharTy)
2898 Init =
2899 ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init,
2900 nullptr, VK_RValue, FPOptionsOverride());
2901 StructuredList->updateInit(Context, i, Init);
2902 }
2903 } else {
2904 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2905 std::string Str;
2906 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2907
2908 // Get the length of the string.
2909 uint64_t StrLen = Str.size();
2910 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2911 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2912 StructuredList->resizeInits(Context, StrLen);
2913
2914 // Build a literal for each character in the string, and put them into
2915 // the init list.
2916 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2917 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2918 Expr *Init = new (Context) IntegerLiteral(
2919 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2920 if (CharTy != PromotedCharTy)
2921 Init =
2922 ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init,
2923 nullptr, VK_RValue, FPOptionsOverride());
2924 StructuredList->updateInit(Context, i, Init);
2925 }
2926 }
2927 }
2928
2929 // Make sure that our non-designated initializer list has space
2930 // for a subobject corresponding to this array element.
2931 if (StructuredList &&
2932 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2933 StructuredList->resizeInits(SemaRef.Context,
2934 DesignatedEndIndex.getZExtValue() + 1);
2935
2936 // Repeatedly perform subobject initializations in the range
2937 // [DesignatedStartIndex, DesignatedEndIndex].
2938
2939 // Move to the next designator
2940 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2941 unsigned OldIndex = Index;
2942
2943 InitializedEntity ElementEntity =
2944 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2945
2946 while (DesignatedStartIndex <= DesignatedEndIndex) {
2947 // Recurse to check later designated subobjects.
2948 QualType ElementType = AT->getElementType();
2949 Index = OldIndex;
2950
2951 ElementEntity.setElementIndex(ElementIndex);
2952 if (CheckDesignatedInitializer(
2953 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2954 nullptr, Index, StructuredList, ElementIndex,
2955 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2956 false))
2957 return true;
2958
2959 // Move to the next index in the array that we'll be initializing.
2960 ++DesignatedStartIndex;
2961 ElementIndex = DesignatedStartIndex.getZExtValue();
2962 }
2963
2964 // If this the first designator, our caller will continue checking
2965 // the rest of this array subobject.
2966 if (IsFirstDesignator) {
2967 if (NextElementIndex)
2968 *NextElementIndex = DesignatedStartIndex;
2969 StructuredIndex = ElementIndex;
2970 return false;
2971 }
2972
2973 if (!FinishSubobjectInit)
2974 return false;
2975
2976 // Check the remaining elements within this array subobject.
2977 bool prevHadError = hadError;
2978 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2979 /*SubobjectIsDesignatorContext=*/false, Index,
2980 StructuredList, ElementIndex);
2981 return hadError && !prevHadError;
2982 }
2983
2984 // Get the structured initializer list for a subobject of type
2985 // @p CurrentObjectType.
2986 InitListExpr *
getStructuredSubobjectInit(InitListExpr * IList,unsigned Index,QualType CurrentObjectType,InitListExpr * StructuredList,unsigned StructuredIndex,SourceRange InitRange,bool IsFullyOverwritten)2987 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2988 QualType CurrentObjectType,
2989 InitListExpr *StructuredList,
2990 unsigned StructuredIndex,
2991 SourceRange InitRange,
2992 bool IsFullyOverwritten) {
2993 if (!StructuredList)
2994 return nullptr;
2995
2996 Expr *ExistingInit = nullptr;
2997 if (StructuredIndex < StructuredList->getNumInits())
2998 ExistingInit = StructuredList->getInit(StructuredIndex);
2999
3000 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3001 // There might have already been initializers for subobjects of the current
3002 // object, but a subsequent initializer list will overwrite the entirety
3003 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3004 //
3005 // struct P { char x[6]; };
3006 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3007 //
3008 // The first designated initializer is ignored, and l.x is just "f".
3009 if (!IsFullyOverwritten)
3010 return Result;
3011
3012 if (ExistingInit) {
3013 // We are creating an initializer list that initializes the
3014 // subobjects of the current object, but there was already an
3015 // initialization that completely initialized the current
3016 // subobject:
3017 //
3018 // struct X { int a, b; };
3019 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3020 //
3021 // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3022 // designated initializer overwrites the [0].b initializer
3023 // from the prior initialization.
3024 //
3025 // When the existing initializer is an expression rather than an
3026 // initializer list, we cannot decompose and update it in this way.
3027 // For example:
3028 //
3029 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3030 //
3031 // This case is handled by CheckDesignatedInitializer.
3032 diagnoseInitOverride(ExistingInit, InitRange);
3033 }
3034
3035 unsigned ExpectedNumInits = 0;
3036 if (Index < IList->getNumInits()) {
3037 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3038 ExpectedNumInits = Init->getNumInits();
3039 else
3040 ExpectedNumInits = IList->getNumInits() - Index;
3041 }
3042
3043 InitListExpr *Result =
3044 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3045
3046 // Link this new initializer list into the structured initializer
3047 // lists.
3048 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3049 return Result;
3050 }
3051
3052 InitListExpr *
createInitListExpr(QualType CurrentObjectType,SourceRange InitRange,unsigned ExpectedNumInits)3053 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3054 SourceRange InitRange,
3055 unsigned ExpectedNumInits) {
3056 InitListExpr *Result
3057 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3058 InitRange.getBegin(), None,
3059 InitRange.getEnd());
3060
3061 QualType ResultType = CurrentObjectType;
3062 if (!ResultType->isArrayType())
3063 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3064 Result->setType(ResultType);
3065
3066 // Pre-allocate storage for the structured initializer list.
3067 unsigned NumElements = 0;
3068
3069 if (const ArrayType *AType
3070 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3071 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3072 NumElements = CAType->getSize().getZExtValue();
3073 // Simple heuristic so that we don't allocate a very large
3074 // initializer with many empty entries at the end.
3075 if (NumElements > ExpectedNumInits)
3076 NumElements = 0;
3077 }
3078 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3079 NumElements = VType->getNumElements();
3080 } else if (CurrentObjectType->isRecordType()) {
3081 NumElements = numStructUnionElements(CurrentObjectType);
3082 }
3083
3084 Result->reserveInits(SemaRef.Context, NumElements);
3085
3086 return Result;
3087 }
3088
3089 /// Update the initializer at index @p StructuredIndex within the
3090 /// structured initializer list to the value @p expr.
UpdateStructuredListElement(InitListExpr * StructuredList,unsigned & StructuredIndex,Expr * expr)3091 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3092 unsigned &StructuredIndex,
3093 Expr *expr) {
3094 // No structured initializer list to update
3095 if (!StructuredList)
3096 return;
3097
3098 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3099 StructuredIndex, expr)) {
3100 // This initializer overwrites a previous initializer.
3101 // No need to diagnose when `expr` is nullptr because a more relevant
3102 // diagnostic has already been issued and this diagnostic is potentially
3103 // noise.
3104 if (expr)
3105 diagnoseInitOverride(PrevInit, expr->getSourceRange());
3106 }
3107
3108 ++StructuredIndex;
3109 }
3110
3111 /// Determine whether we can perform aggregate initialization for the purposes
3112 /// of overload resolution.
CanPerformAggregateInitializationForOverloadResolution(const InitializedEntity & Entity,InitListExpr * From)3113 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3114 const InitializedEntity &Entity, InitListExpr *From) {
3115 QualType Type = Entity.getType();
3116 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3117 /*TreatUnavailableAsInvalid=*/false,
3118 /*InOverloadResolution=*/true);
3119 return !Check.HadError();
3120 }
3121
3122 /// Check that the given Index expression is a valid array designator
3123 /// value. This is essentially just a wrapper around
3124 /// VerifyIntegerConstantExpression that also checks for negative values
3125 /// and produces a reasonable diagnostic if there is a
3126 /// failure. Returns the index expression, possibly with an implicit cast
3127 /// added, on success. If everything went okay, Value will receive the
3128 /// value of the constant expression.
3129 static ExprResult
CheckArrayDesignatorExpr(Sema & S,Expr * Index,llvm::APSInt & Value)3130 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3131 SourceLocation Loc = Index->getBeginLoc();
3132
3133 // Make sure this is an integer constant expression.
3134 ExprResult Result =
3135 S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3136 if (Result.isInvalid())
3137 return Result;
3138
3139 if (Value.isSigned() && Value.isNegative())
3140 return S.Diag(Loc, diag::err_array_designator_negative)
3141 << Value.toString(10) << Index->getSourceRange();
3142
3143 Value.setIsUnsigned(true);
3144 return Result;
3145 }
3146
ActOnDesignatedInitializer(Designation & Desig,SourceLocation EqualOrColonLoc,bool GNUSyntax,ExprResult Init)3147 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3148 SourceLocation EqualOrColonLoc,
3149 bool GNUSyntax,
3150 ExprResult Init) {
3151 typedef DesignatedInitExpr::Designator ASTDesignator;
3152
3153 bool Invalid = false;
3154 SmallVector<ASTDesignator, 32> Designators;
3155 SmallVector<Expr *, 32> InitExpressions;
3156
3157 // Build designators and check array designator expressions.
3158 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3159 const Designator &D = Desig.getDesignator(Idx);
3160 switch (D.getKind()) {
3161 case Designator::FieldDesignator:
3162 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3163 D.getFieldLoc()));
3164 break;
3165
3166 case Designator::ArrayDesignator: {
3167 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3168 llvm::APSInt IndexValue;
3169 if (!Index->isTypeDependent() && !Index->isValueDependent())
3170 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3171 if (!Index)
3172 Invalid = true;
3173 else {
3174 Designators.push_back(ASTDesignator(InitExpressions.size(),
3175 D.getLBracketLoc(),
3176 D.getRBracketLoc()));
3177 InitExpressions.push_back(Index);
3178 }
3179 break;
3180 }
3181
3182 case Designator::ArrayRangeDesignator: {
3183 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3184 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3185 llvm::APSInt StartValue;
3186 llvm::APSInt EndValue;
3187 bool StartDependent = StartIndex->isTypeDependent() ||
3188 StartIndex->isValueDependent();
3189 bool EndDependent = EndIndex->isTypeDependent() ||
3190 EndIndex->isValueDependent();
3191 if (!StartDependent)
3192 StartIndex =
3193 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3194 if (!EndDependent)
3195 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3196
3197 if (!StartIndex || !EndIndex)
3198 Invalid = true;
3199 else {
3200 // Make sure we're comparing values with the same bit width.
3201 if (StartDependent || EndDependent) {
3202 // Nothing to compute.
3203 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3204 EndValue = EndValue.extend(StartValue.getBitWidth());
3205 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3206 StartValue = StartValue.extend(EndValue.getBitWidth());
3207
3208 if (!StartDependent && !EndDependent && EndValue < StartValue) {
3209 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3210 << StartValue.toString(10) << EndValue.toString(10)
3211 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3212 Invalid = true;
3213 } else {
3214 Designators.push_back(ASTDesignator(InitExpressions.size(),
3215 D.getLBracketLoc(),
3216 D.getEllipsisLoc(),
3217 D.getRBracketLoc()));
3218 InitExpressions.push_back(StartIndex);
3219 InitExpressions.push_back(EndIndex);
3220 }
3221 }
3222 break;
3223 }
3224 }
3225 }
3226
3227 if (Invalid || Init.isInvalid())
3228 return ExprError();
3229
3230 // Clear out the expressions within the designation.
3231 Desig.ClearExprs(*this);
3232
3233 return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3234 EqualOrColonLoc, GNUSyntax,
3235 Init.getAs<Expr>());
3236 }
3237
3238 //===----------------------------------------------------------------------===//
3239 // Initialization entity
3240 //===----------------------------------------------------------------------===//
3241
InitializedEntity(ASTContext & Context,unsigned Index,const InitializedEntity & Parent)3242 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3243 const InitializedEntity &Parent)
3244 : Parent(&Parent), Index(Index)
3245 {
3246 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3247 Kind = EK_ArrayElement;
3248 Type = AT->getElementType();
3249 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3250 Kind = EK_VectorElement;
3251 Type = VT->getElementType();
3252 } else {
3253 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3254 assert(CT && "Unexpected type");
3255 Kind = EK_ComplexElement;
3256 Type = CT->getElementType();
3257 }
3258 }
3259
3260 InitializedEntity
InitializeBase(ASTContext & Context,const CXXBaseSpecifier * Base,bool IsInheritedVirtualBase,const InitializedEntity * Parent)3261 InitializedEntity::InitializeBase(ASTContext &Context,
3262 const CXXBaseSpecifier *Base,
3263 bool IsInheritedVirtualBase,
3264 const InitializedEntity *Parent) {
3265 InitializedEntity Result;
3266 Result.Kind = EK_Base;
3267 Result.Parent = Parent;
3268 Result.Base = reinterpret_cast<uintptr_t>(Base);
3269 if (IsInheritedVirtualBase)
3270 Result.Base |= 0x01;
3271
3272 Result.Type = Base->getType();
3273 return Result;
3274 }
3275
getName() const3276 DeclarationName InitializedEntity::getName() const {
3277 switch (getKind()) {
3278 case EK_Parameter:
3279 case EK_Parameter_CF_Audited: {
3280 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3281 return (D ? D->getDeclName() : DeclarationName());
3282 }
3283
3284 case EK_Variable:
3285 case EK_Member:
3286 case EK_Binding:
3287 case EK_TemplateParameter:
3288 return Variable.VariableOrMember->getDeclName();
3289
3290 case EK_LambdaCapture:
3291 return DeclarationName(Capture.VarID);
3292
3293 case EK_Result:
3294 case EK_StmtExprResult:
3295 case EK_Exception:
3296 case EK_New:
3297 case EK_Temporary:
3298 case EK_Base:
3299 case EK_Delegating:
3300 case EK_ArrayElement:
3301 case EK_VectorElement:
3302 case EK_ComplexElement:
3303 case EK_BlockElement:
3304 case EK_LambdaToBlockConversionBlockElement:
3305 case EK_CompoundLiteralInit:
3306 case EK_RelatedResult:
3307 return DeclarationName();
3308 }
3309
3310 llvm_unreachable("Invalid EntityKind!");
3311 }
3312
getDecl() const3313 ValueDecl *InitializedEntity::getDecl() const {
3314 switch (getKind()) {
3315 case EK_Variable:
3316 case EK_Member:
3317 case EK_Binding:
3318 case EK_TemplateParameter:
3319 return Variable.VariableOrMember;
3320
3321 case EK_Parameter:
3322 case EK_Parameter_CF_Audited:
3323 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3324
3325 case EK_Result:
3326 case EK_StmtExprResult:
3327 case EK_Exception:
3328 case EK_New:
3329 case EK_Temporary:
3330 case EK_Base:
3331 case EK_Delegating:
3332 case EK_ArrayElement:
3333 case EK_VectorElement:
3334 case EK_ComplexElement:
3335 case EK_BlockElement:
3336 case EK_LambdaToBlockConversionBlockElement:
3337 case EK_LambdaCapture:
3338 case EK_CompoundLiteralInit:
3339 case EK_RelatedResult:
3340 return nullptr;
3341 }
3342
3343 llvm_unreachable("Invalid EntityKind!");
3344 }
3345
allowsNRVO() const3346 bool InitializedEntity::allowsNRVO() const {
3347 switch (getKind()) {
3348 case EK_Result:
3349 case EK_Exception:
3350 return LocAndNRVO.NRVO;
3351
3352 case EK_StmtExprResult:
3353 case EK_Variable:
3354 case EK_Parameter:
3355 case EK_Parameter_CF_Audited:
3356 case EK_TemplateParameter:
3357 case EK_Member:
3358 case EK_Binding:
3359 case EK_New:
3360 case EK_Temporary:
3361 case EK_CompoundLiteralInit:
3362 case EK_Base:
3363 case EK_Delegating:
3364 case EK_ArrayElement:
3365 case EK_VectorElement:
3366 case EK_ComplexElement:
3367 case EK_BlockElement:
3368 case EK_LambdaToBlockConversionBlockElement:
3369 case EK_LambdaCapture:
3370 case EK_RelatedResult:
3371 break;
3372 }
3373
3374 return false;
3375 }
3376
dumpImpl(raw_ostream & OS) const3377 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3378 assert(getParent() != this);
3379 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3380 for (unsigned I = 0; I != Depth; ++I)
3381 OS << "`-";
3382
3383 switch (getKind()) {
3384 case EK_Variable: OS << "Variable"; break;
3385 case EK_Parameter: OS << "Parameter"; break;
3386 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3387 break;
3388 case EK_TemplateParameter: OS << "TemplateParameter"; break;
3389 case EK_Result: OS << "Result"; break;
3390 case EK_StmtExprResult: OS << "StmtExprResult"; break;
3391 case EK_Exception: OS << "Exception"; break;
3392 case EK_Member: OS << "Member"; break;
3393 case EK_Binding: OS << "Binding"; break;
3394 case EK_New: OS << "New"; break;
3395 case EK_Temporary: OS << "Temporary"; break;
3396 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3397 case EK_RelatedResult: OS << "RelatedResult"; break;
3398 case EK_Base: OS << "Base"; break;
3399 case EK_Delegating: OS << "Delegating"; break;
3400 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3401 case EK_VectorElement: OS << "VectorElement " << Index; break;
3402 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3403 case EK_BlockElement: OS << "Block"; break;
3404 case EK_LambdaToBlockConversionBlockElement:
3405 OS << "Block (lambda)";
3406 break;
3407 case EK_LambdaCapture:
3408 OS << "LambdaCapture ";
3409 OS << DeclarationName(Capture.VarID);
3410 break;
3411 }
3412
3413 if (auto *D = getDecl()) {
3414 OS << " ";
3415 D->printQualifiedName(OS);
3416 }
3417
3418 OS << " '" << getType().getAsString() << "'\n";
3419
3420 return Depth + 1;
3421 }
3422
dump() const3423 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3424 dumpImpl(llvm::errs());
3425 }
3426
3427 //===----------------------------------------------------------------------===//
3428 // Initialization sequence
3429 //===----------------------------------------------------------------------===//
3430
Destroy()3431 void InitializationSequence::Step::Destroy() {
3432 switch (Kind) {
3433 case SK_ResolveAddressOfOverloadedFunction:
3434 case SK_CastDerivedToBaseRValue:
3435 case SK_CastDerivedToBaseXValue:
3436 case SK_CastDerivedToBaseLValue:
3437 case SK_BindReference:
3438 case SK_BindReferenceToTemporary:
3439 case SK_FinalCopy:
3440 case SK_ExtraneousCopyToTemporary:
3441 case SK_UserConversion:
3442 case SK_QualificationConversionRValue:
3443 case SK_QualificationConversionXValue:
3444 case SK_QualificationConversionLValue:
3445 case SK_FunctionReferenceConversion:
3446 case SK_AtomicConversion:
3447 case SK_ListInitialization:
3448 case SK_UnwrapInitList:
3449 case SK_RewrapInitList:
3450 case SK_ConstructorInitialization:
3451 case SK_ConstructorInitializationFromList:
3452 case SK_ZeroInitialization:
3453 case SK_CAssignment:
3454 case SK_StringInit:
3455 case SK_ObjCObjectConversion:
3456 case SK_ArrayLoopIndex:
3457 case SK_ArrayLoopInit:
3458 case SK_ArrayInit:
3459 case SK_GNUArrayInit:
3460 case SK_ParenthesizedArrayInit:
3461 case SK_PassByIndirectCopyRestore:
3462 case SK_PassByIndirectRestore:
3463 case SK_ProduceObjCObject:
3464 case SK_StdInitializerList:
3465 case SK_StdInitializerListConstructorCall:
3466 case SK_OCLSamplerInit:
3467 case SK_OCLZeroOpaqueType:
3468 break;
3469
3470 case SK_ConversionSequence:
3471 case SK_ConversionSequenceNoNarrowing:
3472 delete ICS;
3473 }
3474 }
3475
isDirectReferenceBinding() const3476 bool InitializationSequence::isDirectReferenceBinding() const {
3477 // There can be some lvalue adjustments after the SK_BindReference step.
3478 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3479 if (I->Kind == SK_BindReference)
3480 return true;
3481 if (I->Kind == SK_BindReferenceToTemporary)
3482 return false;
3483 }
3484 return false;
3485 }
3486
isAmbiguous() const3487 bool InitializationSequence::isAmbiguous() const {
3488 if (!Failed())
3489 return false;
3490
3491 switch (getFailureKind()) {
3492 case FK_TooManyInitsForReference:
3493 case FK_ParenthesizedListInitForReference:
3494 case FK_ArrayNeedsInitList:
3495 case FK_ArrayNeedsInitListOrStringLiteral:
3496 case FK_ArrayNeedsInitListOrWideStringLiteral:
3497 case FK_NarrowStringIntoWideCharArray:
3498 case FK_WideStringIntoCharArray:
3499 case FK_IncompatWideStringIntoWideChar:
3500 case FK_PlainStringIntoUTF8Char:
3501 case FK_UTF8StringIntoPlainChar:
3502 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3503 case FK_NonConstLValueReferenceBindingToTemporary:
3504 case FK_NonConstLValueReferenceBindingToBitfield:
3505 case FK_NonConstLValueReferenceBindingToVectorElement:
3506 case FK_NonConstLValueReferenceBindingToMatrixElement:
3507 case FK_NonConstLValueReferenceBindingToUnrelated:
3508 case FK_RValueReferenceBindingToLValue:
3509 case FK_ReferenceAddrspaceMismatchTemporary:
3510 case FK_ReferenceInitDropsQualifiers:
3511 case FK_ReferenceInitFailed:
3512 case FK_ConversionFailed:
3513 case FK_ConversionFromPropertyFailed:
3514 case FK_TooManyInitsForScalar:
3515 case FK_ParenthesizedListInitForScalar:
3516 case FK_ReferenceBindingToInitList:
3517 case FK_InitListBadDestinationType:
3518 case FK_DefaultInitOfConst:
3519 case FK_Incomplete:
3520 case FK_ArrayTypeMismatch:
3521 case FK_NonConstantArrayInit:
3522 case FK_ListInitializationFailed:
3523 case FK_VariableLengthArrayHasInitializer:
3524 case FK_PlaceholderType:
3525 case FK_ExplicitConstructor:
3526 case FK_AddressOfUnaddressableFunction:
3527 return false;
3528
3529 case FK_ReferenceInitOverloadFailed:
3530 case FK_UserConversionOverloadFailed:
3531 case FK_ConstructorOverloadFailed:
3532 case FK_ListConstructorOverloadFailed:
3533 return FailedOverloadResult == OR_Ambiguous;
3534 }
3535
3536 llvm_unreachable("Invalid EntityKind!");
3537 }
3538
isConstructorInitialization() const3539 bool InitializationSequence::isConstructorInitialization() const {
3540 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3541 }
3542
3543 void
3544 InitializationSequence
AddAddressOverloadResolutionStep(FunctionDecl * Function,DeclAccessPair Found,bool HadMultipleCandidates)3545 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3546 DeclAccessPair Found,
3547 bool HadMultipleCandidates) {
3548 Step S;
3549 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3550 S.Type = Function->getType();
3551 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3552 S.Function.Function = Function;
3553 S.Function.FoundDecl = Found;
3554 Steps.push_back(S);
3555 }
3556
AddDerivedToBaseCastStep(QualType BaseType,ExprValueKind VK)3557 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3558 ExprValueKind VK) {
3559 Step S;
3560 switch (VK) {
3561 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3562 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3563 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3564 }
3565 S.Type = BaseType;
3566 Steps.push_back(S);
3567 }
3568
AddReferenceBindingStep(QualType T,bool BindingTemporary)3569 void InitializationSequence::AddReferenceBindingStep(QualType T,
3570 bool BindingTemporary) {
3571 Step S;
3572 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3573 S.Type = T;
3574 Steps.push_back(S);
3575 }
3576
AddFinalCopy(QualType T)3577 void InitializationSequence::AddFinalCopy(QualType T) {
3578 Step S;
3579 S.Kind = SK_FinalCopy;
3580 S.Type = T;
3581 Steps.push_back(S);
3582 }
3583
AddExtraneousCopyToTemporary(QualType T)3584 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3585 Step S;
3586 S.Kind = SK_ExtraneousCopyToTemporary;
3587 S.Type = T;
3588 Steps.push_back(S);
3589 }
3590
3591 void
AddUserConversionStep(FunctionDecl * Function,DeclAccessPair FoundDecl,QualType T,bool HadMultipleCandidates)3592 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3593 DeclAccessPair FoundDecl,
3594 QualType T,
3595 bool HadMultipleCandidates) {
3596 Step S;
3597 S.Kind = SK_UserConversion;
3598 S.Type = T;
3599 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3600 S.Function.Function = Function;
3601 S.Function.FoundDecl = FoundDecl;
3602 Steps.push_back(S);
3603 }
3604
AddQualificationConversionStep(QualType Ty,ExprValueKind VK)3605 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3606 ExprValueKind VK) {
3607 Step S;
3608 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3609 switch (VK) {
3610 case VK_RValue:
3611 S.Kind = SK_QualificationConversionRValue;
3612 break;
3613 case VK_XValue:
3614 S.Kind = SK_QualificationConversionXValue;
3615 break;
3616 case VK_LValue:
3617 S.Kind = SK_QualificationConversionLValue;
3618 break;
3619 }
3620 S.Type = Ty;
3621 Steps.push_back(S);
3622 }
3623
AddFunctionReferenceConversionStep(QualType Ty)3624 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
3625 Step S;
3626 S.Kind = SK_FunctionReferenceConversion;
3627 S.Type = Ty;
3628 Steps.push_back(S);
3629 }
3630
AddAtomicConversionStep(QualType Ty)3631 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3632 Step S;
3633 S.Kind = SK_AtomicConversion;
3634 S.Type = Ty;
3635 Steps.push_back(S);
3636 }
3637
AddConversionSequenceStep(const ImplicitConversionSequence & ICS,QualType T,bool TopLevelOfInitList)3638 void InitializationSequence::AddConversionSequenceStep(
3639 const ImplicitConversionSequence &ICS, QualType T,
3640 bool TopLevelOfInitList) {
3641 Step S;
3642 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3643 : SK_ConversionSequence;
3644 S.Type = T;
3645 S.ICS = new ImplicitConversionSequence(ICS);
3646 Steps.push_back(S);
3647 }
3648
AddListInitializationStep(QualType T)3649 void InitializationSequence::AddListInitializationStep(QualType T) {
3650 Step S;
3651 S.Kind = SK_ListInitialization;
3652 S.Type = T;
3653 Steps.push_back(S);
3654 }
3655
AddConstructorInitializationStep(DeclAccessPair FoundDecl,CXXConstructorDecl * Constructor,QualType T,bool HadMultipleCandidates,bool FromInitList,bool AsInitList)3656 void InitializationSequence::AddConstructorInitializationStep(
3657 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3658 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3659 Step S;
3660 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3661 : SK_ConstructorInitializationFromList
3662 : SK_ConstructorInitialization;
3663 S.Type = T;
3664 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3665 S.Function.Function = Constructor;
3666 S.Function.FoundDecl = FoundDecl;
3667 Steps.push_back(S);
3668 }
3669
AddZeroInitializationStep(QualType T)3670 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3671 Step S;
3672 S.Kind = SK_ZeroInitialization;
3673 S.Type = T;
3674 Steps.push_back(S);
3675 }
3676
AddCAssignmentStep(QualType T)3677 void InitializationSequence::AddCAssignmentStep(QualType T) {
3678 Step S;
3679 S.Kind = SK_CAssignment;
3680 S.Type = T;
3681 Steps.push_back(S);
3682 }
3683
AddStringInitStep(QualType T)3684 void InitializationSequence::AddStringInitStep(QualType T) {
3685 Step S;
3686 S.Kind = SK_StringInit;
3687 S.Type = T;
3688 Steps.push_back(S);
3689 }
3690
AddObjCObjectConversionStep(QualType T)3691 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3692 Step S;
3693 S.Kind = SK_ObjCObjectConversion;
3694 S.Type = T;
3695 Steps.push_back(S);
3696 }
3697
AddArrayInitStep(QualType T,bool IsGNUExtension)3698 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3699 Step S;
3700 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3701 S.Type = T;
3702 Steps.push_back(S);
3703 }
3704
AddArrayInitLoopStep(QualType T,QualType EltT)3705 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3706 Step S;
3707 S.Kind = SK_ArrayLoopIndex;
3708 S.Type = EltT;
3709 Steps.insert(Steps.begin(), S);
3710
3711 S.Kind = SK_ArrayLoopInit;
3712 S.Type = T;
3713 Steps.push_back(S);
3714 }
3715
AddParenthesizedArrayInitStep(QualType T)3716 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3717 Step S;
3718 S.Kind = SK_ParenthesizedArrayInit;
3719 S.Type = T;
3720 Steps.push_back(S);
3721 }
3722
AddPassByIndirectCopyRestoreStep(QualType type,bool shouldCopy)3723 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3724 bool shouldCopy) {
3725 Step s;
3726 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3727 : SK_PassByIndirectRestore);
3728 s.Type = type;
3729 Steps.push_back(s);
3730 }
3731
AddProduceObjCObjectStep(QualType T)3732 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3733 Step S;
3734 S.Kind = SK_ProduceObjCObject;
3735 S.Type = T;
3736 Steps.push_back(S);
3737 }
3738
AddStdInitializerListConstructionStep(QualType T)3739 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3740 Step S;
3741 S.Kind = SK_StdInitializerList;
3742 S.Type = T;
3743 Steps.push_back(S);
3744 }
3745
AddOCLSamplerInitStep(QualType T)3746 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3747 Step S;
3748 S.Kind = SK_OCLSamplerInit;
3749 S.Type = T;
3750 Steps.push_back(S);
3751 }
3752
AddOCLZeroOpaqueTypeStep(QualType T)3753 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3754 Step S;
3755 S.Kind = SK_OCLZeroOpaqueType;
3756 S.Type = T;
3757 Steps.push_back(S);
3758 }
3759
RewrapReferenceInitList(QualType T,InitListExpr * Syntactic)3760 void InitializationSequence::RewrapReferenceInitList(QualType T,
3761 InitListExpr *Syntactic) {
3762 assert(Syntactic->getNumInits() == 1 &&
3763 "Can only rewrap trivial init lists.");
3764 Step S;
3765 S.Kind = SK_UnwrapInitList;
3766 S.Type = Syntactic->getInit(0)->getType();
3767 Steps.insert(Steps.begin(), S);
3768
3769 S.Kind = SK_RewrapInitList;
3770 S.Type = T;
3771 S.WrappingSyntacticList = Syntactic;
3772 Steps.push_back(S);
3773 }
3774
SetOverloadFailure(FailureKind Failure,OverloadingResult Result)3775 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3776 OverloadingResult Result) {
3777 setSequenceKind(FailedSequence);
3778 this->Failure = Failure;
3779 this->FailedOverloadResult = Result;
3780 }
3781
3782 //===----------------------------------------------------------------------===//
3783 // Attempt initialization
3784 //===----------------------------------------------------------------------===//
3785
3786 /// Tries to add a zero initializer. Returns true if that worked.
3787 static bool
maybeRecoverWithZeroInitialization(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)3788 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3789 const InitializedEntity &Entity) {
3790 if (Entity.getKind() != InitializedEntity::EK_Variable)
3791 return false;
3792
3793 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3794 if (VD->getInit() || VD->getEndLoc().isMacroID())
3795 return false;
3796
3797 QualType VariableTy = VD->getType().getCanonicalType();
3798 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3799 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3800 if (!Init.empty()) {
3801 Sequence.AddZeroInitializationStep(Entity.getType());
3802 Sequence.SetZeroInitializationFixit(Init, Loc);
3803 return true;
3804 }
3805 return false;
3806 }
3807
MaybeProduceObjCObject(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)3808 static void MaybeProduceObjCObject(Sema &S,
3809 InitializationSequence &Sequence,
3810 const InitializedEntity &Entity) {
3811 if (!S.getLangOpts().ObjCAutoRefCount) return;
3812
3813 /// When initializing a parameter, produce the value if it's marked
3814 /// __attribute__((ns_consumed)).
3815 if (Entity.isParameterKind()) {
3816 if (!Entity.isParameterConsumed())
3817 return;
3818
3819 assert(Entity.getType()->isObjCRetainableType() &&
3820 "consuming an object of unretainable type?");
3821 Sequence.AddProduceObjCObjectStep(Entity.getType());
3822
3823 /// When initializing a return value, if the return type is a
3824 /// retainable type, then returns need to immediately retain the
3825 /// object. If an autorelease is required, it will be done at the
3826 /// last instant.
3827 } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3828 Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3829 if (!Entity.getType()->isObjCRetainableType())
3830 return;
3831
3832 Sequence.AddProduceObjCObjectStep(Entity.getType());
3833 }
3834 }
3835
3836 static void TryListInitialization(Sema &S,
3837 const InitializedEntity &Entity,
3838 const InitializationKind &Kind,
3839 InitListExpr *InitList,
3840 InitializationSequence &Sequence,
3841 bool TreatUnavailableAsInvalid);
3842
3843 /// When initializing from init list via constructor, handle
3844 /// initialization of an object of type std::initializer_list<T>.
3845 ///
3846 /// \return true if we have handled initialization of an object of type
3847 /// std::initializer_list<T>, false otherwise.
TryInitializerListConstruction(Sema & S,InitListExpr * List,QualType DestType,InitializationSequence & Sequence,bool TreatUnavailableAsInvalid)3848 static bool TryInitializerListConstruction(Sema &S,
3849 InitListExpr *List,
3850 QualType DestType,
3851 InitializationSequence &Sequence,
3852 bool TreatUnavailableAsInvalid) {
3853 QualType E;
3854 if (!S.isStdInitializerList(DestType, &E))
3855 return false;
3856
3857 if (!S.isCompleteType(List->getExprLoc(), E)) {
3858 Sequence.setIncompleteTypeFailure(E);
3859 return true;
3860 }
3861
3862 // Try initializing a temporary array from the init list.
3863 QualType ArrayType = S.Context.getConstantArrayType(
3864 E.withConst(),
3865 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3866 List->getNumInits()),
3867 nullptr, clang::ArrayType::Normal, 0);
3868 InitializedEntity HiddenArray =
3869 InitializedEntity::InitializeTemporary(ArrayType);
3870 InitializationKind Kind = InitializationKind::CreateDirectList(
3871 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3872 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3873 TreatUnavailableAsInvalid);
3874 if (Sequence)
3875 Sequence.AddStdInitializerListConstructionStep(DestType);
3876 return true;
3877 }
3878
3879 /// Determine if the constructor has the signature of a copy or move
3880 /// constructor for the type T of the class in which it was found. That is,
3881 /// determine if its first parameter is of type T or reference to (possibly
3882 /// cv-qualified) T.
hasCopyOrMoveCtorParam(ASTContext & Ctx,const ConstructorInfo & Info)3883 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3884 const ConstructorInfo &Info) {
3885 if (Info.Constructor->getNumParams() == 0)
3886 return false;
3887
3888 QualType ParmT =
3889 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3890 QualType ClassT =
3891 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3892
3893 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3894 }
3895
3896 static OverloadingResult
ResolveConstructorOverload(Sema & S,SourceLocation DeclLoc,MultiExprArg Args,OverloadCandidateSet & CandidateSet,QualType DestType,DeclContext::lookup_result Ctors,OverloadCandidateSet::iterator & Best,bool CopyInitializing,bool AllowExplicit,bool OnlyListConstructors,bool IsListInit,bool SecondStepOfCopyInit=false)3897 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3898 MultiExprArg Args,
3899 OverloadCandidateSet &CandidateSet,
3900 QualType DestType,
3901 DeclContext::lookup_result Ctors,
3902 OverloadCandidateSet::iterator &Best,
3903 bool CopyInitializing, bool AllowExplicit,
3904 bool OnlyListConstructors, bool IsListInit,
3905 bool SecondStepOfCopyInit = false) {
3906 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3907 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3908
3909 for (NamedDecl *D : Ctors) {
3910 auto Info = getConstructorInfo(D);
3911 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3912 continue;
3913
3914 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3915 continue;
3916
3917 // C++11 [over.best.ics]p4:
3918 // ... and the constructor or user-defined conversion function is a
3919 // candidate by
3920 // - 13.3.1.3, when the argument is the temporary in the second step
3921 // of a class copy-initialization, or
3922 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3923 // - the second phase of 13.3.1.7 when the initializer list has exactly
3924 // one element that is itself an initializer list, and the target is
3925 // the first parameter of a constructor of class X, and the conversion
3926 // is to X or reference to (possibly cv-qualified X),
3927 // user-defined conversion sequences are not considered.
3928 bool SuppressUserConversions =
3929 SecondStepOfCopyInit ||
3930 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3931 hasCopyOrMoveCtorParam(S.Context, Info));
3932
3933 if (Info.ConstructorTmpl)
3934 S.AddTemplateOverloadCandidate(
3935 Info.ConstructorTmpl, Info.FoundDecl,
3936 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3937 /*PartialOverloading=*/false, AllowExplicit);
3938 else {
3939 // C++ [over.match.copy]p1:
3940 // - When initializing a temporary to be bound to the first parameter
3941 // of a constructor [for type T] that takes a reference to possibly
3942 // cv-qualified T as its first argument, called with a single
3943 // argument in the context of direct-initialization, explicit
3944 // conversion functions are also considered.
3945 // FIXME: What if a constructor template instantiates to such a signature?
3946 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3947 Args.size() == 1 &&
3948 hasCopyOrMoveCtorParam(S.Context, Info);
3949 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3950 CandidateSet, SuppressUserConversions,
3951 /*PartialOverloading=*/false, AllowExplicit,
3952 AllowExplicitConv);
3953 }
3954 }
3955
3956 // FIXME: Work around a bug in C++17 guaranteed copy elision.
3957 //
3958 // When initializing an object of class type T by constructor
3959 // ([over.match.ctor]) or by list-initialization ([over.match.list])
3960 // from a single expression of class type U, conversion functions of
3961 // U that convert to the non-reference type cv T are candidates.
3962 // Explicit conversion functions are only candidates during
3963 // direct-initialization.
3964 //
3965 // Note: SecondStepOfCopyInit is only ever true in this case when
3966 // evaluating whether to produce a C++98 compatibility warning.
3967 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3968 !SecondStepOfCopyInit) {
3969 Expr *Initializer = Args[0];
3970 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3971 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3972 const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3973 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3974 NamedDecl *D = *I;
3975 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3976 D = D->getUnderlyingDecl();
3977
3978 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3979 CXXConversionDecl *Conv;
3980 if (ConvTemplate)
3981 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3982 else
3983 Conv = cast<CXXConversionDecl>(D);
3984
3985 if (ConvTemplate)
3986 S.AddTemplateConversionCandidate(
3987 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
3988 CandidateSet, AllowExplicit, AllowExplicit,
3989 /*AllowResultConversion*/ false);
3990 else
3991 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3992 DestType, CandidateSet, AllowExplicit,
3993 AllowExplicit,
3994 /*AllowResultConversion*/ false);
3995 }
3996 }
3997 }
3998
3999 // Perform overload resolution and return the result.
4000 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
4001 }
4002
4003 /// Attempt initialization by constructor (C++ [dcl.init]), which
4004 /// enumerates the constructors of the initialized entity and performs overload
4005 /// resolution to select the best.
4006 /// \param DestType The destination class type.
4007 /// \param DestArrayType The destination type, which is either DestType or
4008 /// a (possibly multidimensional) array of DestType.
4009 /// \param IsListInit Is this list-initialization?
4010 /// \param IsInitListCopy Is this non-list-initialization resulting from a
4011 /// list-initialization from {x} where x is the same
4012 /// type as the entity?
TryConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType DestType,QualType DestArrayType,InitializationSequence & Sequence,bool IsListInit=false,bool IsInitListCopy=false)4013 static void TryConstructorInitialization(Sema &S,
4014 const InitializedEntity &Entity,
4015 const InitializationKind &Kind,
4016 MultiExprArg Args, QualType DestType,
4017 QualType DestArrayType,
4018 InitializationSequence &Sequence,
4019 bool IsListInit = false,
4020 bool IsInitListCopy = false) {
4021 assert(((!IsListInit && !IsInitListCopy) ||
4022 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
4023 "IsListInit/IsInitListCopy must come with a single initializer list "
4024 "argument.");
4025 InitListExpr *ILE =
4026 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4027 MultiExprArg UnwrappedArgs =
4028 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4029
4030 // The type we're constructing needs to be complete.
4031 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4032 Sequence.setIncompleteTypeFailure(DestType);
4033 return;
4034 }
4035
4036 // C++17 [dcl.init]p17:
4037 // - If the initializer expression is a prvalue and the cv-unqualified
4038 // version of the source type is the same class as the class of the
4039 // destination, the initializer expression is used to initialize the
4040 // destination object.
4041 // Per DR (no number yet), this does not apply when initializing a base
4042 // class or delegating to another constructor from a mem-initializer.
4043 // ObjC++: Lambda captured by the block in the lambda to block conversion
4044 // should avoid copy elision.
4045 if (S.getLangOpts().CPlusPlus17 &&
4046 Entity.getKind() != InitializedEntity::EK_Base &&
4047 Entity.getKind() != InitializedEntity::EK_Delegating &&
4048 Entity.getKind() !=
4049 InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4050 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
4051 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4052 // Convert qualifications if necessary.
4053 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4054 if (ILE)
4055 Sequence.RewrapReferenceInitList(DestType, ILE);
4056 return;
4057 }
4058
4059 const RecordType *DestRecordType = DestType->getAs<RecordType>();
4060 assert(DestRecordType && "Constructor initialization requires record type");
4061 CXXRecordDecl *DestRecordDecl
4062 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4063
4064 // Build the candidate set directly in the initialization sequence
4065 // structure, so that it will persist if we fail.
4066 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4067
4068 // Determine whether we are allowed to call explicit constructors or
4069 // explicit conversion operators.
4070 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4071 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4072
4073 // - Otherwise, if T is a class type, constructors are considered. The
4074 // applicable constructors are enumerated, and the best one is chosen
4075 // through overload resolution.
4076 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4077
4078 OverloadingResult Result = OR_No_Viable_Function;
4079 OverloadCandidateSet::iterator Best;
4080 bool AsInitializerList = false;
4081
4082 // C++11 [over.match.list]p1, per DR1467:
4083 // When objects of non-aggregate type T are list-initialized, such that
4084 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
4085 // according to the rules in this section, overload resolution selects
4086 // the constructor in two phases:
4087 //
4088 // - Initially, the candidate functions are the initializer-list
4089 // constructors of the class T and the argument list consists of the
4090 // initializer list as a single argument.
4091 if (IsListInit) {
4092 AsInitializerList = true;
4093
4094 // If the initializer list has no elements and T has a default constructor,
4095 // the first phase is omitted.
4096 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4097 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4098 CandidateSet, DestType, Ctors, Best,
4099 CopyInitialization, AllowExplicit,
4100 /*OnlyListConstructors=*/true,
4101 IsListInit);
4102 }
4103
4104 // C++11 [over.match.list]p1:
4105 // - If no viable initializer-list constructor is found, overload resolution
4106 // is performed again, where the candidate functions are all the
4107 // constructors of the class T and the argument list consists of the
4108 // elements of the initializer list.
4109 if (Result == OR_No_Viable_Function) {
4110 AsInitializerList = false;
4111 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4112 CandidateSet, DestType, Ctors, Best,
4113 CopyInitialization, AllowExplicit,
4114 /*OnlyListConstructors=*/false,
4115 IsListInit);
4116 }
4117 if (Result) {
4118 Sequence.SetOverloadFailure(IsListInit ?
4119 InitializationSequence::FK_ListConstructorOverloadFailed :
4120 InitializationSequence::FK_ConstructorOverloadFailed,
4121 Result);
4122 return;
4123 }
4124
4125 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4126
4127 // In C++17, ResolveConstructorOverload can select a conversion function
4128 // instead of a constructor.
4129 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4130 // Add the user-defined conversion step that calls the conversion function.
4131 QualType ConvType = CD->getConversionType();
4132 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4133 "should not have selected this conversion function");
4134 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4135 HadMultipleCandidates);
4136 if (!S.Context.hasSameType(ConvType, DestType))
4137 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4138 if (IsListInit)
4139 Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4140 return;
4141 }
4142
4143 // C++11 [dcl.init]p6:
4144 // If a program calls for the default initialization of an object
4145 // of a const-qualified type T, T shall be a class type with a
4146 // user-provided default constructor.
4147 // C++ core issue 253 proposal:
4148 // If the implicit default constructor initializes all subobjects, no
4149 // initializer should be required.
4150 // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
4151 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4152 if (Kind.getKind() == InitializationKind::IK_Default &&
4153 Entity.getType().isConstQualified()) {
4154 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4155 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4156 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4157 return;
4158 }
4159 }
4160
4161 // C++11 [over.match.list]p1:
4162 // In copy-list-initialization, if an explicit constructor is chosen, the
4163 // initializer is ill-formed.
4164 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4165 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4166 return;
4167 }
4168
4169 // Add the constructor initialization step. Any cv-qualification conversion is
4170 // subsumed by the initialization.
4171 Sequence.AddConstructorInitializationStep(
4172 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4173 IsListInit | IsInitListCopy, AsInitializerList);
4174 }
4175
4176 static bool
ResolveOverloadedFunctionForReferenceBinding(Sema & S,Expr * Initializer,QualType & SourceType,QualType & UnqualifiedSourceType,QualType UnqualifiedTargetType,InitializationSequence & Sequence)4177 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4178 Expr *Initializer,
4179 QualType &SourceType,
4180 QualType &UnqualifiedSourceType,
4181 QualType UnqualifiedTargetType,
4182 InitializationSequence &Sequence) {
4183 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4184 S.Context.OverloadTy) {
4185 DeclAccessPair Found;
4186 bool HadMultipleCandidates = false;
4187 if (FunctionDecl *Fn
4188 = S.ResolveAddressOfOverloadedFunction(Initializer,
4189 UnqualifiedTargetType,
4190 false, Found,
4191 &HadMultipleCandidates)) {
4192 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4193 HadMultipleCandidates);
4194 SourceType = Fn->getType();
4195 UnqualifiedSourceType = SourceType.getUnqualifiedType();
4196 } else if (!UnqualifiedTargetType->isRecordType()) {
4197 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4198 return true;
4199 }
4200 }
4201 return false;
4202 }
4203
4204 static void TryReferenceInitializationCore(Sema &S,
4205 const InitializedEntity &Entity,
4206 const InitializationKind &Kind,
4207 Expr *Initializer,
4208 QualType cv1T1, QualType T1,
4209 Qualifiers T1Quals,
4210 QualType cv2T2, QualType T2,
4211 Qualifiers T2Quals,
4212 InitializationSequence &Sequence);
4213
4214 static void TryValueInitialization(Sema &S,
4215 const InitializedEntity &Entity,
4216 const InitializationKind &Kind,
4217 InitializationSequence &Sequence,
4218 InitListExpr *InitList = nullptr);
4219
4220 /// Attempt list initialization of a reference.
TryReferenceListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence,bool TreatUnavailableAsInvalid)4221 static void TryReferenceListInitialization(Sema &S,
4222 const InitializedEntity &Entity,
4223 const InitializationKind &Kind,
4224 InitListExpr *InitList,
4225 InitializationSequence &Sequence,
4226 bool TreatUnavailableAsInvalid) {
4227 // First, catch C++03 where this isn't possible.
4228 if (!S.getLangOpts().CPlusPlus11) {
4229 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4230 return;
4231 }
4232 // Can't reference initialize a compound literal.
4233 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4234 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4235 return;
4236 }
4237
4238 QualType DestType = Entity.getType();
4239 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4240 Qualifiers T1Quals;
4241 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4242
4243 // Reference initialization via an initializer list works thus:
4244 // If the initializer list consists of a single element that is
4245 // reference-related to the referenced type, bind directly to that element
4246 // (possibly creating temporaries).
4247 // Otherwise, initialize a temporary with the initializer list and
4248 // bind to that.
4249 if (InitList->getNumInits() == 1) {
4250 Expr *Initializer = InitList->getInit(0);
4251 QualType cv2T2 = Initializer->getType();
4252 Qualifiers T2Quals;
4253 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4254
4255 // If this fails, creating a temporary wouldn't work either.
4256 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4257 T1, Sequence))
4258 return;
4259
4260 SourceLocation DeclLoc = Initializer->getBeginLoc();
4261 Sema::ReferenceCompareResult RefRelationship
4262 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4263 if (RefRelationship >= Sema::Ref_Related) {
4264 // Try to bind the reference here.
4265 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4266 T1Quals, cv2T2, T2, T2Quals, Sequence);
4267 if (Sequence)
4268 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4269 return;
4270 }
4271
4272 // Update the initializer if we've resolved an overloaded function.
4273 if (Sequence.step_begin() != Sequence.step_end())
4274 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4275 }
4276
4277 // Not reference-related. Create a temporary and bind to that.
4278 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4279
4280 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4281 TreatUnavailableAsInvalid);
4282 if (Sequence) {
4283 if (DestType->isRValueReferenceType() ||
4284 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4285 Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true);
4286 else
4287 Sequence.SetFailed(
4288 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4289 }
4290 }
4291
4292 /// Attempt list initialization (C++0x [dcl.init.list])
TryListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence,bool TreatUnavailableAsInvalid)4293 static void TryListInitialization(Sema &S,
4294 const InitializedEntity &Entity,
4295 const InitializationKind &Kind,
4296 InitListExpr *InitList,
4297 InitializationSequence &Sequence,
4298 bool TreatUnavailableAsInvalid) {
4299 QualType DestType = Entity.getType();
4300
4301 // C++ doesn't allow scalar initialization with more than one argument.
4302 // But C99 complex numbers are scalars and it makes sense there.
4303 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4304 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4305 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4306 return;
4307 }
4308 if (DestType->isReferenceType()) {
4309 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4310 TreatUnavailableAsInvalid);
4311 return;
4312 }
4313
4314 if (DestType->isRecordType() &&
4315 !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4316 Sequence.setIncompleteTypeFailure(DestType);
4317 return;
4318 }
4319
4320 // C++11 [dcl.init.list]p3, per DR1467:
4321 // - If T is a class type and the initializer list has a single element of
4322 // type cv U, where U is T or a class derived from T, the object is
4323 // initialized from that element (by copy-initialization for
4324 // copy-list-initialization, or by direct-initialization for
4325 // direct-list-initialization).
4326 // - Otherwise, if T is a character array and the initializer list has a
4327 // single element that is an appropriately-typed string literal
4328 // (8.5.2 [dcl.init.string]), initialization is performed as described
4329 // in that section.
4330 // - Otherwise, if T is an aggregate, [...] (continue below).
4331 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4332 if (DestType->isRecordType()) {
4333 QualType InitType = InitList->getInit(0)->getType();
4334 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4335 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4336 Expr *InitListAsExpr = InitList;
4337 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4338 DestType, Sequence,
4339 /*InitListSyntax*/false,
4340 /*IsInitListCopy*/true);
4341 return;
4342 }
4343 }
4344 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4345 Expr *SubInit[1] = {InitList->getInit(0)};
4346 if (!isa<VariableArrayType>(DestAT) &&
4347 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4348 InitializationKind SubKind =
4349 Kind.getKind() == InitializationKind::IK_DirectList
4350 ? InitializationKind::CreateDirect(Kind.getLocation(),
4351 InitList->getLBraceLoc(),
4352 InitList->getRBraceLoc())
4353 : Kind;
4354 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4355 /*TopLevelOfInitList*/ true,
4356 TreatUnavailableAsInvalid);
4357
4358 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4359 // the element is not an appropriately-typed string literal, in which
4360 // case we should proceed as in C++11 (below).
4361 if (Sequence) {
4362 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4363 return;
4364 }
4365 }
4366 }
4367 }
4368
4369 // C++11 [dcl.init.list]p3:
4370 // - If T is an aggregate, aggregate initialization is performed.
4371 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4372 (S.getLangOpts().CPlusPlus11 &&
4373 S.isStdInitializerList(DestType, nullptr))) {
4374 if (S.getLangOpts().CPlusPlus11) {
4375 // - Otherwise, if the initializer list has no elements and T is a
4376 // class type with a default constructor, the object is
4377 // value-initialized.
4378 if (InitList->getNumInits() == 0) {
4379 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4380 if (S.LookupDefaultConstructor(RD)) {
4381 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4382 return;
4383 }
4384 }
4385
4386 // - Otherwise, if T is a specialization of std::initializer_list<E>,
4387 // an initializer_list object constructed [...]
4388 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4389 TreatUnavailableAsInvalid))
4390 return;
4391
4392 // - Otherwise, if T is a class type, constructors are considered.
4393 Expr *InitListAsExpr = InitList;
4394 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4395 DestType, Sequence, /*InitListSyntax*/true);
4396 } else
4397 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4398 return;
4399 }
4400
4401 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4402 InitList->getNumInits() == 1) {
4403 Expr *E = InitList->getInit(0);
4404
4405 // - Otherwise, if T is an enumeration with a fixed underlying type,
4406 // the initializer-list has a single element v, and the initialization
4407 // is direct-list-initialization, the object is initialized with the
4408 // value T(v); if a narrowing conversion is required to convert v to
4409 // the underlying type of T, the program is ill-formed.
4410 auto *ET = DestType->getAs<EnumType>();
4411 if (S.getLangOpts().CPlusPlus17 &&
4412 Kind.getKind() == InitializationKind::IK_DirectList &&
4413 ET && ET->getDecl()->isFixed() &&
4414 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4415 (E->getType()->isIntegralOrEnumerationType() ||
4416 E->getType()->isFloatingType())) {
4417 // There are two ways that T(v) can work when T is an enumeration type.
4418 // If there is either an implicit conversion sequence from v to T or
4419 // a conversion function that can convert from v to T, then we use that.
4420 // Otherwise, if v is of integral, enumeration, or floating-point type,
4421 // it is converted to the enumeration type via its underlying type.
4422 // There is no overlap possible between these two cases (except when the
4423 // source value is already of the destination type), and the first
4424 // case is handled by the general case for single-element lists below.
4425 ImplicitConversionSequence ICS;
4426 ICS.setStandard();
4427 ICS.Standard.setAsIdentityConversion();
4428 if (!E->isRValue())
4429 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4430 // If E is of a floating-point type, then the conversion is ill-formed
4431 // due to narrowing, but go through the motions in order to produce the
4432 // right diagnostic.
4433 ICS.Standard.Second = E->getType()->isFloatingType()
4434 ? ICK_Floating_Integral
4435 : ICK_Integral_Conversion;
4436 ICS.Standard.setFromType(E->getType());
4437 ICS.Standard.setToType(0, E->getType());
4438 ICS.Standard.setToType(1, DestType);
4439 ICS.Standard.setToType(2, DestType);
4440 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4441 /*TopLevelOfInitList*/true);
4442 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4443 return;
4444 }
4445
4446 // - Otherwise, if the initializer list has a single element of type E
4447 // [...references are handled above...], the object or reference is
4448 // initialized from that element (by copy-initialization for
4449 // copy-list-initialization, or by direct-initialization for
4450 // direct-list-initialization); if a narrowing conversion is required
4451 // to convert the element to T, the program is ill-formed.
4452 //
4453 // Per core-24034, this is direct-initialization if we were performing
4454 // direct-list-initialization and copy-initialization otherwise.
4455 // We can't use InitListChecker for this, because it always performs
4456 // copy-initialization. This only matters if we might use an 'explicit'
4457 // conversion operator, or for the special case conversion of nullptr_t to
4458 // bool, so we only need to handle those cases.
4459 //
4460 // FIXME: Why not do this in all cases?
4461 Expr *Init = InitList->getInit(0);
4462 if (Init->getType()->isRecordType() ||
4463 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4464 InitializationKind SubKind =
4465 Kind.getKind() == InitializationKind::IK_DirectList
4466 ? InitializationKind::CreateDirect(Kind.getLocation(),
4467 InitList->getLBraceLoc(),
4468 InitList->getRBraceLoc())
4469 : Kind;
4470 Expr *SubInit[1] = { Init };
4471 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4472 /*TopLevelOfInitList*/true,
4473 TreatUnavailableAsInvalid);
4474 if (Sequence)
4475 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4476 return;
4477 }
4478 }
4479
4480 InitListChecker CheckInitList(S, Entity, InitList,
4481 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4482 if (CheckInitList.HadError()) {
4483 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4484 return;
4485 }
4486
4487 // Add the list initialization step with the built init list.
4488 Sequence.AddListInitializationStep(DestType);
4489 }
4490
4491 /// Try a reference initialization that involves calling a conversion
4492 /// function.
TryRefInitWithConversionFunction(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,bool AllowRValues,bool IsLValueRef,InitializationSequence & Sequence)4493 static OverloadingResult TryRefInitWithConversionFunction(
4494 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4495 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4496 InitializationSequence &Sequence) {
4497 QualType DestType = Entity.getType();
4498 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4499 QualType T1 = cv1T1.getUnqualifiedType();
4500 QualType cv2T2 = Initializer->getType();
4501 QualType T2 = cv2T2.getUnqualifiedType();
4502
4503 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4504 "Must have incompatible references when binding via conversion");
4505
4506 // Build the candidate set directly in the initialization sequence
4507 // structure, so that it will persist if we fail.
4508 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4509 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4510
4511 // Determine whether we are allowed to call explicit conversion operators.
4512 // Note that none of [over.match.copy], [over.match.conv], nor
4513 // [over.match.ref] permit an explicit constructor to be chosen when
4514 // initializing a reference, not even for direct-initialization.
4515 bool AllowExplicitCtors = false;
4516 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4517
4518 const RecordType *T1RecordType = nullptr;
4519 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4520 S.isCompleteType(Kind.getLocation(), T1)) {
4521 // The type we're converting to is a class type. Enumerate its constructors
4522 // to see if there is a suitable conversion.
4523 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4524
4525 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4526 auto Info = getConstructorInfo(D);
4527 if (!Info.Constructor)
4528 continue;
4529
4530 if (!Info.Constructor->isInvalidDecl() &&
4531 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4532 if (Info.ConstructorTmpl)
4533 S.AddTemplateOverloadCandidate(
4534 Info.ConstructorTmpl, Info.FoundDecl,
4535 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4536 /*SuppressUserConversions=*/true,
4537 /*PartialOverloading*/ false, AllowExplicitCtors);
4538 else
4539 S.AddOverloadCandidate(
4540 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4541 /*SuppressUserConversions=*/true,
4542 /*PartialOverloading*/ false, AllowExplicitCtors);
4543 }
4544 }
4545 }
4546 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4547 return OR_No_Viable_Function;
4548
4549 const RecordType *T2RecordType = nullptr;
4550 if ((T2RecordType = T2->getAs<RecordType>()) &&
4551 S.isCompleteType(Kind.getLocation(), T2)) {
4552 // The type we're converting from is a class type, enumerate its conversion
4553 // functions.
4554 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4555
4556 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4557 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4558 NamedDecl *D = *I;
4559 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4560 if (isa<UsingShadowDecl>(D))
4561 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4562
4563 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4564 CXXConversionDecl *Conv;
4565 if (ConvTemplate)
4566 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4567 else
4568 Conv = cast<CXXConversionDecl>(D);
4569
4570 // If the conversion function doesn't return a reference type,
4571 // it can't be considered for this conversion unless we're allowed to
4572 // consider rvalues.
4573 // FIXME: Do we need to make sure that we only consider conversion
4574 // candidates with reference-compatible results? That might be needed to
4575 // break recursion.
4576 if ((AllowRValues ||
4577 Conv->getConversionType()->isLValueReferenceType())) {
4578 if (ConvTemplate)
4579 S.AddTemplateConversionCandidate(
4580 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4581 CandidateSet,
4582 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4583 else
4584 S.AddConversionCandidate(
4585 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4586 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4587 }
4588 }
4589 }
4590 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4591 return OR_No_Viable_Function;
4592
4593 SourceLocation DeclLoc = Initializer->getBeginLoc();
4594
4595 // Perform overload resolution. If it fails, return the failed result.
4596 OverloadCandidateSet::iterator Best;
4597 if (OverloadingResult Result
4598 = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4599 return Result;
4600
4601 FunctionDecl *Function = Best->Function;
4602 // This is the overload that will be used for this initialization step if we
4603 // use this initialization. Mark it as referenced.
4604 Function->setReferenced();
4605
4606 // Compute the returned type and value kind of the conversion.
4607 QualType cv3T3;
4608 if (isa<CXXConversionDecl>(Function))
4609 cv3T3 = Function->getReturnType();
4610 else
4611 cv3T3 = T1;
4612
4613 ExprValueKind VK = VK_RValue;
4614 if (cv3T3->isLValueReferenceType())
4615 VK = VK_LValue;
4616 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4617 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4618 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4619
4620 // Add the user-defined conversion step.
4621 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4622 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4623 HadMultipleCandidates);
4624
4625 // Determine whether we'll need to perform derived-to-base adjustments or
4626 // other conversions.
4627 Sema::ReferenceConversions RefConv;
4628 Sema::ReferenceCompareResult NewRefRelationship =
4629 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4630
4631 // Add the final conversion sequence, if necessary.
4632 if (NewRefRelationship == Sema::Ref_Incompatible) {
4633 assert(!isa<CXXConstructorDecl>(Function) &&
4634 "should not have conversion after constructor");
4635
4636 ImplicitConversionSequence ICS;
4637 ICS.setStandard();
4638 ICS.Standard = Best->FinalConversion;
4639 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4640
4641 // Every implicit conversion results in a prvalue, except for a glvalue
4642 // derived-to-base conversion, which we handle below.
4643 cv3T3 = ICS.Standard.getToType(2);
4644 VK = VK_RValue;
4645 }
4646
4647 // If the converted initializer is a prvalue, its type T4 is adjusted to
4648 // type "cv1 T4" and the temporary materialization conversion is applied.
4649 //
4650 // We adjust the cv-qualifications to match the reference regardless of
4651 // whether we have a prvalue so that the AST records the change. In this
4652 // case, T4 is "cv3 T3".
4653 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4654 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4655 Sequence.AddQualificationConversionStep(cv1T4, VK);
4656 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4657 VK = IsLValueRef ? VK_LValue : VK_XValue;
4658
4659 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4660 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4661 else if (RefConv & Sema::ReferenceConversions::ObjC)
4662 Sequence.AddObjCObjectConversionStep(cv1T1);
4663 else if (RefConv & Sema::ReferenceConversions::Function)
4664 Sequence.AddFunctionReferenceConversionStep(cv1T1);
4665 else if (RefConv & Sema::ReferenceConversions::Qualification) {
4666 if (!S.Context.hasSameType(cv1T4, cv1T1))
4667 Sequence.AddQualificationConversionStep(cv1T1, VK);
4668 }
4669
4670 return OR_Success;
4671 }
4672
4673 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4674 const InitializedEntity &Entity,
4675 Expr *CurInitExpr);
4676
4677 /// Attempt reference initialization (C++0x [dcl.init.ref])
TryReferenceInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)4678 static void TryReferenceInitialization(Sema &S,
4679 const InitializedEntity &Entity,
4680 const InitializationKind &Kind,
4681 Expr *Initializer,
4682 InitializationSequence &Sequence) {
4683 QualType DestType = Entity.getType();
4684 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4685 Qualifiers T1Quals;
4686 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4687 QualType cv2T2 = Initializer->getType();
4688 Qualifiers T2Quals;
4689 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4690
4691 // If the initializer is the address of an overloaded function, try
4692 // to resolve the overloaded function. If all goes well, T2 is the
4693 // type of the resulting function.
4694 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4695 T1, Sequence))
4696 return;
4697
4698 // Delegate everything else to a subfunction.
4699 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4700 T1Quals, cv2T2, T2, T2Quals, Sequence);
4701 }
4702
4703 /// Determine whether an expression is a non-referenceable glvalue (one to
4704 /// which a reference can never bind). Attempting to bind a reference to
4705 /// such a glvalue will always create a temporary.
isNonReferenceableGLValue(Expr * E)4706 static bool isNonReferenceableGLValue(Expr *E) {
4707 return E->refersToBitField() || E->refersToVectorElement() ||
4708 E->refersToMatrixElement();
4709 }
4710
4711 /// Reference initialization without resolving overloaded functions.
4712 ///
4713 /// We also can get here in C if we call a builtin which is declared as
4714 /// a function with a parameter of reference type (such as __builtin_va_end()).
TryReferenceInitializationCore(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,QualType cv1T1,QualType T1,Qualifiers T1Quals,QualType cv2T2,QualType T2,Qualifiers T2Quals,InitializationSequence & Sequence)4715 static void TryReferenceInitializationCore(Sema &S,
4716 const InitializedEntity &Entity,
4717 const InitializationKind &Kind,
4718 Expr *Initializer,
4719 QualType cv1T1, QualType T1,
4720 Qualifiers T1Quals,
4721 QualType cv2T2, QualType T2,
4722 Qualifiers T2Quals,
4723 InitializationSequence &Sequence) {
4724 QualType DestType = Entity.getType();
4725 SourceLocation DeclLoc = Initializer->getBeginLoc();
4726
4727 // Compute some basic properties of the types and the initializer.
4728 bool isLValueRef = DestType->isLValueReferenceType();
4729 bool isRValueRef = !isLValueRef;
4730 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4731
4732 Sema::ReferenceConversions RefConv;
4733 Sema::ReferenceCompareResult RefRelationship =
4734 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4735
4736 // C++0x [dcl.init.ref]p5:
4737 // A reference to type "cv1 T1" is initialized by an expression of type
4738 // "cv2 T2" as follows:
4739 //
4740 // - If the reference is an lvalue reference and the initializer
4741 // expression
4742 // Note the analogous bullet points for rvalue refs to functions. Because
4743 // there are no function rvalues in C++, rvalue refs to functions are treated
4744 // like lvalue refs.
4745 OverloadingResult ConvOvlResult = OR_Success;
4746 bool T1Function = T1->isFunctionType();
4747 if (isLValueRef || T1Function) {
4748 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4749 (RefRelationship == Sema::Ref_Compatible ||
4750 (Kind.isCStyleOrFunctionalCast() &&
4751 RefRelationship == Sema::Ref_Related))) {
4752 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4753 // reference-compatible with "cv2 T2," or
4754 if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4755 Sema::ReferenceConversions::ObjC)) {
4756 // If we're converting the pointee, add any qualifiers first;
4757 // these qualifiers must all be top-level, so just convert to "cv1 T2".
4758 if (RefConv & (Sema::ReferenceConversions::Qualification))
4759 Sequence.AddQualificationConversionStep(
4760 S.Context.getQualifiedType(T2, T1Quals),
4761 Initializer->getValueKind());
4762 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4763 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4764 else
4765 Sequence.AddObjCObjectConversionStep(cv1T1);
4766 } else if (RefConv & Sema::ReferenceConversions::Qualification) {
4767 // Perform a (possibly multi-level) qualification conversion.
4768 Sequence.AddQualificationConversionStep(cv1T1,
4769 Initializer->getValueKind());
4770 } else if (RefConv & Sema::ReferenceConversions::Function) {
4771 Sequence.AddFunctionReferenceConversionStep(cv1T1);
4772 }
4773
4774 // We only create a temporary here when binding a reference to a
4775 // bit-field or vector element. Those cases are't supposed to be
4776 // handled by this bullet, but the outcome is the same either way.
4777 Sequence.AddReferenceBindingStep(cv1T1, false);
4778 return;
4779 }
4780
4781 // - has a class type (i.e., T2 is a class type), where T1 is not
4782 // reference-related to T2, and can be implicitly converted to an
4783 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4784 // with "cv3 T3" (this conversion is selected by enumerating the
4785 // applicable conversion functions (13.3.1.6) and choosing the best
4786 // one through overload resolution (13.3)),
4787 // If we have an rvalue ref to function type here, the rhs must be
4788 // an rvalue. DR1287 removed the "implicitly" here.
4789 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4790 (isLValueRef || InitCategory.isRValue())) {
4791 if (S.getLangOpts().CPlusPlus) {
4792 // Try conversion functions only for C++.
4793 ConvOvlResult = TryRefInitWithConversionFunction(
4794 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4795 /*IsLValueRef*/ isLValueRef, Sequence);
4796 if (ConvOvlResult == OR_Success)
4797 return;
4798 if (ConvOvlResult != OR_No_Viable_Function)
4799 Sequence.SetOverloadFailure(
4800 InitializationSequence::FK_ReferenceInitOverloadFailed,
4801 ConvOvlResult);
4802 } else {
4803 ConvOvlResult = OR_No_Viable_Function;
4804 }
4805 }
4806 }
4807
4808 // - Otherwise, the reference shall be an lvalue reference to a
4809 // non-volatile const type (i.e., cv1 shall be const), or the reference
4810 // shall be an rvalue reference.
4811 // For address spaces, we interpret this to mean that an addr space
4812 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4813 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4814 T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4815 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4816 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4817 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4818 Sequence.SetOverloadFailure(
4819 InitializationSequence::FK_ReferenceInitOverloadFailed,
4820 ConvOvlResult);
4821 else if (!InitCategory.isLValue())
4822 Sequence.SetFailed(
4823 T1Quals.isAddressSpaceSupersetOf(T2Quals)
4824 ? InitializationSequence::
4825 FK_NonConstLValueReferenceBindingToTemporary
4826 : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4827 else {
4828 InitializationSequence::FailureKind FK;
4829 switch (RefRelationship) {
4830 case Sema::Ref_Compatible:
4831 if (Initializer->refersToBitField())
4832 FK = InitializationSequence::
4833 FK_NonConstLValueReferenceBindingToBitfield;
4834 else if (Initializer->refersToVectorElement())
4835 FK = InitializationSequence::
4836 FK_NonConstLValueReferenceBindingToVectorElement;
4837 else if (Initializer->refersToMatrixElement())
4838 FK = InitializationSequence::
4839 FK_NonConstLValueReferenceBindingToMatrixElement;
4840 else
4841 llvm_unreachable("unexpected kind of compatible initializer");
4842 break;
4843 case Sema::Ref_Related:
4844 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4845 break;
4846 case Sema::Ref_Incompatible:
4847 FK = InitializationSequence::
4848 FK_NonConstLValueReferenceBindingToUnrelated;
4849 break;
4850 }
4851 Sequence.SetFailed(FK);
4852 }
4853 return;
4854 }
4855
4856 // - If the initializer expression
4857 // - is an
4858 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4859 // [1z] rvalue (but not a bit-field) or
4860 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4861 //
4862 // Note: functions are handled above and below rather than here...
4863 if (!T1Function &&
4864 (RefRelationship == Sema::Ref_Compatible ||
4865 (Kind.isCStyleOrFunctionalCast() &&
4866 RefRelationship == Sema::Ref_Related)) &&
4867 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4868 (InitCategory.isPRValue() &&
4869 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4870 T2->isArrayType())))) {
4871 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4872 if (InitCategory.isPRValue() && T2->isRecordType()) {
4873 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4874 // compiler the freedom to perform a copy here or bind to the
4875 // object, while C++0x requires that we bind directly to the
4876 // object. Hence, we always bind to the object without making an
4877 // extra copy. However, in C++03 requires that we check for the
4878 // presence of a suitable copy constructor:
4879 //
4880 // The constructor that would be used to make the copy shall
4881 // be callable whether or not the copy is actually done.
4882 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4883 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4884 else if (S.getLangOpts().CPlusPlus11)
4885 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4886 }
4887
4888 // C++1z [dcl.init.ref]/5.2.1.2:
4889 // If the converted initializer is a prvalue, its type T4 is adjusted
4890 // to type "cv1 T4" and the temporary materialization conversion is
4891 // applied.
4892 // Postpone address space conversions to after the temporary materialization
4893 // conversion to allow creating temporaries in the alloca address space.
4894 auto T1QualsIgnoreAS = T1Quals;
4895 auto T2QualsIgnoreAS = T2Quals;
4896 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4897 T1QualsIgnoreAS.removeAddressSpace();
4898 T2QualsIgnoreAS.removeAddressSpace();
4899 }
4900 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4901 if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4902 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4903 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4904 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4905 // Add addr space conversion if required.
4906 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4907 auto T4Quals = cv1T4.getQualifiers();
4908 T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4909 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4910 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4911 cv1T4 = cv1T4WithAS;
4912 }
4913
4914 // In any case, the reference is bound to the resulting glvalue (or to
4915 // an appropriate base class subobject).
4916 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4917 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4918 else if (RefConv & Sema::ReferenceConversions::ObjC)
4919 Sequence.AddObjCObjectConversionStep(cv1T1);
4920 else if (RefConv & Sema::ReferenceConversions::Qualification) {
4921 if (!S.Context.hasSameType(cv1T4, cv1T1))
4922 Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
4923 }
4924 return;
4925 }
4926
4927 // - has a class type (i.e., T2 is a class type), where T1 is not
4928 // reference-related to T2, and can be implicitly converted to an
4929 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4930 // where "cv1 T1" is reference-compatible with "cv3 T3",
4931 //
4932 // DR1287 removes the "implicitly" here.
4933 if (T2->isRecordType()) {
4934 if (RefRelationship == Sema::Ref_Incompatible) {
4935 ConvOvlResult = TryRefInitWithConversionFunction(
4936 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4937 /*IsLValueRef*/ isLValueRef, Sequence);
4938 if (ConvOvlResult)
4939 Sequence.SetOverloadFailure(
4940 InitializationSequence::FK_ReferenceInitOverloadFailed,
4941 ConvOvlResult);
4942
4943 return;
4944 }
4945
4946 if (RefRelationship == Sema::Ref_Compatible &&
4947 isRValueRef && InitCategory.isLValue()) {
4948 Sequence.SetFailed(
4949 InitializationSequence::FK_RValueReferenceBindingToLValue);
4950 return;
4951 }
4952
4953 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4954 return;
4955 }
4956
4957 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
4958 // from the initializer expression using the rules for a non-reference
4959 // copy-initialization (8.5). The reference is then bound to the
4960 // temporary. [...]
4961
4962 // Ignore address space of reference type at this point and perform address
4963 // space conversion after the reference binding step.
4964 QualType cv1T1IgnoreAS =
4965 T1Quals.hasAddressSpace()
4966 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4967 : cv1T1;
4968
4969 InitializedEntity TempEntity =
4970 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4971
4972 // FIXME: Why do we use an implicit conversion here rather than trying
4973 // copy-initialization?
4974 ImplicitConversionSequence ICS
4975 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4976 /*SuppressUserConversions=*/false,
4977 Sema::AllowedExplicit::None,
4978 /*FIXME:InOverloadResolution=*/false,
4979 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4980 /*AllowObjCWritebackConversion=*/false);
4981
4982 if (ICS.isBad()) {
4983 // FIXME: Use the conversion function set stored in ICS to turn
4984 // this into an overloading ambiguity diagnostic. However, we need
4985 // to keep that set as an OverloadCandidateSet rather than as some
4986 // other kind of set.
4987 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4988 Sequence.SetOverloadFailure(
4989 InitializationSequence::FK_ReferenceInitOverloadFailed,
4990 ConvOvlResult);
4991 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4992 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4993 else
4994 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4995 return;
4996 } else {
4997 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4998 }
4999
5000 // [...] If T1 is reference-related to T2, cv1 must be the
5001 // same cv-qualification as, or greater cv-qualification
5002 // than, cv2; otherwise, the program is ill-formed.
5003 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
5004 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
5005 if ((RefRelationship == Sema::Ref_Related &&
5006 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
5007 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
5008 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5009 return;
5010 }
5011
5012 // [...] If T1 is reference-related to T2 and the reference is an rvalue
5013 // reference, the initializer expression shall not be an lvalue.
5014 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5015 InitCategory.isLValue()) {
5016 Sequence.SetFailed(
5017 InitializationSequence::FK_RValueReferenceBindingToLValue);
5018 return;
5019 }
5020
5021 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5022
5023 if (T1Quals.hasAddressSpace()) {
5024 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5025 LangAS::Default)) {
5026 Sequence.SetFailed(
5027 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5028 return;
5029 }
5030 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5031 : VK_XValue);
5032 }
5033 }
5034
5035 /// Attempt character array initialization from a string literal
5036 /// (C++ [dcl.init.string], C99 6.7.8).
TryStringLiteralInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)5037 static void TryStringLiteralInitialization(Sema &S,
5038 const InitializedEntity &Entity,
5039 const InitializationKind &Kind,
5040 Expr *Initializer,
5041 InitializationSequence &Sequence) {
5042 Sequence.AddStringInitStep(Entity.getType());
5043 }
5044
5045 /// Attempt value initialization (C++ [dcl.init]p7).
TryValueInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence,InitListExpr * InitList)5046 static void TryValueInitialization(Sema &S,
5047 const InitializedEntity &Entity,
5048 const InitializationKind &Kind,
5049 InitializationSequence &Sequence,
5050 InitListExpr *InitList) {
5051 assert((!InitList || InitList->getNumInits() == 0) &&
5052 "Shouldn't use value-init for non-empty init lists");
5053
5054 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5055 //
5056 // To value-initialize an object of type T means:
5057 QualType T = Entity.getType();
5058
5059 // -- if T is an array type, then each element is value-initialized;
5060 T = S.Context.getBaseElementType(T);
5061
5062 if (const RecordType *RT = T->getAs<RecordType>()) {
5063 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5064 bool NeedZeroInitialization = true;
5065 // C++98:
5066 // -- if T is a class type (clause 9) with a user-declared constructor
5067 // (12.1), then the default constructor for T is called (and the
5068 // initialization is ill-formed if T has no accessible default
5069 // constructor);
5070 // C++11:
5071 // -- if T is a class type (clause 9) with either no default constructor
5072 // (12.1 [class.ctor]) or a default constructor that is user-provided
5073 // or deleted, then the object is default-initialized;
5074 //
5075 // Note that the C++11 rule is the same as the C++98 rule if there are no
5076 // defaulted or deleted constructors, so we just use it unconditionally.
5077 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5078 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5079 NeedZeroInitialization = false;
5080
5081 // -- if T is a (possibly cv-qualified) non-union class type without a
5082 // user-provided or deleted default constructor, then the object is
5083 // zero-initialized and, if T has a non-trivial default constructor,
5084 // default-initialized;
5085 // The 'non-union' here was removed by DR1502. The 'non-trivial default
5086 // constructor' part was removed by DR1507.
5087 if (NeedZeroInitialization)
5088 Sequence.AddZeroInitializationStep(Entity.getType());
5089
5090 // C++03:
5091 // -- if T is a non-union class type without a user-declared constructor,
5092 // then every non-static data member and base class component of T is
5093 // value-initialized;
5094 // [...] A program that calls for [...] value-initialization of an
5095 // entity of reference type is ill-formed.
5096 //
5097 // C++11 doesn't need this handling, because value-initialization does not
5098 // occur recursively there, and the implicit default constructor is
5099 // defined as deleted in the problematic cases.
5100 if (!S.getLangOpts().CPlusPlus11 &&
5101 ClassDecl->hasUninitializedReferenceMember()) {
5102 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5103 return;
5104 }
5105
5106 // If this is list-value-initialization, pass the empty init list on when
5107 // building the constructor call. This affects the semantics of a few
5108 // things (such as whether an explicit default constructor can be called).
5109 Expr *InitListAsExpr = InitList;
5110 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5111 bool InitListSyntax = InitList;
5112
5113 // FIXME: Instead of creating a CXXConstructExpr of array type here,
5114 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5115 return TryConstructorInitialization(
5116 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5117 }
5118 }
5119
5120 Sequence.AddZeroInitializationStep(Entity.getType());
5121 }
5122
5123 /// Attempt default initialization (C++ [dcl.init]p6).
TryDefaultInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)5124 static void TryDefaultInitialization(Sema &S,
5125 const InitializedEntity &Entity,
5126 const InitializationKind &Kind,
5127 InitializationSequence &Sequence) {
5128 assert(Kind.getKind() == InitializationKind::IK_Default);
5129
5130 // C++ [dcl.init]p6:
5131 // To default-initialize an object of type T means:
5132 // - if T is an array type, each element is default-initialized;
5133 QualType DestType = S.Context.getBaseElementType(Entity.getType());
5134
5135 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
5136 // constructor for T is called (and the initialization is ill-formed if
5137 // T has no accessible default constructor);
5138 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5139 TryConstructorInitialization(S, Entity, Kind, None, DestType,
5140 Entity.getType(), Sequence);
5141 return;
5142 }
5143
5144 // - otherwise, no initialization is performed.
5145
5146 // If a program calls for the default initialization of an object of
5147 // a const-qualified type T, T shall be a class type with a user-provided
5148 // default constructor.
5149 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5150 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5151 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5152 return;
5153 }
5154
5155 // If the destination type has a lifetime property, zero-initialize it.
5156 if (DestType.getQualifiers().hasObjCLifetime()) {
5157 Sequence.AddZeroInitializationStep(Entity.getType());
5158 return;
5159 }
5160 }
5161
5162 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5163 /// which enumerates all conversion functions and performs overload resolution
5164 /// to select the best.
TryUserDefinedConversion(Sema & S,QualType DestType,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence,bool TopLevelOfInitList)5165 static void TryUserDefinedConversion(Sema &S,
5166 QualType DestType,
5167 const InitializationKind &Kind,
5168 Expr *Initializer,
5169 InitializationSequence &Sequence,
5170 bool TopLevelOfInitList) {
5171 assert(!DestType->isReferenceType() && "References are handled elsewhere");
5172 QualType SourceType = Initializer->getType();
5173 assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5174 "Must have a class type to perform a user-defined conversion");
5175
5176 // Build the candidate set directly in the initialization sequence
5177 // structure, so that it will persist if we fail.
5178 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5179 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5180 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5181
5182 // Determine whether we are allowed to call explicit constructors or
5183 // explicit conversion operators.
5184 bool AllowExplicit = Kind.AllowExplicit();
5185
5186 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5187 // The type we're converting to is a class type. Enumerate its constructors
5188 // to see if there is a suitable conversion.
5189 CXXRecordDecl *DestRecordDecl
5190 = cast<CXXRecordDecl>(DestRecordType->getDecl());
5191
5192 // Try to complete the type we're converting to.
5193 if (S.isCompleteType(Kind.getLocation(), DestType)) {
5194 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5195 auto Info = getConstructorInfo(D);
5196 if (!Info.Constructor)
5197 continue;
5198
5199 if (!Info.Constructor->isInvalidDecl() &&
5200 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5201 if (Info.ConstructorTmpl)
5202 S.AddTemplateOverloadCandidate(
5203 Info.ConstructorTmpl, Info.FoundDecl,
5204 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5205 /*SuppressUserConversions=*/true,
5206 /*PartialOverloading*/ false, AllowExplicit);
5207 else
5208 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5209 Initializer, CandidateSet,
5210 /*SuppressUserConversions=*/true,
5211 /*PartialOverloading*/ false, AllowExplicit);
5212 }
5213 }
5214 }
5215 }
5216
5217 SourceLocation DeclLoc = Initializer->getBeginLoc();
5218
5219 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5220 // The type we're converting from is a class type, enumerate its conversion
5221 // functions.
5222
5223 // We can only enumerate the conversion functions for a complete type; if
5224 // the type isn't complete, simply skip this step.
5225 if (S.isCompleteType(DeclLoc, SourceType)) {
5226 CXXRecordDecl *SourceRecordDecl
5227 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5228
5229 const auto &Conversions =
5230 SourceRecordDecl->getVisibleConversionFunctions();
5231 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5232 NamedDecl *D = *I;
5233 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5234 if (isa<UsingShadowDecl>(D))
5235 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5236
5237 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5238 CXXConversionDecl *Conv;
5239 if (ConvTemplate)
5240 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5241 else
5242 Conv = cast<CXXConversionDecl>(D);
5243
5244 if (ConvTemplate)
5245 S.AddTemplateConversionCandidate(
5246 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5247 CandidateSet, AllowExplicit, AllowExplicit);
5248 else
5249 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5250 DestType, CandidateSet, AllowExplicit,
5251 AllowExplicit);
5252 }
5253 }
5254 }
5255
5256 // Perform overload resolution. If it fails, return the failed result.
5257 OverloadCandidateSet::iterator Best;
5258 if (OverloadingResult Result
5259 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5260 Sequence.SetOverloadFailure(
5261 InitializationSequence::FK_UserConversionOverloadFailed,
5262 Result);
5263 return;
5264 }
5265
5266 FunctionDecl *Function = Best->Function;
5267 Function->setReferenced();
5268 bool HadMultipleCandidates = (CandidateSet.size() > 1);
5269
5270 if (isa<CXXConstructorDecl>(Function)) {
5271 // Add the user-defined conversion step. Any cv-qualification conversion is
5272 // subsumed by the initialization. Per DR5, the created temporary is of the
5273 // cv-unqualified type of the destination.
5274 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5275 DestType.getUnqualifiedType(),
5276 HadMultipleCandidates);
5277
5278 // C++14 and before:
5279 // - if the function is a constructor, the call initializes a temporary
5280 // of the cv-unqualified version of the destination type. The [...]
5281 // temporary [...] is then used to direct-initialize, according to the
5282 // rules above, the object that is the destination of the
5283 // copy-initialization.
5284 // Note that this just performs a simple object copy from the temporary.
5285 //
5286 // C++17:
5287 // - if the function is a constructor, the call is a prvalue of the
5288 // cv-unqualified version of the destination type whose return object
5289 // is initialized by the constructor. The call is used to
5290 // direct-initialize, according to the rules above, the object that
5291 // is the destination of the copy-initialization.
5292 // Therefore we need to do nothing further.
5293 //
5294 // FIXME: Mark this copy as extraneous.
5295 if (!S.getLangOpts().CPlusPlus17)
5296 Sequence.AddFinalCopy(DestType);
5297 else if (DestType.hasQualifiers())
5298 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5299 return;
5300 }
5301
5302 // Add the user-defined conversion step that calls the conversion function.
5303 QualType ConvType = Function->getCallResultType();
5304 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5305 HadMultipleCandidates);
5306
5307 if (ConvType->getAs<RecordType>()) {
5308 // The call is used to direct-initialize [...] the object that is the
5309 // destination of the copy-initialization.
5310 //
5311 // In C++17, this does not call a constructor if we enter /17.6.1:
5312 // - If the initializer expression is a prvalue and the cv-unqualified
5313 // version of the source type is the same as the class of the
5314 // destination [... do not make an extra copy]
5315 //
5316 // FIXME: Mark this copy as extraneous.
5317 if (!S.getLangOpts().CPlusPlus17 ||
5318 Function->getReturnType()->isReferenceType() ||
5319 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5320 Sequence.AddFinalCopy(DestType);
5321 else if (!S.Context.hasSameType(ConvType, DestType))
5322 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5323 return;
5324 }
5325
5326 // If the conversion following the call to the conversion function
5327 // is interesting, add it as a separate step.
5328 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5329 Best->FinalConversion.Third) {
5330 ImplicitConversionSequence ICS;
5331 ICS.setStandard();
5332 ICS.Standard = Best->FinalConversion;
5333 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5334 }
5335 }
5336
5337 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5338 /// a function with a pointer return type contains a 'return false;' statement.
5339 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5340 /// code using that header.
5341 ///
5342 /// Work around this by treating 'return false;' as zero-initializing the result
5343 /// if it's used in a pointer-returning function in a system header.
isLibstdcxxPointerReturnFalseHack(Sema & S,const InitializedEntity & Entity,const Expr * Init)5344 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5345 const InitializedEntity &Entity,
5346 const Expr *Init) {
5347 return S.getLangOpts().CPlusPlus11 &&
5348 Entity.getKind() == InitializedEntity::EK_Result &&
5349 Entity.getType()->isPointerType() &&
5350 isa<CXXBoolLiteralExpr>(Init) &&
5351 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5352 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5353 }
5354
5355 /// The non-zero enum values here are indexes into diagnostic alternatives.
5356 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5357
5358 /// Determines whether this expression is an acceptable ICR source.
isInvalidICRSource(ASTContext & C,Expr * e,bool isAddressOf,bool & isWeakAccess)5359 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5360 bool isAddressOf, bool &isWeakAccess) {
5361 // Skip parens.
5362 e = e->IgnoreParens();
5363
5364 // Skip address-of nodes.
5365 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5366 if (op->getOpcode() == UO_AddrOf)
5367 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5368 isWeakAccess);
5369
5370 // Skip certain casts.
5371 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5372 switch (ce->getCastKind()) {
5373 case CK_Dependent:
5374 case CK_BitCast:
5375 case CK_LValueBitCast:
5376 case CK_NoOp:
5377 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5378
5379 case CK_ArrayToPointerDecay:
5380 return IIK_nonscalar;
5381
5382 case CK_NullToPointer:
5383 return IIK_okay;
5384
5385 default:
5386 break;
5387 }
5388
5389 // If we have a declaration reference, it had better be a local variable.
5390 } else if (isa<DeclRefExpr>(e)) {
5391 // set isWeakAccess to true, to mean that there will be an implicit
5392 // load which requires a cleanup.
5393 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5394 isWeakAccess = true;
5395
5396 if (!isAddressOf) return IIK_nonlocal;
5397
5398 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5399 if (!var) return IIK_nonlocal;
5400
5401 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5402
5403 // If we have a conditional operator, check both sides.
5404 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5405 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5406 isWeakAccess))
5407 return iik;
5408
5409 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5410
5411 // These are never scalar.
5412 } else if (isa<ArraySubscriptExpr>(e)) {
5413 return IIK_nonscalar;
5414
5415 // Otherwise, it needs to be a null pointer constant.
5416 } else {
5417 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5418 ? IIK_okay : IIK_nonlocal);
5419 }
5420
5421 return IIK_nonlocal;
5422 }
5423
5424 /// Check whether the given expression is a valid operand for an
5425 /// indirect copy/restore.
checkIndirectCopyRestoreSource(Sema & S,Expr * src)5426 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5427 assert(src->isRValue());
5428 bool isWeakAccess = false;
5429 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5430 // If isWeakAccess to true, there will be an implicit
5431 // load which requires a cleanup.
5432 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5433 S.Cleanup.setExprNeedsCleanups(true);
5434
5435 if (iik == IIK_okay) return;
5436
5437 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5438 << ((unsigned) iik - 1) // shift index into diagnostic explanations
5439 << src->getSourceRange();
5440 }
5441
5442 /// Determine whether we have compatible array types for the
5443 /// purposes of GNU by-copy array initialization.
hasCompatibleArrayTypes(ASTContext & Context,const ArrayType * Dest,const ArrayType * Source)5444 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5445 const ArrayType *Source) {
5446 // If the source and destination array types are equivalent, we're
5447 // done.
5448 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5449 return true;
5450
5451 // Make sure that the element types are the same.
5452 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5453 return false;
5454
5455 // The only mismatch we allow is when the destination is an
5456 // incomplete array type and the source is a constant array type.
5457 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5458 }
5459
tryObjCWritebackConversion(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity,Expr * Initializer)5460 static bool tryObjCWritebackConversion(Sema &S,
5461 InitializationSequence &Sequence,
5462 const InitializedEntity &Entity,
5463 Expr *Initializer) {
5464 bool ArrayDecay = false;
5465 QualType ArgType = Initializer->getType();
5466 QualType ArgPointee;
5467 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5468 ArrayDecay = true;
5469 ArgPointee = ArgArrayType->getElementType();
5470 ArgType = S.Context.getPointerType(ArgPointee);
5471 }
5472
5473 // Handle write-back conversion.
5474 QualType ConvertedArgType;
5475 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5476 ConvertedArgType))
5477 return false;
5478
5479 // We should copy unless we're passing to an argument explicitly
5480 // marked 'out'.
5481 bool ShouldCopy = true;
5482 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5483 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5484
5485 // Do we need an lvalue conversion?
5486 if (ArrayDecay || Initializer->isGLValue()) {
5487 ImplicitConversionSequence ICS;
5488 ICS.setStandard();
5489 ICS.Standard.setAsIdentityConversion();
5490
5491 QualType ResultType;
5492 if (ArrayDecay) {
5493 ICS.Standard.First = ICK_Array_To_Pointer;
5494 ResultType = S.Context.getPointerType(ArgPointee);
5495 } else {
5496 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5497 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5498 }
5499
5500 Sequence.AddConversionSequenceStep(ICS, ResultType);
5501 }
5502
5503 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5504 return true;
5505 }
5506
TryOCLSamplerInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)5507 static bool TryOCLSamplerInitialization(Sema &S,
5508 InitializationSequence &Sequence,
5509 QualType DestType,
5510 Expr *Initializer) {
5511 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5512 (!Initializer->isIntegerConstantExpr(S.Context) &&
5513 !Initializer->getType()->isSamplerT()))
5514 return false;
5515
5516 Sequence.AddOCLSamplerInitStep(DestType);
5517 return true;
5518 }
5519
IsZeroInitializer(Expr * Initializer,Sema & S)5520 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5521 return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5522 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5523 }
5524
TryOCLZeroOpaqueTypeInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)5525 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5526 InitializationSequence &Sequence,
5527 QualType DestType,
5528 Expr *Initializer) {
5529 if (!S.getLangOpts().OpenCL)
5530 return false;
5531
5532 //
5533 // OpenCL 1.2 spec, s6.12.10
5534 //
5535 // The event argument can also be used to associate the
5536 // async_work_group_copy with a previous async copy allowing
5537 // an event to be shared by multiple async copies; otherwise
5538 // event should be zero.
5539 //
5540 if (DestType->isEventT() || DestType->isQueueT()) {
5541 if (!IsZeroInitializer(Initializer, S))
5542 return false;
5543
5544 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5545 return true;
5546 }
5547
5548 // We should allow zero initialization for all types defined in the
5549 // cl_intel_device_side_avc_motion_estimation extension, except
5550 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5551 if (S.getOpenCLOptions().isEnabled(
5552 "cl_intel_device_side_avc_motion_estimation") &&
5553 DestType->isOCLIntelSubgroupAVCType()) {
5554 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5555 DestType->isOCLIntelSubgroupAVCMceResultType())
5556 return false;
5557 if (!IsZeroInitializer(Initializer, S))
5558 return false;
5559
5560 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5561 return true;
5562 }
5563
5564 return false;
5565 }
5566
InitializationSequence(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList,bool TreatUnavailableAsInvalid)5567 InitializationSequence::InitializationSequence(Sema &S,
5568 const InitializedEntity &Entity,
5569 const InitializationKind &Kind,
5570 MultiExprArg Args,
5571 bool TopLevelOfInitList,
5572 bool TreatUnavailableAsInvalid)
5573 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5574 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5575 TreatUnavailableAsInvalid);
5576 }
5577
5578 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5579 /// address of that function, this returns true. Otherwise, it returns false.
isExprAnUnaddressableFunction(Sema & S,const Expr * E)5580 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5581 auto *DRE = dyn_cast<DeclRefExpr>(E);
5582 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5583 return false;
5584
5585 return !S.checkAddressOfFunctionIsAvailable(
5586 cast<FunctionDecl>(DRE->getDecl()));
5587 }
5588
5589 /// Determine whether we can perform an elementwise array copy for this kind
5590 /// of entity.
canPerformArrayCopy(const InitializedEntity & Entity)5591 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5592 switch (Entity.getKind()) {
5593 case InitializedEntity::EK_LambdaCapture:
5594 // C++ [expr.prim.lambda]p24:
5595 // For array members, the array elements are direct-initialized in
5596 // increasing subscript order.
5597 return true;
5598
5599 case InitializedEntity::EK_Variable:
5600 // C++ [dcl.decomp]p1:
5601 // [...] each element is copy-initialized or direct-initialized from the
5602 // corresponding element of the assignment-expression [...]
5603 return isa<DecompositionDecl>(Entity.getDecl());
5604
5605 case InitializedEntity::EK_Member:
5606 // C++ [class.copy.ctor]p14:
5607 // - if the member is an array, each element is direct-initialized with
5608 // the corresponding subobject of x
5609 return Entity.isImplicitMemberInitializer();
5610
5611 case InitializedEntity::EK_ArrayElement:
5612 // All the above cases are intended to apply recursively, even though none
5613 // of them actually say that.
5614 if (auto *E = Entity.getParent())
5615 return canPerformArrayCopy(*E);
5616 break;
5617
5618 default:
5619 break;
5620 }
5621
5622 return false;
5623 }
5624
InitializeFrom(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList,bool TreatUnavailableAsInvalid)5625 void InitializationSequence::InitializeFrom(Sema &S,
5626 const InitializedEntity &Entity,
5627 const InitializationKind &Kind,
5628 MultiExprArg Args,
5629 bool TopLevelOfInitList,
5630 bool TreatUnavailableAsInvalid) {
5631 ASTContext &Context = S.Context;
5632
5633 // Eliminate non-overload placeholder types in the arguments. We
5634 // need to do this before checking whether types are dependent
5635 // because lowering a pseudo-object expression might well give us
5636 // something of dependent type.
5637 for (unsigned I = 0, E = Args.size(); I != E; ++I)
5638 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5639 // FIXME: should we be doing this here?
5640 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5641 if (result.isInvalid()) {
5642 SetFailed(FK_PlaceholderType);
5643 return;
5644 }
5645 Args[I] = result.get();
5646 }
5647
5648 // C++0x [dcl.init]p16:
5649 // The semantics of initializers are as follows. The destination type is
5650 // the type of the object or reference being initialized and the source
5651 // type is the type of the initializer expression. The source type is not
5652 // defined when the initializer is a braced-init-list or when it is a
5653 // parenthesized list of expressions.
5654 QualType DestType = Entity.getType();
5655
5656 if (DestType->isDependentType() ||
5657 Expr::hasAnyTypeDependentArguments(Args)) {
5658 SequenceKind = DependentSequence;
5659 return;
5660 }
5661
5662 // Almost everything is a normal sequence.
5663 setSequenceKind(NormalSequence);
5664
5665 QualType SourceType;
5666 Expr *Initializer = nullptr;
5667 if (Args.size() == 1) {
5668 Initializer = Args[0];
5669 if (S.getLangOpts().ObjC) {
5670 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5671 DestType, Initializer->getType(),
5672 Initializer) ||
5673 S.CheckConversionToObjCLiteral(DestType, Initializer))
5674 Args[0] = Initializer;
5675 }
5676 if (!isa<InitListExpr>(Initializer))
5677 SourceType = Initializer->getType();
5678 }
5679
5680 // - If the initializer is a (non-parenthesized) braced-init-list, the
5681 // object is list-initialized (8.5.4).
5682 if (Kind.getKind() != InitializationKind::IK_Direct) {
5683 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5684 TryListInitialization(S, Entity, Kind, InitList, *this,
5685 TreatUnavailableAsInvalid);
5686 return;
5687 }
5688 }
5689
5690 // - If the destination type is a reference type, see 8.5.3.
5691 if (DestType->isReferenceType()) {
5692 // C++0x [dcl.init.ref]p1:
5693 // A variable declared to be a T& or T&&, that is, "reference to type T"
5694 // (8.3.2), shall be initialized by an object, or function, of type T or
5695 // by an object that can be converted into a T.
5696 // (Therefore, multiple arguments are not permitted.)
5697 if (Args.size() != 1)
5698 SetFailed(FK_TooManyInitsForReference);
5699 // C++17 [dcl.init.ref]p5:
5700 // A reference [...] is initialized by an expression [...] as follows:
5701 // If the initializer is not an expression, presumably we should reject,
5702 // but the standard fails to actually say so.
5703 else if (isa<InitListExpr>(Args[0]))
5704 SetFailed(FK_ParenthesizedListInitForReference);
5705 else
5706 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5707 return;
5708 }
5709
5710 // - If the initializer is (), the object is value-initialized.
5711 if (Kind.getKind() == InitializationKind::IK_Value ||
5712 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5713 TryValueInitialization(S, Entity, Kind, *this);
5714 return;
5715 }
5716
5717 // Handle default initialization.
5718 if (Kind.getKind() == InitializationKind::IK_Default) {
5719 TryDefaultInitialization(S, Entity, Kind, *this);
5720 return;
5721 }
5722
5723 // - If the destination type is an array of characters, an array of
5724 // char16_t, an array of char32_t, or an array of wchar_t, and the
5725 // initializer is a string literal, see 8.5.2.
5726 // - Otherwise, if the destination type is an array, the program is
5727 // ill-formed.
5728 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5729 if (Initializer && isa<VariableArrayType>(DestAT)) {
5730 SetFailed(FK_VariableLengthArrayHasInitializer);
5731 return;
5732 }
5733
5734 if (Initializer) {
5735 switch (IsStringInit(Initializer, DestAT, Context)) {
5736 case SIF_None:
5737 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5738 return;
5739 case SIF_NarrowStringIntoWideChar:
5740 SetFailed(FK_NarrowStringIntoWideCharArray);
5741 return;
5742 case SIF_WideStringIntoChar:
5743 SetFailed(FK_WideStringIntoCharArray);
5744 return;
5745 case SIF_IncompatWideStringIntoWideChar:
5746 SetFailed(FK_IncompatWideStringIntoWideChar);
5747 return;
5748 case SIF_PlainStringIntoUTF8Char:
5749 SetFailed(FK_PlainStringIntoUTF8Char);
5750 return;
5751 case SIF_UTF8StringIntoPlainChar:
5752 SetFailed(FK_UTF8StringIntoPlainChar);
5753 return;
5754 case SIF_Other:
5755 break;
5756 }
5757 }
5758
5759 // Some kinds of initialization permit an array to be initialized from
5760 // another array of the same type, and perform elementwise initialization.
5761 if (Initializer && isa<ConstantArrayType>(DestAT) &&
5762 S.Context.hasSameUnqualifiedType(Initializer->getType(),
5763 Entity.getType()) &&
5764 canPerformArrayCopy(Entity)) {
5765 // If source is a prvalue, use it directly.
5766 if (Initializer->getValueKind() == VK_RValue) {
5767 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5768 return;
5769 }
5770
5771 // Emit element-at-a-time copy loop.
5772 InitializedEntity Element =
5773 InitializedEntity::InitializeElement(S.Context, 0, Entity);
5774 QualType InitEltT =
5775 Context.getAsArrayType(Initializer->getType())->getElementType();
5776 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5777 Initializer->getValueKind(),
5778 Initializer->getObjectKind());
5779 Expr *OVEAsExpr = &OVE;
5780 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5781 TreatUnavailableAsInvalid);
5782 if (!Failed())
5783 AddArrayInitLoopStep(Entity.getType(), InitEltT);
5784 return;
5785 }
5786
5787 // Note: as an GNU C extension, we allow initialization of an
5788 // array from a compound literal that creates an array of the same
5789 // type, so long as the initializer has no side effects.
5790 if (!S.getLangOpts().CPlusPlus && Initializer &&
5791 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5792 Initializer->getType()->isArrayType()) {
5793 const ArrayType *SourceAT
5794 = Context.getAsArrayType(Initializer->getType());
5795 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5796 SetFailed(FK_ArrayTypeMismatch);
5797 else if (Initializer->HasSideEffects(S.Context))
5798 SetFailed(FK_NonConstantArrayInit);
5799 else {
5800 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5801 }
5802 }
5803 // Note: as a GNU C++ extension, we allow list-initialization of a
5804 // class member of array type from a parenthesized initializer list.
5805 else if (S.getLangOpts().CPlusPlus &&
5806 Entity.getKind() == InitializedEntity::EK_Member &&
5807 Initializer && isa<InitListExpr>(Initializer)) {
5808 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5809 *this, TreatUnavailableAsInvalid);
5810 AddParenthesizedArrayInitStep(DestType);
5811 } else if (DestAT->getElementType()->isCharType())
5812 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5813 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5814 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5815 else
5816 SetFailed(FK_ArrayNeedsInitList);
5817
5818 return;
5819 }
5820
5821 // Determine whether we should consider writeback conversions for
5822 // Objective-C ARC.
5823 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5824 Entity.isParameterKind();
5825
5826 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5827 return;
5828
5829 // We're at the end of the line for C: it's either a write-back conversion
5830 // or it's a C assignment. There's no need to check anything else.
5831 if (!S.getLangOpts().CPlusPlus) {
5832 // If allowed, check whether this is an Objective-C writeback conversion.
5833 if (allowObjCWritebackConversion &&
5834 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5835 return;
5836 }
5837
5838 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5839 return;
5840
5841 // Handle initialization in C
5842 AddCAssignmentStep(DestType);
5843 MaybeProduceObjCObject(S, *this, Entity);
5844 return;
5845 }
5846
5847 assert(S.getLangOpts().CPlusPlus);
5848
5849 // - If the destination type is a (possibly cv-qualified) class type:
5850 if (DestType->isRecordType()) {
5851 // - If the initialization is direct-initialization, or if it is
5852 // copy-initialization where the cv-unqualified version of the
5853 // source type is the same class as, or a derived class of, the
5854 // class of the destination, constructors are considered. [...]
5855 if (Kind.getKind() == InitializationKind::IK_Direct ||
5856 (Kind.getKind() == InitializationKind::IK_Copy &&
5857 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5858 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5859 TryConstructorInitialization(S, Entity, Kind, Args,
5860 DestType, DestType, *this);
5861 // - Otherwise (i.e., for the remaining copy-initialization cases),
5862 // user-defined conversion sequences that can convert from the source
5863 // type to the destination type or (when a conversion function is
5864 // used) to a derived class thereof are enumerated as described in
5865 // 13.3.1.4, and the best one is chosen through overload resolution
5866 // (13.3).
5867 else
5868 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5869 TopLevelOfInitList);
5870 return;
5871 }
5872
5873 assert(Args.size() >= 1 && "Zero-argument case handled above");
5874
5875 // The remaining cases all need a source type.
5876 if (Args.size() > 1) {
5877 SetFailed(FK_TooManyInitsForScalar);
5878 return;
5879 } else if (isa<InitListExpr>(Args[0])) {
5880 SetFailed(FK_ParenthesizedListInitForScalar);
5881 return;
5882 }
5883
5884 // - Otherwise, if the source type is a (possibly cv-qualified) class
5885 // type, conversion functions are considered.
5886 if (!SourceType.isNull() && SourceType->isRecordType()) {
5887 // For a conversion to _Atomic(T) from either T or a class type derived
5888 // from T, initialize the T object then convert to _Atomic type.
5889 bool NeedAtomicConversion = false;
5890 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5891 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5892 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5893 Atomic->getValueType())) {
5894 DestType = Atomic->getValueType();
5895 NeedAtomicConversion = true;
5896 }
5897 }
5898
5899 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5900 TopLevelOfInitList);
5901 MaybeProduceObjCObject(S, *this, Entity);
5902 if (!Failed() && NeedAtomicConversion)
5903 AddAtomicConversionStep(Entity.getType());
5904 return;
5905 }
5906
5907 // - Otherwise, if the initialization is direct-initialization, the source
5908 // type is std::nullptr_t, and the destination type is bool, the initial
5909 // value of the object being initialized is false.
5910 if (!SourceType.isNull() && SourceType->isNullPtrType() &&
5911 DestType->isBooleanType() &&
5912 Kind.getKind() == InitializationKind::IK_Direct) {
5913 AddConversionSequenceStep(
5914 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
5915 Initializer->isGLValue()),
5916 DestType);
5917 return;
5918 }
5919
5920 // - Otherwise, the initial value of the object being initialized is the
5921 // (possibly converted) value of the initializer expression. Standard
5922 // conversions (Clause 4) will be used, if necessary, to convert the
5923 // initializer expression to the cv-unqualified version of the
5924 // destination type; no user-defined conversions are considered.
5925
5926 ImplicitConversionSequence ICS
5927 = S.TryImplicitConversion(Initializer, DestType,
5928 /*SuppressUserConversions*/true,
5929 Sema::AllowedExplicit::None,
5930 /*InOverloadResolution*/ false,
5931 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5932 allowObjCWritebackConversion);
5933
5934 if (ICS.isStandard() &&
5935 ICS.Standard.Second == ICK_Writeback_Conversion) {
5936 // Objective-C ARC writeback conversion.
5937
5938 // We should copy unless we're passing to an argument explicitly
5939 // marked 'out'.
5940 bool ShouldCopy = true;
5941 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5942 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5943
5944 // If there was an lvalue adjustment, add it as a separate conversion.
5945 if (ICS.Standard.First == ICK_Array_To_Pointer ||
5946 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5947 ImplicitConversionSequence LvalueICS;
5948 LvalueICS.setStandard();
5949 LvalueICS.Standard.setAsIdentityConversion();
5950 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5951 LvalueICS.Standard.First = ICS.Standard.First;
5952 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5953 }
5954
5955 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5956 } else if (ICS.isBad()) {
5957 DeclAccessPair dap;
5958 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5959 AddZeroInitializationStep(Entity.getType());
5960 } else if (Initializer->getType() == Context.OverloadTy &&
5961 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5962 false, dap))
5963 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5964 else if (Initializer->getType()->isFunctionType() &&
5965 isExprAnUnaddressableFunction(S, Initializer))
5966 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5967 else
5968 SetFailed(InitializationSequence::FK_ConversionFailed);
5969 } else {
5970 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5971
5972 MaybeProduceObjCObject(S, *this, Entity);
5973 }
5974 }
5975
~InitializationSequence()5976 InitializationSequence::~InitializationSequence() {
5977 for (auto &S : Steps)
5978 S.Destroy();
5979 }
5980
5981 //===----------------------------------------------------------------------===//
5982 // Perform initialization
5983 //===----------------------------------------------------------------------===//
5984 static Sema::AssignmentAction
getAssignmentAction(const InitializedEntity & Entity,bool Diagnose=false)5985 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5986 switch(Entity.getKind()) {
5987 case InitializedEntity::EK_Variable:
5988 case InitializedEntity::EK_New:
5989 case InitializedEntity::EK_Exception:
5990 case InitializedEntity::EK_Base:
5991 case InitializedEntity::EK_Delegating:
5992 return Sema::AA_Initializing;
5993
5994 case InitializedEntity::EK_Parameter:
5995 if (Entity.getDecl() &&
5996 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5997 return Sema::AA_Sending;
5998
5999 return Sema::AA_Passing;
6000
6001 case InitializedEntity::EK_Parameter_CF_Audited:
6002 if (Entity.getDecl() &&
6003 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6004 return Sema::AA_Sending;
6005
6006 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
6007
6008 case InitializedEntity::EK_Result:
6009 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
6010 return Sema::AA_Returning;
6011
6012 case InitializedEntity::EK_Temporary:
6013 case InitializedEntity::EK_RelatedResult:
6014 // FIXME: Can we tell apart casting vs. converting?
6015 return Sema::AA_Casting;
6016
6017 case InitializedEntity::EK_TemplateParameter:
6018 // This is really initialization, but refer to it as conversion for
6019 // consistency with CheckConvertedConstantExpression.
6020 return Sema::AA_Converting;
6021
6022 case InitializedEntity::EK_Member:
6023 case InitializedEntity::EK_Binding:
6024 case InitializedEntity::EK_ArrayElement:
6025 case InitializedEntity::EK_VectorElement:
6026 case InitializedEntity::EK_ComplexElement:
6027 case InitializedEntity::EK_BlockElement:
6028 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6029 case InitializedEntity::EK_LambdaCapture:
6030 case InitializedEntity::EK_CompoundLiteralInit:
6031 return Sema::AA_Initializing;
6032 }
6033
6034 llvm_unreachable("Invalid EntityKind!");
6035 }
6036
6037 /// Whether we should bind a created object as a temporary when
6038 /// initializing the given entity.
shouldBindAsTemporary(const InitializedEntity & Entity)6039 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6040 switch (Entity.getKind()) {
6041 case InitializedEntity::EK_ArrayElement:
6042 case InitializedEntity::EK_Member:
6043 case InitializedEntity::EK_Result:
6044 case InitializedEntity::EK_StmtExprResult:
6045 case InitializedEntity::EK_New:
6046 case InitializedEntity::EK_Variable:
6047 case InitializedEntity::EK_Base:
6048 case InitializedEntity::EK_Delegating:
6049 case InitializedEntity::EK_VectorElement:
6050 case InitializedEntity::EK_ComplexElement:
6051 case InitializedEntity::EK_Exception:
6052 case InitializedEntity::EK_BlockElement:
6053 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6054 case InitializedEntity::EK_LambdaCapture:
6055 case InitializedEntity::EK_CompoundLiteralInit:
6056 case InitializedEntity::EK_TemplateParameter:
6057 return false;
6058
6059 case InitializedEntity::EK_Parameter:
6060 case InitializedEntity::EK_Parameter_CF_Audited:
6061 case InitializedEntity::EK_Temporary:
6062 case InitializedEntity::EK_RelatedResult:
6063 case InitializedEntity::EK_Binding:
6064 return true;
6065 }
6066
6067 llvm_unreachable("missed an InitializedEntity kind?");
6068 }
6069
6070 /// Whether the given entity, when initialized with an object
6071 /// created for that initialization, requires destruction.
shouldDestroyEntity(const InitializedEntity & Entity)6072 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6073 switch (Entity.getKind()) {
6074 case InitializedEntity::EK_Result:
6075 case InitializedEntity::EK_StmtExprResult:
6076 case InitializedEntity::EK_New:
6077 case InitializedEntity::EK_Base:
6078 case InitializedEntity::EK_Delegating:
6079 case InitializedEntity::EK_VectorElement:
6080 case InitializedEntity::EK_ComplexElement:
6081 case InitializedEntity::EK_BlockElement:
6082 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6083 case InitializedEntity::EK_LambdaCapture:
6084 return false;
6085
6086 case InitializedEntity::EK_Member:
6087 case InitializedEntity::EK_Binding:
6088 case InitializedEntity::EK_Variable:
6089 case InitializedEntity::EK_Parameter:
6090 case InitializedEntity::EK_Parameter_CF_Audited:
6091 case InitializedEntity::EK_TemplateParameter:
6092 case InitializedEntity::EK_Temporary:
6093 case InitializedEntity::EK_ArrayElement:
6094 case InitializedEntity::EK_Exception:
6095 case InitializedEntity::EK_CompoundLiteralInit:
6096 case InitializedEntity::EK_RelatedResult:
6097 return true;
6098 }
6099
6100 llvm_unreachable("missed an InitializedEntity kind?");
6101 }
6102
6103 /// Get the location at which initialization diagnostics should appear.
getInitializationLoc(const InitializedEntity & Entity,Expr * Initializer)6104 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6105 Expr *Initializer) {
6106 switch (Entity.getKind()) {
6107 case InitializedEntity::EK_Result:
6108 case InitializedEntity::EK_StmtExprResult:
6109 return Entity.getReturnLoc();
6110
6111 case InitializedEntity::EK_Exception:
6112 return Entity.getThrowLoc();
6113
6114 case InitializedEntity::EK_Variable:
6115 case InitializedEntity::EK_Binding:
6116 return Entity.getDecl()->getLocation();
6117
6118 case InitializedEntity::EK_LambdaCapture:
6119 return Entity.getCaptureLoc();
6120
6121 case InitializedEntity::EK_ArrayElement:
6122 case InitializedEntity::EK_Member:
6123 case InitializedEntity::EK_Parameter:
6124 case InitializedEntity::EK_Parameter_CF_Audited:
6125 case InitializedEntity::EK_TemplateParameter:
6126 case InitializedEntity::EK_Temporary:
6127 case InitializedEntity::EK_New:
6128 case InitializedEntity::EK_Base:
6129 case InitializedEntity::EK_Delegating:
6130 case InitializedEntity::EK_VectorElement:
6131 case InitializedEntity::EK_ComplexElement:
6132 case InitializedEntity::EK_BlockElement:
6133 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6134 case InitializedEntity::EK_CompoundLiteralInit:
6135 case InitializedEntity::EK_RelatedResult:
6136 return Initializer->getBeginLoc();
6137 }
6138 llvm_unreachable("missed an InitializedEntity kind?");
6139 }
6140
6141 /// Make a (potentially elidable) temporary copy of the object
6142 /// provided by the given initializer by calling the appropriate copy
6143 /// constructor.
6144 ///
6145 /// \param S The Sema object used for type-checking.
6146 ///
6147 /// \param T The type of the temporary object, which must either be
6148 /// the type of the initializer expression or a superclass thereof.
6149 ///
6150 /// \param Entity The entity being initialized.
6151 ///
6152 /// \param CurInit The initializer expression.
6153 ///
6154 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6155 /// is permitted in C++03 (but not C++0x) when binding a reference to
6156 /// an rvalue.
6157 ///
6158 /// \returns An expression that copies the initializer expression into
6159 /// a temporary object, or an error expression if a copy could not be
6160 /// created.
CopyObject(Sema & S,QualType T,const InitializedEntity & Entity,ExprResult CurInit,bool IsExtraneousCopy)6161 static ExprResult CopyObject(Sema &S,
6162 QualType T,
6163 const InitializedEntity &Entity,
6164 ExprResult CurInit,
6165 bool IsExtraneousCopy) {
6166 if (CurInit.isInvalid())
6167 return CurInit;
6168 // Determine which class type we're copying to.
6169 Expr *CurInitExpr = (Expr *)CurInit.get();
6170 CXXRecordDecl *Class = nullptr;
6171 if (const RecordType *Record = T->getAs<RecordType>())
6172 Class = cast<CXXRecordDecl>(Record->getDecl());
6173 if (!Class)
6174 return CurInit;
6175
6176 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6177
6178 // Make sure that the type we are copying is complete.
6179 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6180 return CurInit;
6181
6182 // Perform overload resolution using the class's constructors. Per
6183 // C++11 [dcl.init]p16, second bullet for class types, this initialization
6184 // is direct-initialization.
6185 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6186 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6187
6188 OverloadCandidateSet::iterator Best;
6189 switch (ResolveConstructorOverload(
6190 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6191 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6192 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6193 /*SecondStepOfCopyInit=*/true)) {
6194 case OR_Success:
6195 break;
6196
6197 case OR_No_Viable_Function:
6198 CandidateSet.NoteCandidates(
6199 PartialDiagnosticAt(
6200 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6201 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6202 : diag::err_temp_copy_no_viable)
6203 << (int)Entity.getKind() << CurInitExpr->getType()
6204 << CurInitExpr->getSourceRange()),
6205 S, OCD_AllCandidates, CurInitExpr);
6206 if (!IsExtraneousCopy || S.isSFINAEContext())
6207 return ExprError();
6208 return CurInit;
6209
6210 case OR_Ambiguous:
6211 CandidateSet.NoteCandidates(
6212 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6213 << (int)Entity.getKind()
6214 << CurInitExpr->getType()
6215 << CurInitExpr->getSourceRange()),
6216 S, OCD_AmbiguousCandidates, CurInitExpr);
6217 return ExprError();
6218
6219 case OR_Deleted:
6220 S.Diag(Loc, diag::err_temp_copy_deleted)
6221 << (int)Entity.getKind() << CurInitExpr->getType()
6222 << CurInitExpr->getSourceRange();
6223 S.NoteDeletedFunction(Best->Function);
6224 return ExprError();
6225 }
6226
6227 bool HadMultipleCandidates = CandidateSet.size() > 1;
6228
6229 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6230 SmallVector<Expr*, 8> ConstructorArgs;
6231 CurInit.get(); // Ownership transferred into MultiExprArg, below.
6232
6233 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6234 IsExtraneousCopy);
6235
6236 if (IsExtraneousCopy) {
6237 // If this is a totally extraneous copy for C++03 reference
6238 // binding purposes, just return the original initialization
6239 // expression. We don't generate an (elided) copy operation here
6240 // because doing so would require us to pass down a flag to avoid
6241 // infinite recursion, where each step adds another extraneous,
6242 // elidable copy.
6243
6244 // Instantiate the default arguments of any extra parameters in
6245 // the selected copy constructor, as if we were going to create a
6246 // proper call to the copy constructor.
6247 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6248 ParmVarDecl *Parm = Constructor->getParamDecl(I);
6249 if (S.RequireCompleteType(Loc, Parm->getType(),
6250 diag::err_call_incomplete_argument))
6251 break;
6252
6253 // Build the default argument expression; we don't actually care
6254 // if this succeeds or not, because this routine will complain
6255 // if there was a problem.
6256 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6257 }
6258
6259 return CurInitExpr;
6260 }
6261
6262 // Determine the arguments required to actually perform the
6263 // constructor call (we might have derived-to-base conversions, or
6264 // the copy constructor may have default arguments).
6265 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
6266 return ExprError();
6267
6268 // C++0x [class.copy]p32:
6269 // When certain criteria are met, an implementation is allowed to
6270 // omit the copy/move construction of a class object, even if the
6271 // copy/move constructor and/or destructor for the object have
6272 // side effects. [...]
6273 // - when a temporary class object that has not been bound to a
6274 // reference (12.2) would be copied/moved to a class object
6275 // with the same cv-unqualified type, the copy/move operation
6276 // can be omitted by constructing the temporary object
6277 // directly into the target of the omitted copy/move
6278 //
6279 // Note that the other three bullets are handled elsewhere. Copy
6280 // elision for return statements and throw expressions are handled as part
6281 // of constructor initialization, while copy elision for exception handlers
6282 // is handled by the run-time.
6283 //
6284 // FIXME: If the function parameter is not the same type as the temporary, we
6285 // should still be able to elide the copy, but we don't have a way to
6286 // represent in the AST how much should be elided in this case.
6287 bool Elidable =
6288 CurInitExpr->isTemporaryObject(S.Context, Class) &&
6289 S.Context.hasSameUnqualifiedType(
6290 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6291 CurInitExpr->getType());
6292
6293 // Actually perform the constructor call.
6294 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6295 Elidable,
6296 ConstructorArgs,
6297 HadMultipleCandidates,
6298 /*ListInit*/ false,
6299 /*StdInitListInit*/ false,
6300 /*ZeroInit*/ false,
6301 CXXConstructExpr::CK_Complete,
6302 SourceRange());
6303
6304 // If we're supposed to bind temporaries, do so.
6305 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6306 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6307 return CurInit;
6308 }
6309
6310 /// Check whether elidable copy construction for binding a reference to
6311 /// a temporary would have succeeded if we were building in C++98 mode, for
6312 /// -Wc++98-compat.
CheckCXX98CompatAccessibleCopy(Sema & S,const InitializedEntity & Entity,Expr * CurInitExpr)6313 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6314 const InitializedEntity &Entity,
6315 Expr *CurInitExpr) {
6316 assert(S.getLangOpts().CPlusPlus11);
6317
6318 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6319 if (!Record)
6320 return;
6321
6322 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6323 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6324 return;
6325
6326 // Find constructors which would have been considered.
6327 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6328 DeclContext::lookup_result Ctors =
6329 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6330
6331 // Perform overload resolution.
6332 OverloadCandidateSet::iterator Best;
6333 OverloadingResult OR = ResolveConstructorOverload(
6334 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6335 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6336 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6337 /*SecondStepOfCopyInit=*/true);
6338
6339 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6340 << OR << (int)Entity.getKind() << CurInitExpr->getType()
6341 << CurInitExpr->getSourceRange();
6342
6343 switch (OR) {
6344 case OR_Success:
6345 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6346 Best->FoundDecl, Entity, Diag);
6347 // FIXME: Check default arguments as far as that's possible.
6348 break;
6349
6350 case OR_No_Viable_Function:
6351 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6352 OCD_AllCandidates, CurInitExpr);
6353 break;
6354
6355 case OR_Ambiguous:
6356 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6357 OCD_AmbiguousCandidates, CurInitExpr);
6358 break;
6359
6360 case OR_Deleted:
6361 S.Diag(Loc, Diag);
6362 S.NoteDeletedFunction(Best->Function);
6363 break;
6364 }
6365 }
6366
PrintInitLocationNote(Sema & S,const InitializedEntity & Entity)6367 void InitializationSequence::PrintInitLocationNote(Sema &S,
6368 const InitializedEntity &Entity) {
6369 if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
6370 if (Entity.getDecl()->getLocation().isInvalid())
6371 return;
6372
6373 if (Entity.getDecl()->getDeclName())
6374 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6375 << Entity.getDecl()->getDeclName();
6376 else
6377 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6378 }
6379 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6380 Entity.getMethodDecl())
6381 S.Diag(Entity.getMethodDecl()->getLocation(),
6382 diag::note_method_return_type_change)
6383 << Entity.getMethodDecl()->getDeclName();
6384 }
6385
6386 /// Returns true if the parameters describe a constructor initialization of
6387 /// an explicit temporary object, e.g. "Point(x, y)".
isExplicitTemporary(const InitializedEntity & Entity,const InitializationKind & Kind,unsigned NumArgs)6388 static bool isExplicitTemporary(const InitializedEntity &Entity,
6389 const InitializationKind &Kind,
6390 unsigned NumArgs) {
6391 switch (Entity.getKind()) {
6392 case InitializedEntity::EK_Temporary:
6393 case InitializedEntity::EK_CompoundLiteralInit:
6394 case InitializedEntity::EK_RelatedResult:
6395 break;
6396 default:
6397 return false;
6398 }
6399
6400 switch (Kind.getKind()) {
6401 case InitializationKind::IK_DirectList:
6402 return true;
6403 // FIXME: Hack to work around cast weirdness.
6404 case InitializationKind::IK_Direct:
6405 case InitializationKind::IK_Value:
6406 return NumArgs != 1;
6407 default:
6408 return false;
6409 }
6410 }
6411
6412 static ExprResult
PerformConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,const InitializationSequence::Step & Step,bool & ConstructorInitRequiresZeroInit,bool IsListInitialization,bool IsStdInitListInitialization,SourceLocation LBraceLoc,SourceLocation RBraceLoc)6413 PerformConstructorInitialization(Sema &S,
6414 const InitializedEntity &Entity,
6415 const InitializationKind &Kind,
6416 MultiExprArg Args,
6417 const InitializationSequence::Step& Step,
6418 bool &ConstructorInitRequiresZeroInit,
6419 bool IsListInitialization,
6420 bool IsStdInitListInitialization,
6421 SourceLocation LBraceLoc,
6422 SourceLocation RBraceLoc) {
6423 unsigned NumArgs = Args.size();
6424 CXXConstructorDecl *Constructor
6425 = cast<CXXConstructorDecl>(Step.Function.Function);
6426 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6427
6428 // Build a call to the selected constructor.
6429 SmallVector<Expr*, 8> ConstructorArgs;
6430 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6431 ? Kind.getEqualLoc()
6432 : Kind.getLocation();
6433
6434 if (Kind.getKind() == InitializationKind::IK_Default) {
6435 // Force even a trivial, implicit default constructor to be
6436 // semantically checked. We do this explicitly because we don't build
6437 // the definition for completely trivial constructors.
6438 assert(Constructor->getParent() && "No parent class for constructor.");
6439 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6440 Constructor->isTrivial() && !Constructor->isUsed(false)) {
6441 S.runWithSufficientStackSpace(Loc, [&] {
6442 S.DefineImplicitDefaultConstructor(Loc, Constructor);
6443 });
6444 }
6445 }
6446
6447 ExprResult CurInit((Expr *)nullptr);
6448
6449 // C++ [over.match.copy]p1:
6450 // - When initializing a temporary to be bound to the first parameter
6451 // of a constructor that takes a reference to possibly cv-qualified
6452 // T as its first argument, called with a single argument in the
6453 // context of direct-initialization, explicit conversion functions
6454 // are also considered.
6455 bool AllowExplicitConv =
6456 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6457 hasCopyOrMoveCtorParam(S.Context,
6458 getConstructorInfo(Step.Function.FoundDecl));
6459
6460 // Determine the arguments required to actually perform the constructor
6461 // call.
6462 if (S.CompleteConstructorCall(Constructor, Args,
6463 Loc, ConstructorArgs,
6464 AllowExplicitConv,
6465 IsListInitialization))
6466 return ExprError();
6467
6468
6469 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6470 // An explicitly-constructed temporary, e.g., X(1, 2).
6471 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6472 return ExprError();
6473
6474 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6475 if (!TSInfo)
6476 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6477 SourceRange ParenOrBraceRange =
6478 (Kind.getKind() == InitializationKind::IK_DirectList)
6479 ? SourceRange(LBraceLoc, RBraceLoc)
6480 : Kind.getParenOrBraceRange();
6481
6482 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6483 Step.Function.FoundDecl.getDecl())) {
6484 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6485 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6486 return ExprError();
6487 }
6488 S.MarkFunctionReferenced(Loc, Constructor);
6489
6490 CurInit = S.CheckForImmediateInvocation(
6491 CXXTemporaryObjectExpr::Create(
6492 S.Context, Constructor,
6493 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6494 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6495 IsListInitialization, IsStdInitListInitialization,
6496 ConstructorInitRequiresZeroInit),
6497 Constructor);
6498 } else {
6499 CXXConstructExpr::ConstructionKind ConstructKind =
6500 CXXConstructExpr::CK_Complete;
6501
6502 if (Entity.getKind() == InitializedEntity::EK_Base) {
6503 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6504 CXXConstructExpr::CK_VirtualBase :
6505 CXXConstructExpr::CK_NonVirtualBase;
6506 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6507 ConstructKind = CXXConstructExpr::CK_Delegating;
6508 }
6509
6510 // Only get the parenthesis or brace range if it is a list initialization or
6511 // direct construction.
6512 SourceRange ParenOrBraceRange;
6513 if (IsListInitialization)
6514 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6515 else if (Kind.getKind() == InitializationKind::IK_Direct)
6516 ParenOrBraceRange = Kind.getParenOrBraceRange();
6517
6518 // If the entity allows NRVO, mark the construction as elidable
6519 // unconditionally.
6520 if (Entity.allowsNRVO())
6521 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6522 Step.Function.FoundDecl,
6523 Constructor, /*Elidable=*/true,
6524 ConstructorArgs,
6525 HadMultipleCandidates,
6526 IsListInitialization,
6527 IsStdInitListInitialization,
6528 ConstructorInitRequiresZeroInit,
6529 ConstructKind,
6530 ParenOrBraceRange);
6531 else
6532 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6533 Step.Function.FoundDecl,
6534 Constructor,
6535 ConstructorArgs,
6536 HadMultipleCandidates,
6537 IsListInitialization,
6538 IsStdInitListInitialization,
6539 ConstructorInitRequiresZeroInit,
6540 ConstructKind,
6541 ParenOrBraceRange);
6542 }
6543 if (CurInit.isInvalid())
6544 return ExprError();
6545
6546 // Only check access if all of that succeeded.
6547 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6548 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6549 return ExprError();
6550
6551 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6552 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6553 return ExprError();
6554
6555 if (shouldBindAsTemporary(Entity))
6556 CurInit = S.MaybeBindToTemporary(CurInit.get());
6557
6558 return CurInit;
6559 }
6560
6561 namespace {
6562 enum LifetimeKind {
6563 /// The lifetime of a temporary bound to this entity ends at the end of the
6564 /// full-expression, and that's (probably) fine.
6565 LK_FullExpression,
6566
6567 /// The lifetime of a temporary bound to this entity is extended to the
6568 /// lifeitme of the entity itself.
6569 LK_Extended,
6570
6571 /// The lifetime of a temporary bound to this entity probably ends too soon,
6572 /// because the entity is allocated in a new-expression.
6573 LK_New,
6574
6575 /// The lifetime of a temporary bound to this entity ends too soon, because
6576 /// the entity is a return object.
6577 LK_Return,
6578
6579 /// The lifetime of a temporary bound to this entity ends too soon, because
6580 /// the entity is the result of a statement expression.
6581 LK_StmtExprResult,
6582
6583 /// This is a mem-initializer: if it would extend a temporary (other than via
6584 /// a default member initializer), the program is ill-formed.
6585 LK_MemInitializer,
6586 };
6587 using LifetimeResult =
6588 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6589 }
6590
6591 /// Determine the declaration which an initialized entity ultimately refers to,
6592 /// for the purpose of lifetime-extending a temporary bound to a reference in
6593 /// the initialization of \p Entity.
getEntityLifetime(const InitializedEntity * Entity,const InitializedEntity * InitField=nullptr)6594 static LifetimeResult getEntityLifetime(
6595 const InitializedEntity *Entity,
6596 const InitializedEntity *InitField = nullptr) {
6597 // C++11 [class.temporary]p5:
6598 switch (Entity->getKind()) {
6599 case InitializedEntity::EK_Variable:
6600 // The temporary [...] persists for the lifetime of the reference
6601 return {Entity, LK_Extended};
6602
6603 case InitializedEntity::EK_Member:
6604 // For subobjects, we look at the complete object.
6605 if (Entity->getParent())
6606 return getEntityLifetime(Entity->getParent(), Entity);
6607
6608 // except:
6609 // C++17 [class.base.init]p8:
6610 // A temporary expression bound to a reference member in a
6611 // mem-initializer is ill-formed.
6612 // C++17 [class.base.init]p11:
6613 // A temporary expression bound to a reference member from a
6614 // default member initializer is ill-formed.
6615 //
6616 // The context of p11 and its example suggest that it's only the use of a
6617 // default member initializer from a constructor that makes the program
6618 // ill-formed, not its mere existence, and that it can even be used by
6619 // aggregate initialization.
6620 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6621 : LK_MemInitializer};
6622
6623 case InitializedEntity::EK_Binding:
6624 // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6625 // type.
6626 return {Entity, LK_Extended};
6627
6628 case InitializedEntity::EK_Parameter:
6629 case InitializedEntity::EK_Parameter_CF_Audited:
6630 // -- A temporary bound to a reference parameter in a function call
6631 // persists until the completion of the full-expression containing
6632 // the call.
6633 return {nullptr, LK_FullExpression};
6634
6635 case InitializedEntity::EK_TemplateParameter:
6636 // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
6637 return {nullptr, LK_FullExpression};
6638
6639 case InitializedEntity::EK_Result:
6640 // -- The lifetime of a temporary bound to the returned value in a
6641 // function return statement is not extended; the temporary is
6642 // destroyed at the end of the full-expression in the return statement.
6643 return {nullptr, LK_Return};
6644
6645 case InitializedEntity::EK_StmtExprResult:
6646 // FIXME: Should we lifetime-extend through the result of a statement
6647 // expression?
6648 return {nullptr, LK_StmtExprResult};
6649
6650 case InitializedEntity::EK_New:
6651 // -- A temporary bound to a reference in a new-initializer persists
6652 // until the completion of the full-expression containing the
6653 // new-initializer.
6654 return {nullptr, LK_New};
6655
6656 case InitializedEntity::EK_Temporary:
6657 case InitializedEntity::EK_CompoundLiteralInit:
6658 case InitializedEntity::EK_RelatedResult:
6659 // We don't yet know the storage duration of the surrounding temporary.
6660 // Assume it's got full-expression duration for now, it will patch up our
6661 // storage duration if that's not correct.
6662 return {nullptr, LK_FullExpression};
6663
6664 case InitializedEntity::EK_ArrayElement:
6665 // For subobjects, we look at the complete object.
6666 return getEntityLifetime(Entity->getParent(), InitField);
6667
6668 case InitializedEntity::EK_Base:
6669 // For subobjects, we look at the complete object.
6670 if (Entity->getParent())
6671 return getEntityLifetime(Entity->getParent(), InitField);
6672 return {InitField, LK_MemInitializer};
6673
6674 case InitializedEntity::EK_Delegating:
6675 // We can reach this case for aggregate initialization in a constructor:
6676 // struct A { int &&r; };
6677 // struct B : A { B() : A{0} {} };
6678 // In this case, use the outermost field decl as the context.
6679 return {InitField, LK_MemInitializer};
6680
6681 case InitializedEntity::EK_BlockElement:
6682 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6683 case InitializedEntity::EK_LambdaCapture:
6684 case InitializedEntity::EK_VectorElement:
6685 case InitializedEntity::EK_ComplexElement:
6686 return {nullptr, LK_FullExpression};
6687
6688 case InitializedEntity::EK_Exception:
6689 // FIXME: Can we diagnose lifetime problems with exceptions?
6690 return {nullptr, LK_FullExpression};
6691 }
6692 llvm_unreachable("unknown entity kind");
6693 }
6694
6695 namespace {
6696 enum ReferenceKind {
6697 /// Lifetime would be extended by a reference binding to a temporary.
6698 RK_ReferenceBinding,
6699 /// Lifetime would be extended by a std::initializer_list object binding to
6700 /// its backing array.
6701 RK_StdInitializerList,
6702 };
6703
6704 /// A temporary or local variable. This will be one of:
6705 /// * A MaterializeTemporaryExpr.
6706 /// * A DeclRefExpr whose declaration is a local.
6707 /// * An AddrLabelExpr.
6708 /// * A BlockExpr for a block with captures.
6709 using Local = Expr*;
6710
6711 /// Expressions we stepped over when looking for the local state. Any steps
6712 /// that would inhibit lifetime extension or take us out of subexpressions of
6713 /// the initializer are included.
6714 struct IndirectLocalPathEntry {
6715 enum EntryKind {
6716 DefaultInit,
6717 AddressOf,
6718 VarInit,
6719 LValToRVal,
6720 LifetimeBoundCall,
6721 TemporaryCopy,
6722 LambdaCaptureInit,
6723 GslReferenceInit,
6724 GslPointerInit
6725 } Kind;
6726 Expr *E;
6727 union {
6728 const Decl *D = nullptr;
6729 const LambdaCapture *Capture;
6730 };
IndirectLocalPathEntry__anondb5d5db90511::IndirectLocalPathEntry6731 IndirectLocalPathEntry() {}
IndirectLocalPathEntry__anondb5d5db90511::IndirectLocalPathEntry6732 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
IndirectLocalPathEntry__anondb5d5db90511::IndirectLocalPathEntry6733 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6734 : Kind(K), E(E), D(D) {}
IndirectLocalPathEntry__anondb5d5db90511::IndirectLocalPathEntry6735 IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
6736 : Kind(K), E(E), Capture(Capture) {}
6737 };
6738
6739 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6740
6741 struct RevertToOldSizeRAII {
6742 IndirectLocalPath &Path;
6743 unsigned OldSize = Path.size();
RevertToOldSizeRAII__anondb5d5db90511::RevertToOldSizeRAII6744 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
~RevertToOldSizeRAII__anondb5d5db90511::RevertToOldSizeRAII6745 ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6746 };
6747
6748 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6749 ReferenceKind RK)>;
6750 }
6751
isVarOnPath(IndirectLocalPath & Path,VarDecl * VD)6752 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6753 for (auto E : Path)
6754 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6755 return true;
6756 return false;
6757 }
6758
pathContainsInit(IndirectLocalPath & Path)6759 static bool pathContainsInit(IndirectLocalPath &Path) {
6760 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6761 return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6762 E.Kind == IndirectLocalPathEntry::VarInit;
6763 });
6764 }
6765
6766 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6767 Expr *Init, LocalVisitor Visit,
6768 bool RevisitSubinits,
6769 bool EnableLifetimeWarnings);
6770
6771 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6772 Expr *Init, ReferenceKind RK,
6773 LocalVisitor Visit,
6774 bool EnableLifetimeWarnings);
6775
isRecordWithAttr(QualType Type)6776 template <typename T> static bool isRecordWithAttr(QualType Type) {
6777 if (auto *RD = Type->getAsCXXRecordDecl())
6778 return RD->hasAttr<T>();
6779 return false;
6780 }
6781
6782 // Decl::isInStdNamespace will return false for iterators in some STL
6783 // implementations due to them being defined in a namespace outside of the std
6784 // namespace.
isInStlNamespace(const Decl * D)6785 static bool isInStlNamespace(const Decl *D) {
6786 const DeclContext *DC = D->getDeclContext();
6787 if (!DC)
6788 return false;
6789 if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6790 if (const IdentifierInfo *II = ND->getIdentifier()) {
6791 StringRef Name = II->getName();
6792 if (Name.size() >= 2 && Name.front() == '_' &&
6793 (Name[1] == '_' || isUppercase(Name[1])))
6794 return true;
6795 }
6796
6797 return DC->isStdNamespace();
6798 }
6799
shouldTrackImplicitObjectArg(const CXXMethodDecl * Callee)6800 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6801 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6802 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6803 return true;
6804 if (!isInStlNamespace(Callee->getParent()))
6805 return false;
6806 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6807 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6808 return false;
6809 if (Callee->getReturnType()->isPointerType() ||
6810 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6811 if (!Callee->getIdentifier())
6812 return false;
6813 return llvm::StringSwitch<bool>(Callee->getName())
6814 .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6815 .Cases("end", "rend", "cend", "crend", true)
6816 .Cases("c_str", "data", "get", true)
6817 // Map and set types.
6818 .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6819 .Default(false);
6820 } else if (Callee->getReturnType()->isReferenceType()) {
6821 if (!Callee->getIdentifier()) {
6822 auto OO = Callee->getOverloadedOperator();
6823 return OO == OverloadedOperatorKind::OO_Subscript ||
6824 OO == OverloadedOperatorKind::OO_Star;
6825 }
6826 return llvm::StringSwitch<bool>(Callee->getName())
6827 .Cases("front", "back", "at", "top", "value", true)
6828 .Default(false);
6829 }
6830 return false;
6831 }
6832
shouldTrackFirstArgument(const FunctionDecl * FD)6833 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6834 if (!FD->getIdentifier() || FD->getNumParams() != 1)
6835 return false;
6836 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6837 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6838 return false;
6839 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6840 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6841 return false;
6842 if (FD->getReturnType()->isPointerType() ||
6843 isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6844 return llvm::StringSwitch<bool>(FD->getName())
6845 .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6846 .Cases("end", "rend", "cend", "crend", true)
6847 .Case("data", true)
6848 .Default(false);
6849 } else if (FD->getReturnType()->isReferenceType()) {
6850 return llvm::StringSwitch<bool>(FD->getName())
6851 .Cases("get", "any_cast", true)
6852 .Default(false);
6853 }
6854 return false;
6855 }
6856
handleGslAnnotatedTypes(IndirectLocalPath & Path,Expr * Call,LocalVisitor Visit)6857 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6858 LocalVisitor Visit) {
6859 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6860 // We are not interested in the temporary base objects of gsl Pointers:
6861 // Temp().ptr; // Here ptr might not dangle.
6862 if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6863 return;
6864 // Once we initialized a value with a reference, it can no longer dangle.
6865 if (!Value) {
6866 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
6867 if (It->Kind == IndirectLocalPathEntry::GslReferenceInit)
6868 continue;
6869 if (It->Kind == IndirectLocalPathEntry::GslPointerInit)
6870 return;
6871 break;
6872 }
6873 }
6874 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6875 : IndirectLocalPathEntry::GslReferenceInit,
6876 Arg, D});
6877 if (Arg->isGLValue())
6878 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6879 Visit,
6880 /*EnableLifetimeWarnings=*/true);
6881 else
6882 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6883 /*EnableLifetimeWarnings=*/true);
6884 Path.pop_back();
6885 };
6886
6887 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6888 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6889 if (MD && shouldTrackImplicitObjectArg(MD))
6890 VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6891 !MD->getReturnType()->isReferenceType());
6892 return;
6893 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6894 FunctionDecl *Callee = OCE->getDirectCallee();
6895 if (Callee && Callee->isCXXInstanceMember() &&
6896 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6897 VisitPointerArg(Callee, OCE->getArg(0),
6898 !Callee->getReturnType()->isReferenceType());
6899 return;
6900 } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6901 FunctionDecl *Callee = CE->getDirectCallee();
6902 if (Callee && shouldTrackFirstArgument(Callee))
6903 VisitPointerArg(Callee, CE->getArg(0),
6904 !Callee->getReturnType()->isReferenceType());
6905 return;
6906 }
6907
6908 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
6909 const auto *Ctor = CCE->getConstructor();
6910 const CXXRecordDecl *RD = Ctor->getParent();
6911 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
6912 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
6913 }
6914 }
6915
implicitObjectParamIsLifetimeBound(const FunctionDecl * FD)6916 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6917 const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6918 if (!TSI)
6919 return false;
6920 // Don't declare this variable in the second operand of the for-statement;
6921 // GCC miscompiles that by ending its lifetime before evaluating the
6922 // third operand. See gcc.gnu.org/PR86769.
6923 AttributedTypeLoc ATL;
6924 for (TypeLoc TL = TSI->getTypeLoc();
6925 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6926 TL = ATL.getModifiedLoc()) {
6927 if (ATL.getAttrAs<LifetimeBoundAttr>())
6928 return true;
6929 }
6930
6931 // Assume that all assignment operators with a "normal" return type return
6932 // *this, that is, an lvalue reference that is the same type as the implicit
6933 // object parameter (or the LHS for a non-member operator$=).
6934 OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
6935 if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
6936 QualType RetT = FD->getReturnType();
6937 if (RetT->isLValueReferenceType()) {
6938 ASTContext &Ctx = FD->getASTContext();
6939 QualType LHST;
6940 auto *MD = dyn_cast<CXXMethodDecl>(FD);
6941 if (MD && MD->isCXXInstanceMember())
6942 LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
6943 else
6944 LHST = MD->getParamDecl(0)->getType();
6945 if (Ctx.hasSameType(RetT, LHST))
6946 return true;
6947 }
6948 }
6949
6950 return false;
6951 }
6952
visitLifetimeBoundArguments(IndirectLocalPath & Path,Expr * Call,LocalVisitor Visit)6953 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6954 LocalVisitor Visit) {
6955 const FunctionDecl *Callee;
6956 ArrayRef<Expr*> Args;
6957
6958 if (auto *CE = dyn_cast<CallExpr>(Call)) {
6959 Callee = CE->getDirectCallee();
6960 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6961 } else {
6962 auto *CCE = cast<CXXConstructExpr>(Call);
6963 Callee = CCE->getConstructor();
6964 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6965 }
6966 if (!Callee)
6967 return;
6968
6969 Expr *ObjectArg = nullptr;
6970 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6971 ObjectArg = Args[0];
6972 Args = Args.slice(1);
6973 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6974 ObjectArg = MCE->getImplicitObjectArgument();
6975 }
6976
6977 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6978 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6979 if (Arg->isGLValue())
6980 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6981 Visit,
6982 /*EnableLifetimeWarnings=*/false);
6983 else
6984 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6985 /*EnableLifetimeWarnings=*/false);
6986 Path.pop_back();
6987 };
6988
6989 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6990 VisitLifetimeBoundArg(Callee, ObjectArg);
6991
6992 for (unsigned I = 0,
6993 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6994 I != N; ++I) {
6995 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6996 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6997 }
6998 }
6999
7000 /// Visit the locals that would be reachable through a reference bound to the
7001 /// glvalue expression \c Init.
visitLocalsRetainedByReferenceBinding(IndirectLocalPath & Path,Expr * Init,ReferenceKind RK,LocalVisitor Visit,bool EnableLifetimeWarnings)7002 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7003 Expr *Init, ReferenceKind RK,
7004 LocalVisitor Visit,
7005 bool EnableLifetimeWarnings) {
7006 RevertToOldSizeRAII RAII(Path);
7007
7008 // Walk past any constructs which we can lifetime-extend across.
7009 Expr *Old;
7010 do {
7011 Old = Init;
7012
7013 if (auto *FE = dyn_cast<FullExpr>(Init))
7014 Init = FE->getSubExpr();
7015
7016 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7017 // If this is just redundant braces around an initializer, step over it.
7018 if (ILE->isTransparent())
7019 Init = ILE->getInit(0);
7020 }
7021
7022 // Step over any subobject adjustments; we may have a materialized
7023 // temporary inside them.
7024 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7025
7026 // Per current approach for DR1376, look through casts to reference type
7027 // when performing lifetime extension.
7028 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
7029 if (CE->getSubExpr()->isGLValue())
7030 Init = CE->getSubExpr();
7031
7032 // Per the current approach for DR1299, look through array element access
7033 // on array glvalues when performing lifetime extension.
7034 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
7035 Init = ASE->getBase();
7036 auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
7037 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
7038 Init = ICE->getSubExpr();
7039 else
7040 // We can't lifetime extend through this but we might still find some
7041 // retained temporaries.
7042 return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
7043 EnableLifetimeWarnings);
7044 }
7045
7046 // Step into CXXDefaultInitExprs so we can diagnose cases where a
7047 // constructor inherits one as an implicit mem-initializer.
7048 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7049 Path.push_back(
7050 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7051 Init = DIE->getExpr();
7052 }
7053 } while (Init != Old);
7054
7055 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7056 if (Visit(Path, Local(MTE), RK))
7057 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7058 EnableLifetimeWarnings);
7059 }
7060
7061 if (isa<CallExpr>(Init)) {
7062 if (EnableLifetimeWarnings)
7063 handleGslAnnotatedTypes(Path, Init, Visit);
7064 return visitLifetimeBoundArguments(Path, Init, Visit);
7065 }
7066
7067 switch (Init->getStmtClass()) {
7068 case Stmt::DeclRefExprClass: {
7069 // If we find the name of a local non-reference parameter, we could have a
7070 // lifetime problem.
7071 auto *DRE = cast<DeclRefExpr>(Init);
7072 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7073 if (VD && VD->hasLocalStorage() &&
7074 !DRE->refersToEnclosingVariableOrCapture()) {
7075 if (!VD->getType()->isReferenceType()) {
7076 Visit(Path, Local(DRE), RK);
7077 } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7078 // The lifetime of a reference parameter is unknown; assume it's OK
7079 // for now.
7080 break;
7081 } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7082 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7083 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7084 RK_ReferenceBinding, Visit,
7085 EnableLifetimeWarnings);
7086 }
7087 }
7088 break;
7089 }
7090
7091 case Stmt::UnaryOperatorClass: {
7092 // The only unary operator that make sense to handle here
7093 // is Deref. All others don't resolve to a "name." This includes
7094 // handling all sorts of rvalues passed to a unary operator.
7095 const UnaryOperator *U = cast<UnaryOperator>(Init);
7096 if (U->getOpcode() == UO_Deref)
7097 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7098 EnableLifetimeWarnings);
7099 break;
7100 }
7101
7102 case Stmt::OMPArraySectionExprClass: {
7103 visitLocalsRetainedByInitializer(Path,
7104 cast<OMPArraySectionExpr>(Init)->getBase(),
7105 Visit, true, EnableLifetimeWarnings);
7106 break;
7107 }
7108
7109 case Stmt::ConditionalOperatorClass:
7110 case Stmt::BinaryConditionalOperatorClass: {
7111 auto *C = cast<AbstractConditionalOperator>(Init);
7112 if (!C->getTrueExpr()->getType()->isVoidType())
7113 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7114 EnableLifetimeWarnings);
7115 if (!C->getFalseExpr()->getType()->isVoidType())
7116 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7117 EnableLifetimeWarnings);
7118 break;
7119 }
7120
7121 // FIXME: Visit the left-hand side of an -> or ->*.
7122
7123 default:
7124 break;
7125 }
7126 }
7127
7128 /// Visit the locals that would be reachable through an object initialized by
7129 /// the prvalue expression \c Init.
visitLocalsRetainedByInitializer(IndirectLocalPath & Path,Expr * Init,LocalVisitor Visit,bool RevisitSubinits,bool EnableLifetimeWarnings)7130 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7131 Expr *Init, LocalVisitor Visit,
7132 bool RevisitSubinits,
7133 bool EnableLifetimeWarnings) {
7134 RevertToOldSizeRAII RAII(Path);
7135
7136 Expr *Old;
7137 do {
7138 Old = Init;
7139
7140 // Step into CXXDefaultInitExprs so we can diagnose cases where a
7141 // constructor inherits one as an implicit mem-initializer.
7142 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7143 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7144 Init = DIE->getExpr();
7145 }
7146
7147 if (auto *FE = dyn_cast<FullExpr>(Init))
7148 Init = FE->getSubExpr();
7149
7150 // Dig out the expression which constructs the extended temporary.
7151 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7152
7153 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7154 Init = BTE->getSubExpr();
7155
7156 Init = Init->IgnoreParens();
7157
7158 // Step over value-preserving rvalue casts.
7159 if (auto *CE = dyn_cast<CastExpr>(Init)) {
7160 switch (CE->getCastKind()) {
7161 case CK_LValueToRValue:
7162 // If we can match the lvalue to a const object, we can look at its
7163 // initializer.
7164 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7165 return visitLocalsRetainedByReferenceBinding(
7166 Path, Init, RK_ReferenceBinding,
7167 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7168 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7169 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7170 if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7171 !isVarOnPath(Path, VD)) {
7172 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7173 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7174 EnableLifetimeWarnings);
7175 }
7176 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7177 if (MTE->getType().isConstQualified())
7178 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7179 true, EnableLifetimeWarnings);
7180 }
7181 return false;
7182 }, EnableLifetimeWarnings);
7183
7184 // We assume that objects can be retained by pointers cast to integers,
7185 // but not if the integer is cast to floating-point type or to _Complex.
7186 // We assume that casts to 'bool' do not preserve enough information to
7187 // retain a local object.
7188 case CK_NoOp:
7189 case CK_BitCast:
7190 case CK_BaseToDerived:
7191 case CK_DerivedToBase:
7192 case CK_UncheckedDerivedToBase:
7193 case CK_Dynamic:
7194 case CK_ToUnion:
7195 case CK_UserDefinedConversion:
7196 case CK_ConstructorConversion:
7197 case CK_IntegralToPointer:
7198 case CK_PointerToIntegral:
7199 case CK_VectorSplat:
7200 case CK_IntegralCast:
7201 case CK_CPointerToObjCPointerCast:
7202 case CK_BlockPointerToObjCPointerCast:
7203 case CK_AnyPointerToBlockPointerCast:
7204 case CK_AddressSpaceConversion:
7205 break;
7206
7207 case CK_ArrayToPointerDecay:
7208 // Model array-to-pointer decay as taking the address of the array
7209 // lvalue.
7210 Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7211 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7212 RK_ReferenceBinding, Visit,
7213 EnableLifetimeWarnings);
7214
7215 default:
7216 return;
7217 }
7218
7219 Init = CE->getSubExpr();
7220 }
7221 } while (Old != Init);
7222
7223 // C++17 [dcl.init.list]p6:
7224 // initializing an initializer_list object from the array extends the
7225 // lifetime of the array exactly like binding a reference to a temporary.
7226 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7227 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7228 RK_StdInitializerList, Visit,
7229 EnableLifetimeWarnings);
7230
7231 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7232 // We already visited the elements of this initializer list while
7233 // performing the initialization. Don't visit them again unless we've
7234 // changed the lifetime of the initialized entity.
7235 if (!RevisitSubinits)
7236 return;
7237
7238 if (ILE->isTransparent())
7239 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7240 RevisitSubinits,
7241 EnableLifetimeWarnings);
7242
7243 if (ILE->getType()->isArrayType()) {
7244 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7245 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7246 RevisitSubinits,
7247 EnableLifetimeWarnings);
7248 return;
7249 }
7250
7251 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7252 assert(RD->isAggregate() && "aggregate init on non-aggregate");
7253
7254 // If we lifetime-extend a braced initializer which is initializing an
7255 // aggregate, and that aggregate contains reference members which are
7256 // bound to temporaries, those temporaries are also lifetime-extended.
7257 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7258 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7259 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7260 RK_ReferenceBinding, Visit,
7261 EnableLifetimeWarnings);
7262 else {
7263 unsigned Index = 0;
7264 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7265 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7266 RevisitSubinits,
7267 EnableLifetimeWarnings);
7268 for (const auto *I : RD->fields()) {
7269 if (Index >= ILE->getNumInits())
7270 break;
7271 if (I->isUnnamedBitfield())
7272 continue;
7273 Expr *SubInit = ILE->getInit(Index);
7274 if (I->getType()->isReferenceType())
7275 visitLocalsRetainedByReferenceBinding(Path, SubInit,
7276 RK_ReferenceBinding, Visit,
7277 EnableLifetimeWarnings);
7278 else
7279 // This might be either aggregate-initialization of a member or
7280 // initialization of a std::initializer_list object. Regardless,
7281 // we should recursively lifetime-extend that initializer.
7282 visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7283 RevisitSubinits,
7284 EnableLifetimeWarnings);
7285 ++Index;
7286 }
7287 }
7288 }
7289 return;
7290 }
7291
7292 // The lifetime of an init-capture is that of the closure object constructed
7293 // by a lambda-expression.
7294 if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7295 LambdaExpr::capture_iterator CapI = LE->capture_begin();
7296 for (Expr *E : LE->capture_inits()) {
7297 assert(CapI != LE->capture_end());
7298 const LambdaCapture &Cap = *CapI++;
7299 if (!E)
7300 continue;
7301 if (Cap.capturesVariable())
7302 Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
7303 if (E->isGLValue())
7304 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7305 Visit, EnableLifetimeWarnings);
7306 else
7307 visitLocalsRetainedByInitializer(Path, E, Visit, true,
7308 EnableLifetimeWarnings);
7309 if (Cap.capturesVariable())
7310 Path.pop_back();
7311 }
7312 }
7313
7314 // Assume that a copy or move from a temporary references the same objects
7315 // that the temporary does.
7316 if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
7317 if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
7318 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
7319 Expr *Arg = MTE->getSubExpr();
7320 Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
7321 CCE->getConstructor()});
7322 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7323 /*EnableLifetimeWarnings*/false);
7324 Path.pop_back();
7325 }
7326 }
7327 }
7328
7329 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7330 if (EnableLifetimeWarnings)
7331 handleGslAnnotatedTypes(Path, Init, Visit);
7332 return visitLifetimeBoundArguments(Path, Init, Visit);
7333 }
7334
7335 switch (Init->getStmtClass()) {
7336 case Stmt::UnaryOperatorClass: {
7337 auto *UO = cast<UnaryOperator>(Init);
7338 // If the initializer is the address of a local, we could have a lifetime
7339 // problem.
7340 if (UO->getOpcode() == UO_AddrOf) {
7341 // If this is &rvalue, then it's ill-formed and we have already diagnosed
7342 // it. Don't produce a redundant warning about the lifetime of the
7343 // temporary.
7344 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7345 return;
7346
7347 Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7348 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7349 RK_ReferenceBinding, Visit,
7350 EnableLifetimeWarnings);
7351 }
7352 break;
7353 }
7354
7355 case Stmt::BinaryOperatorClass: {
7356 // Handle pointer arithmetic.
7357 auto *BO = cast<BinaryOperator>(Init);
7358 BinaryOperatorKind BOK = BO->getOpcode();
7359 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7360 break;
7361
7362 if (BO->getLHS()->getType()->isPointerType())
7363 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7364 EnableLifetimeWarnings);
7365 else if (BO->getRHS()->getType()->isPointerType())
7366 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7367 EnableLifetimeWarnings);
7368 break;
7369 }
7370
7371 case Stmt::ConditionalOperatorClass:
7372 case Stmt::BinaryConditionalOperatorClass: {
7373 auto *C = cast<AbstractConditionalOperator>(Init);
7374 // In C++, we can have a throw-expression operand, which has 'void' type
7375 // and isn't interesting from a lifetime perspective.
7376 if (!C->getTrueExpr()->getType()->isVoidType())
7377 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7378 EnableLifetimeWarnings);
7379 if (!C->getFalseExpr()->getType()->isVoidType())
7380 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7381 EnableLifetimeWarnings);
7382 break;
7383 }
7384
7385 case Stmt::BlockExprClass:
7386 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7387 // This is a local block, whose lifetime is that of the function.
7388 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7389 }
7390 break;
7391
7392 case Stmt::AddrLabelExprClass:
7393 // We want to warn if the address of a label would escape the function.
7394 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7395 break;
7396
7397 default:
7398 break;
7399 }
7400 }
7401
7402 /// Whether a path to an object supports lifetime extension.
7403 enum PathLifetimeKind {
7404 /// Lifetime-extend along this path.
7405 Extend,
7406 /// We should lifetime-extend, but we don't because (due to technical
7407 /// limitations) we can't. This happens for default member initializers,
7408 /// which we don't clone for every use, so we don't have a unique
7409 /// MaterializeTemporaryExpr to update.
7410 ShouldExtend,
7411 /// Do not lifetime extend along this path.
7412 NoExtend
7413 };
7414
7415 /// Determine whether this is an indirect path to a temporary that we are
7416 /// supposed to lifetime-extend along.
7417 static PathLifetimeKind
shouldLifetimeExtendThroughPath(const IndirectLocalPath & Path)7418 shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7419 PathLifetimeKind Kind = PathLifetimeKind::Extend;
7420 for (auto Elem : Path) {
7421 if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
7422 Kind = PathLifetimeKind::ShouldExtend;
7423 else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
7424 return PathLifetimeKind::NoExtend;
7425 }
7426 return Kind;
7427 }
7428
7429 /// Find the range for the first interesting entry in the path at or after I.
nextPathEntryRange(const IndirectLocalPath & Path,unsigned I,Expr * E)7430 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7431 Expr *E) {
7432 for (unsigned N = Path.size(); I != N; ++I) {
7433 switch (Path[I].Kind) {
7434 case IndirectLocalPathEntry::AddressOf:
7435 case IndirectLocalPathEntry::LValToRVal:
7436 case IndirectLocalPathEntry::LifetimeBoundCall:
7437 case IndirectLocalPathEntry::TemporaryCopy:
7438 case IndirectLocalPathEntry::GslReferenceInit:
7439 case IndirectLocalPathEntry::GslPointerInit:
7440 // These exist primarily to mark the path as not permitting or
7441 // supporting lifetime extension.
7442 break;
7443
7444 case IndirectLocalPathEntry::VarInit:
7445 if (cast<VarDecl>(Path[I].D)->isImplicit())
7446 return SourceRange();
7447 LLVM_FALLTHROUGH;
7448 case IndirectLocalPathEntry::DefaultInit:
7449 return Path[I].E->getSourceRange();
7450
7451 case IndirectLocalPathEntry::LambdaCaptureInit:
7452 if (!Path[I].Capture->capturesVariable())
7453 continue;
7454 return Path[I].E->getSourceRange();
7455 }
7456 }
7457 return E->getSourceRange();
7458 }
7459
pathOnlyInitializesGslPointer(IndirectLocalPath & Path)7460 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7461 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7462 if (It->Kind == IndirectLocalPathEntry::VarInit)
7463 continue;
7464 if (It->Kind == IndirectLocalPathEntry::AddressOf)
7465 continue;
7466 return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7467 It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7468 }
7469 return false;
7470 }
7471
checkInitializerLifetime(const InitializedEntity & Entity,Expr * Init)7472 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7473 Expr *Init) {
7474 LifetimeResult LR = getEntityLifetime(&Entity);
7475 LifetimeKind LK = LR.getInt();
7476 const InitializedEntity *ExtendingEntity = LR.getPointer();
7477
7478 // If this entity doesn't have an interesting lifetime, don't bother looking
7479 // for temporaries within its initializer.
7480 if (LK == LK_FullExpression)
7481 return;
7482
7483 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7484 ReferenceKind RK) -> bool {
7485 SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7486 SourceLocation DiagLoc = DiagRange.getBegin();
7487
7488 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7489
7490 bool IsGslPtrInitWithGslTempOwner = false;
7491 bool IsLocalGslOwner = false;
7492 if (pathOnlyInitializesGslPointer(Path)) {
7493 if (isa<DeclRefExpr>(L)) {
7494 // We do not want to follow the references when returning a pointer originating
7495 // from a local owner to avoid the following false positive:
7496 // int &p = *localUniquePtr;
7497 // someContainer.add(std::move(localUniquePtr));
7498 // return p;
7499 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7500 if (pathContainsInit(Path) || !IsLocalGslOwner)
7501 return false;
7502 } else {
7503 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7504 isRecordWithAttr<OwnerAttr>(MTE->getType());
7505 // Skipping a chain of initializing gsl::Pointer annotated objects.
7506 // We are looking only for the final source to find out if it was
7507 // a local or temporary owner or the address of a local variable/param.
7508 if (!IsGslPtrInitWithGslTempOwner)
7509 return true;
7510 }
7511 }
7512
7513 switch (LK) {
7514 case LK_FullExpression:
7515 llvm_unreachable("already handled this");
7516
7517 case LK_Extended: {
7518 if (!MTE) {
7519 // The initialized entity has lifetime beyond the full-expression,
7520 // and the local entity does too, so don't warn.
7521 //
7522 // FIXME: We should consider warning if a static / thread storage
7523 // duration variable retains an automatic storage duration local.
7524 return false;
7525 }
7526
7527 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7528 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7529 return false;
7530 }
7531
7532 switch (shouldLifetimeExtendThroughPath(Path)) {
7533 case PathLifetimeKind::Extend:
7534 // Update the storage duration of the materialized temporary.
7535 // FIXME: Rebuild the expression instead of mutating it.
7536 MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7537 ExtendingEntity->allocateManglingNumber());
7538 // Also visit the temporaries lifetime-extended by this initializer.
7539 return true;
7540
7541 case PathLifetimeKind::ShouldExtend:
7542 // We're supposed to lifetime-extend the temporary along this path (per
7543 // the resolution of DR1815), but we don't support that yet.
7544 //
7545 // FIXME: Properly handle this situation. Perhaps the easiest approach
7546 // would be to clone the initializer expression on each use that would
7547 // lifetime extend its temporaries.
7548 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7549 << RK << DiagRange;
7550 break;
7551
7552 case PathLifetimeKind::NoExtend:
7553 // If the path goes through the initialization of a variable or field,
7554 // it can't possibly reach a temporary created in this full-expression.
7555 // We will have already diagnosed any problems with the initializer.
7556 if (pathContainsInit(Path))
7557 return false;
7558
7559 Diag(DiagLoc, diag::warn_dangling_variable)
7560 << RK << !Entity.getParent()
7561 << ExtendingEntity->getDecl()->isImplicit()
7562 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7563 break;
7564 }
7565 break;
7566 }
7567
7568 case LK_MemInitializer: {
7569 if (isa<MaterializeTemporaryExpr>(L)) {
7570 // Under C++ DR1696, if a mem-initializer (or a default member
7571 // initializer used by the absence of one) would lifetime-extend a
7572 // temporary, the program is ill-formed.
7573 if (auto *ExtendingDecl =
7574 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7575 if (IsGslPtrInitWithGslTempOwner) {
7576 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7577 << ExtendingDecl << DiagRange;
7578 Diag(ExtendingDecl->getLocation(),
7579 diag::note_ref_or_ptr_member_declared_here)
7580 << true;
7581 return false;
7582 }
7583 bool IsSubobjectMember = ExtendingEntity != &Entity;
7584 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
7585 PathLifetimeKind::NoExtend
7586 ? diag::err_dangling_member
7587 : diag::warn_dangling_member)
7588 << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7589 // Don't bother adding a note pointing to the field if we're inside
7590 // its default member initializer; our primary diagnostic points to
7591 // the same place in that case.
7592 if (Path.empty() ||
7593 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7594 Diag(ExtendingDecl->getLocation(),
7595 diag::note_lifetime_extending_member_declared_here)
7596 << RK << IsSubobjectMember;
7597 }
7598 } else {
7599 // We have a mem-initializer but no particular field within it; this
7600 // is either a base class or a delegating initializer directly
7601 // initializing the base-class from something that doesn't live long
7602 // enough.
7603 //
7604 // FIXME: Warn on this.
7605 return false;
7606 }
7607 } else {
7608 // Paths via a default initializer can only occur during error recovery
7609 // (there's no other way that a default initializer can refer to a
7610 // local). Don't produce a bogus warning on those cases.
7611 if (pathContainsInit(Path))
7612 return false;
7613
7614 // Suppress false positives for code like the one below:
7615 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7616 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7617 return false;
7618
7619 auto *DRE = dyn_cast<DeclRefExpr>(L);
7620 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7621 if (!VD) {
7622 // A member was initialized to a local block.
7623 // FIXME: Warn on this.
7624 return false;
7625 }
7626
7627 if (auto *Member =
7628 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7629 bool IsPointer = !Member->getType()->isReferenceType();
7630 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7631 : diag::warn_bind_ref_member_to_parameter)
7632 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7633 Diag(Member->getLocation(),
7634 diag::note_ref_or_ptr_member_declared_here)
7635 << (unsigned)IsPointer;
7636 }
7637 }
7638 break;
7639 }
7640
7641 case LK_New:
7642 if (isa<MaterializeTemporaryExpr>(L)) {
7643 if (IsGslPtrInitWithGslTempOwner)
7644 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7645 else
7646 Diag(DiagLoc, RK == RK_ReferenceBinding
7647 ? diag::warn_new_dangling_reference
7648 : diag::warn_new_dangling_initializer_list)
7649 << !Entity.getParent() << DiagRange;
7650 } else {
7651 // We can't determine if the allocation outlives the local declaration.
7652 return false;
7653 }
7654 break;
7655
7656 case LK_Return:
7657 case LK_StmtExprResult:
7658 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7659 // We can't determine if the local variable outlives the statement
7660 // expression.
7661 if (LK == LK_StmtExprResult)
7662 return false;
7663 Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7664 << Entity.getType()->isReferenceType() << DRE->getDecl()
7665 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7666 } else if (isa<BlockExpr>(L)) {
7667 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7668 } else if (isa<AddrLabelExpr>(L)) {
7669 // Don't warn when returning a label from a statement expression.
7670 // Leaving the scope doesn't end its lifetime.
7671 if (LK == LK_StmtExprResult)
7672 return false;
7673 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7674 } else {
7675 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7676 << Entity.getType()->isReferenceType() << DiagRange;
7677 }
7678 break;
7679 }
7680
7681 for (unsigned I = 0; I != Path.size(); ++I) {
7682 auto Elem = Path[I];
7683
7684 switch (Elem.Kind) {
7685 case IndirectLocalPathEntry::AddressOf:
7686 case IndirectLocalPathEntry::LValToRVal:
7687 // These exist primarily to mark the path as not permitting or
7688 // supporting lifetime extension.
7689 break;
7690
7691 case IndirectLocalPathEntry::LifetimeBoundCall:
7692 case IndirectLocalPathEntry::TemporaryCopy:
7693 case IndirectLocalPathEntry::GslPointerInit:
7694 case IndirectLocalPathEntry::GslReferenceInit:
7695 // FIXME: Consider adding a note for these.
7696 break;
7697
7698 case IndirectLocalPathEntry::DefaultInit: {
7699 auto *FD = cast<FieldDecl>(Elem.D);
7700 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7701 << FD << nextPathEntryRange(Path, I + 1, L);
7702 break;
7703 }
7704
7705 case IndirectLocalPathEntry::VarInit: {
7706 const VarDecl *VD = cast<VarDecl>(Elem.D);
7707 Diag(VD->getLocation(), diag::note_local_var_initializer)
7708 << VD->getType()->isReferenceType()
7709 << VD->isImplicit() << VD->getDeclName()
7710 << nextPathEntryRange(Path, I + 1, L);
7711 break;
7712 }
7713
7714 case IndirectLocalPathEntry::LambdaCaptureInit:
7715 if (!Elem.Capture->capturesVariable())
7716 break;
7717 // FIXME: We can't easily tell apart an init-capture from a nested
7718 // capture of an init-capture.
7719 const VarDecl *VD = Elem.Capture->getCapturedVar();
7720 Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
7721 << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
7722 << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
7723 << nextPathEntryRange(Path, I + 1, L);
7724 break;
7725 }
7726 }
7727
7728 // We didn't lifetime-extend, so don't go any further; we don't need more
7729 // warnings or errors on inner temporaries within this one's initializer.
7730 return false;
7731 };
7732
7733 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7734 diag::warn_dangling_lifetime_pointer, SourceLocation());
7735 llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7736 if (Init->isGLValue())
7737 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7738 TemporaryVisitor,
7739 EnableLifetimeWarnings);
7740 else
7741 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7742 EnableLifetimeWarnings);
7743 }
7744
7745 static void DiagnoseNarrowingInInitList(Sema &S,
7746 const ImplicitConversionSequence &ICS,
7747 QualType PreNarrowingType,
7748 QualType EntityType,
7749 const Expr *PostInit);
7750
7751 /// Provide warnings when std::move is used on construction.
CheckMoveOnConstruction(Sema & S,const Expr * InitExpr,bool IsReturnStmt)7752 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7753 bool IsReturnStmt) {
7754 if (!InitExpr)
7755 return;
7756
7757 if (S.inTemplateInstantiation())
7758 return;
7759
7760 QualType DestType = InitExpr->getType();
7761 if (!DestType->isRecordType())
7762 return;
7763
7764 unsigned DiagID = 0;
7765 if (IsReturnStmt) {
7766 const CXXConstructExpr *CCE =
7767 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7768 if (!CCE || CCE->getNumArgs() != 1)
7769 return;
7770
7771 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7772 return;
7773
7774 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7775 }
7776
7777 // Find the std::move call and get the argument.
7778 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7779 if (!CE || !CE->isCallToStdMove())
7780 return;
7781
7782 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7783
7784 if (IsReturnStmt) {
7785 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7786 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7787 return;
7788
7789 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7790 if (!VD || !VD->hasLocalStorage())
7791 return;
7792
7793 // __block variables are not moved implicitly.
7794 if (VD->hasAttr<BlocksAttr>())
7795 return;
7796
7797 QualType SourceType = VD->getType();
7798 if (!SourceType->isRecordType())
7799 return;
7800
7801 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7802 return;
7803 }
7804
7805 // If we're returning a function parameter, copy elision
7806 // is not possible.
7807 if (isa<ParmVarDecl>(VD))
7808 DiagID = diag::warn_redundant_move_on_return;
7809 else
7810 DiagID = diag::warn_pessimizing_move_on_return;
7811 } else {
7812 DiagID = diag::warn_pessimizing_move_on_initialization;
7813 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7814 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7815 return;
7816 }
7817
7818 S.Diag(CE->getBeginLoc(), DiagID);
7819
7820 // Get all the locations for a fix-it. Don't emit the fix-it if any location
7821 // is within a macro.
7822 SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7823 if (CallBegin.isMacroID())
7824 return;
7825 SourceLocation RParen = CE->getRParenLoc();
7826 if (RParen.isMacroID())
7827 return;
7828 SourceLocation LParen;
7829 SourceLocation ArgLoc = Arg->getBeginLoc();
7830
7831 // Special testing for the argument location. Since the fix-it needs the
7832 // location right before the argument, the argument location can be in a
7833 // macro only if it is at the beginning of the macro.
7834 while (ArgLoc.isMacroID() &&
7835 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7836 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7837 }
7838
7839 if (LParen.isMacroID())
7840 return;
7841
7842 LParen = ArgLoc.getLocWithOffset(-1);
7843
7844 S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7845 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7846 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7847 }
7848
CheckForNullPointerDereference(Sema & S,const Expr * E)7849 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7850 // Check to see if we are dereferencing a null pointer. If so, this is
7851 // undefined behavior, so warn about it. This only handles the pattern
7852 // "*null", which is a very syntactic check.
7853 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7854 if (UO->getOpcode() == UO_Deref &&
7855 UO->getSubExpr()->IgnoreParenCasts()->
7856 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7857 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7858 S.PDiag(diag::warn_binding_null_to_reference)
7859 << UO->getSubExpr()->getSourceRange());
7860 }
7861 }
7862
7863 MaterializeTemporaryExpr *
CreateMaterializeTemporaryExpr(QualType T,Expr * Temporary,bool BoundToLvalueReference)7864 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7865 bool BoundToLvalueReference) {
7866 auto MTE = new (Context)
7867 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7868
7869 // Order an ExprWithCleanups for lifetime marks.
7870 //
7871 // TODO: It'll be good to have a single place to check the access of the
7872 // destructor and generate ExprWithCleanups for various uses. Currently these
7873 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7874 // but there may be a chance to merge them.
7875 Cleanup.setExprNeedsCleanups(false);
7876 return MTE;
7877 }
7878
TemporaryMaterializationConversion(Expr * E)7879 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7880 // In C++98, we don't want to implicitly create an xvalue.
7881 // FIXME: This means that AST consumers need to deal with "prvalues" that
7882 // denote materialized temporaries. Maybe we should add another ValueKind
7883 // for "xvalue pretending to be a prvalue" for C++98 support.
7884 if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7885 return E;
7886
7887 // C++1z [conv.rval]/1: T shall be a complete type.
7888 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7889 // If so, we should check for a non-abstract class type here too.
7890 QualType T = E->getType();
7891 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7892 return ExprError();
7893
7894 return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7895 }
7896
PerformQualificationConversion(Expr * E,QualType Ty,ExprValueKind VK,CheckedConversionKind CCK)7897 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7898 ExprValueKind VK,
7899 CheckedConversionKind CCK) {
7900
7901 CastKind CK = CK_NoOp;
7902
7903 if (VK == VK_RValue) {
7904 auto PointeeTy = Ty->getPointeeType();
7905 auto ExprPointeeTy = E->getType()->getPointeeType();
7906 if (!PointeeTy.isNull() &&
7907 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7908 CK = CK_AddressSpaceConversion;
7909 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7910 CK = CK_AddressSpaceConversion;
7911 }
7912
7913 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7914 }
7915
Perform(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType * ResultType)7916 ExprResult InitializationSequence::Perform(Sema &S,
7917 const InitializedEntity &Entity,
7918 const InitializationKind &Kind,
7919 MultiExprArg Args,
7920 QualType *ResultType) {
7921 if (Failed()) {
7922 Diagnose(S, Entity, Kind, Args);
7923 return ExprError();
7924 }
7925 if (!ZeroInitializationFixit.empty()) {
7926 unsigned DiagID = diag::err_default_init_const;
7927 if (Decl *D = Entity.getDecl())
7928 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7929 DiagID = diag::ext_default_init_const;
7930
7931 // The initialization would have succeeded with this fixit. Since the fixit
7932 // is on the error, we need to build a valid AST in this case, so this isn't
7933 // handled in the Failed() branch above.
7934 QualType DestType = Entity.getType();
7935 S.Diag(Kind.getLocation(), DiagID)
7936 << DestType << (bool)DestType->getAs<RecordType>()
7937 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7938 ZeroInitializationFixit);
7939 }
7940
7941 if (getKind() == DependentSequence) {
7942 // If the declaration is a non-dependent, incomplete array type
7943 // that has an initializer, then its type will be completed once
7944 // the initializer is instantiated.
7945 if (ResultType && !Entity.getType()->isDependentType() &&
7946 Args.size() == 1) {
7947 QualType DeclType = Entity.getType();
7948 if (const IncompleteArrayType *ArrayT
7949 = S.Context.getAsIncompleteArrayType(DeclType)) {
7950 // FIXME: We don't currently have the ability to accurately
7951 // compute the length of an initializer list without
7952 // performing full type-checking of the initializer list
7953 // (since we have to determine where braces are implicitly
7954 // introduced and such). So, we fall back to making the array
7955 // type a dependently-sized array type with no specified
7956 // bound.
7957 if (isa<InitListExpr>((Expr *)Args[0])) {
7958 SourceRange Brackets;
7959
7960 // Scavange the location of the brackets from the entity, if we can.
7961 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7962 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7963 TypeLoc TL = TInfo->getTypeLoc();
7964 if (IncompleteArrayTypeLoc ArrayLoc =
7965 TL.getAs<IncompleteArrayTypeLoc>())
7966 Brackets = ArrayLoc.getBracketsRange();
7967 }
7968 }
7969
7970 *ResultType
7971 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7972 /*NumElts=*/nullptr,
7973 ArrayT->getSizeModifier(),
7974 ArrayT->getIndexTypeCVRQualifiers(),
7975 Brackets);
7976 }
7977
7978 }
7979 }
7980 if (Kind.getKind() == InitializationKind::IK_Direct &&
7981 !Kind.isExplicitCast()) {
7982 // Rebuild the ParenListExpr.
7983 SourceRange ParenRange = Kind.getParenOrBraceRange();
7984 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7985 Args);
7986 }
7987 assert(Kind.getKind() == InitializationKind::IK_Copy ||
7988 Kind.isExplicitCast() ||
7989 Kind.getKind() == InitializationKind::IK_DirectList);
7990 return ExprResult(Args[0]);
7991 }
7992
7993 // No steps means no initialization.
7994 if (Steps.empty())
7995 return ExprResult((Expr *)nullptr);
7996
7997 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7998 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7999 !Entity.isParamOrTemplateParamKind()) {
8000 // Produce a C++98 compatibility warning if we are initializing a reference
8001 // from an initializer list. For parameters, we produce a better warning
8002 // elsewhere.
8003 Expr *Init = Args[0];
8004 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
8005 << Init->getSourceRange();
8006 }
8007
8008 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
8009 QualType ETy = Entity.getType();
8010 bool HasGlobalAS = ETy.hasAddressSpace() &&
8011 ETy.getAddressSpace() == LangAS::opencl_global;
8012
8013 if (S.getLangOpts().OpenCLVersion >= 200 &&
8014 ETy->isAtomicType() && !HasGlobalAS &&
8015 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
8016 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
8017 << 1
8018 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
8019 return ExprError();
8020 }
8021
8022 QualType DestType = Entity.getType().getNonReferenceType();
8023 // FIXME: Ugly hack around the fact that Entity.getType() is not
8024 // the same as Entity.getDecl()->getType() in cases involving type merging,
8025 // and we want latter when it makes sense.
8026 if (ResultType)
8027 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
8028 Entity.getType();
8029
8030 ExprResult CurInit((Expr *)nullptr);
8031 SmallVector<Expr*, 4> ArrayLoopCommonExprs;
8032
8033 // For initialization steps that start with a single initializer,
8034 // grab the only argument out the Args and place it into the "current"
8035 // initializer.
8036 switch (Steps.front().Kind) {
8037 case SK_ResolveAddressOfOverloadedFunction:
8038 case SK_CastDerivedToBaseRValue:
8039 case SK_CastDerivedToBaseXValue:
8040 case SK_CastDerivedToBaseLValue:
8041 case SK_BindReference:
8042 case SK_BindReferenceToTemporary:
8043 case SK_FinalCopy:
8044 case SK_ExtraneousCopyToTemporary:
8045 case SK_UserConversion:
8046 case SK_QualificationConversionLValue:
8047 case SK_QualificationConversionXValue:
8048 case SK_QualificationConversionRValue:
8049 case SK_FunctionReferenceConversion:
8050 case SK_AtomicConversion:
8051 case SK_ConversionSequence:
8052 case SK_ConversionSequenceNoNarrowing:
8053 case SK_ListInitialization:
8054 case SK_UnwrapInitList:
8055 case SK_RewrapInitList:
8056 case SK_CAssignment:
8057 case SK_StringInit:
8058 case SK_ObjCObjectConversion:
8059 case SK_ArrayLoopIndex:
8060 case SK_ArrayLoopInit:
8061 case SK_ArrayInit:
8062 case SK_GNUArrayInit:
8063 case SK_ParenthesizedArrayInit:
8064 case SK_PassByIndirectCopyRestore:
8065 case SK_PassByIndirectRestore:
8066 case SK_ProduceObjCObject:
8067 case SK_StdInitializerList:
8068 case SK_OCLSamplerInit:
8069 case SK_OCLZeroOpaqueType: {
8070 assert(Args.size() == 1);
8071 CurInit = Args[0];
8072 if (!CurInit.get()) return ExprError();
8073 break;
8074 }
8075
8076 case SK_ConstructorInitialization:
8077 case SK_ConstructorInitializationFromList:
8078 case SK_StdInitializerListConstructorCall:
8079 case SK_ZeroInitialization:
8080 break;
8081 }
8082
8083 // Promote from an unevaluated context to an unevaluated list context in
8084 // C++11 list-initialization; we need to instantiate entities usable in
8085 // constant expressions here in order to perform narrowing checks =(
8086 EnterExpressionEvaluationContext Evaluated(
8087 S, EnterExpressionEvaluationContext::InitList,
8088 CurInit.get() && isa<InitListExpr>(CurInit.get()));
8089
8090 // C++ [class.abstract]p2:
8091 // no objects of an abstract class can be created except as subobjects
8092 // of a class derived from it
8093 auto checkAbstractType = [&](QualType T) -> bool {
8094 if (Entity.getKind() == InitializedEntity::EK_Base ||
8095 Entity.getKind() == InitializedEntity::EK_Delegating)
8096 return false;
8097 return S.RequireNonAbstractType(Kind.getLocation(), T,
8098 diag::err_allocation_of_abstract_type);
8099 };
8100
8101 // Walk through the computed steps for the initialization sequence,
8102 // performing the specified conversions along the way.
8103 bool ConstructorInitRequiresZeroInit = false;
8104 for (step_iterator Step = step_begin(), StepEnd = step_end();
8105 Step != StepEnd; ++Step) {
8106 if (CurInit.isInvalid())
8107 return ExprError();
8108
8109 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
8110
8111 switch (Step->Kind) {
8112 case SK_ResolveAddressOfOverloadedFunction:
8113 // Overload resolution determined which function invoke; update the
8114 // initializer to reflect that choice.
8115 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8116 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8117 return ExprError();
8118 CurInit = S.FixOverloadedFunctionReference(CurInit,
8119 Step->Function.FoundDecl,
8120 Step->Function.Function);
8121 break;
8122
8123 case SK_CastDerivedToBaseRValue:
8124 case SK_CastDerivedToBaseXValue:
8125 case SK_CastDerivedToBaseLValue: {
8126 // We have a derived-to-base cast that produces either an rvalue or an
8127 // lvalue. Perform that cast.
8128
8129 CXXCastPath BasePath;
8130
8131 // Casts to inaccessible base classes are allowed with C-style casts.
8132 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8133 if (S.CheckDerivedToBaseConversion(
8134 SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8135 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8136 return ExprError();
8137
8138 ExprValueKind VK =
8139 Step->Kind == SK_CastDerivedToBaseLValue ?
8140 VK_LValue :
8141 (Step->Kind == SK_CastDerivedToBaseXValue ?
8142 VK_XValue :
8143 VK_RValue);
8144 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8145 CK_DerivedToBase, CurInit.get(),
8146 &BasePath, VK, FPOptionsOverride());
8147 break;
8148 }
8149
8150 case SK_BindReference:
8151 // Reference binding does not have any corresponding ASTs.
8152
8153 // Check exception specifications
8154 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8155 return ExprError();
8156
8157 // We don't check for e.g. function pointers here, since address
8158 // availability checks should only occur when the function first decays
8159 // into a pointer or reference.
8160 if (CurInit.get()->getType()->isFunctionProtoType()) {
8161 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8162 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8163 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8164 DRE->getBeginLoc()))
8165 return ExprError();
8166 }
8167 }
8168 }
8169
8170 CheckForNullPointerDereference(S, CurInit.get());
8171 break;
8172
8173 case SK_BindReferenceToTemporary: {
8174 // Make sure the "temporary" is actually an rvalue.
8175 assert(CurInit.get()->isRValue() && "not a temporary");
8176
8177 // Check exception specifications
8178 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8179 return ExprError();
8180
8181 // Materialize the temporary into memory.
8182 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8183 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
8184 CurInit = MTE;
8185
8186 // If we're extending this temporary to automatic storage duration -- we
8187 // need to register its cleanup during the full-expression's cleanups.
8188 if (MTE->getStorageDuration() == SD_Automatic &&
8189 MTE->getType().isDestructedType())
8190 S.Cleanup.setExprNeedsCleanups(true);
8191 break;
8192 }
8193
8194 case SK_FinalCopy:
8195 if (checkAbstractType(Step->Type))
8196 return ExprError();
8197
8198 // If the overall initialization is initializing a temporary, we already
8199 // bound our argument if it was necessary to do so. If not (if we're
8200 // ultimately initializing a non-temporary), our argument needs to be
8201 // bound since it's initializing a function parameter.
8202 // FIXME: This is a mess. Rationalize temporary destruction.
8203 if (!shouldBindAsTemporary(Entity))
8204 CurInit = S.MaybeBindToTemporary(CurInit.get());
8205 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8206 /*IsExtraneousCopy=*/false);
8207 break;
8208
8209 case SK_ExtraneousCopyToTemporary:
8210 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8211 /*IsExtraneousCopy=*/true);
8212 break;
8213
8214 case SK_UserConversion: {
8215 // We have a user-defined conversion that invokes either a constructor
8216 // or a conversion function.
8217 CastKind CastKind;
8218 FunctionDecl *Fn = Step->Function.Function;
8219 DeclAccessPair FoundFn = Step->Function.FoundDecl;
8220 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8221 bool CreatedObject = false;
8222 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8223 // Build a call to the selected constructor.
8224 SmallVector<Expr*, 8> ConstructorArgs;
8225 SourceLocation Loc = CurInit.get()->getBeginLoc();
8226
8227 // Determine the arguments required to actually perform the constructor
8228 // call.
8229 Expr *Arg = CurInit.get();
8230 if (S.CompleteConstructorCall(Constructor,
8231 MultiExprArg(&Arg, 1),
8232 Loc, ConstructorArgs))
8233 return ExprError();
8234
8235 // Build an expression that constructs a temporary.
8236 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8237 FoundFn, Constructor,
8238 ConstructorArgs,
8239 HadMultipleCandidates,
8240 /*ListInit*/ false,
8241 /*StdInitListInit*/ false,
8242 /*ZeroInit*/ false,
8243 CXXConstructExpr::CK_Complete,
8244 SourceRange());
8245 if (CurInit.isInvalid())
8246 return ExprError();
8247
8248 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8249 Entity);
8250 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8251 return ExprError();
8252
8253 CastKind = CK_ConstructorConversion;
8254 CreatedObject = true;
8255 } else {
8256 // Build a call to the conversion function.
8257 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8258 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8259 FoundFn);
8260 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8261 return ExprError();
8262
8263 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8264 HadMultipleCandidates);
8265 if (CurInit.isInvalid())
8266 return ExprError();
8267
8268 CastKind = CK_UserDefinedConversion;
8269 CreatedObject = Conversion->getReturnType()->isRecordType();
8270 }
8271
8272 if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8273 return ExprError();
8274
8275 CurInit = ImplicitCastExpr::Create(
8276 S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8277 CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8278
8279 if (shouldBindAsTemporary(Entity))
8280 // The overall entity is temporary, so this expression should be
8281 // destroyed at the end of its full-expression.
8282 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8283 else if (CreatedObject && shouldDestroyEntity(Entity)) {
8284 // The object outlasts the full-expression, but we need to prepare for
8285 // a destructor being run on it.
8286 // FIXME: It makes no sense to do this here. This should happen
8287 // regardless of how we initialized the entity.
8288 QualType T = CurInit.get()->getType();
8289 if (const RecordType *Record = T->getAs<RecordType>()) {
8290 CXXDestructorDecl *Destructor
8291 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8292 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8293 S.PDiag(diag::err_access_dtor_temp) << T);
8294 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8295 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8296 return ExprError();
8297 }
8298 }
8299 break;
8300 }
8301
8302 case SK_QualificationConversionLValue:
8303 case SK_QualificationConversionXValue:
8304 case SK_QualificationConversionRValue: {
8305 // Perform a qualification conversion; these can never go wrong.
8306 ExprValueKind VK =
8307 Step->Kind == SK_QualificationConversionLValue
8308 ? VK_LValue
8309 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8310 : VK_RValue);
8311 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8312 break;
8313 }
8314
8315 case SK_FunctionReferenceConversion:
8316 assert(CurInit.get()->isLValue() &&
8317 "function reference should be lvalue");
8318 CurInit =
8319 S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
8320 break;
8321
8322 case SK_AtomicConversion: {
8323 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
8324 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8325 CK_NonAtomicToAtomic, VK_RValue);
8326 break;
8327 }
8328
8329 case SK_ConversionSequence:
8330 case SK_ConversionSequenceNoNarrowing: {
8331 if (const auto *FromPtrType =
8332 CurInit.get()->getType()->getAs<PointerType>()) {
8333 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8334 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8335 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8336 // Do not check static casts here because they are checked earlier
8337 // in Sema::ActOnCXXNamedCast()
8338 if (!Kind.isStaticCast()) {
8339 S.Diag(CurInit.get()->getExprLoc(),
8340 diag::warn_noderef_to_dereferenceable_pointer)
8341 << CurInit.get()->getSourceRange();
8342 }
8343 }
8344 }
8345 }
8346
8347 Sema::CheckedConversionKind CCK
8348 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8349 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8350 : Kind.isExplicitCast()? Sema::CCK_OtherCast
8351 : Sema::CCK_ImplicitConversion;
8352 ExprResult CurInitExprRes =
8353 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8354 getAssignmentAction(Entity), CCK);
8355 if (CurInitExprRes.isInvalid())
8356 return ExprError();
8357
8358 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8359
8360 CurInit = CurInitExprRes;
8361
8362 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8363 S.getLangOpts().CPlusPlus)
8364 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8365 CurInit.get());
8366
8367 break;
8368 }
8369
8370 case SK_ListInitialization: {
8371 if (checkAbstractType(Step->Type))
8372 return ExprError();
8373
8374 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8375 // If we're not initializing the top-level entity, we need to create an
8376 // InitializeTemporary entity for our target type.
8377 QualType Ty = Step->Type;
8378 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8379 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8380 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8381 InitListChecker PerformInitList(S, InitEntity,
8382 InitList, Ty, /*VerifyOnly=*/false,
8383 /*TreatUnavailableAsInvalid=*/false);
8384 if (PerformInitList.HadError())
8385 return ExprError();
8386
8387 // Hack: We must update *ResultType if available in order to set the
8388 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8389 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8390 if (ResultType &&
8391 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8392 if ((*ResultType)->isRValueReferenceType())
8393 Ty = S.Context.getRValueReferenceType(Ty);
8394 else if ((*ResultType)->isLValueReferenceType())
8395 Ty = S.Context.getLValueReferenceType(Ty,
8396 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8397 *ResultType = Ty;
8398 }
8399
8400 InitListExpr *StructuredInitList =
8401 PerformInitList.getFullyStructuredList();
8402 CurInit.get();
8403 CurInit = shouldBindAsTemporary(InitEntity)
8404 ? S.MaybeBindToTemporary(StructuredInitList)
8405 : StructuredInitList;
8406 break;
8407 }
8408
8409 case SK_ConstructorInitializationFromList: {
8410 if (checkAbstractType(Step->Type))
8411 return ExprError();
8412
8413 // When an initializer list is passed for a parameter of type "reference
8414 // to object", we don't get an EK_Temporary entity, but instead an
8415 // EK_Parameter entity with reference type.
8416 // FIXME: This is a hack. What we really should do is create a user
8417 // conversion step for this case, but this makes it considerably more
8418 // complicated. For now, this will do.
8419 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8420 Entity.getType().getNonReferenceType());
8421 bool UseTemporary = Entity.getType()->isReferenceType();
8422 assert(Args.size() == 1 && "expected a single argument for list init");
8423 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8424 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8425 << InitList->getSourceRange();
8426 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8427 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8428 Entity,
8429 Kind, Arg, *Step,
8430 ConstructorInitRequiresZeroInit,
8431 /*IsListInitialization*/true,
8432 /*IsStdInitListInit*/false,
8433 InitList->getLBraceLoc(),
8434 InitList->getRBraceLoc());
8435 break;
8436 }
8437
8438 case SK_UnwrapInitList:
8439 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8440 break;
8441
8442 case SK_RewrapInitList: {
8443 Expr *E = CurInit.get();
8444 InitListExpr *Syntactic = Step->WrappingSyntacticList;
8445 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8446 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8447 ILE->setSyntacticForm(Syntactic);
8448 ILE->setType(E->getType());
8449 ILE->setValueKind(E->getValueKind());
8450 CurInit = ILE;
8451 break;
8452 }
8453
8454 case SK_ConstructorInitialization:
8455 case SK_StdInitializerListConstructorCall: {
8456 if (checkAbstractType(Step->Type))
8457 return ExprError();
8458
8459 // When an initializer list is passed for a parameter of type "reference
8460 // to object", we don't get an EK_Temporary entity, but instead an
8461 // EK_Parameter entity with reference type.
8462 // FIXME: This is a hack. What we really should do is create a user
8463 // conversion step for this case, but this makes it considerably more
8464 // complicated. For now, this will do.
8465 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8466 Entity.getType().getNonReferenceType());
8467 bool UseTemporary = Entity.getType()->isReferenceType();
8468 bool IsStdInitListInit =
8469 Step->Kind == SK_StdInitializerListConstructorCall;
8470 Expr *Source = CurInit.get();
8471 SourceRange Range = Kind.hasParenOrBraceRange()
8472 ? Kind.getParenOrBraceRange()
8473 : SourceRange();
8474 CurInit = PerformConstructorInitialization(
8475 S, UseTemporary ? TempEntity : Entity, Kind,
8476 Source ? MultiExprArg(Source) : Args, *Step,
8477 ConstructorInitRequiresZeroInit,
8478 /*IsListInitialization*/ IsStdInitListInit,
8479 /*IsStdInitListInitialization*/ IsStdInitListInit,
8480 /*LBraceLoc*/ Range.getBegin(),
8481 /*RBraceLoc*/ Range.getEnd());
8482 break;
8483 }
8484
8485 case SK_ZeroInitialization: {
8486 step_iterator NextStep = Step;
8487 ++NextStep;
8488 if (NextStep != StepEnd &&
8489 (NextStep->Kind == SK_ConstructorInitialization ||
8490 NextStep->Kind == SK_ConstructorInitializationFromList)) {
8491 // The need for zero-initialization is recorded directly into
8492 // the call to the object's constructor within the next step.
8493 ConstructorInitRequiresZeroInit = true;
8494 } else if (Kind.getKind() == InitializationKind::IK_Value &&
8495 S.getLangOpts().CPlusPlus &&
8496 !Kind.isImplicitValueInit()) {
8497 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8498 if (!TSInfo)
8499 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8500 Kind.getRange().getBegin());
8501
8502 CurInit = new (S.Context) CXXScalarValueInitExpr(
8503 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8504 Kind.getRange().getEnd());
8505 } else {
8506 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8507 }
8508 break;
8509 }
8510
8511 case SK_CAssignment: {
8512 QualType SourceType = CurInit.get()->getType();
8513
8514 // Save off the initial CurInit in case we need to emit a diagnostic
8515 ExprResult InitialCurInit = CurInit;
8516 ExprResult Result = CurInit;
8517 Sema::AssignConvertType ConvTy =
8518 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8519 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8520 if (Result.isInvalid())
8521 return ExprError();
8522 CurInit = Result;
8523
8524 // If this is a call, allow conversion to a transparent union.
8525 ExprResult CurInitExprRes = CurInit;
8526 if (ConvTy != Sema::Compatible &&
8527 Entity.isParameterKind() &&
8528 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8529 == Sema::Compatible)
8530 ConvTy = Sema::Compatible;
8531 if (CurInitExprRes.isInvalid())
8532 return ExprError();
8533 CurInit = CurInitExprRes;
8534
8535 bool Complained;
8536 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8537 Step->Type, SourceType,
8538 InitialCurInit.get(),
8539 getAssignmentAction(Entity, true),
8540 &Complained)) {
8541 PrintInitLocationNote(S, Entity);
8542 return ExprError();
8543 } else if (Complained)
8544 PrintInitLocationNote(S, Entity);
8545 break;
8546 }
8547
8548 case SK_StringInit: {
8549 QualType Ty = Step->Type;
8550 bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
8551 CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
8552 S.Context.getAsArrayType(Ty), S);
8553 break;
8554 }
8555
8556 case SK_ObjCObjectConversion:
8557 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8558 CK_ObjCObjectLValueCast,
8559 CurInit.get()->getValueKind());
8560 break;
8561
8562 case SK_ArrayLoopIndex: {
8563 Expr *Cur = CurInit.get();
8564 Expr *BaseExpr = new (S.Context)
8565 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8566 Cur->getValueKind(), Cur->getObjectKind(), Cur);
8567 Expr *IndexExpr =
8568 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8569 CurInit = S.CreateBuiltinArraySubscriptExpr(
8570 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8571 ArrayLoopCommonExprs.push_back(BaseExpr);
8572 break;
8573 }
8574
8575 case SK_ArrayLoopInit: {
8576 assert(!ArrayLoopCommonExprs.empty() &&
8577 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8578 Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8579 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8580 CurInit.get());
8581 break;
8582 }
8583
8584 case SK_GNUArrayInit:
8585 // Okay: we checked everything before creating this step. Note that
8586 // this is a GNU extension.
8587 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8588 << Step->Type << CurInit.get()->getType()
8589 << CurInit.get()->getSourceRange();
8590 updateGNUCompoundLiteralRValue(CurInit.get());
8591 LLVM_FALLTHROUGH;
8592 case SK_ArrayInit:
8593 // If the destination type is an incomplete array type, update the
8594 // type accordingly.
8595 if (ResultType) {
8596 if (const IncompleteArrayType *IncompleteDest
8597 = S.Context.getAsIncompleteArrayType(Step->Type)) {
8598 if (const ConstantArrayType *ConstantSource
8599 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8600 *ResultType = S.Context.getConstantArrayType(
8601 IncompleteDest->getElementType(),
8602 ConstantSource->getSize(),
8603 ConstantSource->getSizeExpr(),
8604 ArrayType::Normal, 0);
8605 }
8606 }
8607 }
8608 break;
8609
8610 case SK_ParenthesizedArrayInit:
8611 // Okay: we checked everything before creating this step. Note that
8612 // this is a GNU extension.
8613 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8614 << CurInit.get()->getSourceRange();
8615 break;
8616
8617 case SK_PassByIndirectCopyRestore:
8618 case SK_PassByIndirectRestore:
8619 checkIndirectCopyRestoreSource(S, CurInit.get());
8620 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8621 CurInit.get(), Step->Type,
8622 Step->Kind == SK_PassByIndirectCopyRestore);
8623 break;
8624
8625 case SK_ProduceObjCObject:
8626 CurInit = ImplicitCastExpr::Create(
8627 S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
8628 VK_RValue, FPOptionsOverride());
8629 break;
8630
8631 case SK_StdInitializerList: {
8632 S.Diag(CurInit.get()->getExprLoc(),
8633 diag::warn_cxx98_compat_initializer_list_init)
8634 << CurInit.get()->getSourceRange();
8635
8636 // Materialize the temporary into memory.
8637 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8638 CurInit.get()->getType(), CurInit.get(),
8639 /*BoundToLvalueReference=*/false);
8640
8641 // Wrap it in a construction of a std::initializer_list<T>.
8642 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8643
8644 // Bind the result, in case the library has given initializer_list a
8645 // non-trivial destructor.
8646 if (shouldBindAsTemporary(Entity))
8647 CurInit = S.MaybeBindToTemporary(CurInit.get());
8648 break;
8649 }
8650
8651 case SK_OCLSamplerInit: {
8652 // Sampler initialization have 5 cases:
8653 // 1. function argument passing
8654 // 1a. argument is a file-scope variable
8655 // 1b. argument is a function-scope variable
8656 // 1c. argument is one of caller function's parameters
8657 // 2. variable initialization
8658 // 2a. initializing a file-scope variable
8659 // 2b. initializing a function-scope variable
8660 //
8661 // For file-scope variables, since they cannot be initialized by function
8662 // call of __translate_sampler_initializer in LLVM IR, their references
8663 // need to be replaced by a cast from their literal initializers to
8664 // sampler type. Since sampler variables can only be used in function
8665 // calls as arguments, we only need to replace them when handling the
8666 // argument passing.
8667 assert(Step->Type->isSamplerT() &&
8668 "Sampler initialization on non-sampler type.");
8669 Expr *Init = CurInit.get()->IgnoreParens();
8670 QualType SourceType = Init->getType();
8671 // Case 1
8672 if (Entity.isParameterKind()) {
8673 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8674 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8675 << SourceType;
8676 break;
8677 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8678 auto Var = cast<VarDecl>(DRE->getDecl());
8679 // Case 1b and 1c
8680 // No cast from integer to sampler is needed.
8681 if (!Var->hasGlobalStorage()) {
8682 CurInit = ImplicitCastExpr::Create(
8683 S.Context, Step->Type, CK_LValueToRValue, Init,
8684 /*BasePath=*/nullptr, VK_RValue, FPOptionsOverride());
8685 break;
8686 }
8687 // Case 1a
8688 // For function call with a file-scope sampler variable as argument,
8689 // get the integer literal.
8690 // Do not diagnose if the file-scope variable does not have initializer
8691 // since this has already been diagnosed when parsing the variable
8692 // declaration.
8693 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8694 break;
8695 Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8696 Var->getInit()))->getSubExpr();
8697 SourceType = Init->getType();
8698 }
8699 } else {
8700 // Case 2
8701 // Check initializer is 32 bit integer constant.
8702 // If the initializer is taken from global variable, do not diagnose since
8703 // this has already been done when parsing the variable declaration.
8704 if (!Init->isConstantInitializer(S.Context, false))
8705 break;
8706
8707 if (!SourceType->isIntegerType() ||
8708 32 != S.Context.getIntWidth(SourceType)) {
8709 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8710 << SourceType;
8711 break;
8712 }
8713
8714 Expr::EvalResult EVResult;
8715 Init->EvaluateAsInt(EVResult, S.Context);
8716 llvm::APSInt Result = EVResult.Val.getInt();
8717 const uint64_t SamplerValue = Result.getLimitedValue();
8718 // 32-bit value of sampler's initializer is interpreted as
8719 // bit-field with the following structure:
8720 // |unspecified|Filter|Addressing Mode| Normalized Coords|
8721 // |31 6|5 4|3 1| 0|
8722 // This structure corresponds to enum values of sampler properties
8723 // defined in SPIR spec v1.2 and also opencl-c.h
8724 unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
8725 unsigned FilterMode = (0x30 & SamplerValue) >> 4;
8726 if (FilterMode != 1 && FilterMode != 2 &&
8727 !S.getOpenCLOptions().isEnabled(
8728 "cl_intel_device_side_avc_motion_estimation"))
8729 S.Diag(Kind.getLocation(),
8730 diag::warn_sampler_initializer_invalid_bits)
8731 << "Filter Mode";
8732 if (AddressingMode > 4)
8733 S.Diag(Kind.getLocation(),
8734 diag::warn_sampler_initializer_invalid_bits)
8735 << "Addressing Mode";
8736 }
8737
8738 // Cases 1a, 2a and 2b
8739 // Insert cast from integer to sampler.
8740 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8741 CK_IntToOCLSampler);
8742 break;
8743 }
8744 case SK_OCLZeroOpaqueType: {
8745 assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8746 Step->Type->isOCLIntelSubgroupAVCType()) &&
8747 "Wrong type for initialization of OpenCL opaque type.");
8748
8749 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8750 CK_ZeroToOCLOpaqueType,
8751 CurInit.get()->getValueKind());
8752 break;
8753 }
8754 }
8755 }
8756
8757 // Check whether the initializer has a shorter lifetime than the initialized
8758 // entity, and if not, either lifetime-extend or warn as appropriate.
8759 if (auto *Init = CurInit.get())
8760 S.checkInitializerLifetime(Entity, Init);
8761
8762 // Diagnose non-fatal problems with the completed initialization.
8763 if (Entity.getKind() == InitializedEntity::EK_Member &&
8764 cast<FieldDecl>(Entity.getDecl())->isBitField())
8765 S.CheckBitFieldInitialization(Kind.getLocation(),
8766 cast<FieldDecl>(Entity.getDecl()),
8767 CurInit.get());
8768
8769 // Check for std::move on construction.
8770 if (const Expr *E = CurInit.get()) {
8771 CheckMoveOnConstruction(S, E,
8772 Entity.getKind() == InitializedEntity::EK_Result);
8773 }
8774
8775 return CurInit;
8776 }
8777
8778 /// Somewhere within T there is an uninitialized reference subobject.
8779 /// Dig it out and diagnose it.
DiagnoseUninitializedReference(Sema & S,SourceLocation Loc,QualType T)8780 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8781 QualType T) {
8782 if (T->isReferenceType()) {
8783 S.Diag(Loc, diag::err_reference_without_init)
8784 << T.getNonReferenceType();
8785 return true;
8786 }
8787
8788 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8789 if (!RD || !RD->hasUninitializedReferenceMember())
8790 return false;
8791
8792 for (const auto *FI : RD->fields()) {
8793 if (FI->isUnnamedBitfield())
8794 continue;
8795
8796 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8797 S.Diag(Loc, diag::note_value_initialization_here) << RD;
8798 return true;
8799 }
8800 }
8801
8802 for (const auto &BI : RD->bases()) {
8803 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8804 S.Diag(Loc, diag::note_value_initialization_here) << RD;
8805 return true;
8806 }
8807 }
8808
8809 return false;
8810 }
8811
8812
8813 //===----------------------------------------------------------------------===//
8814 // Diagnose initialization failures
8815 //===----------------------------------------------------------------------===//
8816
8817 /// Emit notes associated with an initialization that failed due to a
8818 /// "simple" conversion failure.
emitBadConversionNotes(Sema & S,const InitializedEntity & entity,Expr * op)8819 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8820 Expr *op) {
8821 QualType destType = entity.getType();
8822 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8823 op->getType()->isObjCObjectPointerType()) {
8824
8825 // Emit a possible note about the conversion failing because the
8826 // operand is a message send with a related result type.
8827 S.EmitRelatedResultTypeNote(op);
8828
8829 // Emit a possible note about a return failing because we're
8830 // expecting a related result type.
8831 if (entity.getKind() == InitializedEntity::EK_Result)
8832 S.EmitRelatedResultTypeNoteForReturn(destType);
8833 }
8834 QualType fromType = op->getType();
8835 auto *fromDecl = fromType.getTypePtr()->getPointeeCXXRecordDecl();
8836 auto *destDecl = destType.getTypePtr()->getPointeeCXXRecordDecl();
8837 if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
8838 destDecl->getDeclKind() == Decl::CXXRecord &&
8839 !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
8840 !fromDecl->hasDefinition())
8841 S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
8842 << S.getASTContext().getTagDeclType(fromDecl)
8843 << S.getASTContext().getTagDeclType(destDecl);
8844 }
8845
diagnoseListInit(Sema & S,const InitializedEntity & Entity,InitListExpr * InitList)8846 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8847 InitListExpr *InitList) {
8848 QualType DestType = Entity.getType();
8849
8850 QualType E;
8851 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8852 QualType ArrayType = S.Context.getConstantArrayType(
8853 E.withConst(),
8854 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8855 InitList->getNumInits()),
8856 nullptr, clang::ArrayType::Normal, 0);
8857 InitializedEntity HiddenArray =
8858 InitializedEntity::InitializeTemporary(ArrayType);
8859 return diagnoseListInit(S, HiddenArray, InitList);
8860 }
8861
8862 if (DestType->isReferenceType()) {
8863 // A list-initialization failure for a reference means that we tried to
8864 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8865 // inner initialization failed.
8866 QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8867 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8868 SourceLocation Loc = InitList->getBeginLoc();
8869 if (auto *D = Entity.getDecl())
8870 Loc = D->getLocation();
8871 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8872 return;
8873 }
8874
8875 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8876 /*VerifyOnly=*/false,
8877 /*TreatUnavailableAsInvalid=*/false);
8878 assert(DiagnoseInitList.HadError() &&
8879 "Inconsistent init list check result.");
8880 }
8881
Diagnose(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,ArrayRef<Expr * > Args)8882 bool InitializationSequence::Diagnose(Sema &S,
8883 const InitializedEntity &Entity,
8884 const InitializationKind &Kind,
8885 ArrayRef<Expr *> Args) {
8886 if (!Failed())
8887 return false;
8888
8889 // When we want to diagnose only one element of a braced-init-list,
8890 // we need to factor it out.
8891 Expr *OnlyArg;
8892 if (Args.size() == 1) {
8893 auto *List = dyn_cast<InitListExpr>(Args[0]);
8894 if (List && List->getNumInits() == 1)
8895 OnlyArg = List->getInit(0);
8896 else
8897 OnlyArg = Args[0];
8898 }
8899 else
8900 OnlyArg = nullptr;
8901
8902 QualType DestType = Entity.getType();
8903 switch (Failure) {
8904 case FK_TooManyInitsForReference:
8905 // FIXME: Customize for the initialized entity?
8906 if (Args.empty()) {
8907 // Dig out the reference subobject which is uninitialized and diagnose it.
8908 // If this is value-initialization, this could be nested some way within
8909 // the target type.
8910 assert(Kind.getKind() == InitializationKind::IK_Value ||
8911 DestType->isReferenceType());
8912 bool Diagnosed =
8913 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8914 assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8915 (void)Diagnosed;
8916 } else // FIXME: diagnostic below could be better!
8917 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8918 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8919 break;
8920 case FK_ParenthesizedListInitForReference:
8921 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8922 << 1 << Entity.getType() << Args[0]->getSourceRange();
8923 break;
8924
8925 case FK_ArrayNeedsInitList:
8926 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8927 break;
8928 case FK_ArrayNeedsInitListOrStringLiteral:
8929 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8930 break;
8931 case FK_ArrayNeedsInitListOrWideStringLiteral:
8932 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8933 break;
8934 case FK_NarrowStringIntoWideCharArray:
8935 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8936 break;
8937 case FK_WideStringIntoCharArray:
8938 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8939 break;
8940 case FK_IncompatWideStringIntoWideChar:
8941 S.Diag(Kind.getLocation(),
8942 diag::err_array_init_incompat_wide_string_into_wchar);
8943 break;
8944 case FK_PlainStringIntoUTF8Char:
8945 S.Diag(Kind.getLocation(),
8946 diag::err_array_init_plain_string_into_char8_t);
8947 S.Diag(Args.front()->getBeginLoc(),
8948 diag::note_array_init_plain_string_into_char8_t)
8949 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8950 break;
8951 case FK_UTF8StringIntoPlainChar:
8952 S.Diag(Kind.getLocation(),
8953 diag::err_array_init_utf8_string_into_char)
8954 << S.getLangOpts().CPlusPlus20;
8955 break;
8956 case FK_ArrayTypeMismatch:
8957 case FK_NonConstantArrayInit:
8958 S.Diag(Kind.getLocation(),
8959 (Failure == FK_ArrayTypeMismatch
8960 ? diag::err_array_init_different_type
8961 : diag::err_array_init_non_constant_array))
8962 << DestType.getNonReferenceType()
8963 << OnlyArg->getType()
8964 << Args[0]->getSourceRange();
8965 break;
8966
8967 case FK_VariableLengthArrayHasInitializer:
8968 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8969 << Args[0]->getSourceRange();
8970 break;
8971
8972 case FK_AddressOfOverloadFailed: {
8973 DeclAccessPair Found;
8974 S.ResolveAddressOfOverloadedFunction(OnlyArg,
8975 DestType.getNonReferenceType(),
8976 true,
8977 Found);
8978 break;
8979 }
8980
8981 case FK_AddressOfUnaddressableFunction: {
8982 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8983 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8984 OnlyArg->getBeginLoc());
8985 break;
8986 }
8987
8988 case FK_ReferenceInitOverloadFailed:
8989 case FK_UserConversionOverloadFailed:
8990 switch (FailedOverloadResult) {
8991 case OR_Ambiguous:
8992
8993 FailedCandidateSet.NoteCandidates(
8994 PartialDiagnosticAt(
8995 Kind.getLocation(),
8996 Failure == FK_UserConversionOverloadFailed
8997 ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
8998 << OnlyArg->getType() << DestType
8999 << Args[0]->getSourceRange())
9000 : (S.PDiag(diag::err_ref_init_ambiguous)
9001 << DestType << OnlyArg->getType()
9002 << Args[0]->getSourceRange())),
9003 S, OCD_AmbiguousCandidates, Args);
9004 break;
9005
9006 case OR_No_Viable_Function: {
9007 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
9008 if (!S.RequireCompleteType(Kind.getLocation(),
9009 DestType.getNonReferenceType(),
9010 diag::err_typecheck_nonviable_condition_incomplete,
9011 OnlyArg->getType(), Args[0]->getSourceRange()))
9012 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
9013 << (Entity.getKind() == InitializedEntity::EK_Result)
9014 << OnlyArg->getType() << Args[0]->getSourceRange()
9015 << DestType.getNonReferenceType();
9016
9017 FailedCandidateSet.NoteCandidates(S, Args, Cands);
9018 break;
9019 }
9020 case OR_Deleted: {
9021 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
9022 << OnlyArg->getType() << DestType.getNonReferenceType()
9023 << Args[0]->getSourceRange();
9024 OverloadCandidateSet::iterator Best;
9025 OverloadingResult Ovl
9026 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9027 if (Ovl == OR_Deleted) {
9028 S.NoteDeletedFunction(Best->Function);
9029 } else {
9030 llvm_unreachable("Inconsistent overload resolution?");
9031 }
9032 break;
9033 }
9034
9035 case OR_Success:
9036 llvm_unreachable("Conversion did not fail!");
9037 }
9038 break;
9039
9040 case FK_NonConstLValueReferenceBindingToTemporary:
9041 if (isa<InitListExpr>(Args[0])) {
9042 S.Diag(Kind.getLocation(),
9043 diag::err_lvalue_reference_bind_to_initlist)
9044 << DestType.getNonReferenceType().isVolatileQualified()
9045 << DestType.getNonReferenceType()
9046 << Args[0]->getSourceRange();
9047 break;
9048 }
9049 LLVM_FALLTHROUGH;
9050
9051 case FK_NonConstLValueReferenceBindingToUnrelated:
9052 S.Diag(Kind.getLocation(),
9053 Failure == FK_NonConstLValueReferenceBindingToTemporary
9054 ? diag::err_lvalue_reference_bind_to_temporary
9055 : diag::err_lvalue_reference_bind_to_unrelated)
9056 << DestType.getNonReferenceType().isVolatileQualified()
9057 << DestType.getNonReferenceType()
9058 << OnlyArg->getType()
9059 << Args[0]->getSourceRange();
9060 break;
9061
9062 case FK_NonConstLValueReferenceBindingToBitfield: {
9063 // We don't necessarily have an unambiguous source bit-field.
9064 FieldDecl *BitField = Args[0]->getSourceBitField();
9065 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
9066 << DestType.isVolatileQualified()
9067 << (BitField ? BitField->getDeclName() : DeclarationName())
9068 << (BitField != nullptr)
9069 << Args[0]->getSourceRange();
9070 if (BitField)
9071 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
9072 break;
9073 }
9074
9075 case FK_NonConstLValueReferenceBindingToVectorElement:
9076 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
9077 << DestType.isVolatileQualified()
9078 << Args[0]->getSourceRange();
9079 break;
9080
9081 case FK_NonConstLValueReferenceBindingToMatrixElement:
9082 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
9083 << DestType.isVolatileQualified() << Args[0]->getSourceRange();
9084 break;
9085
9086 case FK_RValueReferenceBindingToLValue:
9087 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
9088 << DestType.getNonReferenceType() << OnlyArg->getType()
9089 << Args[0]->getSourceRange();
9090 break;
9091
9092 case FK_ReferenceAddrspaceMismatchTemporary:
9093 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
9094 << DestType << Args[0]->getSourceRange();
9095 break;
9096
9097 case FK_ReferenceInitDropsQualifiers: {
9098 QualType SourceType = OnlyArg->getType();
9099 QualType NonRefType = DestType.getNonReferenceType();
9100 Qualifiers DroppedQualifiers =
9101 SourceType.getQualifiers() - NonRefType.getQualifiers();
9102
9103 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
9104 SourceType.getQualifiers()))
9105 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9106 << NonRefType << SourceType << 1 /*addr space*/
9107 << Args[0]->getSourceRange();
9108 else if (DroppedQualifiers.hasQualifiers())
9109 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9110 << NonRefType << SourceType << 0 /*cv quals*/
9111 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
9112 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
9113 else
9114 // FIXME: Consider decomposing the type and explaining which qualifiers
9115 // were dropped where, or on which level a 'const' is missing, etc.
9116 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9117 << NonRefType << SourceType << 2 /*incompatible quals*/
9118 << Args[0]->getSourceRange();
9119 break;
9120 }
9121
9122 case FK_ReferenceInitFailed:
9123 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9124 << DestType.getNonReferenceType()
9125 << DestType.getNonReferenceType()->isIncompleteType()
9126 << OnlyArg->isLValue()
9127 << OnlyArg->getType()
9128 << Args[0]->getSourceRange();
9129 emitBadConversionNotes(S, Entity, Args[0]);
9130 break;
9131
9132 case FK_ConversionFailed: {
9133 QualType FromType = OnlyArg->getType();
9134 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9135 << (int)Entity.getKind()
9136 << DestType
9137 << OnlyArg->isLValue()
9138 << FromType
9139 << Args[0]->getSourceRange();
9140 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9141 S.Diag(Kind.getLocation(), PDiag);
9142 emitBadConversionNotes(S, Entity, Args[0]);
9143 break;
9144 }
9145
9146 case FK_ConversionFromPropertyFailed:
9147 // No-op. This error has already been reported.
9148 break;
9149
9150 case FK_TooManyInitsForScalar: {
9151 SourceRange R;
9152
9153 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9154 if (InitList && InitList->getNumInits() >= 1) {
9155 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9156 } else {
9157 assert(Args.size() > 1 && "Expected multiple initializers!");
9158 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9159 }
9160
9161 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9162 if (Kind.isCStyleOrFunctionalCast())
9163 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9164 << R;
9165 else
9166 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9167 << /*scalar=*/2 << R;
9168 break;
9169 }
9170
9171 case FK_ParenthesizedListInitForScalar:
9172 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9173 << 0 << Entity.getType() << Args[0]->getSourceRange();
9174 break;
9175
9176 case FK_ReferenceBindingToInitList:
9177 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9178 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9179 break;
9180
9181 case FK_InitListBadDestinationType:
9182 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9183 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9184 break;
9185
9186 case FK_ListConstructorOverloadFailed:
9187 case FK_ConstructorOverloadFailed: {
9188 SourceRange ArgsRange;
9189 if (Args.size())
9190 ArgsRange =
9191 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9192
9193 if (Failure == FK_ListConstructorOverloadFailed) {
9194 assert(Args.size() == 1 &&
9195 "List construction from other than 1 argument.");
9196 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9197 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9198 }
9199
9200 // FIXME: Using "DestType" for the entity we're printing is probably
9201 // bad.
9202 switch (FailedOverloadResult) {
9203 case OR_Ambiguous:
9204 FailedCandidateSet.NoteCandidates(
9205 PartialDiagnosticAt(Kind.getLocation(),
9206 S.PDiag(diag::err_ovl_ambiguous_init)
9207 << DestType << ArgsRange),
9208 S, OCD_AmbiguousCandidates, Args);
9209 break;
9210
9211 case OR_No_Viable_Function:
9212 if (Kind.getKind() == InitializationKind::IK_Default &&
9213 (Entity.getKind() == InitializedEntity::EK_Base ||
9214 Entity.getKind() == InitializedEntity::EK_Member) &&
9215 isa<CXXConstructorDecl>(S.CurContext)) {
9216 // This is implicit default initialization of a member or
9217 // base within a constructor. If no viable function was
9218 // found, notify the user that they need to explicitly
9219 // initialize this base/member.
9220 CXXConstructorDecl *Constructor
9221 = cast<CXXConstructorDecl>(S.CurContext);
9222 const CXXRecordDecl *InheritedFrom = nullptr;
9223 if (auto Inherited = Constructor->getInheritedConstructor())
9224 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9225 if (Entity.getKind() == InitializedEntity::EK_Base) {
9226 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9227 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9228 << S.Context.getTypeDeclType(Constructor->getParent())
9229 << /*base=*/0
9230 << Entity.getType()
9231 << InheritedFrom;
9232
9233 RecordDecl *BaseDecl
9234 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9235 ->getDecl();
9236 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9237 << S.Context.getTagDeclType(BaseDecl);
9238 } else {
9239 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9240 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9241 << S.Context.getTypeDeclType(Constructor->getParent())
9242 << /*member=*/1
9243 << Entity.getName()
9244 << InheritedFrom;
9245 S.Diag(Entity.getDecl()->getLocation(),
9246 diag::note_member_declared_at);
9247
9248 if (const RecordType *Record
9249 = Entity.getType()->getAs<RecordType>())
9250 S.Diag(Record->getDecl()->getLocation(),
9251 diag::note_previous_decl)
9252 << S.Context.getTagDeclType(Record->getDecl());
9253 }
9254 break;
9255 }
9256
9257 FailedCandidateSet.NoteCandidates(
9258 PartialDiagnosticAt(
9259 Kind.getLocation(),
9260 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9261 << DestType << ArgsRange),
9262 S, OCD_AllCandidates, Args);
9263 break;
9264
9265 case OR_Deleted: {
9266 OverloadCandidateSet::iterator Best;
9267 OverloadingResult Ovl
9268 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9269 if (Ovl != OR_Deleted) {
9270 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9271 << DestType << ArgsRange;
9272 llvm_unreachable("Inconsistent overload resolution?");
9273 break;
9274 }
9275
9276 // If this is a defaulted or implicitly-declared function, then
9277 // it was implicitly deleted. Make it clear that the deletion was
9278 // implicit.
9279 if (S.isImplicitlyDeleted(Best->Function))
9280 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9281 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9282 << DestType << ArgsRange;
9283 else
9284 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9285 << DestType << ArgsRange;
9286
9287 S.NoteDeletedFunction(Best->Function);
9288 break;
9289 }
9290
9291 case OR_Success:
9292 llvm_unreachable("Conversion did not fail!");
9293 }
9294 }
9295 break;
9296
9297 case FK_DefaultInitOfConst:
9298 if (Entity.getKind() == InitializedEntity::EK_Member &&
9299 isa<CXXConstructorDecl>(S.CurContext)) {
9300 // This is implicit default-initialization of a const member in
9301 // a constructor. Complain that it needs to be explicitly
9302 // initialized.
9303 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9304 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9305 << (Constructor->getInheritedConstructor() ? 2 :
9306 Constructor->isImplicit() ? 1 : 0)
9307 << S.Context.getTypeDeclType(Constructor->getParent())
9308 << /*const=*/1
9309 << Entity.getName();
9310 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9311 << Entity.getName();
9312 } else {
9313 S.Diag(Kind.getLocation(), diag::err_default_init_const)
9314 << DestType << (bool)DestType->getAs<RecordType>();
9315 }
9316 break;
9317
9318 case FK_Incomplete:
9319 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9320 diag::err_init_incomplete_type);
9321 break;
9322
9323 case FK_ListInitializationFailed: {
9324 // Run the init list checker again to emit diagnostics.
9325 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9326 diagnoseListInit(S, Entity, InitList);
9327 break;
9328 }
9329
9330 case FK_PlaceholderType: {
9331 // FIXME: Already diagnosed!
9332 break;
9333 }
9334
9335 case FK_ExplicitConstructor: {
9336 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9337 << Args[0]->getSourceRange();
9338 OverloadCandidateSet::iterator Best;
9339 OverloadingResult Ovl
9340 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9341 (void)Ovl;
9342 assert(Ovl == OR_Success && "Inconsistent overload resolution");
9343 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9344 S.Diag(CtorDecl->getLocation(),
9345 diag::note_explicit_ctor_deduction_guide_here) << false;
9346 break;
9347 }
9348 }
9349
9350 PrintInitLocationNote(S, Entity);
9351 return true;
9352 }
9353
dump(raw_ostream & OS) const9354 void InitializationSequence::dump(raw_ostream &OS) const {
9355 switch (SequenceKind) {
9356 case FailedSequence: {
9357 OS << "Failed sequence: ";
9358 switch (Failure) {
9359 case FK_TooManyInitsForReference:
9360 OS << "too many initializers for reference";
9361 break;
9362
9363 case FK_ParenthesizedListInitForReference:
9364 OS << "parenthesized list init for reference";
9365 break;
9366
9367 case FK_ArrayNeedsInitList:
9368 OS << "array requires initializer list";
9369 break;
9370
9371 case FK_AddressOfUnaddressableFunction:
9372 OS << "address of unaddressable function was taken";
9373 break;
9374
9375 case FK_ArrayNeedsInitListOrStringLiteral:
9376 OS << "array requires initializer list or string literal";
9377 break;
9378
9379 case FK_ArrayNeedsInitListOrWideStringLiteral:
9380 OS << "array requires initializer list or wide string literal";
9381 break;
9382
9383 case FK_NarrowStringIntoWideCharArray:
9384 OS << "narrow string into wide char array";
9385 break;
9386
9387 case FK_WideStringIntoCharArray:
9388 OS << "wide string into char array";
9389 break;
9390
9391 case FK_IncompatWideStringIntoWideChar:
9392 OS << "incompatible wide string into wide char array";
9393 break;
9394
9395 case FK_PlainStringIntoUTF8Char:
9396 OS << "plain string literal into char8_t array";
9397 break;
9398
9399 case FK_UTF8StringIntoPlainChar:
9400 OS << "u8 string literal into char array";
9401 break;
9402
9403 case FK_ArrayTypeMismatch:
9404 OS << "array type mismatch";
9405 break;
9406
9407 case FK_NonConstantArrayInit:
9408 OS << "non-constant array initializer";
9409 break;
9410
9411 case FK_AddressOfOverloadFailed:
9412 OS << "address of overloaded function failed";
9413 break;
9414
9415 case FK_ReferenceInitOverloadFailed:
9416 OS << "overload resolution for reference initialization failed";
9417 break;
9418
9419 case FK_NonConstLValueReferenceBindingToTemporary:
9420 OS << "non-const lvalue reference bound to temporary";
9421 break;
9422
9423 case FK_NonConstLValueReferenceBindingToBitfield:
9424 OS << "non-const lvalue reference bound to bit-field";
9425 break;
9426
9427 case FK_NonConstLValueReferenceBindingToVectorElement:
9428 OS << "non-const lvalue reference bound to vector element";
9429 break;
9430
9431 case FK_NonConstLValueReferenceBindingToMatrixElement:
9432 OS << "non-const lvalue reference bound to matrix element";
9433 break;
9434
9435 case FK_NonConstLValueReferenceBindingToUnrelated:
9436 OS << "non-const lvalue reference bound to unrelated type";
9437 break;
9438
9439 case FK_RValueReferenceBindingToLValue:
9440 OS << "rvalue reference bound to an lvalue";
9441 break;
9442
9443 case FK_ReferenceInitDropsQualifiers:
9444 OS << "reference initialization drops qualifiers";
9445 break;
9446
9447 case FK_ReferenceAddrspaceMismatchTemporary:
9448 OS << "reference with mismatching address space bound to temporary";
9449 break;
9450
9451 case FK_ReferenceInitFailed:
9452 OS << "reference initialization failed";
9453 break;
9454
9455 case FK_ConversionFailed:
9456 OS << "conversion failed";
9457 break;
9458
9459 case FK_ConversionFromPropertyFailed:
9460 OS << "conversion from property failed";
9461 break;
9462
9463 case FK_TooManyInitsForScalar:
9464 OS << "too many initializers for scalar";
9465 break;
9466
9467 case FK_ParenthesizedListInitForScalar:
9468 OS << "parenthesized list init for reference";
9469 break;
9470
9471 case FK_ReferenceBindingToInitList:
9472 OS << "referencing binding to initializer list";
9473 break;
9474
9475 case FK_InitListBadDestinationType:
9476 OS << "initializer list for non-aggregate, non-scalar type";
9477 break;
9478
9479 case FK_UserConversionOverloadFailed:
9480 OS << "overloading failed for user-defined conversion";
9481 break;
9482
9483 case FK_ConstructorOverloadFailed:
9484 OS << "constructor overloading failed";
9485 break;
9486
9487 case FK_DefaultInitOfConst:
9488 OS << "default initialization of a const variable";
9489 break;
9490
9491 case FK_Incomplete:
9492 OS << "initialization of incomplete type";
9493 break;
9494
9495 case FK_ListInitializationFailed:
9496 OS << "list initialization checker failure";
9497 break;
9498
9499 case FK_VariableLengthArrayHasInitializer:
9500 OS << "variable length array has an initializer";
9501 break;
9502
9503 case FK_PlaceholderType:
9504 OS << "initializer expression isn't contextually valid";
9505 break;
9506
9507 case FK_ListConstructorOverloadFailed:
9508 OS << "list constructor overloading failed";
9509 break;
9510
9511 case FK_ExplicitConstructor:
9512 OS << "list copy initialization chose explicit constructor";
9513 break;
9514 }
9515 OS << '\n';
9516 return;
9517 }
9518
9519 case DependentSequence:
9520 OS << "Dependent sequence\n";
9521 return;
9522
9523 case NormalSequence:
9524 OS << "Normal sequence: ";
9525 break;
9526 }
9527
9528 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9529 if (S != step_begin()) {
9530 OS << " -> ";
9531 }
9532
9533 switch (S->Kind) {
9534 case SK_ResolveAddressOfOverloadedFunction:
9535 OS << "resolve address of overloaded function";
9536 break;
9537
9538 case SK_CastDerivedToBaseRValue:
9539 OS << "derived-to-base (rvalue)";
9540 break;
9541
9542 case SK_CastDerivedToBaseXValue:
9543 OS << "derived-to-base (xvalue)";
9544 break;
9545
9546 case SK_CastDerivedToBaseLValue:
9547 OS << "derived-to-base (lvalue)";
9548 break;
9549
9550 case SK_BindReference:
9551 OS << "bind reference to lvalue";
9552 break;
9553
9554 case SK_BindReferenceToTemporary:
9555 OS << "bind reference to a temporary";
9556 break;
9557
9558 case SK_FinalCopy:
9559 OS << "final copy in class direct-initialization";
9560 break;
9561
9562 case SK_ExtraneousCopyToTemporary:
9563 OS << "extraneous C++03 copy to temporary";
9564 break;
9565
9566 case SK_UserConversion:
9567 OS << "user-defined conversion via " << *S->Function.Function;
9568 break;
9569
9570 case SK_QualificationConversionRValue:
9571 OS << "qualification conversion (rvalue)";
9572 break;
9573
9574 case SK_QualificationConversionXValue:
9575 OS << "qualification conversion (xvalue)";
9576 break;
9577
9578 case SK_QualificationConversionLValue:
9579 OS << "qualification conversion (lvalue)";
9580 break;
9581
9582 case SK_FunctionReferenceConversion:
9583 OS << "function reference conversion";
9584 break;
9585
9586 case SK_AtomicConversion:
9587 OS << "non-atomic-to-atomic conversion";
9588 break;
9589
9590 case SK_ConversionSequence:
9591 OS << "implicit conversion sequence (";
9592 S->ICS->dump(); // FIXME: use OS
9593 OS << ")";
9594 break;
9595
9596 case SK_ConversionSequenceNoNarrowing:
9597 OS << "implicit conversion sequence with narrowing prohibited (";
9598 S->ICS->dump(); // FIXME: use OS
9599 OS << ")";
9600 break;
9601
9602 case SK_ListInitialization:
9603 OS << "list aggregate initialization";
9604 break;
9605
9606 case SK_UnwrapInitList:
9607 OS << "unwrap reference initializer list";
9608 break;
9609
9610 case SK_RewrapInitList:
9611 OS << "rewrap reference initializer list";
9612 break;
9613
9614 case SK_ConstructorInitialization:
9615 OS << "constructor initialization";
9616 break;
9617
9618 case SK_ConstructorInitializationFromList:
9619 OS << "list initialization via constructor";
9620 break;
9621
9622 case SK_ZeroInitialization:
9623 OS << "zero initialization";
9624 break;
9625
9626 case SK_CAssignment:
9627 OS << "C assignment";
9628 break;
9629
9630 case SK_StringInit:
9631 OS << "string initialization";
9632 break;
9633
9634 case SK_ObjCObjectConversion:
9635 OS << "Objective-C object conversion";
9636 break;
9637
9638 case SK_ArrayLoopIndex:
9639 OS << "indexing for array initialization loop";
9640 break;
9641
9642 case SK_ArrayLoopInit:
9643 OS << "array initialization loop";
9644 break;
9645
9646 case SK_ArrayInit:
9647 OS << "array initialization";
9648 break;
9649
9650 case SK_GNUArrayInit:
9651 OS << "array initialization (GNU extension)";
9652 break;
9653
9654 case SK_ParenthesizedArrayInit:
9655 OS << "parenthesized array initialization";
9656 break;
9657
9658 case SK_PassByIndirectCopyRestore:
9659 OS << "pass by indirect copy and restore";
9660 break;
9661
9662 case SK_PassByIndirectRestore:
9663 OS << "pass by indirect restore";
9664 break;
9665
9666 case SK_ProduceObjCObject:
9667 OS << "Objective-C object retension";
9668 break;
9669
9670 case SK_StdInitializerList:
9671 OS << "std::initializer_list from initializer list";
9672 break;
9673
9674 case SK_StdInitializerListConstructorCall:
9675 OS << "list initialization from std::initializer_list";
9676 break;
9677
9678 case SK_OCLSamplerInit:
9679 OS << "OpenCL sampler_t from integer constant";
9680 break;
9681
9682 case SK_OCLZeroOpaqueType:
9683 OS << "OpenCL opaque type from zero";
9684 break;
9685 }
9686
9687 OS << " [" << S->Type.getAsString() << ']';
9688 }
9689
9690 OS << '\n';
9691 }
9692
dump() const9693 void InitializationSequence::dump() const {
9694 dump(llvm::errs());
9695 }
9696
NarrowingErrs(const LangOptions & L)9697 static bool NarrowingErrs(const LangOptions &L) {
9698 return L.CPlusPlus11 &&
9699 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9700 }
9701
DiagnoseNarrowingInInitList(Sema & S,const ImplicitConversionSequence & ICS,QualType PreNarrowingType,QualType EntityType,const Expr * PostInit)9702 static void DiagnoseNarrowingInInitList(Sema &S,
9703 const ImplicitConversionSequence &ICS,
9704 QualType PreNarrowingType,
9705 QualType EntityType,
9706 const Expr *PostInit) {
9707 const StandardConversionSequence *SCS = nullptr;
9708 switch (ICS.getKind()) {
9709 case ImplicitConversionSequence::StandardConversion:
9710 SCS = &ICS.Standard;
9711 break;
9712 case ImplicitConversionSequence::UserDefinedConversion:
9713 SCS = &ICS.UserDefined.After;
9714 break;
9715 case ImplicitConversionSequence::AmbiguousConversion:
9716 case ImplicitConversionSequence::EllipsisConversion:
9717 case ImplicitConversionSequence::BadConversion:
9718 return;
9719 }
9720
9721 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9722 APValue ConstantValue;
9723 QualType ConstantType;
9724 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9725 ConstantType)) {
9726 case NK_Not_Narrowing:
9727 case NK_Dependent_Narrowing:
9728 // No narrowing occurred.
9729 return;
9730
9731 case NK_Type_Narrowing:
9732 // This was a floating-to-integer conversion, which is always considered a
9733 // narrowing conversion even if the value is a constant and can be
9734 // represented exactly as an integer.
9735 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9736 ? diag::ext_init_list_type_narrowing
9737 : diag::warn_init_list_type_narrowing)
9738 << PostInit->getSourceRange()
9739 << PreNarrowingType.getLocalUnqualifiedType()
9740 << EntityType.getLocalUnqualifiedType();
9741 break;
9742
9743 case NK_Constant_Narrowing:
9744 // A constant value was narrowed.
9745 S.Diag(PostInit->getBeginLoc(),
9746 NarrowingErrs(S.getLangOpts())
9747 ? diag::ext_init_list_constant_narrowing
9748 : diag::warn_init_list_constant_narrowing)
9749 << PostInit->getSourceRange()
9750 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9751 << EntityType.getLocalUnqualifiedType();
9752 break;
9753
9754 case NK_Variable_Narrowing:
9755 // A variable's value may have been narrowed.
9756 S.Diag(PostInit->getBeginLoc(),
9757 NarrowingErrs(S.getLangOpts())
9758 ? diag::ext_init_list_variable_narrowing
9759 : diag::warn_init_list_variable_narrowing)
9760 << PostInit->getSourceRange()
9761 << PreNarrowingType.getLocalUnqualifiedType()
9762 << EntityType.getLocalUnqualifiedType();
9763 break;
9764 }
9765
9766 SmallString<128> StaticCast;
9767 llvm::raw_svector_ostream OS(StaticCast);
9768 OS << "static_cast<";
9769 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9770 // It's important to use the typedef's name if there is one so that the
9771 // fixit doesn't break code using types like int64_t.
9772 //
9773 // FIXME: This will break if the typedef requires qualification. But
9774 // getQualifiedNameAsString() includes non-machine-parsable components.
9775 OS << *TT->getDecl();
9776 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9777 OS << BT->getName(S.getLangOpts());
9778 else {
9779 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
9780 // with a broken cast.
9781 return;
9782 }
9783 OS << ">(";
9784 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9785 << PostInit->getSourceRange()
9786 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9787 << FixItHint::CreateInsertion(
9788 S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9789 }
9790
9791 //===----------------------------------------------------------------------===//
9792 // Initialization helper functions
9793 //===----------------------------------------------------------------------===//
9794 bool
CanPerformCopyInitialization(const InitializedEntity & Entity,ExprResult Init)9795 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9796 ExprResult Init) {
9797 if (Init.isInvalid())
9798 return false;
9799
9800 Expr *InitE = Init.get();
9801 assert(InitE && "No initialization expression");
9802
9803 InitializationKind Kind =
9804 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9805 InitializationSequence Seq(*this, Entity, Kind, InitE);
9806 return !Seq.Failed();
9807 }
9808
9809 ExprResult
PerformCopyInitialization(const InitializedEntity & Entity,SourceLocation EqualLoc,ExprResult Init,bool TopLevelOfInitList,bool AllowExplicit)9810 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9811 SourceLocation EqualLoc,
9812 ExprResult Init,
9813 bool TopLevelOfInitList,
9814 bool AllowExplicit) {
9815 if (Init.isInvalid())
9816 return ExprError();
9817
9818 Expr *InitE = Init.get();
9819 assert(InitE && "No initialization expression?");
9820
9821 if (EqualLoc.isInvalid())
9822 EqualLoc = InitE->getBeginLoc();
9823
9824 InitializationKind Kind = InitializationKind::CreateCopy(
9825 InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9826 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9827
9828 // Prevent infinite recursion when performing parameter copy-initialization.
9829 const bool ShouldTrackCopy =
9830 Entity.isParameterKind() && Seq.isConstructorInitialization();
9831 if (ShouldTrackCopy) {
9832 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9833 CurrentParameterCopyTypes.end()) {
9834 Seq.SetOverloadFailure(
9835 InitializationSequence::FK_ConstructorOverloadFailed,
9836 OR_No_Viable_Function);
9837
9838 // Try to give a meaningful diagnostic note for the problematic
9839 // constructor.
9840 const auto LastStep = Seq.step_end() - 1;
9841 assert(LastStep->Kind ==
9842 InitializationSequence::SK_ConstructorInitialization);
9843 const FunctionDecl *Function = LastStep->Function.Function;
9844 auto Candidate =
9845 llvm::find_if(Seq.getFailedCandidateSet(),
9846 [Function](const OverloadCandidate &Candidate) -> bool {
9847 return Candidate.Viable &&
9848 Candidate.Function == Function &&
9849 Candidate.Conversions.size() > 0;
9850 });
9851 if (Candidate != Seq.getFailedCandidateSet().end() &&
9852 Function->getNumParams() > 0) {
9853 Candidate->Viable = false;
9854 Candidate->FailureKind = ovl_fail_bad_conversion;
9855 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9856 InitE,
9857 Function->getParamDecl(0)->getType());
9858 }
9859 }
9860 CurrentParameterCopyTypes.push_back(Entity.getType());
9861 }
9862
9863 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9864
9865 if (ShouldTrackCopy)
9866 CurrentParameterCopyTypes.pop_back();
9867
9868 return Result;
9869 }
9870
9871 /// Determine whether RD is, or is derived from, a specialization of CTD.
isOrIsDerivedFromSpecializationOf(CXXRecordDecl * RD,ClassTemplateDecl * CTD)9872 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9873 ClassTemplateDecl *CTD) {
9874 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9875 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9876 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9877 };
9878 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9879 }
9880
DeduceTemplateSpecializationFromInitializer(TypeSourceInfo * TSInfo,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Inits)9881 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9882 TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9883 const InitializationKind &Kind, MultiExprArg Inits) {
9884 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9885 TSInfo->getType()->getContainedDeducedType());
9886 assert(DeducedTST && "not a deduced template specialization type");
9887
9888 auto TemplateName = DeducedTST->getTemplateName();
9889 if (TemplateName.isDependent())
9890 return SubstAutoType(TSInfo->getType(), Context.DependentTy);
9891
9892 // We can only perform deduction for class templates.
9893 auto *Template =
9894 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9895 if (!Template) {
9896 Diag(Kind.getLocation(),
9897 diag::err_deduced_non_class_template_specialization_type)
9898 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9899 if (auto *TD = TemplateName.getAsTemplateDecl())
9900 Diag(TD->getLocation(), diag::note_template_decl_here);
9901 return QualType();
9902 }
9903
9904 // Can't deduce from dependent arguments.
9905 if (Expr::hasAnyTypeDependentArguments(Inits)) {
9906 Diag(TSInfo->getTypeLoc().getBeginLoc(),
9907 diag::warn_cxx14_compat_class_template_argument_deduction)
9908 << TSInfo->getTypeLoc().getSourceRange() << 0;
9909 return SubstAutoType(TSInfo->getType(), Context.DependentTy);
9910 }
9911
9912 // FIXME: Perform "exact type" matching first, per CWG discussion?
9913 // Or implement this via an implied 'T(T) -> T' deduction guide?
9914
9915 // FIXME: Do we need/want a std::initializer_list<T> special case?
9916
9917 // Look up deduction guides, including those synthesized from constructors.
9918 //
9919 // C++1z [over.match.class.deduct]p1:
9920 // A set of functions and function templates is formed comprising:
9921 // - For each constructor of the class template designated by the
9922 // template-name, a function template [...]
9923 // - For each deduction-guide, a function or function template [...]
9924 DeclarationNameInfo NameInfo(
9925 Context.DeclarationNames.getCXXDeductionGuideName(Template),
9926 TSInfo->getTypeLoc().getEndLoc());
9927 LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9928 LookupQualifiedName(Guides, Template->getDeclContext());
9929
9930 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9931 // clear on this, but they're not found by name so access does not apply.
9932 Guides.suppressDiagnostics();
9933
9934 // Figure out if this is list-initialization.
9935 InitListExpr *ListInit =
9936 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9937 ? dyn_cast<InitListExpr>(Inits[0])
9938 : nullptr;
9939
9940 // C++1z [over.match.class.deduct]p1:
9941 // Initialization and overload resolution are performed as described in
9942 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9943 // (as appropriate for the type of initialization performed) for an object
9944 // of a hypothetical class type, where the selected functions and function
9945 // templates are considered to be the constructors of that class type
9946 //
9947 // Since we know we're initializing a class type of a type unrelated to that
9948 // of the initializer, this reduces to something fairly reasonable.
9949 OverloadCandidateSet Candidates(Kind.getLocation(),
9950 OverloadCandidateSet::CSK_Normal);
9951 OverloadCandidateSet::iterator Best;
9952
9953 bool HasAnyDeductionGuide = false;
9954 bool AllowExplicit = !Kind.isCopyInit() || ListInit;
9955
9956 auto tryToResolveOverload =
9957 [&](bool OnlyListConstructors) -> OverloadingResult {
9958 Candidates.clear(OverloadCandidateSet::CSK_Normal);
9959 HasAnyDeductionGuide = false;
9960
9961 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9962 NamedDecl *D = (*I)->getUnderlyingDecl();
9963 if (D->isInvalidDecl())
9964 continue;
9965
9966 auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9967 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9968 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9969 if (!GD)
9970 continue;
9971
9972 if (!GD->isImplicit())
9973 HasAnyDeductionGuide = true;
9974
9975 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9976 // For copy-initialization, the candidate functions are all the
9977 // converting constructors (12.3.1) of that class.
9978 // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9979 // The converting constructors of T are candidate functions.
9980 if (!AllowExplicit) {
9981 // Overload resolution checks whether the deduction guide is declared
9982 // explicit for us.
9983
9984 // When looking for a converting constructor, deduction guides that
9985 // could never be called with one argument are not interesting to
9986 // check or note.
9987 if (GD->getMinRequiredArguments() > 1 ||
9988 (GD->getNumParams() == 0 && !GD->isVariadic()))
9989 continue;
9990 }
9991
9992 // C++ [over.match.list]p1.1: (first phase list initialization)
9993 // Initially, the candidate functions are the initializer-list
9994 // constructors of the class T
9995 if (OnlyListConstructors && !isInitListConstructor(GD))
9996 continue;
9997
9998 // C++ [over.match.list]p1.2: (second phase list initialization)
9999 // the candidate functions are all the constructors of the class T
10000 // C++ [over.match.ctor]p1: (all other cases)
10001 // the candidate functions are all the constructors of the class of
10002 // the object being initialized
10003
10004 // C++ [over.best.ics]p4:
10005 // When [...] the constructor [...] is a candidate by
10006 // - [over.match.copy] (in all cases)
10007 // FIXME: The "second phase of [over.match.list] case can also
10008 // theoretically happen here, but it's not clear whether we can
10009 // ever have a parameter of the right type.
10010 bool SuppressUserConversions = Kind.isCopyInit();
10011
10012 if (TD)
10013 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
10014 Inits, Candidates, SuppressUserConversions,
10015 /*PartialOverloading*/ false,
10016 AllowExplicit);
10017 else
10018 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
10019 SuppressUserConversions,
10020 /*PartialOverloading*/ false, AllowExplicit);
10021 }
10022 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
10023 };
10024
10025 OverloadingResult Result = OR_No_Viable_Function;
10026
10027 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
10028 // try initializer-list constructors.
10029 if (ListInit) {
10030 bool TryListConstructors = true;
10031
10032 // Try list constructors unless the list is empty and the class has one or
10033 // more default constructors, in which case those constructors win.
10034 if (!ListInit->getNumInits()) {
10035 for (NamedDecl *D : Guides) {
10036 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
10037 if (FD && FD->getMinRequiredArguments() == 0) {
10038 TryListConstructors = false;
10039 break;
10040 }
10041 }
10042 } else if (ListInit->getNumInits() == 1) {
10043 // C++ [over.match.class.deduct]:
10044 // As an exception, the first phase in [over.match.list] (considering
10045 // initializer-list constructors) is omitted if the initializer list
10046 // consists of a single expression of type cv U, where U is a
10047 // specialization of C or a class derived from a specialization of C.
10048 Expr *E = ListInit->getInit(0);
10049 auto *RD = E->getType()->getAsCXXRecordDecl();
10050 if (!isa<InitListExpr>(E) && RD &&
10051 isCompleteType(Kind.getLocation(), E->getType()) &&
10052 isOrIsDerivedFromSpecializationOf(RD, Template))
10053 TryListConstructors = false;
10054 }
10055
10056 if (TryListConstructors)
10057 Result = tryToResolveOverload(/*OnlyListConstructor*/true);
10058 // Then unwrap the initializer list and try again considering all
10059 // constructors.
10060 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
10061 }
10062
10063 // If list-initialization fails, or if we're doing any other kind of
10064 // initialization, we (eventually) consider constructors.
10065 if (Result == OR_No_Viable_Function)
10066 Result = tryToResolveOverload(/*OnlyListConstructor*/false);
10067
10068 switch (Result) {
10069 case OR_Ambiguous:
10070 // FIXME: For list-initialization candidates, it'd usually be better to
10071 // list why they were not viable when given the initializer list itself as
10072 // an argument.
10073 Candidates.NoteCandidates(
10074 PartialDiagnosticAt(
10075 Kind.getLocation(),
10076 PDiag(diag::err_deduced_class_template_ctor_ambiguous)
10077 << TemplateName),
10078 *this, OCD_AmbiguousCandidates, Inits);
10079 return QualType();
10080
10081 case OR_No_Viable_Function: {
10082 CXXRecordDecl *Primary =
10083 cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
10084 bool Complete =
10085 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
10086 Candidates.NoteCandidates(
10087 PartialDiagnosticAt(
10088 Kind.getLocation(),
10089 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
10090 : diag::err_deduced_class_template_incomplete)
10091 << TemplateName << !Guides.empty()),
10092 *this, OCD_AllCandidates, Inits);
10093 return QualType();
10094 }
10095
10096 case OR_Deleted: {
10097 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
10098 << TemplateName;
10099 NoteDeletedFunction(Best->Function);
10100 return QualType();
10101 }
10102
10103 case OR_Success:
10104 // C++ [over.match.list]p1:
10105 // In copy-list-initialization, if an explicit constructor is chosen, the
10106 // initialization is ill-formed.
10107 if (Kind.isCopyInit() && ListInit &&
10108 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
10109 bool IsDeductionGuide = !Best->Function->isImplicit();
10110 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
10111 << TemplateName << IsDeductionGuide;
10112 Diag(Best->Function->getLocation(),
10113 diag::note_explicit_ctor_deduction_guide_here)
10114 << IsDeductionGuide;
10115 return QualType();
10116 }
10117
10118 // Make sure we didn't select an unusable deduction guide, and mark it
10119 // as referenced.
10120 DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
10121 MarkFunctionReferenced(Kind.getLocation(), Best->Function);
10122 break;
10123 }
10124
10125 // C++ [dcl.type.class.deduct]p1:
10126 // The placeholder is replaced by the return type of the function selected
10127 // by overload resolution for class template deduction.
10128 QualType DeducedType =
10129 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10130 Diag(TSInfo->getTypeLoc().getBeginLoc(),
10131 diag::warn_cxx14_compat_class_template_argument_deduction)
10132 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10133
10134 // Warn if CTAD was used on a type that does not have any user-defined
10135 // deduction guides.
10136 if (!HasAnyDeductionGuide) {
10137 Diag(TSInfo->getTypeLoc().getBeginLoc(),
10138 diag::warn_ctad_maybe_unsupported)
10139 << TemplateName;
10140 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10141 }
10142
10143 return DeducedType;
10144 }
10145