1 /*
2  * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/extensions/twed.h>
26 #include <lib/utils.h>
27 
28 
29 /*******************************************************************************
30  * Context management library initialisation routine. This library is used by
31  * runtime services to share pointers to 'cpu_context' structures for the secure
32  * and non-secure states. Management of the structures and their associated
33  * memory is not done by the context management library e.g. the PSCI service
34  * manages the cpu context used for entry from and exit to the non-secure state.
35  * The Secure payload dispatcher service manages the context(s) corresponding to
36  * the secure state. It also uses this library to get access to the non-secure
37  * state cpu context pointers.
38  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
39  * which will used for programming an entry into a lower EL. The same context
40  * will used to save state upon exception entry from that EL.
41  ******************************************************************************/
cm_init(void)42 void __init cm_init(void)
43 {
44 	/*
45 	 * The context management library has only global data to intialize, but
46 	 * that will be done when the BSS is zeroed out
47 	 */
48 }
49 
50 /*******************************************************************************
51  * The following function initializes the cpu_context 'ctx' for
52  * first use, and sets the initial entrypoint state as specified by the
53  * entry_point_info structure.
54  *
55  * The security state to initialize is determined by the SECURE attribute
56  * of the entry_point_info.
57  *
58  * The EE and ST attributes are used to configure the endianness and secure
59  * timer availability for the new execution context.
60  *
61  * To prepare the register state for entry call cm_prepare_el3_exit() and
62  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
63  * cm_e1_sysreg_context_restore().
64  ******************************************************************************/
cm_setup_context(cpu_context_t * ctx,const entry_point_info_t * ep)65 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
66 {
67 	unsigned int security_state;
68 	u_register_t scr_el3;
69 	el3_state_t *state;
70 	gp_regs_t *gp_regs;
71 	u_register_t sctlr_elx, actlr_elx;
72 
73 	assert(ctx != NULL);
74 
75 	security_state = GET_SECURITY_STATE(ep->h.attr);
76 
77 	/* Clear any residual register values from the context */
78 	zeromem(ctx, sizeof(*ctx));
79 
80 	/*
81 	 * SCR_EL3 was initialised during reset sequence in macro
82 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
83 	 * affect the next EL.
84 	 *
85 	 * The following fields are initially set to zero and then updated to
86 	 * the required value depending on the state of the SPSR_EL3 and the
87 	 * Security state and entrypoint attributes of the next EL.
88 	 */
89 	scr_el3 = read_scr();
90 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
91 			SCR_ST_BIT | SCR_HCE_BIT);
92 	/*
93 	 * SCR_NS: Set the security state of the next EL.
94 	 */
95 	if (security_state != SECURE)
96 		scr_el3 |= SCR_NS_BIT;
97 	/*
98 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
99 	 *  Exception level as specified by SPSR.
100 	 */
101 	if (GET_RW(ep->spsr) == MODE_RW_64)
102 		scr_el3 |= SCR_RW_BIT;
103 	/*
104 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
105 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
106 	 *  by the entrypoint attributes.
107 	 */
108 	if (EP_GET_ST(ep->h.attr) != 0U)
109 		scr_el3 |= SCR_ST_BIT;
110 
111 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
112 	/*
113 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
114 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
115 	 */
116 	scr_el3 |= SCR_TERR_BIT;
117 #endif
118 
119 #if !HANDLE_EA_EL3_FIRST
120 	/*
121 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
122 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
123 	 *  Aborts are taken to EL3.
124 	 */
125 	scr_el3 &= ~SCR_EA_BIT;
126 #endif
127 
128 #if FAULT_INJECTION_SUPPORT
129 	/* Enable fault injection from lower ELs */
130 	scr_el3 |= SCR_FIEN_BIT;
131 #endif
132 
133 #if !CTX_INCLUDE_PAUTH_REGS
134 	/*
135 	 * If the pointer authentication registers aren't saved during world
136 	 * switches the value of the registers can be leaked from the Secure to
137 	 * the Non-secure world. To prevent this, rather than enabling pointer
138 	 * authentication everywhere, we only enable it in the Non-secure world.
139 	 *
140 	 * If the Secure world wants to use pointer authentication,
141 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
142 	 */
143 	if (security_state == NON_SECURE)
144 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
145 #endif /* !CTX_INCLUDE_PAUTH_REGS */
146 
147 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
148 	/* Get Memory Tagging Extension support level */
149 	unsigned int mte = get_armv8_5_mte_support();
150 #endif
151 	/*
152 	 * Enable MTE support. Support is enabled unilaterally for the normal
153 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
154 	 * set.
155 	 */
156 #if CTX_INCLUDE_MTE_REGS
157 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
158 	scr_el3 |= SCR_ATA_BIT;
159 #else
160 	/*
161 	 * When MTE is only implemented at EL0, it can be enabled
162 	 * across both worlds as no MTE registers are used.
163 	 */
164 	if ((mte == MTE_IMPLEMENTED_EL0) ||
165 	/*
166 	 * When MTE is implemented at all ELs, it can be only enabled
167 	 * in Non-Secure world without register saving.
168 	 */
169 	  (((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)) &&
170 	    (security_state == NON_SECURE))) {
171 		scr_el3 |= SCR_ATA_BIT;
172 	}
173 #endif	/* CTX_INCLUDE_MTE_REGS */
174 
175 #ifdef IMAGE_BL31
176 	/*
177 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
178 	 *  indicated by the interrupt routing model for BL31.
179 	 */
180 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
181 #endif
182 
183 	/*
184 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
185 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
186 	 * next mode is Hyp.
187 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
188 	 * same conditions as HVC instructions and when the processor supports
189 	 * ARMv8.6-FGT.
190 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
191 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
192 	 * and when the processor supports ECV.
193 	 */
194 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
195 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
196 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
197 		scr_el3 |= SCR_HCE_BIT;
198 
199 		if (is_armv8_6_fgt_present()) {
200 			scr_el3 |= SCR_FGTEN_BIT;
201 		}
202 
203 		if (get_armv8_6_ecv_support()
204 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
205 			scr_el3 |= SCR_ECVEN_BIT;
206 		}
207 	}
208 
209 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
210 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
211 		if (GET_RW(ep->spsr) != MODE_RW_64) {
212 			ERROR("S-EL2 can not be used in AArch32.");
213 			panic();
214 		}
215 
216 		scr_el3 |= SCR_EEL2_BIT;
217 	}
218 
219 	/*
220 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
221 	 * execution state setting all fields rather than relying of the hw.
222 	 * Some fields have architecturally UNKNOWN reset values and these are
223 	 * set to zero.
224 	 *
225 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
226 	 *
227 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
228 	 *  required by PSCI specification)
229 	 */
230 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
231 	if (GET_RW(ep->spsr) == MODE_RW_64)
232 		sctlr_elx |= SCTLR_EL1_RES1;
233 	else {
234 		/*
235 		 * If the target execution state is AArch32 then the following
236 		 * fields need to be set.
237 		 *
238 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
239 		 *  instructions are not trapped to EL1.
240 		 *
241 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
242 		 *  instructions are not trapped to EL1.
243 		 *
244 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
245 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
246 		 */
247 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
248 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
249 	}
250 
251 #if ERRATA_A75_764081
252 	/*
253 	 * If workaround of errata 764081 for Cortex-A75 is used then set
254 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
255 	 */
256 	sctlr_elx |= SCTLR_IESB_BIT;
257 #endif
258 
259 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
260 	if (is_armv8_6_twed_present()) {
261 		uint32_t delay = plat_arm_set_twedel_scr_el3();
262 
263 		if (delay != TWED_DISABLED) {
264 			/* Make sure delay value fits */
265 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
266 
267 			/* Set delay in SCR_EL3 */
268 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
269 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
270 					<< SCR_TWEDEL_SHIFT);
271 
272 			/* Enable WFE delay */
273 			scr_el3 |= SCR_TWEDEn_BIT;
274 		}
275 	}
276 
277 	/*
278 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
279 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
280 	 * are not part of the stored cpu_context.
281 	 */
282 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
283 
284 	/*
285 	 * Base the context ACTLR_EL1 on the current value, as it is
286 	 * implementation defined. The context restore process will write
287 	 * the value from the context to the actual register and can cause
288 	 * problems for processor cores that don't expect certain bits to
289 	 * be zero.
290 	 */
291 	actlr_elx = read_actlr_el1();
292 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
293 
294 	/*
295 	 * Populate EL3 state so that we've the right context
296 	 * before doing ERET
297 	 */
298 	state = get_el3state_ctx(ctx);
299 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
300 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
301 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
302 
303 	/*
304 	 * Store the X0-X7 value from the entrypoint into the context
305 	 * Use memcpy as we are in control of the layout of the structures
306 	 */
307 	gp_regs = get_gpregs_ctx(ctx);
308 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
309 }
310 
311 /*******************************************************************************
312  * Enable architecture extensions on first entry to Non-secure world.
313  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
314  * it is zero.
315  ******************************************************************************/
enable_extensions_nonsecure(bool el2_unused)316 static void enable_extensions_nonsecure(bool el2_unused)
317 {
318 #if IMAGE_BL31
319 #if ENABLE_SPE_FOR_LOWER_ELS
320 	spe_enable(el2_unused);
321 #endif
322 
323 #if ENABLE_AMU
324 	amu_enable(el2_unused);
325 #endif
326 
327 #if ENABLE_SVE_FOR_NS
328 	sve_enable(el2_unused);
329 #endif
330 
331 #if ENABLE_MPAM_FOR_LOWER_ELS
332 	mpam_enable(el2_unused);
333 #endif
334 #endif
335 }
336 
337 /*******************************************************************************
338  * The following function initializes the cpu_context for a CPU specified by
339  * its `cpu_idx` for first use, and sets the initial entrypoint state as
340  * specified by the entry_point_info structure.
341  ******************************************************************************/
cm_init_context_by_index(unsigned int cpu_idx,const entry_point_info_t * ep)342 void cm_init_context_by_index(unsigned int cpu_idx,
343 			      const entry_point_info_t *ep)
344 {
345 	cpu_context_t *ctx;
346 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
347 	cm_setup_context(ctx, ep);
348 }
349 
350 /*******************************************************************************
351  * The following function initializes the cpu_context for the current CPU
352  * for first use, and sets the initial entrypoint state as specified by the
353  * entry_point_info structure.
354  ******************************************************************************/
cm_init_my_context(const entry_point_info_t * ep)355 void cm_init_my_context(const entry_point_info_t *ep)
356 {
357 	cpu_context_t *ctx;
358 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
359 	cm_setup_context(ctx, ep);
360 }
361 
362 /*******************************************************************************
363  * Prepare the CPU system registers for first entry into secure or normal world
364  *
365  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
366  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
367  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
368  * For all entries, the EL1 registers are initialized from the cpu_context
369  ******************************************************************************/
cm_prepare_el3_exit(uint32_t security_state)370 void cm_prepare_el3_exit(uint32_t security_state)
371 {
372 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
373 	cpu_context_t *ctx = cm_get_context(security_state);
374 	bool el2_unused = false;
375 	uint64_t hcr_el2 = 0U;
376 
377 	assert(ctx != NULL);
378 
379 	if (security_state == NON_SECURE) {
380 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
381 						 CTX_SCR_EL3);
382 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
383 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
384 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
385 							   CTX_SCTLR_EL1);
386 			sctlr_elx &= SCTLR_EE_BIT;
387 			sctlr_elx |= SCTLR_EL2_RES1;
388 #if ERRATA_A75_764081
389 			/*
390 			 * If workaround of errata 764081 for Cortex-A75 is used
391 			 * then set SCTLR_EL2.IESB to enable Implicit Error
392 			 * Synchronization Barrier.
393 			 */
394 			sctlr_elx |= SCTLR_IESB_BIT;
395 #endif
396 			write_sctlr_el2(sctlr_elx);
397 		} else if (el_implemented(2) != EL_IMPL_NONE) {
398 			el2_unused = true;
399 
400 			/*
401 			 * EL2 present but unused, need to disable safely.
402 			 * SCTLR_EL2 can be ignored in this case.
403 			 *
404 			 * Set EL2 register width appropriately: Set HCR_EL2
405 			 * field to match SCR_EL3.RW.
406 			 */
407 			if ((scr_el3 & SCR_RW_BIT) != 0U)
408 				hcr_el2 |= HCR_RW_BIT;
409 
410 			/*
411 			 * For Armv8.3 pointer authentication feature, disable
412 			 * traps to EL2 when accessing key registers or using
413 			 * pointer authentication instructions from lower ELs.
414 			 */
415 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
416 
417 			write_hcr_el2(hcr_el2);
418 
419 			/*
420 			 * Initialise CPTR_EL2 setting all fields rather than
421 			 * relying on the hw. All fields have architecturally
422 			 * UNKNOWN reset values.
423 			 *
424 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
425 			 *  accesses to the CPACR_EL1 or CPACR from both
426 			 *  Execution states do not trap to EL2.
427 			 *
428 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
429 			 *  register accesses to the trace registers from both
430 			 *  Execution states do not trap to EL2.
431 			 *
432 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
433 			 *  to SIMD and floating-point functionality from both
434 			 *  Execution states do not trap to EL2.
435 			 */
436 			write_cptr_el2(CPTR_EL2_RESET_VAL &
437 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
438 					| CPTR_EL2_TFP_BIT));
439 
440 			/*
441 			 * Initialise CNTHCTL_EL2. All fields are
442 			 * architecturally UNKNOWN on reset and are set to zero
443 			 * except for field(s) listed below.
444 			 *
445 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
446 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
447 			 *  physical timer registers.
448 			 *
449 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
450 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
451 			 *  physical counter registers.
452 			 */
453 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
454 						EL1PCEN_BIT | EL1PCTEN_BIT);
455 
456 			/*
457 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
458 			 * architecturally UNKNOWN value.
459 			 */
460 			write_cntvoff_el2(0);
461 
462 			/*
463 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
464 			 * MPIDR_EL1 respectively.
465 			 */
466 			write_vpidr_el2(read_midr_el1());
467 			write_vmpidr_el2(read_mpidr_el1());
468 
469 			/*
470 			 * Initialise VTTBR_EL2. All fields are architecturally
471 			 * UNKNOWN on reset.
472 			 *
473 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
474 			 *  2 address translation is disabled, cache maintenance
475 			 *  operations depend on the VMID.
476 			 *
477 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
478 			 *  translation is disabled.
479 			 */
480 			write_vttbr_el2(VTTBR_RESET_VAL &
481 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
482 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
483 
484 			/*
485 			 * Initialise MDCR_EL2, setting all fields rather than
486 			 * relying on hw. Some fields are architecturally
487 			 * UNKNOWN on reset.
488 			 *
489 			 * MDCR_EL2.HLP: Set to one so that event counter
490 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
491 			 *  occurs on the increment that changes
492 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
493 			 *  implemented. This bit is RES0 in versions of the
494 			 *  architecture earlier than ARMv8.5, setting it to 1
495 			 *  doesn't have any effect on them.
496 			 *
497 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
498 			 *  Filter Control register TRFCR_EL1 at EL1 is not
499 			 *  trapped to EL2. This bit is RES0 in versions of
500 			 *  the architecture earlier than ARMv8.4.
501 			 *
502 			 * MDCR_EL2.HPMD: Set to one so that event counting is
503 			 *  prohibited at EL2. This bit is RES0 in versions of
504 			 *  the architecture earlier than ARMv8.1, setting it
505 			 *  to 1 doesn't have any effect on them.
506 			 *
507 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
508 			 *  Statistical Profiling control registers from EL1
509 			 *  do not trap to EL2. This bit is RES0 when SPE is
510 			 *  not implemented.
511 			 *
512 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
513 			 *  EL1 System register accesses to the Debug ROM
514 			 *  registers are not trapped to EL2.
515 			 *
516 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
517 			 *  System register accesses to the powerdown debug
518 			 *  registers are not trapped to EL2.
519 			 *
520 			 * MDCR_EL2.TDA: Set to zero so that System register
521 			 *  accesses to the debug registers do not trap to EL2.
522 			 *
523 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
524 			 *  are not routed to EL2.
525 			 *
526 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
527 			 *  Monitors.
528 			 *
529 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
530 			 *  EL1 accesses to all Performance Monitors registers
531 			 *  are not trapped to EL2.
532 			 *
533 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
534 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
535 			 *  trapped to EL2.
536 			 *
537 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
538 			 *  architecturally-defined reset value.
539 			 */
540 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
541 				     MDCR_EL2_HPMD) |
542 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
543 				   >> PMCR_EL0_N_SHIFT)) &
544 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
545 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
546 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
547 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
548 				     MDCR_EL2_TPMCR_BIT);
549 
550 			write_mdcr_el2(mdcr_el2);
551 
552 			/*
553 			 * Initialise HSTR_EL2. All fields are architecturally
554 			 * UNKNOWN on reset.
555 			 *
556 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
557 			 *  Non-secure EL0 or EL1 accesses to System registers
558 			 *  do not trap to EL2.
559 			 */
560 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
561 			/*
562 			 * Initialise CNTHP_CTL_EL2. All fields are
563 			 * architecturally UNKNOWN on reset.
564 			 *
565 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
566 			 *  physical timer and prevent timer interrupts.
567 			 */
568 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
569 						~(CNTHP_CTL_ENABLE_BIT));
570 		}
571 		enable_extensions_nonsecure(el2_unused);
572 	}
573 
574 	cm_el1_sysregs_context_restore(security_state);
575 	cm_set_next_eret_context(security_state);
576 }
577 
578 #if CTX_INCLUDE_EL2_REGS
579 /*******************************************************************************
580  * Save EL2 sysreg context
581  ******************************************************************************/
cm_el2_sysregs_context_save(uint32_t security_state)582 void cm_el2_sysregs_context_save(uint32_t security_state)
583 {
584 	u_register_t scr_el3 = read_scr();
585 
586 	/*
587 	 * Always save the non-secure EL2 context, only save the
588 	 * S-EL2 context if S-EL2 is enabled.
589 	 */
590 	if ((security_state == NON_SECURE) ||
591 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
592 		cpu_context_t *ctx;
593 
594 		ctx = cm_get_context(security_state);
595 		assert(ctx != NULL);
596 
597 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
598 	}
599 }
600 
601 /*******************************************************************************
602  * Restore EL2 sysreg context
603  ******************************************************************************/
cm_el2_sysregs_context_restore(uint32_t security_state)604 void cm_el2_sysregs_context_restore(uint32_t security_state)
605 {
606 	u_register_t scr_el3 = read_scr();
607 
608 	/*
609 	 * Always restore the non-secure EL2 context, only restore the
610 	 * S-EL2 context if S-EL2 is enabled.
611 	 */
612 	if ((security_state == NON_SECURE) ||
613 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
614 		cpu_context_t *ctx;
615 
616 		ctx = cm_get_context(security_state);
617 		assert(ctx != NULL);
618 
619 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
620 	}
621 }
622 #endif /* CTX_INCLUDE_EL2_REGS */
623 
624 /*******************************************************************************
625  * The next four functions are used by runtime services to save and restore
626  * EL1 context on the 'cpu_context' structure for the specified security
627  * state.
628  ******************************************************************************/
cm_el1_sysregs_context_save(uint32_t security_state)629 void cm_el1_sysregs_context_save(uint32_t security_state)
630 {
631 	cpu_context_t *ctx;
632 
633 	ctx = cm_get_context(security_state);
634 	assert(ctx != NULL);
635 
636 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
637 
638 #if IMAGE_BL31
639 	if (security_state == SECURE)
640 		PUBLISH_EVENT(cm_exited_secure_world);
641 	else
642 		PUBLISH_EVENT(cm_exited_normal_world);
643 #endif
644 }
645 
cm_el1_sysregs_context_restore(uint32_t security_state)646 void cm_el1_sysregs_context_restore(uint32_t security_state)
647 {
648 	cpu_context_t *ctx;
649 
650 	ctx = cm_get_context(security_state);
651 	assert(ctx != NULL);
652 
653 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
654 
655 #if IMAGE_BL31
656 	if (security_state == SECURE)
657 		PUBLISH_EVENT(cm_entering_secure_world);
658 	else
659 		PUBLISH_EVENT(cm_entering_normal_world);
660 #endif
661 }
662 
663 /*******************************************************************************
664  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
665  * given security state with the given entrypoint
666  ******************************************************************************/
cm_set_elr_el3(uint32_t security_state,uintptr_t entrypoint)667 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
668 {
669 	cpu_context_t *ctx;
670 	el3_state_t *state;
671 
672 	ctx = cm_get_context(security_state);
673 	assert(ctx != NULL);
674 
675 	/* Populate EL3 state so that ERET jumps to the correct entry */
676 	state = get_el3state_ctx(ctx);
677 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
678 }
679 
680 /*******************************************************************************
681  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
682  * pertaining to the given security state
683  ******************************************************************************/
cm_set_elr_spsr_el3(uint32_t security_state,uintptr_t entrypoint,uint32_t spsr)684 void cm_set_elr_spsr_el3(uint32_t security_state,
685 			uintptr_t entrypoint, uint32_t spsr)
686 {
687 	cpu_context_t *ctx;
688 	el3_state_t *state;
689 
690 	ctx = cm_get_context(security_state);
691 	assert(ctx != NULL);
692 
693 	/* Populate EL3 state so that ERET jumps to the correct entry */
694 	state = get_el3state_ctx(ctx);
695 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
696 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
697 }
698 
699 /*******************************************************************************
700  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
701  * pertaining to the given security state using the value and bit position
702  * specified in the parameters. It preserves all other bits.
703  ******************************************************************************/
cm_write_scr_el3_bit(uint32_t security_state,uint32_t bit_pos,uint32_t value)704 void cm_write_scr_el3_bit(uint32_t security_state,
705 			  uint32_t bit_pos,
706 			  uint32_t value)
707 {
708 	cpu_context_t *ctx;
709 	el3_state_t *state;
710 	u_register_t scr_el3;
711 
712 	ctx = cm_get_context(security_state);
713 	assert(ctx != NULL);
714 
715 	/* Ensure that the bit position is a valid one */
716 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
717 
718 	/* Ensure that the 'value' is only a bit wide */
719 	assert(value <= 1U);
720 
721 	/*
722 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
723 	 * and set it to its new value.
724 	 */
725 	state = get_el3state_ctx(ctx);
726 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
727 	scr_el3 &= ~(1UL << bit_pos);
728 	scr_el3 |= (u_register_t)value << bit_pos;
729 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
730 }
731 
732 /*******************************************************************************
733  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
734  * given security state.
735  ******************************************************************************/
cm_get_scr_el3(uint32_t security_state)736 u_register_t cm_get_scr_el3(uint32_t security_state)
737 {
738 	cpu_context_t *ctx;
739 	el3_state_t *state;
740 
741 	ctx = cm_get_context(security_state);
742 	assert(ctx != NULL);
743 
744 	/* Populate EL3 state so that ERET jumps to the correct entry */
745 	state = get_el3state_ctx(ctx);
746 	return read_ctx_reg(state, CTX_SCR_EL3);
747 }
748 
749 /*******************************************************************************
750  * This function is used to program the context that's used for exception
751  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
752  * the required security state
753  ******************************************************************************/
cm_set_next_eret_context(uint32_t security_state)754 void cm_set_next_eret_context(uint32_t security_state)
755 {
756 	cpu_context_t *ctx;
757 
758 	ctx = cm_get_context(security_state);
759 	assert(ctx != NULL);
760 
761 	cm_set_next_context(ctx);
762 }
763