1 // Copyright 2015-2016 Brian Smith.
2 //
3 // Permission to use, copy, modify, and/or distribute this software for any
4 // purpose with or without fee is hereby granted, provided that the above
5 // copyright notice and this permission notice appear in all copies.
6 //
7 // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
8 // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
10 // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14 
15 //! Testing framework.
16 //!
17 //! Unlike the rest of *ring*, this testing framework uses panics pretty
18 //! liberally. It was originally designed for internal use--it drives most of
19 //! *ring*'s internal tests, and so it is optimized for getting *ring*'s tests
20 //! written quickly at the expense of some usability. The documentation is
21 //! lacking. The best way to learn it is to look at some examples. The digest
22 //! tests are the most complicated because they use named sections. Other tests
23 //! avoid named sections and so are easier to understand.
24 //!
25 //! # Examples
26 //!
27 //! ## Writing Tests
28 //!
29 //! Input files look like this:
30 //!
31 //! ```text
32 //! # This is a comment.
33 //!
34 //! HMAC = SHA1
35 //! Input = "My test data"
36 //! Key = ""
37 //! Output = 61afdecb95429ef494d61fdee15990cabf0826fc
38 //!
39 //! HMAC = SHA256
40 //! Input = "Sample message for keylen<blocklen"
41 //! Key = 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F
42 //! Output = A28CF43130EE696A98F14A37678B56BCFCBDD9E5CF69717FECF5480F0EBDF790
43 //! ```
44 //!
45 //! Test cases are separated with blank lines. Note how the bytes of the `Key`
46 //! attribute are specified as a quoted string in the first test case and as
47 //! hex in the second test case; you can use whichever form is more convenient
48 //! and you can mix and match within the same file. The empty sequence of bytes
49 //! can only be represented with the quoted string form (`""`).
50 //!
51 //! Here's how you would consume the test data:
52 //!
53 //! ```ignore
54 //! use ring::test;
55 //!
56 //! test::run(test::test_file!("hmac_tests.txt"), |section, test_case| {
57 //!     assert_eq!(section, ""); // This test doesn't use named sections.
58 //!
59 //!     let digest_alg = test_case.consume_digest_alg("HMAC");
60 //!     let input = test_case.consume_bytes("Input");
61 //!     let key = test_case.consume_bytes("Key");
62 //!     let output = test_case.consume_bytes("Output");
63 //!
64 //!     // Do the actual testing here
65 //! });
66 //! ```
67 //!
68 //! Note that `consume_digest_alg` automatically maps the string "SHA1" to a
69 //! reference to `digest::SHA1_FOR_LEGACY_USE_ONLY`, "SHA256" to
70 //! `digest::SHA256`, etc.
71 //!
72 //! ## Output When a Test Fails
73 //!
74 //! When a test case fails, the framework automatically prints out the test
75 //! case. If the test case failed with a panic, then the backtrace of the panic
76 //! will be printed too. For example, let's say the failing test case looks
77 //! like this:
78 //!
79 //! ```text
80 //! Curve = P-256
81 //! a = 2b11cb945c8cf152ffa4c9c2b1c965b019b35d0b7626919ef0ae6cb9d232f8af
82 //! b = 18905f76a53755c679fb732b7762251075ba95fc5fedb60179e730d418a9143c
83 //! r = 18905f76a53755c679fb732b7762251075ba95fc5fedb60179e730d418a9143c
84 //! ```
85 //! If the test fails, this will be printed (if `$RUST_BACKTRACE` is `1`):
86 //!
87 //! ```text
88 //! src/example_tests.txt: Test panicked.
89 //! Curve = P-256
90 //! a = 2b11cb945c8cf152ffa4c9c2b1c965b019b35d0b7626919ef0ae6cb9d232f8af
91 //! b = 18905f76a53755c679fb732b7762251075ba95fc5fedb60179e730d418a9143c
92 //! r = 18905f76a53755c679fb732b7762251075ba95fc5fedb60179e730d418a9143c
93 //! thread 'example_test' panicked at 'Test failed.', src\test.rs:206
94 //! stack backtrace:
95 //!    0:     0x7ff654a05c7c - std::rt::lang_start::h61f4934e780b4dfc
96 //!    1:     0x7ff654a04f32 - std::rt::lang_start::h61f4934e780b4dfc
97 //!    2:     0x7ff6549f505d - std::panicking::rust_panic_with_hook::hfe203e3083c2b544
98 //!    3:     0x7ff654a0825b - rust_begin_unwind
99 //!    4:     0x7ff6549f63af - std::panicking::begin_panic_fmt::h484cd47786497f03
100 //!    5:     0x7ff654a07e9b - rust_begin_unwind
101 //!    6:     0x7ff654a0ae95 - core::panicking::panic_fmt::h257ceb0aa351d801
102 //!    7:     0x7ff654a0b190 - core::panicking::panic::h4bb1497076d04ab9
103 //!    8:     0x7ff65496dc41 - from_file<closure>
104 //!                         at C:\Users\Example\example\<core macros>:4
105 //!    9:     0x7ff65496d49c - example_test
106 //!                         at C:\Users\Example\example\src\example.rs:652
107 //!   10:     0x7ff6549d192a - test::stats::Summary::new::ha139494ed2e4e01f
108 //!   11:     0x7ff6549d51a2 - test::stats::Summary::new::ha139494ed2e4e01f
109 //!   12:     0x7ff654a0a911 - _rust_maybe_catch_panic
110 //!   13:     0x7ff6549d56dd - test::stats::Summary::new::ha139494ed2e4e01f
111 //!   14:     0x7ff654a03783 - std::sys::thread::Thread::new::h2b08da6cd2517f79
112 //!   15:     0x7ff968518101 - BaseThreadInitThunk
113 //! ```
114 //!
115 //! Notice that the output shows the name of the data file
116 //! (`src/example_tests.txt`), the test inputs that led to the failure, and the
117 //! stack trace to the line in the test code that panicked: entry 9 in the
118 //! stack trace pointing to line 652 of the file `example.rs`.
119 
120 #[cfg(feature = "alloc")]
121 use alloc::{format, string::String, vec::Vec};
122 
123 #[cfg(feature = "alloc")]
124 use crate::{bits, digest, error};
125 
126 #[cfg(any(feature = "std", feature = "test_logging"))]
127 extern crate std;
128 
129 /// `compile_time_assert_clone::<T>();` fails to compile if `T` doesn't
130 /// implement `Clone`.
compile_time_assert_clone<T: Clone>()131 pub fn compile_time_assert_clone<T: Clone>() {}
132 
133 /// `compile_time_assert_copy::<T>();` fails to compile if `T` doesn't
134 /// implement `Copy`.
compile_time_assert_copy<T: Copy>()135 pub fn compile_time_assert_copy<T: Copy>() {}
136 
137 /// `compile_time_assert_send::<T>();` fails to compile if `T` doesn't
138 /// implement `Send`.
compile_time_assert_send<T: Send>()139 pub fn compile_time_assert_send<T: Send>() {}
140 
141 /// `compile_time_assert_sync::<T>();` fails to compile if `T` doesn't
142 /// implement `Sync`.
compile_time_assert_sync<T: Sync>()143 pub fn compile_time_assert_sync<T: Sync>() {}
144 
145 /// `compile_time_assert_std_error_error::<T>();` fails to compile if `T`
146 /// doesn't implement `std::error::Error`.
147 #[cfg(feature = "std")]
compile_time_assert_std_error_error<T: std::error::Error>()148 pub fn compile_time_assert_std_error_error<T: std::error::Error>() {}
149 
150 /// A test case. A test case consists of a set of named attributes. Every
151 /// attribute in the test case must be consumed exactly once; this helps catch
152 /// typos and omissions.
153 ///
154 /// Requires the `alloc` default feature to be enabled.
155 #[cfg(feature = "alloc")]
156 #[derive(Debug)]
157 pub struct TestCase {
158     attributes: Vec<(String, String, bool)>,
159 }
160 
161 #[cfg(feature = "alloc")]
162 impl TestCase {
163     /// Maps the string "true" to true and the string "false" to false.
consume_bool(&mut self, key: &str) -> bool164     pub fn consume_bool(&mut self, key: &str) -> bool {
165         match self.consume_string(key).as_ref() {
166             "true" => true,
167             "false" => false,
168             s => panic!("Invalid bool value: {}", s),
169         }
170     }
171 
172     /// Maps the strings "SHA1", "SHA256", "SHA384", and "SHA512" to digest
173     /// algorithms, maps "SHA224" to `None`, and panics on other (erroneous)
174     /// inputs. "SHA224" is mapped to None because *ring* intentionally does
175     /// not support SHA224, but we need to consume test vectors from NIST that
176     /// have SHA224 vectors in them.
consume_digest_alg(&mut self, key: &str) -> Option<&'static digest::Algorithm>177     pub fn consume_digest_alg(&mut self, key: &str) -> Option<&'static digest::Algorithm> {
178         let name = self.consume_string(key);
179         match name.as_ref() {
180             "SHA1" => Some(&digest::SHA1_FOR_LEGACY_USE_ONLY),
181             "SHA224" => None, // We actively skip SHA-224 support.
182             "SHA256" => Some(&digest::SHA256),
183             "SHA384" => Some(&digest::SHA384),
184             "SHA512" => Some(&digest::SHA512),
185             "SHA512_256" => Some(&digest::SHA512_256),
186             _ => panic!("Unsupported digest algorithm: {}", name),
187         }
188     }
189 
190     /// Returns the value of an attribute that is encoded as a sequence of an
191     /// even number of hex digits, or as a double-quoted UTF-8 string. The
192     /// empty (zero-length) value is represented as "".
consume_bytes(&mut self, key: &str) -> Vec<u8>193     pub fn consume_bytes(&mut self, key: &str) -> Vec<u8> {
194         let s = self.consume_string(key);
195         if s.starts_with('\"') {
196             // The value is a quoted UTF-8 string.
197 
198             let mut bytes = Vec::with_capacity(s.as_bytes().len() - 2);
199             let mut s = s.as_bytes().iter().skip(1);
200             loop {
201                 let b = match s.next() {
202                     Some(b'\\') => {
203                         match s.next() {
204                             // We don't allow all octal escape sequences, only "\0" for null.
205                             Some(b'0') => 0u8,
206                             Some(b't') => b'\t',
207                             Some(b'n') => b'\n',
208                             // "\xHH"
209                             Some(b'x') => {
210                                 let hi = s.next().expect("Invalid hex escape sequence in string.");
211                                 let lo = s.next().expect("Invalid hex escape sequence in string.");
212                                 if let (Ok(hi), Ok(lo)) = (from_hex_digit(*hi), from_hex_digit(*lo))
213                                 {
214                                     (hi << 4) | lo
215                                 } else {
216                                     panic!("Invalid hex escape sequence in string.");
217                                 }
218                             }
219                             _ => {
220                                 panic!("Invalid hex escape sequence in string.");
221                             }
222                         }
223                     }
224                     Some(b'"') => {
225                         if s.next().is_some() {
226                             panic!("characters after the closing quote of a quoted string.");
227                         }
228                         break;
229                     }
230                     Some(b) => *b,
231                     None => panic!("Missing terminating '\"' in string literal."),
232                 };
233                 bytes.push(b);
234             }
235             bytes
236         } else {
237             // The value is hex encoded.
238             match from_hex(&s) {
239                 Ok(s) => s,
240                 Err(err_str) => {
241                     panic!("{} in {}", err_str, s);
242                 }
243             }
244         }
245     }
246 
247     /// Returns the value of an attribute that is an integer, in decimal
248     /// notation.
consume_usize(&mut self, key: &str) -> usize249     pub fn consume_usize(&mut self, key: &str) -> usize {
250         let s = self.consume_string(key);
251         s.parse::<usize>().unwrap()
252     }
253 
254     /// Returns the value of an attribute that is an integer, in decimal
255     /// notation, as a bit length.
256     #[cfg(feature = "alloc")]
consume_usize_bits(&mut self, key: &str) -> bits::BitLength257     pub fn consume_usize_bits(&mut self, key: &str) -> bits::BitLength {
258         let s = self.consume_string(key);
259         let bits = s.parse::<usize>().unwrap();
260         bits::BitLength::from_usize_bits(bits)
261     }
262 
263     /// Returns the raw value of an attribute, without any unquoting or
264     /// other interpretation.
consume_string(&mut self, key: &str) -> String265     pub fn consume_string(&mut self, key: &str) -> String {
266         self.consume_optional_string(key)
267             .unwrap_or_else(|| panic!("No attribute named \"{}\"", key))
268     }
269 
270     /// Like `consume_string()` except it returns `None` if the test case
271     /// doesn't have the attribute.
consume_optional_string(&mut self, key: &str) -> Option<String>272     pub fn consume_optional_string(&mut self, key: &str) -> Option<String> {
273         for (name, value, consumed) in &mut self.attributes {
274             if key == name {
275                 if *consumed {
276                     panic!("Attribute {} was already consumed", key);
277                 }
278                 *consumed = true;
279                 return Some(value.clone());
280             }
281         }
282         None
283     }
284 }
285 
286 /// References a test input file.
287 #[cfg(feature = "alloc")]
288 #[macro_export]
289 macro_rules! test_file {
290     ($file_name:expr) => {
291         crate::test::File {
292             file_name: $file_name,
293             contents: include_str!($file_name),
294         }
295     };
296 }
297 
298 /// A test input file.
299 #[cfg(feature = "alloc")]
300 pub struct File<'a> {
301     /// The name (path) of the file.
302     pub file_name: &'a str,
303 
304     /// The contents of the file.
305     pub contents: &'a str,
306 }
307 
308 /// Parses test cases out of the given file, calling `f` on each vector until
309 /// `f` fails or until all the test vectors have been read. `f` can indicate
310 /// failure either by returning `Err()` or by panicking.
311 ///
312 /// Requires the `alloc` default feature to be enabled
313 #[cfg(feature = "alloc")]
run<F>(test_file: File, mut f: F) where F: FnMut(&str, &mut TestCase) -> Result<(), error::Unspecified>,314 pub fn run<F>(test_file: File, mut f: F)
315 where
316     F: FnMut(&str, &mut TestCase) -> Result<(), error::Unspecified>,
317 {
318     let lines = &mut test_file.contents.lines();
319 
320     let mut current_section = String::from("");
321     let mut failed = false;
322 
323     while let Some(mut test_case) = parse_test_case(&mut current_section, lines) {
324         let result = match f(&current_section, &mut test_case) {
325             Ok(()) => {
326                 if !test_case
327                     .attributes
328                     .iter()
329                     .any(|&(_, _, consumed)| !consumed)
330                 {
331                     Ok(())
332                 } else {
333                     failed = true;
334                     Err("Test didn't consume all attributes.")
335                 }
336             }
337             Err(error::Unspecified) => Err("Test returned Err(error::Unspecified)."),
338         };
339 
340         if result.is_err() {
341             failed = true;
342         }
343 
344         #[cfg(feature = "test_logging")]
345         {
346             if let Err(msg) = result {
347                 std::println!("{}: {}", test_file.file_name, msg);
348 
349                 for (name, value, consumed) in test_case.attributes {
350                     let consumed_str = if consumed { "" } else { " (unconsumed)" };
351                     std::println!("{}{} = {}", name, consumed_str, value);
352                 }
353             };
354         }
355     }
356 
357     if failed {
358         panic!("Test failed.")
359     }
360 }
361 
362 /// Decode an string of hex digits into a sequence of bytes. The input must
363 /// have an even number of digits.
364 #[cfg(feature = "alloc")]
from_hex(hex_str: &str) -> Result<Vec<u8>, String>365 pub fn from_hex(hex_str: &str) -> Result<Vec<u8>, String> {
366     if hex_str.len() % 2 != 0 {
367         return Err(String::from(
368             "Hex string does not have an even number of digits",
369         ));
370     }
371 
372     let mut result = Vec::with_capacity(hex_str.len() / 2);
373     for digits in hex_str.as_bytes().chunks(2) {
374         let hi = from_hex_digit(digits[0])?;
375         let lo = from_hex_digit(digits[1])?;
376         result.push((hi * 0x10) | lo);
377     }
378     Ok(result)
379 }
380 
381 #[cfg(feature = "alloc")]
from_hex_digit(d: u8) -> Result<u8, String>382 fn from_hex_digit(d: u8) -> Result<u8, String> {
383     if d >= b'0' && d <= b'9' {
384         Ok(d - b'0')
385     } else if d >= b'a' && d <= b'f' {
386         Ok(d - b'a' + 10u8)
387     } else if d >= b'A' && d <= b'F' {
388         Ok(d - b'A' + 10u8)
389     } else {
390         Err(format!("Invalid hex digit '{}'", d as char))
391     }
392 }
393 
394 #[cfg(feature = "alloc")]
parse_test_case( current_section: &mut String, lines: &mut dyn Iterator<Item = &str>, ) -> Option<TestCase>395 fn parse_test_case(
396     current_section: &mut String,
397     lines: &mut dyn Iterator<Item = &str>,
398 ) -> Option<TestCase> {
399     let mut attributes = Vec::new();
400 
401     let mut is_first_line = true;
402     loop {
403         let line = lines.next();
404 
405         #[cfg(feature = "test_logging")]
406         {
407             if let Some(text) = &line {
408                 std::println!("Line: {}", text);
409             }
410         }
411 
412         match line {
413             // If we get to EOF when we're not in the middle of a test case,
414             // then we're done.
415             None if is_first_line => {
416                 return None;
417             }
418 
419             // End of the file on a non-empty test cases ends the test case.
420             None => {
421                 return Some(TestCase { attributes });
422             }
423 
424             // A blank line ends a test case if the test case isn't empty.
425             Some(ref line) if line.is_empty() => {
426                 if !is_first_line {
427                     return Some(TestCase { attributes });
428                 }
429                 // Ignore leading blank lines.
430             }
431 
432             // Comments start with '#'; ignore them.
433             Some(ref line) if line.starts_with('#') => (),
434 
435             Some(ref line) if line.starts_with('[') => {
436                 assert!(is_first_line);
437                 assert!(line.ends_with(']'));
438                 current_section.truncate(0);
439                 current_section.push_str(line);
440                 let _ = current_section.pop();
441                 let _ = current_section.remove(0);
442             }
443 
444             Some(ref line) => {
445                 is_first_line = false;
446 
447                 let parts: Vec<&str> = line.splitn(2, " = ").collect();
448                 if parts.len() != 2 {
449                     panic!("Syntax error: Expected Key = Value.");
450                 };
451 
452                 let key = parts[0].trim();
453                 let value = parts[1].trim();
454 
455                 // Don't allow the value to be ommitted. An empty value can be
456                 // represented as an empty quoted string.
457                 assert_ne!(value.len(), 0);
458 
459                 // Checking is_none() ensures we don't accept duplicate keys.
460                 attributes.push((String::from(key), String::from(value), false));
461             }
462         }
463     }
464 }
465 
466 /// Deterministic implementations of `ring::rand::SecureRandom`.
467 ///
468 /// These implementations are particularly useful for testing implementations
469 /// of randomized algorithms & protocols using known-answer-tests where the
470 /// test vectors contain the random seed to use. They are also especially
471 /// useful for some types of fuzzing.
472 #[doc(hidden)]
473 pub mod rand {
474     use crate::{error, polyfill, rand};
475 
476     /// An implementation of `SecureRandom` that always fills the output slice
477     /// with the given byte.
478     #[derive(Debug)]
479     pub struct FixedByteRandom {
480         pub byte: u8,
481     }
482 
483     impl rand::sealed::SecureRandom for FixedByteRandom {
fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified>484         fn fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
485             polyfill::slice::fill(dest, self.byte);
486             Ok(())
487         }
488     }
489 
490     /// An implementation of `SecureRandom` that always fills the output slice
491     /// with the slice in `bytes`. The length of the slice given to `slice`
492     /// must match exactly.
493     #[derive(Debug)]
494     pub struct FixedSliceRandom<'a> {
495         pub bytes: &'a [u8],
496     }
497 
498     impl rand::sealed::SecureRandom for FixedSliceRandom<'_> {
fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified>499         fn fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
500             dest.copy_from_slice(self.bytes);
501             Ok(())
502         }
503     }
504 
505     /// An implementation of `SecureRandom` where each slice in `bytes` is a
506     /// test vector for one call to `fill()`. *Not thread-safe.*
507     ///
508     /// The first slice in `bytes` is the output for the first call to
509     /// `fill()`, the second slice is the output for the second call to
510     /// `fill()`, etc. The output slice passed to `fill()` must have exactly
511     /// the length of the corresponding entry in `bytes`. `current` must be
512     /// initialized to zero. `fill()` must be called exactly once for each
513     /// entry in `bytes`.
514     #[derive(Debug)]
515     pub struct FixedSliceSequenceRandom<'a> {
516         /// The value.
517         pub bytes: &'a [&'a [u8]],
518         pub current: core::cell::UnsafeCell<usize>,
519     }
520 
521     impl rand::sealed::SecureRandom for FixedSliceSequenceRandom<'_> {
fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified>522         fn fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
523             let current = unsafe { *self.current.get() };
524             let bytes = self.bytes[current];
525             dest.copy_from_slice(bytes);
526             // Remember that we returned this slice and prepare to return
527             // the next one, if any.
528             unsafe { *self.current.get() += 1 };
529             Ok(())
530         }
531     }
532 
533     impl Drop for FixedSliceSequenceRandom<'_> {
drop(&mut self)534         fn drop(&mut self) {
535             // Ensure that `fill()` was called exactly the right number of
536             // times.
537             assert_eq!(unsafe { *self.current.get() }, self.bytes.len());
538         }
539     }
540 }
541 
542 #[cfg(test)]
543 mod tests {
544     use crate::{error, test};
545 
546     #[test]
one_ok()547     fn one_ok() {
548         test::run(test_file!("test_1_tests.txt"), |_, test_case| {
549             let _ = test_case.consume_string("Key");
550             Ok(())
551         });
552     }
553 
554     #[test]
555     #[should_panic(expected = "Test failed.")]
one_err()556     fn one_err() {
557         test::run(test_file!("test_1_tests.txt"), |_, test_case| {
558             let _ = test_case.consume_string("Key");
559             Err(error::Unspecified)
560         });
561     }
562 
563     #[test]
564     #[should_panic(expected = "Oh noes!")]
one_panics()565     fn one_panics() {
566         test::run(test_file!("test_1_tests.txt"), |_, test_case| {
567             let _ = test_case.consume_string("Key");
568             panic!("Oh noes!");
569         });
570     }
571 
572     #[test]
573     #[should_panic(expected = "Test failed.")]
first_err()574     fn first_err() {
575         err_one(0)
576     }
577 
578     #[test]
579     #[should_panic(expected = "Test failed.")]
middle_err()580     fn middle_err() {
581         err_one(1)
582     }
583 
584     #[test]
585     #[should_panic(expected = "Test failed.")]
last_err()586     fn last_err() {
587         err_one(2)
588     }
589 
err_one(test_to_fail: usize)590     fn err_one(test_to_fail: usize) {
591         let mut n = 0;
592         test::run(test_file!("test_3_tests.txt"), |_, test_case| {
593             let _ = test_case.consume_string("Key");
594             let result = if n != test_to_fail {
595                 Ok(())
596             } else {
597                 Err(error::Unspecified)
598             };
599             n += 1;
600             result
601         });
602     }
603 
604     #[test]
605     #[should_panic(expected = "Oh Noes!")]
first_panic()606     fn first_panic() {
607         panic_one(0)
608     }
609 
610     #[test]
611     #[should_panic(expected = "Oh Noes!")]
middle_panic()612     fn middle_panic() {
613         panic_one(1)
614     }
615 
616     #[test]
617     #[should_panic(expected = "Oh Noes!")]
last_panic()618     fn last_panic() {
619         panic_one(2)
620     }
621 
panic_one(test_to_fail: usize)622     fn panic_one(test_to_fail: usize) {
623         let mut n = 0;
624         test::run(test_file!("test_3_tests.txt"), |_, test_case| {
625             let _ = test_case.consume_string("Key");
626             if n == test_to_fail {
627                 panic!("Oh Noes!");
628             };
629             n += 1;
630             Ok(())
631         });
632     }
633 
634     #[test]
635     #[should_panic(expected = "Syntax error: Expected Key = Value.")]
syntax_error()636     fn syntax_error() {
637         test::run(test_file!("test_1_syntax_error_tests.txt"), |_, _| Ok(()));
638     }
639 }
640