1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/SwiftCallingConv.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSwitch.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/IntrinsicsNVPTX.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm> // std::sort
36 
37 using namespace clang;
38 using namespace CodeGen;
39 
40 // Helper for coercing an aggregate argument or return value into an integer
41 // array of the same size (including padding) and alignment.  This alternate
42 // coercion happens only for the RenderScript ABI and can be removed after
43 // runtimes that rely on it are no longer supported.
44 //
45 // RenderScript assumes that the size of the argument / return value in the IR
46 // is the same as the size of the corresponding qualified type. This helper
47 // coerces the aggregate type into an array of the same size (including
48 // padding).  This coercion is used in lieu of expansion of struct members or
49 // other canonical coercions that return a coerced-type of larger size.
50 //
51 // Ty          - The argument / return value type
52 // Context     - The associated ASTContext
53 // LLVMContext - The associated LLVMContext
coerceToIntArray(QualType Ty,ASTContext & Context,llvm::LLVMContext & LLVMContext)54 static ABIArgInfo coerceToIntArray(QualType Ty,
55                                    ASTContext &Context,
56                                    llvm::LLVMContext &LLVMContext) {
57   // Alignment and Size are measured in bits.
58   const uint64_t Size = Context.getTypeSize(Ty);
59   const uint64_t Alignment = Context.getTypeAlign(Ty);
60   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
61   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
62   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
63 }
64 
AssignToArrayRange(CodeGen::CGBuilderTy & Builder,llvm::Value * Array,llvm::Value * Value,unsigned FirstIndex,unsigned LastIndex)65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
66                                llvm::Value *Array,
67                                llvm::Value *Value,
68                                unsigned FirstIndex,
69                                unsigned LastIndex) {
70   // Alternatively, we could emit this as a loop in the source.
71   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
72     llvm::Value *Cell =
73         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
74     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
75   }
76 }
77 
isAggregateTypeForABI(QualType T)78 static bool isAggregateTypeForABI(QualType T) {
79   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
80          T->isMemberFunctionPointerType();
81 }
82 
getNaturalAlignIndirect(QualType Ty,bool ByVal,bool Realign,llvm::Type * Padding) const83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
84                                             bool Realign,
85                                             llvm::Type *Padding) const {
86   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
87                                  Realign, Padding);
88 }
89 
90 ABIArgInfo
getNaturalAlignIndirectInReg(QualType Ty,bool Realign) const91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
92   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
93                                       /*ByVal*/ false, Realign);
94 }
95 
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
97                              QualType Ty) const {
98   return Address::invalid();
99 }
100 
isPromotableIntegerTypeForABI(QualType Ty) const101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
102   if (Ty->isPromotableIntegerType())
103     return true;
104 
105   if (const auto *EIT = Ty->getAs<ExtIntType>())
106     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
107       return true;
108 
109   return false;
110 }
111 
~ABIInfo()112 ABIInfo::~ABIInfo() {}
113 
114 /// Does the given lowering require more than the given number of
115 /// registers when expanded?
116 ///
117 /// This is intended to be the basis of a reasonable basic implementation
118 /// of should{Pass,Return}IndirectlyForSwift.
119 ///
120 /// For most targets, a limit of four total registers is reasonable; this
121 /// limits the amount of code required in order to move around the value
122 /// in case it wasn't produced immediately prior to the call by the caller
123 /// (or wasn't produced in exactly the right registers) or isn't used
124 /// immediately within the callee.  But some targets may need to further
125 /// limit the register count due to an inability to support that many
126 /// return registers.
occupiesMoreThan(CodeGenTypes & cgt,ArrayRef<llvm::Type * > scalarTypes,unsigned maxAllRegisters)127 static bool occupiesMoreThan(CodeGenTypes &cgt,
128                              ArrayRef<llvm::Type*> scalarTypes,
129                              unsigned maxAllRegisters) {
130   unsigned intCount = 0, fpCount = 0;
131   for (llvm::Type *type : scalarTypes) {
132     if (type->isPointerTy()) {
133       intCount++;
134     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
135       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
136       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
137     } else {
138       assert(type->isVectorTy() || type->isFloatingPointTy());
139       fpCount++;
140     }
141   }
142 
143   return (intCount + fpCount > maxAllRegisters);
144 }
145 
isLegalVectorTypeForSwift(CharUnits vectorSize,llvm::Type * eltTy,unsigned numElts) const146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
147                                              llvm::Type *eltTy,
148                                              unsigned numElts) const {
149   // The default implementation of this assumes that the target guarantees
150   // 128-bit SIMD support but nothing more.
151   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
152 }
153 
getRecordArgABI(const RecordType * RT,CGCXXABI & CXXABI)154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
155                                               CGCXXABI &CXXABI) {
156   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
157   if (!RD) {
158     if (!RT->getDecl()->canPassInRegisters())
159       return CGCXXABI::RAA_Indirect;
160     return CGCXXABI::RAA_Default;
161   }
162   return CXXABI.getRecordArgABI(RD);
163 }
164 
getRecordArgABI(QualType T,CGCXXABI & CXXABI)165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
166                                               CGCXXABI &CXXABI) {
167   const RecordType *RT = T->getAs<RecordType>();
168   if (!RT)
169     return CGCXXABI::RAA_Default;
170   return getRecordArgABI(RT, CXXABI);
171 }
172 
classifyReturnType(const CGCXXABI & CXXABI,CGFunctionInfo & FI,const ABIInfo & Info)173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
174                                const ABIInfo &Info) {
175   QualType Ty = FI.getReturnType();
176 
177   if (const auto *RT = Ty->getAs<RecordType>())
178     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
179         !RT->getDecl()->canPassInRegisters()) {
180       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
181       return true;
182     }
183 
184   return CXXABI.classifyReturnType(FI);
185 }
186 
187 /// Pass transparent unions as if they were the type of the first element. Sema
188 /// should ensure that all elements of the union have the same "machine type".
useFirstFieldIfTransparentUnion(QualType Ty)189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
190   if (const RecordType *UT = Ty->getAsUnionType()) {
191     const RecordDecl *UD = UT->getDecl();
192     if (UD->hasAttr<TransparentUnionAttr>()) {
193       assert(!UD->field_empty() && "sema created an empty transparent union");
194       return UD->field_begin()->getType();
195     }
196   }
197   return Ty;
198 }
199 
getCXXABI() const200 CGCXXABI &ABIInfo::getCXXABI() const {
201   return CGT.getCXXABI();
202 }
203 
getContext() const204 ASTContext &ABIInfo::getContext() const {
205   return CGT.getContext();
206 }
207 
getVMContext() const208 llvm::LLVMContext &ABIInfo::getVMContext() const {
209   return CGT.getLLVMContext();
210 }
211 
getDataLayout() const212 const llvm::DataLayout &ABIInfo::getDataLayout() const {
213   return CGT.getDataLayout();
214 }
215 
getTarget() const216 const TargetInfo &ABIInfo::getTarget() const {
217   return CGT.getTarget();
218 }
219 
getCodeGenOpts() const220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
221   return CGT.getCodeGenOpts();
222 }
223 
isAndroid() const224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
225 
isHomogeneousAggregateBaseType(QualType Ty) const226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
227   return false;
228 }
229 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
231                                                 uint64_t Members) const {
232   return false;
233 }
234 
dump() const235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
236   raw_ostream &OS = llvm::errs();
237   OS << "(ABIArgInfo Kind=";
238   switch (TheKind) {
239   case Direct:
240     OS << "Direct Type=";
241     if (llvm::Type *Ty = getCoerceToType())
242       Ty->print(OS);
243     else
244       OS << "null";
245     break;
246   case Extend:
247     OS << "Extend";
248     break;
249   case Ignore:
250     OS << "Ignore";
251     break;
252   case InAlloca:
253     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
254     break;
255   case Indirect:
256     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
257        << " ByVal=" << getIndirectByVal()
258        << " Realign=" << getIndirectRealign();
259     break;
260   case IndirectAliased:
261     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
262        << " AadrSpace=" << getIndirectAddrSpace()
263        << " Realign=" << getIndirectRealign();
264     break;
265   case Expand:
266     OS << "Expand";
267     break;
268   case CoerceAndExpand:
269     OS << "CoerceAndExpand Type=";
270     getCoerceAndExpandType()->print(OS);
271     break;
272   }
273   OS << ")\n";
274 }
275 
276 // Dynamically round a pointer up to a multiple of the given alignment.
emitRoundPointerUpToAlignment(CodeGenFunction & CGF,llvm::Value * Ptr,CharUnits Align)277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
278                                                   llvm::Value *Ptr,
279                                                   CharUnits Align) {
280   llvm::Value *PtrAsInt = Ptr;
281   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
282   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
283   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
284         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
285   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
286            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
287   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
288                                         Ptr->getType(),
289                                         Ptr->getName() + ".aligned");
290   return PtrAsInt;
291 }
292 
293 /// Emit va_arg for a platform using the common void* representation,
294 /// where arguments are simply emitted in an array of slots on the stack.
295 ///
296 /// This version implements the core direct-value passing rules.
297 ///
298 /// \param SlotSize - The size and alignment of a stack slot.
299 ///   Each argument will be allocated to a multiple of this number of
300 ///   slots, and all the slots will be aligned to this value.
301 /// \param AllowHigherAlign - The slot alignment is not a cap;
302 ///   an argument type with an alignment greater than the slot size
303 ///   will be emitted on a higher-alignment address, potentially
304 ///   leaving one or more empty slots behind as padding.  If this
305 ///   is false, the returned address might be less-aligned than
306 ///   DirectAlign.
emitVoidPtrDirectVAArg(CodeGenFunction & CGF,Address VAListAddr,llvm::Type * DirectTy,CharUnits DirectSize,CharUnits DirectAlign,CharUnits SlotSize,bool AllowHigherAlign)307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
308                                       Address VAListAddr,
309                                       llvm::Type *DirectTy,
310                                       CharUnits DirectSize,
311                                       CharUnits DirectAlign,
312                                       CharUnits SlotSize,
313                                       bool AllowHigherAlign) {
314   // Cast the element type to i8* if necessary.  Some platforms define
315   // va_list as a struct containing an i8* instead of just an i8*.
316   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
317     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
318 
319   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
320 
321   // If the CC aligns values higher than the slot size, do so if needed.
322   Address Addr = Address::invalid();
323   if (AllowHigherAlign && DirectAlign > SlotSize) {
324     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
325                                                  DirectAlign);
326   } else {
327     Addr = Address(Ptr, SlotSize);
328   }
329 
330   // Advance the pointer past the argument, then store that back.
331   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
332   Address NextPtr =
333       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
334   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
335 
336   // If the argument is smaller than a slot, and this is a big-endian
337   // target, the argument will be right-adjusted in its slot.
338   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
339       !DirectTy->isStructTy()) {
340     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
341   }
342 
343   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
344   return Addr;
345 }
346 
347 /// Emit va_arg for a platform using the common void* representation,
348 /// where arguments are simply emitted in an array of slots on the stack.
349 ///
350 /// \param IsIndirect - Values of this type are passed indirectly.
351 /// \param ValueInfo - The size and alignment of this type, generally
352 ///   computed with getContext().getTypeInfoInChars(ValueTy).
353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
354 ///   Each argument will be allocated to a multiple of this number of
355 ///   slots, and all the slots will be aligned to this value.
356 /// \param AllowHigherAlign - The slot alignment is not a cap;
357 ///   an argument type with an alignment greater than the slot size
358 ///   will be emitted on a higher-alignment address, potentially
359 ///   leaving one or more empty slots behind as padding.
emitVoidPtrVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType ValueTy,bool IsIndirect,TypeInfoChars ValueInfo,CharUnits SlotSizeAndAlign,bool AllowHigherAlign)360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
361                                 QualType ValueTy, bool IsIndirect,
362                                 TypeInfoChars ValueInfo,
363                                 CharUnits SlotSizeAndAlign,
364                                 bool AllowHigherAlign) {
365   // The size and alignment of the value that was passed directly.
366   CharUnits DirectSize, DirectAlign;
367   if (IsIndirect) {
368     DirectSize = CGF.getPointerSize();
369     DirectAlign = CGF.getPointerAlign();
370   } else {
371     DirectSize = ValueInfo.Width;
372     DirectAlign = ValueInfo.Align;
373   }
374 
375   // Cast the address we've calculated to the right type.
376   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
377   if (IsIndirect)
378     DirectTy = DirectTy->getPointerTo(0);
379 
380   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
381                                         DirectSize, DirectAlign,
382                                         SlotSizeAndAlign,
383                                         AllowHigherAlign);
384 
385   if (IsIndirect) {
386     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align);
387   }
388 
389   return Addr;
390 
391 }
392 
emitMergePHI(CodeGenFunction & CGF,Address Addr1,llvm::BasicBlock * Block1,Address Addr2,llvm::BasicBlock * Block2,const llvm::Twine & Name="")393 static Address emitMergePHI(CodeGenFunction &CGF,
394                             Address Addr1, llvm::BasicBlock *Block1,
395                             Address Addr2, llvm::BasicBlock *Block2,
396                             const llvm::Twine &Name = "") {
397   assert(Addr1.getType() == Addr2.getType());
398   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
399   PHI->addIncoming(Addr1.getPointer(), Block1);
400   PHI->addIncoming(Addr2.getPointer(), Block2);
401   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
402   return Address(PHI, Align);
403 }
404 
405 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
406 
407 // If someone can figure out a general rule for this, that would be great.
408 // It's probably just doomed to be platform-dependent, though.
getSizeOfUnwindException() const409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
410   // Verified for:
411   //   x86-64     FreeBSD, Linux, Darwin
412   //   x86-32     FreeBSD, Linux, Darwin
413   //   PowerPC    Linux, Darwin
414   //   ARM        Darwin (*not* EABI)
415   //   AArch64    Linux
416   return 32;
417 }
418 
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
420                                      const FunctionNoProtoType *fnType) const {
421   // The following conventions are known to require this to be false:
422   //   x86_stdcall
423   //   MIPS
424   // For everything else, we just prefer false unless we opt out.
425   return false;
426 }
427 
428 void
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
430                                              llvm::SmallString<24> &Opt) const {
431   // This assumes the user is passing a library name like "rt" instead of a
432   // filename like "librt.a/so", and that they don't care whether it's static or
433   // dynamic.
434   Opt = "-l";
435   Opt += Lib;
436 }
437 
getOpenCLKernelCallingConv() const438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
439   // OpenCL kernels are called via an explicit runtime API with arguments
440   // set with clSetKernelArg(), not as normal sub-functions.
441   // Return SPIR_KERNEL by default as the kernel calling convention to
442   // ensure the fingerprint is fixed such way that each OpenCL argument
443   // gets one matching argument in the produced kernel function argument
444   // list to enable feasible implementation of clSetKernelArg() with
445   // aggregates etc. In case we would use the default C calling conv here,
446   // clSetKernelArg() might break depending on the target-specific
447   // conventions; different targets might split structs passed as values
448   // to multiple function arguments etc.
449   return llvm::CallingConv::SPIR_KERNEL;
450 }
451 
getNullPointer(const CodeGen::CodeGenModule & CGM,llvm::PointerType * T,QualType QT) const452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
453     llvm::PointerType *T, QualType QT) const {
454   return llvm::ConstantPointerNull::get(T);
455 }
456 
getGlobalVarAddressSpace(CodeGenModule & CGM,const VarDecl * D) const457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
458                                                    const VarDecl *D) const {
459   assert(!CGM.getLangOpts().OpenCL &&
460          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
461          "Address space agnostic languages only");
462   return D ? D->getType().getAddressSpace() : LangAS::Default;
463 }
464 
performAddrSpaceCast(CodeGen::CodeGenFunction & CGF,llvm::Value * Src,LangAS SrcAddr,LangAS DestAddr,llvm::Type * DestTy,bool isNonNull) const465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
466     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
467     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
468   // Since target may map different address spaces in AST to the same address
469   // space, an address space conversion may end up as a bitcast.
470   if (auto *C = dyn_cast<llvm::Constant>(Src))
471     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
472   // Try to preserve the source's name to make IR more readable.
473   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
474       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
475 }
476 
477 llvm::Constant *
performAddrSpaceCast(CodeGenModule & CGM,llvm::Constant * Src,LangAS SrcAddr,LangAS DestAddr,llvm::Type * DestTy) const478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
479                                         LangAS SrcAddr, LangAS DestAddr,
480                                         llvm::Type *DestTy) const {
481   // Since target may map different address spaces in AST to the same address
482   // space, an address space conversion may end up as a bitcast.
483   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
484 }
485 
486 llvm::SyncScope::ID
getLLVMSyncScopeID(const LangOptions & LangOpts,SyncScope Scope,llvm::AtomicOrdering Ordering,llvm::LLVMContext & Ctx) const487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
488                                       SyncScope Scope,
489                                       llvm::AtomicOrdering Ordering,
490                                       llvm::LLVMContext &Ctx) const {
491   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
492 }
493 
494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
495 
496 /// isEmptyField - Return true iff a the field is "empty", that is it
497 /// is an unnamed bit-field or an (array of) empty record(s).
isEmptyField(ASTContext & Context,const FieldDecl * FD,bool AllowArrays)498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
499                          bool AllowArrays) {
500   if (FD->isUnnamedBitfield())
501     return true;
502 
503   QualType FT = FD->getType();
504 
505   // Constant arrays of empty records count as empty, strip them off.
506   // Constant arrays of zero length always count as empty.
507   bool WasArray = false;
508   if (AllowArrays)
509     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
510       if (AT->getSize() == 0)
511         return true;
512       FT = AT->getElementType();
513       // The [[no_unique_address]] special case below does not apply to
514       // arrays of C++ empty records, so we need to remember this fact.
515       WasArray = true;
516     }
517 
518   const RecordType *RT = FT->getAs<RecordType>();
519   if (!RT)
520     return false;
521 
522   // C++ record fields are never empty, at least in the Itanium ABI.
523   //
524   // FIXME: We should use a predicate for whether this behavior is true in the
525   // current ABI.
526   //
527   // The exception to the above rule are fields marked with the
528   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
529   // according to the Itanium ABI.  The exception applies only to records,
530   // not arrays of records, so we must also check whether we stripped off an
531   // array type above.
532   if (isa<CXXRecordDecl>(RT->getDecl()) &&
533       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
534     return false;
535 
536   return isEmptyRecord(Context, FT, AllowArrays);
537 }
538 
539 /// isEmptyRecord - Return true iff a structure contains only empty
540 /// fields. Note that a structure with a flexible array member is not
541 /// considered empty.
isEmptyRecord(ASTContext & Context,QualType T,bool AllowArrays)542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
543   const RecordType *RT = T->getAs<RecordType>();
544   if (!RT)
545     return false;
546   const RecordDecl *RD = RT->getDecl();
547   if (RD->hasFlexibleArrayMember())
548     return false;
549 
550   // If this is a C++ record, check the bases first.
551   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
552     for (const auto &I : CXXRD->bases())
553       if (!isEmptyRecord(Context, I.getType(), true))
554         return false;
555 
556   for (const auto *I : RD->fields())
557     if (!isEmptyField(Context, I, AllowArrays))
558       return false;
559   return true;
560 }
561 
562 /// isSingleElementStruct - Determine if a structure is a "single
563 /// element struct", i.e. it has exactly one non-empty field or
564 /// exactly one field which is itself a single element
565 /// struct. Structures with flexible array members are never
566 /// considered single element structs.
567 ///
568 /// \return The field declaration for the single non-empty field, if
569 /// it exists.
isSingleElementStruct(QualType T,ASTContext & Context)570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
571   const RecordType *RT = T->getAs<RecordType>();
572   if (!RT)
573     return nullptr;
574 
575   const RecordDecl *RD = RT->getDecl();
576   if (RD->hasFlexibleArrayMember())
577     return nullptr;
578 
579   const Type *Found = nullptr;
580 
581   // If this is a C++ record, check the bases first.
582   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
583     for (const auto &I : CXXRD->bases()) {
584       // Ignore empty records.
585       if (isEmptyRecord(Context, I.getType(), true))
586         continue;
587 
588       // If we already found an element then this isn't a single-element struct.
589       if (Found)
590         return nullptr;
591 
592       // If this is non-empty and not a single element struct, the composite
593       // cannot be a single element struct.
594       Found = isSingleElementStruct(I.getType(), Context);
595       if (!Found)
596         return nullptr;
597     }
598   }
599 
600   // Check for single element.
601   for (const auto *FD : RD->fields()) {
602     QualType FT = FD->getType();
603 
604     // Ignore empty fields.
605     if (isEmptyField(Context, FD, true))
606       continue;
607 
608     // If we already found an element then this isn't a single-element
609     // struct.
610     if (Found)
611       return nullptr;
612 
613     // Treat single element arrays as the element.
614     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
615       if (AT->getSize().getZExtValue() != 1)
616         break;
617       FT = AT->getElementType();
618     }
619 
620     if (!isAggregateTypeForABI(FT)) {
621       Found = FT.getTypePtr();
622     } else {
623       Found = isSingleElementStruct(FT, Context);
624       if (!Found)
625         return nullptr;
626     }
627   }
628 
629   // We don't consider a struct a single-element struct if it has
630   // padding beyond the element type.
631   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
632     return nullptr;
633 
634   return Found;
635 }
636 
637 namespace {
EmitVAArgInstr(CodeGenFunction & CGF,Address VAListAddr,QualType Ty,const ABIArgInfo & AI)638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
639                        const ABIArgInfo &AI) {
640   // This default implementation defers to the llvm backend's va_arg
641   // instruction. It can handle only passing arguments directly
642   // (typically only handled in the backend for primitive types), or
643   // aggregates passed indirectly by pointer (NOTE: if the "byval"
644   // flag has ABI impact in the callee, this implementation cannot
645   // work.)
646 
647   // Only a few cases are covered here at the moment -- those needed
648   // by the default abi.
649   llvm::Value *Val;
650 
651   if (AI.isIndirect()) {
652     assert(!AI.getPaddingType() &&
653            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
654     assert(
655         !AI.getIndirectRealign() &&
656         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
657 
658     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
659     CharUnits TyAlignForABI = TyInfo.Align;
660 
661     llvm::Type *BaseTy =
662         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
663     llvm::Value *Addr =
664         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
665     return Address(Addr, TyAlignForABI);
666   } else {
667     assert((AI.isDirect() || AI.isExtend()) &&
668            "Unexpected ArgInfo Kind in generic VAArg emitter!");
669 
670     assert(!AI.getInReg() &&
671            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
672     assert(!AI.getPaddingType() &&
673            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
674     assert(!AI.getDirectOffset() &&
675            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
676     assert(!AI.getCoerceToType() &&
677            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
678 
679     Address Temp = CGF.CreateMemTemp(Ty, "varet");
680     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
681     CGF.Builder.CreateStore(Val, Temp);
682     return Temp;
683   }
684 }
685 
686 /// DefaultABIInfo - The default implementation for ABI specific
687 /// details. This implementation provides information which results in
688 /// self-consistent and sensible LLVM IR generation, but does not
689 /// conform to any particular ABI.
690 class DefaultABIInfo : public ABIInfo {
691 public:
DefaultABIInfo(CodeGen::CodeGenTypes & CGT)692   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
693 
694   ABIArgInfo classifyReturnType(QualType RetTy) const;
695   ABIArgInfo classifyArgumentType(QualType RetTy) const;
696 
computeInfo(CGFunctionInfo & FI) const697   void computeInfo(CGFunctionInfo &FI) const override {
698     if (!getCXXABI().classifyReturnType(FI))
699       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
700     for (auto &I : FI.arguments())
701       I.info = classifyArgumentType(I.type);
702   }
703 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const704   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
705                     QualType Ty) const override {
706     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
707   }
708 };
709 
710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
711 public:
DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)712   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
713       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
714 };
715 
classifyArgumentType(QualType Ty) const716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
717   Ty = useFirstFieldIfTransparentUnion(Ty);
718 
719   if (isAggregateTypeForABI(Ty)) {
720     // Records with non-trivial destructors/copy-constructors should not be
721     // passed by value.
722     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
723       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
724 
725     return getNaturalAlignIndirect(Ty);
726   }
727 
728   // Treat an enum type as its underlying type.
729   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
730     Ty = EnumTy->getDecl()->getIntegerType();
731 
732   ASTContext &Context = getContext();
733   if (const auto *EIT = Ty->getAs<ExtIntType>())
734     if (EIT->getNumBits() >
735         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
736                                 ? Context.Int128Ty
737                                 : Context.LongLongTy))
738       return getNaturalAlignIndirect(Ty);
739 
740   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
741                                             : ABIArgInfo::getDirect());
742 }
743 
classifyReturnType(QualType RetTy) const744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
745   if (RetTy->isVoidType())
746     return ABIArgInfo::getIgnore();
747 
748   if (isAggregateTypeForABI(RetTy))
749     return getNaturalAlignIndirect(RetTy);
750 
751   // Treat an enum type as its underlying type.
752   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
753     RetTy = EnumTy->getDecl()->getIntegerType();
754 
755   if (const auto *EIT = RetTy->getAs<ExtIntType>())
756     if (EIT->getNumBits() >
757         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
758                                      ? getContext().Int128Ty
759                                      : getContext().LongLongTy))
760       return getNaturalAlignIndirect(RetTy);
761 
762   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
763                                                : ABIArgInfo::getDirect());
764 }
765 
766 //===----------------------------------------------------------------------===//
767 // WebAssembly ABI Implementation
768 //
769 // This is a very simple ABI that relies a lot on DefaultABIInfo.
770 //===----------------------------------------------------------------------===//
771 
772 class WebAssemblyABIInfo final : public SwiftABIInfo {
773 public:
774   enum ABIKind {
775     MVP = 0,
776     ExperimentalMV = 1,
777   };
778 
779 private:
780   DefaultABIInfo defaultInfo;
781   ABIKind Kind;
782 
783 public:
WebAssemblyABIInfo(CodeGen::CodeGenTypes & CGT,ABIKind Kind)784   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
785       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
786 
787 private:
788   ABIArgInfo classifyReturnType(QualType RetTy) const;
789   ABIArgInfo classifyArgumentType(QualType Ty) const;
790 
791   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
792   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
793   // overload them.
computeInfo(CGFunctionInfo & FI) const794   void computeInfo(CGFunctionInfo &FI) const override {
795     if (!getCXXABI().classifyReturnType(FI))
796       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
797     for (auto &Arg : FI.arguments())
798       Arg.info = classifyArgumentType(Arg.type);
799   }
800 
801   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
802                     QualType Ty) const override;
803 
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const804   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
805                                     bool asReturnValue) const override {
806     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
807   }
808 
isSwiftErrorInRegister() const809   bool isSwiftErrorInRegister() const override {
810     return false;
811   }
812 };
813 
814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
815 public:
WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,WebAssemblyABIInfo::ABIKind K)816   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
817                                         WebAssemblyABIInfo::ABIKind K)
818       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
819 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const820   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
821                            CodeGen::CodeGenModule &CGM) const override {
822     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
823     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
824       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
825         llvm::Function *Fn = cast<llvm::Function>(GV);
826         llvm::AttrBuilder B;
827         B.addAttribute("wasm-import-module", Attr->getImportModule());
828         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
829       }
830       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
831         llvm::Function *Fn = cast<llvm::Function>(GV);
832         llvm::AttrBuilder B;
833         B.addAttribute("wasm-import-name", Attr->getImportName());
834         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
835       }
836       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
837         llvm::Function *Fn = cast<llvm::Function>(GV);
838         llvm::AttrBuilder B;
839         B.addAttribute("wasm-export-name", Attr->getExportName());
840         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
841       }
842     }
843 
844     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
845       llvm::Function *Fn = cast<llvm::Function>(GV);
846       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
847         Fn->addFnAttr("no-prototype");
848     }
849   }
850 };
851 
852 /// Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
854   Ty = useFirstFieldIfTransparentUnion(Ty);
855 
856   if (isAggregateTypeForABI(Ty)) {
857     // Records with non-trivial destructors/copy-constructors should not be
858     // passed by value.
859     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
860       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
861     // Ignore empty structs/unions.
862     if (isEmptyRecord(getContext(), Ty, true))
863       return ABIArgInfo::getIgnore();
864     // Lower single-element structs to just pass a regular value. TODO: We
865     // could do reasonable-size multiple-element structs too, using getExpand(),
866     // though watch out for things like bitfields.
867     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
868       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
869     // For the experimental multivalue ABI, fully expand all other aggregates
870     if (Kind == ABIKind::ExperimentalMV) {
871       const RecordType *RT = Ty->getAs<RecordType>();
872       assert(RT);
873       bool HasBitField = false;
874       for (auto *Field : RT->getDecl()->fields()) {
875         if (Field->isBitField()) {
876           HasBitField = true;
877           break;
878         }
879       }
880       if (!HasBitField)
881         return ABIArgInfo::getExpand();
882     }
883   }
884 
885   // Otherwise just do the default thing.
886   return defaultInfo.classifyArgumentType(Ty);
887 }
888 
classifyReturnType(QualType RetTy) const889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
890   if (isAggregateTypeForABI(RetTy)) {
891     // Records with non-trivial destructors/copy-constructors should not be
892     // returned by value.
893     if (!getRecordArgABI(RetTy, getCXXABI())) {
894       // Ignore empty structs/unions.
895       if (isEmptyRecord(getContext(), RetTy, true))
896         return ABIArgInfo::getIgnore();
897       // Lower single-element structs to just return a regular value. TODO: We
898       // could do reasonable-size multiple-element structs too, using
899       // ABIArgInfo::getDirect().
900       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
901         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
902       // For the experimental multivalue ABI, return all other aggregates
903       if (Kind == ABIKind::ExperimentalMV)
904         return ABIArgInfo::getDirect();
905     }
906   }
907 
908   // Otherwise just do the default thing.
909   return defaultInfo.classifyReturnType(RetTy);
910 }
911 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
913                                       QualType Ty) const {
914   bool IsIndirect = isAggregateTypeForABI(Ty) &&
915                     !isEmptyRecord(getContext(), Ty, true) &&
916                     !isSingleElementStruct(Ty, getContext());
917   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
918                           getContext().getTypeInfoInChars(Ty),
919                           CharUnits::fromQuantity(4),
920                           /*AllowHigherAlign=*/true);
921 }
922 
923 //===----------------------------------------------------------------------===//
924 // le32/PNaCl bitcode ABI Implementation
925 //
926 // This is a simplified version of the x86_32 ABI.  Arguments and return values
927 // are always passed on the stack.
928 //===----------------------------------------------------------------------===//
929 
930 class PNaClABIInfo : public ABIInfo {
931  public:
PNaClABIInfo(CodeGen::CodeGenTypes & CGT)932   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
933 
934   ABIArgInfo classifyReturnType(QualType RetTy) const;
935   ABIArgInfo classifyArgumentType(QualType RetTy) const;
936 
937   void computeInfo(CGFunctionInfo &FI) const override;
938   Address EmitVAArg(CodeGenFunction &CGF,
939                     Address VAListAddr, QualType Ty) const override;
940 };
941 
942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
943  public:
PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)944    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
945        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
946 };
947 
computeInfo(CGFunctionInfo & FI) const948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
949   if (!getCXXABI().classifyReturnType(FI))
950     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
951 
952   for (auto &I : FI.arguments())
953     I.info = classifyArgumentType(I.type);
954 }
955 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
957                                 QualType Ty) const {
958   // The PNaCL ABI is a bit odd, in that varargs don't use normal
959   // function classification. Structs get passed directly for varargs
960   // functions, through a rewriting transform in
961   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
962   // this target to actually support a va_arg instructions with an
963   // aggregate type, unlike other targets.
964   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
965 }
966 
967 /// Classify argument of given type \p Ty.
classifyArgumentType(QualType Ty) const968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
969   if (isAggregateTypeForABI(Ty)) {
970     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
971       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
972     return getNaturalAlignIndirect(Ty);
973   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
974     // Treat an enum type as its underlying type.
975     Ty = EnumTy->getDecl()->getIntegerType();
976   } else if (Ty->isFloatingType()) {
977     // Floating-point types don't go inreg.
978     return ABIArgInfo::getDirect();
979   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
980     // Treat extended integers as integers if <=64, otherwise pass indirectly.
981     if (EIT->getNumBits() > 64)
982       return getNaturalAlignIndirect(Ty);
983     return ABIArgInfo::getDirect();
984   }
985 
986   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
987                                             : ABIArgInfo::getDirect());
988 }
989 
classifyReturnType(QualType RetTy) const990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
991   if (RetTy->isVoidType())
992     return ABIArgInfo::getIgnore();
993 
994   // In the PNaCl ABI we always return records/structures on the stack.
995   if (isAggregateTypeForABI(RetTy))
996     return getNaturalAlignIndirect(RetTy);
997 
998   // Treat extended integers as integers if <=64, otherwise pass indirectly.
999   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1000     if (EIT->getNumBits() > 64)
1001       return getNaturalAlignIndirect(RetTy);
1002     return ABIArgInfo::getDirect();
1003   }
1004 
1005   // Treat an enum type as its underlying type.
1006   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1007     RetTy = EnumTy->getDecl()->getIntegerType();
1008 
1009   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1010                                                : ABIArgInfo::getDirect());
1011 }
1012 
1013 /// IsX86_MMXType - Return true if this is an MMX type.
IsX86_MMXType(llvm::Type * IRType)1014 bool IsX86_MMXType(llvm::Type *IRType) {
1015   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1016   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1017     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1018     IRType->getScalarSizeInBits() != 64;
1019 }
1020 
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1022                                           StringRef Constraint,
1023                                           llvm::Type* Ty) {
1024   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1025                      .Cases("y", "&y", "^Ym", true)
1026                      .Default(false);
1027   if (IsMMXCons && Ty->isVectorTy()) {
1028     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1029         64) {
1030       // Invalid MMX constraint
1031       return nullptr;
1032     }
1033 
1034     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1035   }
1036 
1037   // No operation needed
1038   return Ty;
1039 }
1040 
1041 /// Returns true if this type can be passed in SSE registers with the
1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorTypeForVectorCall(ASTContext & Context,QualType Ty)1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1044   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1045     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1046       if (BT->getKind() == BuiltinType::LongDouble) {
1047         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1048             &llvm::APFloat::x87DoubleExtended())
1049           return false;
1050       }
1051       return true;
1052     }
1053   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1054     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1055     // registers specially.
1056     unsigned VecSize = Context.getTypeSize(VT);
1057     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1058       return true;
1059   }
1060   return false;
1061 }
1062 
1063 /// Returns true if this aggregate is small enough to be passed in SSE registers
1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorCallAggregateSmallEnough(uint64_t NumMembers)1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1066   return NumMembers <= 4;
1067 }
1068 
1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
getDirectX86Hva(llvm::Type * T=nullptr)1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1071   auto AI = ABIArgInfo::getDirect(T);
1072   AI.setInReg(true);
1073   AI.setCanBeFlattened(false);
1074   return AI;
1075 }
1076 
1077 //===----------------------------------------------------------------------===//
1078 // X86-32 ABI Implementation
1079 //===----------------------------------------------------------------------===//
1080 
1081 /// Similar to llvm::CCState, but for Clang.
1082 struct CCState {
CCState__anon57a50d410111::CCState1083   CCState(CGFunctionInfo &FI)
1084       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1085 
1086   llvm::SmallBitVector IsPreassigned;
1087   unsigned CC = CallingConv::CC_C;
1088   unsigned FreeRegs = 0;
1089   unsigned FreeSSERegs = 0;
1090 };
1091 
1092 enum {
1093   // Vectorcall only allows the first 6 parameters to be passed in registers.
1094   VectorcallMaxParamNumAsReg = 6
1095 };
1096 
1097 /// X86_32ABIInfo - The X86-32 ABI information.
1098 class X86_32ABIInfo : public SwiftABIInfo {
1099   enum Class {
1100     Integer,
1101     Float
1102   };
1103 
1104   static const unsigned MinABIStackAlignInBytes = 4;
1105 
1106   bool IsDarwinVectorABI;
1107   bool IsRetSmallStructInRegABI;
1108   bool IsWin32StructABI;
1109   bool IsSoftFloatABI;
1110   bool IsMCUABI;
1111   unsigned DefaultNumRegisterParameters;
1112 
isRegisterSize(unsigned Size)1113   static bool isRegisterSize(unsigned Size) {
1114     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1115   }
1116 
isHomogeneousAggregateBaseType(QualType Ty) const1117   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1118     // FIXME: Assumes vectorcall is in use.
1119     return isX86VectorTypeForVectorCall(getContext(), Ty);
1120   }
1121 
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const1122   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1123                                          uint64_t NumMembers) const override {
1124     // FIXME: Assumes vectorcall is in use.
1125     return isX86VectorCallAggregateSmallEnough(NumMembers);
1126   }
1127 
1128   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1129 
1130   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1131   /// such that the argument will be passed in memory.
1132   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1133 
1134   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1135 
1136   /// Return the alignment to use for the given type on the stack.
1137   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1138 
1139   Class classify(QualType Ty) const;
1140   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1141   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1142 
1143   /// Updates the number of available free registers, returns
1144   /// true if any registers were allocated.
1145   bool updateFreeRegs(QualType Ty, CCState &State) const;
1146 
1147   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1148                                 bool &NeedsPadding) const;
1149   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1150 
1151   bool canExpandIndirectArgument(QualType Ty) const;
1152 
1153   /// Rewrite the function info so that all memory arguments use
1154   /// inalloca.
1155   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1156 
1157   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1158                            CharUnits &StackOffset, ABIArgInfo &Info,
1159                            QualType Type) const;
1160   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1161 
1162 public:
1163 
1164   void computeInfo(CGFunctionInfo &FI) const override;
1165   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1166                     QualType Ty) const override;
1167 
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)1168   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1169                 bool RetSmallStructInRegABI, bool Win32StructABI,
1170                 unsigned NumRegisterParameters, bool SoftFloatABI)
1171     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1172       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1173       IsWin32StructABI(Win32StructABI),
1174       IsSoftFloatABI(SoftFloatABI),
1175       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1176       DefaultNumRegisterParameters(NumRegisterParameters) {}
1177 
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const1178   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1179                                     bool asReturnValue) const override {
1180     // LLVM's x86-32 lowering currently only assigns up to three
1181     // integer registers and three fp registers.  Oddly, it'll use up to
1182     // four vector registers for vectors, but those can overlap with the
1183     // scalar registers.
1184     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1185   }
1186 
isSwiftErrorInRegister() const1187   bool isSwiftErrorInRegister() const override {
1188     // x86-32 lowering does not support passing swifterror in a register.
1189     return false;
1190   }
1191 };
1192 
1193 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1194 public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)1195   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1196                           bool RetSmallStructInRegABI, bool Win32StructABI,
1197                           unsigned NumRegisterParameters, bool SoftFloatABI)
1198       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1199             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1200             NumRegisterParameters, SoftFloatABI)) {}
1201 
1202   static bool isStructReturnInRegABI(
1203       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1204 
1205   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1206                            CodeGen::CodeGenModule &CGM) const override;
1207 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const1208   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1209     // Darwin uses different dwarf register numbers for EH.
1210     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1211     return 4;
1212   }
1213 
1214   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1215                                llvm::Value *Address) const override;
1216 
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const1217   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1218                                   StringRef Constraint,
1219                                   llvm::Type* Ty) const override {
1220     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1221   }
1222 
1223   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1224                                 std::string &Constraints,
1225                                 std::vector<llvm::Type *> &ResultRegTypes,
1226                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1227                                 std::vector<LValue> &ResultRegDests,
1228                                 std::string &AsmString,
1229                                 unsigned NumOutputs) const override;
1230 
1231   llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const1232   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1233     unsigned Sig = (0xeb << 0) |  // jmp rel8
1234                    (0x06 << 8) |  //           .+0x08
1235                    ('v' << 16) |
1236                    ('2' << 24);
1237     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1238   }
1239 
getARCRetainAutoreleasedReturnValueMarker() const1240   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1241     return "movl\t%ebp, %ebp"
1242            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1243   }
1244 };
1245 
1246 }
1247 
1248 /// Rewrite input constraint references after adding some output constraints.
1249 /// In the case where there is one output and one input and we add one output,
1250 /// we need to replace all operand references greater than or equal to 1:
1251 ///     mov $0, $1
1252 ///     mov eax, $1
1253 /// The result will be:
1254 ///     mov $0, $2
1255 ///     mov eax, $2
rewriteInputConstraintReferences(unsigned FirstIn,unsigned NumNewOuts,std::string & AsmString)1256 static void rewriteInputConstraintReferences(unsigned FirstIn,
1257                                              unsigned NumNewOuts,
1258                                              std::string &AsmString) {
1259   std::string Buf;
1260   llvm::raw_string_ostream OS(Buf);
1261   size_t Pos = 0;
1262   while (Pos < AsmString.size()) {
1263     size_t DollarStart = AsmString.find('$', Pos);
1264     if (DollarStart == std::string::npos)
1265       DollarStart = AsmString.size();
1266     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1267     if (DollarEnd == std::string::npos)
1268       DollarEnd = AsmString.size();
1269     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1270     Pos = DollarEnd;
1271     size_t NumDollars = DollarEnd - DollarStart;
1272     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1273       // We have an operand reference.
1274       size_t DigitStart = Pos;
1275       if (AsmString[DigitStart] == '{') {
1276         OS << '{';
1277         ++DigitStart;
1278       }
1279       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1280       if (DigitEnd == std::string::npos)
1281         DigitEnd = AsmString.size();
1282       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1283       unsigned OperandIndex;
1284       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1285         if (OperandIndex >= FirstIn)
1286           OperandIndex += NumNewOuts;
1287         OS << OperandIndex;
1288       } else {
1289         OS << OperandStr;
1290       }
1291       Pos = DigitEnd;
1292     }
1293   }
1294   AsmString = std::move(OS.str());
1295 }
1296 
1297 /// Add output constraints for EAX:EDX because they are return registers.
addReturnRegisterOutputs(CodeGenFunction & CGF,LValue ReturnSlot,std::string & Constraints,std::vector<llvm::Type * > & ResultRegTypes,std::vector<llvm::Type * > & ResultTruncRegTypes,std::vector<LValue> & ResultRegDests,std::string & AsmString,unsigned NumOutputs) const1298 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1299     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1300     std::vector<llvm::Type *> &ResultRegTypes,
1301     std::vector<llvm::Type *> &ResultTruncRegTypes,
1302     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1303     unsigned NumOutputs) const {
1304   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1305 
1306   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1307   // larger.
1308   if (!Constraints.empty())
1309     Constraints += ',';
1310   if (RetWidth <= 32) {
1311     Constraints += "={eax}";
1312     ResultRegTypes.push_back(CGF.Int32Ty);
1313   } else {
1314     // Use the 'A' constraint for EAX:EDX.
1315     Constraints += "=A";
1316     ResultRegTypes.push_back(CGF.Int64Ty);
1317   }
1318 
1319   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1320   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1321   ResultTruncRegTypes.push_back(CoerceTy);
1322 
1323   // Coerce the integer by bitcasting the return slot pointer.
1324   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1325                                                   CoerceTy->getPointerTo()));
1326   ResultRegDests.push_back(ReturnSlot);
1327 
1328   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1329 }
1330 
1331 /// shouldReturnTypeInRegister - Determine if the given type should be
1332 /// returned in a register (for the Darwin and MCU ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context) const1333 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1334                                                ASTContext &Context) const {
1335   uint64_t Size = Context.getTypeSize(Ty);
1336 
1337   // For i386, type must be register sized.
1338   // For the MCU ABI, it only needs to be <= 8-byte
1339   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1340    return false;
1341 
1342   if (Ty->isVectorType()) {
1343     // 64- and 128- bit vectors inside structures are not returned in
1344     // registers.
1345     if (Size == 64 || Size == 128)
1346       return false;
1347 
1348     return true;
1349   }
1350 
1351   // If this is a builtin, pointer, enum, complex type, member pointer, or
1352   // member function pointer it is ok.
1353   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1354       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1355       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1356     return true;
1357 
1358   // Arrays are treated like records.
1359   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1360     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1361 
1362   // Otherwise, it must be a record type.
1363   const RecordType *RT = Ty->getAs<RecordType>();
1364   if (!RT) return false;
1365 
1366   // FIXME: Traverse bases here too.
1367 
1368   // Structure types are passed in register if all fields would be
1369   // passed in a register.
1370   for (const auto *FD : RT->getDecl()->fields()) {
1371     // Empty fields are ignored.
1372     if (isEmptyField(Context, FD, true))
1373       continue;
1374 
1375     // Check fields recursively.
1376     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1377       return false;
1378   }
1379   return true;
1380 }
1381 
is32Or64BitBasicType(QualType Ty,ASTContext & Context)1382 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1383   // Treat complex types as the element type.
1384   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1385     Ty = CTy->getElementType();
1386 
1387   // Check for a type which we know has a simple scalar argument-passing
1388   // convention without any padding.  (We're specifically looking for 32
1389   // and 64-bit integer and integer-equivalents, float, and double.)
1390   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1391       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1392     return false;
1393 
1394   uint64_t Size = Context.getTypeSize(Ty);
1395   return Size == 32 || Size == 64;
1396 }
1397 
addFieldSizes(ASTContext & Context,const RecordDecl * RD,uint64_t & Size)1398 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1399                           uint64_t &Size) {
1400   for (const auto *FD : RD->fields()) {
1401     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1402     // argument is smaller than 32-bits, expanding the struct will create
1403     // alignment padding.
1404     if (!is32Or64BitBasicType(FD->getType(), Context))
1405       return false;
1406 
1407     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1408     // how to expand them yet, and the predicate for telling if a bitfield still
1409     // counts as "basic" is more complicated than what we were doing previously.
1410     if (FD->isBitField())
1411       return false;
1412 
1413     Size += Context.getTypeSize(FD->getType());
1414   }
1415   return true;
1416 }
1417 
addBaseAndFieldSizes(ASTContext & Context,const CXXRecordDecl * RD,uint64_t & Size)1418 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1419                                  uint64_t &Size) {
1420   // Don't do this if there are any non-empty bases.
1421   for (const CXXBaseSpecifier &Base : RD->bases()) {
1422     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1423                               Size))
1424       return false;
1425   }
1426   if (!addFieldSizes(Context, RD, Size))
1427     return false;
1428   return true;
1429 }
1430 
1431 /// Test whether an argument type which is to be passed indirectly (on the
1432 /// stack) would have the equivalent layout if it was expanded into separate
1433 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1434 /// optimizations.
canExpandIndirectArgument(QualType Ty) const1435 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1436   // We can only expand structure types.
1437   const RecordType *RT = Ty->getAs<RecordType>();
1438   if (!RT)
1439     return false;
1440   const RecordDecl *RD = RT->getDecl();
1441   uint64_t Size = 0;
1442   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1443     if (!IsWin32StructABI) {
1444       // On non-Windows, we have to conservatively match our old bitcode
1445       // prototypes in order to be ABI-compatible at the bitcode level.
1446       if (!CXXRD->isCLike())
1447         return false;
1448     } else {
1449       // Don't do this for dynamic classes.
1450       if (CXXRD->isDynamicClass())
1451         return false;
1452     }
1453     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1454       return false;
1455   } else {
1456     if (!addFieldSizes(getContext(), RD, Size))
1457       return false;
1458   }
1459 
1460   // We can do this if there was no alignment padding.
1461   return Size == getContext().getTypeSize(Ty);
1462 }
1463 
getIndirectReturnResult(QualType RetTy,CCState & State) const1464 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1465   // If the return value is indirect, then the hidden argument is consuming one
1466   // integer register.
1467   if (State.FreeRegs) {
1468     --State.FreeRegs;
1469     if (!IsMCUABI)
1470       return getNaturalAlignIndirectInReg(RetTy);
1471   }
1472   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1473 }
1474 
classifyReturnType(QualType RetTy,CCState & State) const1475 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1476                                              CCState &State) const {
1477   if (RetTy->isVoidType())
1478     return ABIArgInfo::getIgnore();
1479 
1480   const Type *Base = nullptr;
1481   uint64_t NumElts = 0;
1482   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1483        State.CC == llvm::CallingConv::X86_RegCall) &&
1484       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1485     // The LLVM struct type for such an aggregate should lower properly.
1486     return ABIArgInfo::getDirect();
1487   }
1488 
1489   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1490     // On Darwin, some vectors are returned in registers.
1491     if (IsDarwinVectorABI) {
1492       uint64_t Size = getContext().getTypeSize(RetTy);
1493 
1494       // 128-bit vectors are a special case; they are returned in
1495       // registers and we need to make sure to pick a type the LLVM
1496       // backend will like.
1497       if (Size == 128)
1498         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1499             llvm::Type::getInt64Ty(getVMContext()), 2));
1500 
1501       // Always return in register if it fits in a general purpose
1502       // register, or if it is 64 bits and has a single element.
1503       if ((Size == 8 || Size == 16 || Size == 32) ||
1504           (Size == 64 && VT->getNumElements() == 1))
1505         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1506                                                             Size));
1507 
1508       return getIndirectReturnResult(RetTy, State);
1509     }
1510 
1511     return ABIArgInfo::getDirect();
1512   }
1513 
1514   if (isAggregateTypeForABI(RetTy)) {
1515     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1516       // Structures with flexible arrays are always indirect.
1517       if (RT->getDecl()->hasFlexibleArrayMember())
1518         return getIndirectReturnResult(RetTy, State);
1519     }
1520 
1521     // If specified, structs and unions are always indirect.
1522     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1523       return getIndirectReturnResult(RetTy, State);
1524 
1525     // Ignore empty structs/unions.
1526     if (isEmptyRecord(getContext(), RetTy, true))
1527       return ABIArgInfo::getIgnore();
1528 
1529     // Small structures which are register sized are generally returned
1530     // in a register.
1531     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1532       uint64_t Size = getContext().getTypeSize(RetTy);
1533 
1534       // As a special-case, if the struct is a "single-element" struct, and
1535       // the field is of type "float" or "double", return it in a
1536       // floating-point register. (MSVC does not apply this special case.)
1537       // We apply a similar transformation for pointer types to improve the
1538       // quality of the generated IR.
1539       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1540         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1541             || SeltTy->hasPointerRepresentation())
1542           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1543 
1544       // FIXME: We should be able to narrow this integer in cases with dead
1545       // padding.
1546       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1547     }
1548 
1549     return getIndirectReturnResult(RetTy, State);
1550   }
1551 
1552   // Treat an enum type as its underlying type.
1553   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1554     RetTy = EnumTy->getDecl()->getIntegerType();
1555 
1556   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1557     if (EIT->getNumBits() > 64)
1558       return getIndirectReturnResult(RetTy, State);
1559 
1560   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1561                                                : ABIArgInfo::getDirect());
1562 }
1563 
isSIMDVectorType(ASTContext & Context,QualType Ty)1564 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1565   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1566 }
1567 
isRecordWithSIMDVectorType(ASTContext & Context,QualType Ty)1568 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1569   const RecordType *RT = Ty->getAs<RecordType>();
1570   if (!RT)
1571     return 0;
1572   const RecordDecl *RD = RT->getDecl();
1573 
1574   // If this is a C++ record, check the bases first.
1575   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1576     for (const auto &I : CXXRD->bases())
1577       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1578         return false;
1579 
1580   for (const auto *i : RD->fields()) {
1581     QualType FT = i->getType();
1582 
1583     if (isSIMDVectorType(Context, FT))
1584       return true;
1585 
1586     if (isRecordWithSIMDVectorType(Context, FT))
1587       return true;
1588   }
1589 
1590   return false;
1591 }
1592 
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const1593 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1594                                                  unsigned Align) const {
1595   // Otherwise, if the alignment is less than or equal to the minimum ABI
1596   // alignment, just use the default; the backend will handle this.
1597   if (Align <= MinABIStackAlignInBytes)
1598     return 0; // Use default alignment.
1599 
1600   // On non-Darwin, the stack type alignment is always 4.
1601   if (!IsDarwinVectorABI) {
1602     // Set explicit alignment, since we may need to realign the top.
1603     return MinABIStackAlignInBytes;
1604   }
1605 
1606   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1607   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1608                       isRecordWithSIMDVectorType(getContext(), Ty)))
1609     return 16;
1610 
1611   return MinABIStackAlignInBytes;
1612 }
1613 
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const1614 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1615                                             CCState &State) const {
1616   if (!ByVal) {
1617     if (State.FreeRegs) {
1618       --State.FreeRegs; // Non-byval indirects just use one pointer.
1619       if (!IsMCUABI)
1620         return getNaturalAlignIndirectInReg(Ty);
1621     }
1622     return getNaturalAlignIndirect(Ty, false);
1623   }
1624 
1625   // Compute the byval alignment.
1626   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1627   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1628   if (StackAlign == 0)
1629     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1630 
1631   // If the stack alignment is less than the type alignment, realign the
1632   // argument.
1633   bool Realign = TypeAlign > StackAlign;
1634   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1635                                  /*ByVal=*/true, Realign);
1636 }
1637 
classify(QualType Ty) const1638 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1639   const Type *T = isSingleElementStruct(Ty, getContext());
1640   if (!T)
1641     T = Ty.getTypePtr();
1642 
1643   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1644     BuiltinType::Kind K = BT->getKind();
1645     if (K == BuiltinType::Float || K == BuiltinType::Double)
1646       return Float;
1647   }
1648   return Integer;
1649 }
1650 
updateFreeRegs(QualType Ty,CCState & State) const1651 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1652   if (!IsSoftFloatABI) {
1653     Class C = classify(Ty);
1654     if (C == Float)
1655       return false;
1656   }
1657 
1658   unsigned Size = getContext().getTypeSize(Ty);
1659   unsigned SizeInRegs = (Size + 31) / 32;
1660 
1661   if (SizeInRegs == 0)
1662     return false;
1663 
1664   if (!IsMCUABI) {
1665     if (SizeInRegs > State.FreeRegs) {
1666       State.FreeRegs = 0;
1667       return false;
1668     }
1669   } else {
1670     // The MCU psABI allows passing parameters in-reg even if there are
1671     // earlier parameters that are passed on the stack. Also,
1672     // it does not allow passing >8-byte structs in-register,
1673     // even if there are 3 free registers available.
1674     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1675       return false;
1676   }
1677 
1678   State.FreeRegs -= SizeInRegs;
1679   return true;
1680 }
1681 
shouldAggregateUseDirect(QualType Ty,CCState & State,bool & InReg,bool & NeedsPadding) const1682 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1683                                              bool &InReg,
1684                                              bool &NeedsPadding) const {
1685   // On Windows, aggregates other than HFAs are never passed in registers, and
1686   // they do not consume register slots. Homogenous floating-point aggregates
1687   // (HFAs) have already been dealt with at this point.
1688   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1689     return false;
1690 
1691   NeedsPadding = false;
1692   InReg = !IsMCUABI;
1693 
1694   if (!updateFreeRegs(Ty, State))
1695     return false;
1696 
1697   if (IsMCUABI)
1698     return true;
1699 
1700   if (State.CC == llvm::CallingConv::X86_FastCall ||
1701       State.CC == llvm::CallingConv::X86_VectorCall ||
1702       State.CC == llvm::CallingConv::X86_RegCall) {
1703     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1704       NeedsPadding = true;
1705 
1706     return false;
1707   }
1708 
1709   return true;
1710 }
1711 
shouldPrimitiveUseInReg(QualType Ty,CCState & State) const1712 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1713   if (!updateFreeRegs(Ty, State))
1714     return false;
1715 
1716   if (IsMCUABI)
1717     return false;
1718 
1719   if (State.CC == llvm::CallingConv::X86_FastCall ||
1720       State.CC == llvm::CallingConv::X86_VectorCall ||
1721       State.CC == llvm::CallingConv::X86_RegCall) {
1722     if (getContext().getTypeSize(Ty) > 32)
1723       return false;
1724 
1725     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1726         Ty->isReferenceType());
1727   }
1728 
1729   return true;
1730 }
1731 
runVectorCallFirstPass(CGFunctionInfo & FI,CCState & State) const1732 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1733   // Vectorcall x86 works subtly different than in x64, so the format is
1734   // a bit different than the x64 version.  First, all vector types (not HVAs)
1735   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1736   // This differs from the x64 implementation, where the first 6 by INDEX get
1737   // registers.
1738   // In the second pass over the arguments, HVAs are passed in the remaining
1739   // vector registers if possible, or indirectly by address. The address will be
1740   // passed in ECX/EDX if available. Any other arguments are passed according to
1741   // the usual fastcall rules.
1742   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1743   for (int I = 0, E = Args.size(); I < E; ++I) {
1744     const Type *Base = nullptr;
1745     uint64_t NumElts = 0;
1746     const QualType &Ty = Args[I].type;
1747     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1748         isHomogeneousAggregate(Ty, Base, NumElts)) {
1749       if (State.FreeSSERegs >= NumElts) {
1750         State.FreeSSERegs -= NumElts;
1751         Args[I].info = ABIArgInfo::getDirectInReg();
1752         State.IsPreassigned.set(I);
1753       }
1754     }
1755   }
1756 }
1757 
classifyArgumentType(QualType Ty,CCState & State) const1758 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1759                                                CCState &State) const {
1760   // FIXME: Set alignment on indirect arguments.
1761   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1762   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1763   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1764 
1765   Ty = useFirstFieldIfTransparentUnion(Ty);
1766   TypeInfo TI = getContext().getTypeInfo(Ty);
1767 
1768   // Check with the C++ ABI first.
1769   const RecordType *RT = Ty->getAs<RecordType>();
1770   if (RT) {
1771     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1772     if (RAA == CGCXXABI::RAA_Indirect) {
1773       return getIndirectResult(Ty, false, State);
1774     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1775       // The field index doesn't matter, we'll fix it up later.
1776       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1777     }
1778   }
1779 
1780   // Regcall uses the concept of a homogenous vector aggregate, similar
1781   // to other targets.
1782   const Type *Base = nullptr;
1783   uint64_t NumElts = 0;
1784   if ((IsRegCall || IsVectorCall) &&
1785       isHomogeneousAggregate(Ty, Base, NumElts)) {
1786     if (State.FreeSSERegs >= NumElts) {
1787       State.FreeSSERegs -= NumElts;
1788 
1789       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1790       // does.
1791       if (IsVectorCall)
1792         return getDirectX86Hva();
1793 
1794       if (Ty->isBuiltinType() || Ty->isVectorType())
1795         return ABIArgInfo::getDirect();
1796       return ABIArgInfo::getExpand();
1797     }
1798     return getIndirectResult(Ty, /*ByVal=*/false, State);
1799   }
1800 
1801   if (isAggregateTypeForABI(Ty)) {
1802     // Structures with flexible arrays are always indirect.
1803     // FIXME: This should not be byval!
1804     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1805       return getIndirectResult(Ty, true, State);
1806 
1807     // Ignore empty structs/unions on non-Windows.
1808     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1809       return ABIArgInfo::getIgnore();
1810 
1811     llvm::LLVMContext &LLVMContext = getVMContext();
1812     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1813     bool NeedsPadding = false;
1814     bool InReg;
1815     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1816       unsigned SizeInRegs = (TI.Width + 31) / 32;
1817       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1818       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1819       if (InReg)
1820         return ABIArgInfo::getDirectInReg(Result);
1821       else
1822         return ABIArgInfo::getDirect(Result);
1823     }
1824     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1825 
1826     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1827     // added in MSVC 2015.
1828     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1829       return getIndirectResult(Ty, /*ByVal=*/false, State);
1830 
1831     // Expand small (<= 128-bit) record types when we know that the stack layout
1832     // of those arguments will match the struct. This is important because the
1833     // LLVM backend isn't smart enough to remove byval, which inhibits many
1834     // optimizations.
1835     // Don't do this for the MCU if there are still free integer registers
1836     // (see X86_64 ABI for full explanation).
1837     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1838         canExpandIndirectArgument(Ty))
1839       return ABIArgInfo::getExpandWithPadding(
1840           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1841 
1842     return getIndirectResult(Ty, true, State);
1843   }
1844 
1845   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1846     // On Windows, vectors are passed directly if registers are available, or
1847     // indirectly if not. This avoids the need to align argument memory. Pass
1848     // user-defined vector types larger than 512 bits indirectly for simplicity.
1849     if (IsWin32StructABI) {
1850       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1851         --State.FreeSSERegs;
1852         return ABIArgInfo::getDirectInReg();
1853       }
1854       return getIndirectResult(Ty, /*ByVal=*/false, State);
1855     }
1856 
1857     // On Darwin, some vectors are passed in memory, we handle this by passing
1858     // it as an i8/i16/i32/i64.
1859     if (IsDarwinVectorABI) {
1860       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1861           (TI.Width == 64 && VT->getNumElements() == 1))
1862         return ABIArgInfo::getDirect(
1863             llvm::IntegerType::get(getVMContext(), TI.Width));
1864     }
1865 
1866     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1867       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1868 
1869     return ABIArgInfo::getDirect();
1870   }
1871 
1872 
1873   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1874     Ty = EnumTy->getDecl()->getIntegerType();
1875 
1876   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1877 
1878   if (isPromotableIntegerTypeForABI(Ty)) {
1879     if (InReg)
1880       return ABIArgInfo::getExtendInReg(Ty);
1881     return ABIArgInfo::getExtend(Ty);
1882   }
1883 
1884   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1885     if (EIT->getNumBits() <= 64) {
1886       if (InReg)
1887         return ABIArgInfo::getDirectInReg();
1888       return ABIArgInfo::getDirect();
1889     }
1890     return getIndirectResult(Ty, /*ByVal=*/false, State);
1891   }
1892 
1893   if (InReg)
1894     return ABIArgInfo::getDirectInReg();
1895   return ABIArgInfo::getDirect();
1896 }
1897 
computeInfo(CGFunctionInfo & FI) const1898 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1899   CCState State(FI);
1900   if (IsMCUABI)
1901     State.FreeRegs = 3;
1902   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1903     State.FreeRegs = 2;
1904     State.FreeSSERegs = 3;
1905   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1906     State.FreeRegs = 2;
1907     State.FreeSSERegs = 6;
1908   } else if (FI.getHasRegParm())
1909     State.FreeRegs = FI.getRegParm();
1910   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1911     State.FreeRegs = 5;
1912     State.FreeSSERegs = 8;
1913   } else if (IsWin32StructABI) {
1914     // Since MSVC 2015, the first three SSE vectors have been passed in
1915     // registers. The rest are passed indirectly.
1916     State.FreeRegs = DefaultNumRegisterParameters;
1917     State.FreeSSERegs = 3;
1918   } else
1919     State.FreeRegs = DefaultNumRegisterParameters;
1920 
1921   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1922     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1923   } else if (FI.getReturnInfo().isIndirect()) {
1924     // The C++ ABI is not aware of register usage, so we have to check if the
1925     // return value was sret and put it in a register ourselves if appropriate.
1926     if (State.FreeRegs) {
1927       --State.FreeRegs;  // The sret parameter consumes a register.
1928       if (!IsMCUABI)
1929         FI.getReturnInfo().setInReg(true);
1930     }
1931   }
1932 
1933   // The chain argument effectively gives us another free register.
1934   if (FI.isChainCall())
1935     ++State.FreeRegs;
1936 
1937   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1938   // arguments to XMM registers as available.
1939   if (State.CC == llvm::CallingConv::X86_VectorCall)
1940     runVectorCallFirstPass(FI, State);
1941 
1942   bool UsedInAlloca = false;
1943   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1944   for (int I = 0, E = Args.size(); I < E; ++I) {
1945     // Skip arguments that have already been assigned.
1946     if (State.IsPreassigned.test(I))
1947       continue;
1948 
1949     Args[I].info = classifyArgumentType(Args[I].type, State);
1950     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1951   }
1952 
1953   // If we needed to use inalloca for any argument, do a second pass and rewrite
1954   // all the memory arguments to use inalloca.
1955   if (UsedInAlloca)
1956     rewriteWithInAlloca(FI);
1957 }
1958 
1959 void
addFieldToArgStruct(SmallVector<llvm::Type *,6> & FrameFields,CharUnits & StackOffset,ABIArgInfo & Info,QualType Type) const1960 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1961                                    CharUnits &StackOffset, ABIArgInfo &Info,
1962                                    QualType Type) const {
1963   // Arguments are always 4-byte-aligned.
1964   CharUnits WordSize = CharUnits::fromQuantity(4);
1965   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1966 
1967   // sret pointers and indirect things will require an extra pointer
1968   // indirection, unless they are byval. Most things are byval, and will not
1969   // require this indirection.
1970   bool IsIndirect = false;
1971   if (Info.isIndirect() && !Info.getIndirectByVal())
1972     IsIndirect = true;
1973   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1974   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1975   if (IsIndirect)
1976     LLTy = LLTy->getPointerTo(0);
1977   FrameFields.push_back(LLTy);
1978   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1979 
1980   // Insert padding bytes to respect alignment.
1981   CharUnits FieldEnd = StackOffset;
1982   StackOffset = FieldEnd.alignTo(WordSize);
1983   if (StackOffset != FieldEnd) {
1984     CharUnits NumBytes = StackOffset - FieldEnd;
1985     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1986     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1987     FrameFields.push_back(Ty);
1988   }
1989 }
1990 
isArgInAlloca(const ABIArgInfo & Info)1991 static bool isArgInAlloca(const ABIArgInfo &Info) {
1992   // Leave ignored and inreg arguments alone.
1993   switch (Info.getKind()) {
1994   case ABIArgInfo::InAlloca:
1995     return true;
1996   case ABIArgInfo::Ignore:
1997   case ABIArgInfo::IndirectAliased:
1998     return false;
1999   case ABIArgInfo::Indirect:
2000   case ABIArgInfo::Direct:
2001   case ABIArgInfo::Extend:
2002     return !Info.getInReg();
2003   case ABIArgInfo::Expand:
2004   case ABIArgInfo::CoerceAndExpand:
2005     // These are aggregate types which are never passed in registers when
2006     // inalloca is involved.
2007     return true;
2008   }
2009   llvm_unreachable("invalid enum");
2010 }
2011 
rewriteWithInAlloca(CGFunctionInfo & FI) const2012 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2013   assert(IsWin32StructABI && "inalloca only supported on win32");
2014 
2015   // Build a packed struct type for all of the arguments in memory.
2016   SmallVector<llvm::Type *, 6> FrameFields;
2017 
2018   // The stack alignment is always 4.
2019   CharUnits StackAlign = CharUnits::fromQuantity(4);
2020 
2021   CharUnits StackOffset;
2022   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2023 
2024   // Put 'this' into the struct before 'sret', if necessary.
2025   bool IsThisCall =
2026       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2027   ABIArgInfo &Ret = FI.getReturnInfo();
2028   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2029       isArgInAlloca(I->info)) {
2030     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2031     ++I;
2032   }
2033 
2034   // Put the sret parameter into the inalloca struct if it's in memory.
2035   if (Ret.isIndirect() && !Ret.getInReg()) {
2036     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2037     // On Windows, the hidden sret parameter is always returned in eax.
2038     Ret.setInAllocaSRet(IsWin32StructABI);
2039   }
2040 
2041   // Skip the 'this' parameter in ecx.
2042   if (IsThisCall)
2043     ++I;
2044 
2045   // Put arguments passed in memory into the struct.
2046   for (; I != E; ++I) {
2047     if (isArgInAlloca(I->info))
2048       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2049   }
2050 
2051   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2052                                         /*isPacked=*/true),
2053                   StackAlign);
2054 }
2055 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const2056 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2057                                  Address VAListAddr, QualType Ty) const {
2058 
2059   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2060 
2061   // x86-32 changes the alignment of certain arguments on the stack.
2062   //
2063   // Just messing with TypeInfo like this works because we never pass
2064   // anything indirectly.
2065   TypeInfo.Align = CharUnits::fromQuantity(
2066                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
2067 
2068   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2069                           TypeInfo, CharUnits::fromQuantity(4),
2070                           /*AllowHigherAlign*/ true);
2071 }
2072 
isStructReturnInRegABI(const llvm::Triple & Triple,const CodeGenOptions & Opts)2073 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2074     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2075   assert(Triple.getArch() == llvm::Triple::x86);
2076 
2077   switch (Opts.getStructReturnConvention()) {
2078   case CodeGenOptions::SRCK_Default:
2079     break;
2080   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2081     return false;
2082   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2083     return true;
2084   }
2085 
2086   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2087     return true;
2088 
2089   switch (Triple.getOS()) {
2090   case llvm::Triple::DragonFly:
2091   case llvm::Triple::FreeBSD:
2092   case llvm::Triple::OpenBSD:
2093   case llvm::Triple::Win32:
2094     return true;
2095   default:
2096     return false;
2097   }
2098 }
2099 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2100 void X86_32TargetCodeGenInfo::setTargetAttributes(
2101     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2102   if (GV->isDeclaration())
2103     return;
2104   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2105     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2106       llvm::Function *Fn = cast<llvm::Function>(GV);
2107       Fn->addFnAttr("stackrealign");
2108     }
2109     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2110       llvm::Function *Fn = cast<llvm::Function>(GV);
2111       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2112     }
2113   }
2114 }
2115 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2116 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2117                                                CodeGen::CodeGenFunction &CGF,
2118                                                llvm::Value *Address) const {
2119   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2120 
2121   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2122 
2123   // 0-7 are the eight integer registers;  the order is different
2124   //   on Darwin (for EH), but the range is the same.
2125   // 8 is %eip.
2126   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2127 
2128   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2129     // 12-16 are st(0..4).  Not sure why we stop at 4.
2130     // These have size 16, which is sizeof(long double) on
2131     // platforms with 8-byte alignment for that type.
2132     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2133     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2134 
2135   } else {
2136     // 9 is %eflags, which doesn't get a size on Darwin for some
2137     // reason.
2138     Builder.CreateAlignedStore(
2139         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2140                                CharUnits::One());
2141 
2142     // 11-16 are st(0..5).  Not sure why we stop at 5.
2143     // These have size 12, which is sizeof(long double) on
2144     // platforms with 4-byte alignment for that type.
2145     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2146     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2147   }
2148 
2149   return false;
2150 }
2151 
2152 //===----------------------------------------------------------------------===//
2153 // X86-64 ABI Implementation
2154 //===----------------------------------------------------------------------===//
2155 
2156 
2157 namespace {
2158 /// The AVX ABI level for X86 targets.
2159 enum class X86AVXABILevel {
2160   None,
2161   AVX,
2162   AVX512
2163 };
2164 
2165 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel)2166 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2167   switch (AVXLevel) {
2168   case X86AVXABILevel::AVX512:
2169     return 512;
2170   case X86AVXABILevel::AVX:
2171     return 256;
2172   case X86AVXABILevel::None:
2173     return 128;
2174   }
2175   llvm_unreachable("Unknown AVXLevel");
2176 }
2177 
2178 /// X86_64ABIInfo - The X86_64 ABI information.
2179 class X86_64ABIInfo : public SwiftABIInfo {
2180   enum Class {
2181     Integer = 0,
2182     SSE,
2183     SSEUp,
2184     X87,
2185     X87Up,
2186     ComplexX87,
2187     NoClass,
2188     Memory
2189   };
2190 
2191   /// merge - Implement the X86_64 ABI merging algorithm.
2192   ///
2193   /// Merge an accumulating classification \arg Accum with a field
2194   /// classification \arg Field.
2195   ///
2196   /// \param Accum - The accumulating classification. This should
2197   /// always be either NoClass or the result of a previous merge
2198   /// call. In addition, this should never be Memory (the caller
2199   /// should just return Memory for the aggregate).
2200   static Class merge(Class Accum, Class Field);
2201 
2202   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2203   ///
2204   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2205   /// final MEMORY or SSE classes when necessary.
2206   ///
2207   /// \param AggregateSize - The size of the current aggregate in
2208   /// the classification process.
2209   ///
2210   /// \param Lo - The classification for the parts of the type
2211   /// residing in the low word of the containing object.
2212   ///
2213   /// \param Hi - The classification for the parts of the type
2214   /// residing in the higher words of the containing object.
2215   ///
2216   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2217 
2218   /// classify - Determine the x86_64 register classes in which the
2219   /// given type T should be passed.
2220   ///
2221   /// \param Lo - The classification for the parts of the type
2222   /// residing in the low word of the containing object.
2223   ///
2224   /// \param Hi - The classification for the parts of the type
2225   /// residing in the high word of the containing object.
2226   ///
2227   /// \param OffsetBase - The bit offset of this type in the
2228   /// containing object.  Some parameters are classified different
2229   /// depending on whether they straddle an eightbyte boundary.
2230   ///
2231   /// \param isNamedArg - Whether the argument in question is a "named"
2232   /// argument, as used in AMD64-ABI 3.5.7.
2233   ///
2234   /// If a word is unused its result will be NoClass; if a type should
2235   /// be passed in Memory then at least the classification of \arg Lo
2236   /// will be Memory.
2237   ///
2238   /// The \arg Lo class will be NoClass iff the argument is ignored.
2239   ///
2240   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2241   /// also be ComplexX87.
2242   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2243                 bool isNamedArg) const;
2244 
2245   llvm::Type *GetByteVectorType(QualType Ty) const;
2246   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2247                                  unsigned IROffset, QualType SourceTy,
2248                                  unsigned SourceOffset) const;
2249   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2250                                      unsigned IROffset, QualType SourceTy,
2251                                      unsigned SourceOffset) const;
2252 
2253   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2254   /// such that the argument will be returned in memory.
2255   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2256 
2257   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2258   /// such that the argument will be passed in memory.
2259   ///
2260   /// \param freeIntRegs - The number of free integer registers remaining
2261   /// available.
2262   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2263 
2264   ABIArgInfo classifyReturnType(QualType RetTy) const;
2265 
2266   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2267                                   unsigned &neededInt, unsigned &neededSSE,
2268                                   bool isNamedArg) const;
2269 
2270   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2271                                        unsigned &NeededSSE) const;
2272 
2273   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2274                                            unsigned &NeededSSE) const;
2275 
2276   bool IsIllegalVectorType(QualType Ty) const;
2277 
2278   /// The 0.98 ABI revision clarified a lot of ambiguities,
2279   /// unfortunately in ways that were not always consistent with
2280   /// certain previous compilers.  In particular, platforms which
2281   /// required strict binary compatibility with older versions of GCC
2282   /// may need to exempt themselves.
honorsRevision0_98() const2283   bool honorsRevision0_98() const {
2284     return !getTarget().getTriple().isOSDarwin();
2285   }
2286 
2287   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2288   /// classify it as INTEGER (for compatibility with older clang compilers).
classifyIntegerMMXAsSSE() const2289   bool classifyIntegerMMXAsSSE() const {
2290     // Clang <= 3.8 did not do this.
2291     if (getContext().getLangOpts().getClangABICompat() <=
2292         LangOptions::ClangABI::Ver3_8)
2293       return false;
2294 
2295     const llvm::Triple &Triple = getTarget().getTriple();
2296     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2297       return false;
2298     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2299       return false;
2300     return true;
2301   }
2302 
2303   // GCC classifies vectors of __int128 as memory.
passInt128VectorsInMem() const2304   bool passInt128VectorsInMem() const {
2305     // Clang <= 9.0 did not do this.
2306     if (getContext().getLangOpts().getClangABICompat() <=
2307         LangOptions::ClangABI::Ver9)
2308       return false;
2309 
2310     const llvm::Triple &T = getTarget().getTriple();
2311     return T.isOSLinux() || T.isOSNetBSD();
2312   }
2313 
2314   X86AVXABILevel AVXLevel;
2315   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2316   // 64-bit hardware.
2317   bool Has64BitPointers;
2318 
2319 public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)2320   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2321       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2322       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2323   }
2324 
isPassedUsingAVXType(QualType type) const2325   bool isPassedUsingAVXType(QualType type) const {
2326     unsigned neededInt, neededSSE;
2327     // The freeIntRegs argument doesn't matter here.
2328     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2329                                            /*isNamedArg*/true);
2330     if (info.isDirect()) {
2331       llvm::Type *ty = info.getCoerceToType();
2332       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2333         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2334     }
2335     return false;
2336   }
2337 
2338   void computeInfo(CGFunctionInfo &FI) const override;
2339 
2340   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2341                     QualType Ty) const override;
2342   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2343                       QualType Ty) const override;
2344 
has64BitPointers() const2345   bool has64BitPointers() const {
2346     return Has64BitPointers;
2347   }
2348 
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const2349   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2350                                     bool asReturnValue) const override {
2351     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2352   }
isSwiftErrorInRegister() const2353   bool isSwiftErrorInRegister() const override {
2354     return true;
2355   }
2356 };
2357 
2358 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2359 class WinX86_64ABIInfo : public SwiftABIInfo {
2360 public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)2361   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2362       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2363         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2364 
2365   void computeInfo(CGFunctionInfo &FI) const override;
2366 
2367   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2368                     QualType Ty) const override;
2369 
isHomogeneousAggregateBaseType(QualType Ty) const2370   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2371     // FIXME: Assumes vectorcall is in use.
2372     return isX86VectorTypeForVectorCall(getContext(), Ty);
2373   }
2374 
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const2375   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2376                                          uint64_t NumMembers) const override {
2377     // FIXME: Assumes vectorcall is in use.
2378     return isX86VectorCallAggregateSmallEnough(NumMembers);
2379   }
2380 
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const2381   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2382                                     bool asReturnValue) const override {
2383     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2384   }
2385 
isSwiftErrorInRegister() const2386   bool isSwiftErrorInRegister() const override {
2387     return true;
2388   }
2389 
2390 private:
2391   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2392                       bool IsVectorCall, bool IsRegCall) const;
2393   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2394                                       const ABIArgInfo &current) const;
2395   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2396                              bool IsVectorCall, bool IsRegCall) const;
2397 
2398   X86AVXABILevel AVXLevel;
2399 
2400   bool IsMingw64;
2401 };
2402 
2403 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2404 public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)2405   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2406       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2407 
getABIInfo() const2408   const X86_64ABIInfo &getABIInfo() const {
2409     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2410   }
2411 
2412   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2413   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
markARCOptimizedReturnCallsAsNoTail() const2414   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2415 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const2416   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2417     return 7;
2418   }
2419 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2420   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2421                                llvm::Value *Address) const override {
2422     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2423 
2424     // 0-15 are the 16 integer registers.
2425     // 16 is %rip.
2426     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2427     return false;
2428   }
2429 
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const2430   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2431                                   StringRef Constraint,
2432                                   llvm::Type* Ty) const override {
2433     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2434   }
2435 
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const2436   bool isNoProtoCallVariadic(const CallArgList &args,
2437                              const FunctionNoProtoType *fnType) const override {
2438     // The default CC on x86-64 sets %al to the number of SSA
2439     // registers used, and GCC sets this when calling an unprototyped
2440     // function, so we override the default behavior.  However, don't do
2441     // that when AVX types are involved: the ABI explicitly states it is
2442     // undefined, and it doesn't work in practice because of how the ABI
2443     // defines varargs anyway.
2444     if (fnType->getCallConv() == CC_C) {
2445       bool HasAVXType = false;
2446       for (CallArgList::const_iterator
2447              it = args.begin(), ie = args.end(); it != ie; ++it) {
2448         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2449           HasAVXType = true;
2450           break;
2451         }
2452       }
2453 
2454       if (!HasAVXType)
2455         return true;
2456     }
2457 
2458     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2459   }
2460 
2461   llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule & CGM) const2462   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2463     unsigned Sig = (0xeb << 0) | // jmp rel8
2464                    (0x06 << 8) | //           .+0x08
2465                    ('v' << 16) |
2466                    ('2' << 24);
2467     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2468   }
2469 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2470   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2471                            CodeGen::CodeGenModule &CGM) const override {
2472     if (GV->isDeclaration())
2473       return;
2474     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2475       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2476         llvm::Function *Fn = cast<llvm::Function>(GV);
2477         Fn->addFnAttr("stackrealign");
2478       }
2479       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2480         llvm::Function *Fn = cast<llvm::Function>(GV);
2481         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2482       }
2483     }
2484   }
2485 
2486   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2487                             const FunctionDecl *Caller,
2488                             const FunctionDecl *Callee,
2489                             const CallArgList &Args) const override;
2490 };
2491 
initFeatureMaps(const ASTContext & Ctx,llvm::StringMap<bool> & CallerMap,const FunctionDecl * Caller,llvm::StringMap<bool> & CalleeMap,const FunctionDecl * Callee)2492 static void initFeatureMaps(const ASTContext &Ctx,
2493                             llvm::StringMap<bool> &CallerMap,
2494                             const FunctionDecl *Caller,
2495                             llvm::StringMap<bool> &CalleeMap,
2496                             const FunctionDecl *Callee) {
2497   if (CalleeMap.empty() && CallerMap.empty()) {
2498     // The caller is potentially nullptr in the case where the call isn't in a
2499     // function.  In this case, the getFunctionFeatureMap ensures we just get
2500     // the TU level setting (since it cannot be modified by 'target'..
2501     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2502     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2503   }
2504 }
2505 
checkAVXParamFeature(DiagnosticsEngine & Diag,SourceLocation CallLoc,const llvm::StringMap<bool> & CallerMap,const llvm::StringMap<bool> & CalleeMap,QualType Ty,StringRef Feature,bool IsArgument)2506 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2507                                  SourceLocation CallLoc,
2508                                  const llvm::StringMap<bool> &CallerMap,
2509                                  const llvm::StringMap<bool> &CalleeMap,
2510                                  QualType Ty, StringRef Feature,
2511                                  bool IsArgument) {
2512   bool CallerHasFeat = CallerMap.lookup(Feature);
2513   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2514   if (!CallerHasFeat && !CalleeHasFeat)
2515     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2516            << IsArgument << Ty << Feature;
2517 
2518   // Mixing calling conventions here is very clearly an error.
2519   if (!CallerHasFeat || !CalleeHasFeat)
2520     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2521            << IsArgument << Ty << Feature;
2522 
2523   // Else, both caller and callee have the required feature, so there is no need
2524   // to diagnose.
2525   return false;
2526 }
2527 
checkAVXParam(DiagnosticsEngine & Diag,ASTContext & Ctx,SourceLocation CallLoc,const llvm::StringMap<bool> & CallerMap,const llvm::StringMap<bool> & CalleeMap,QualType Ty,bool IsArgument)2528 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2529                           SourceLocation CallLoc,
2530                           const llvm::StringMap<bool> &CallerMap,
2531                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2532                           bool IsArgument) {
2533   uint64_t Size = Ctx.getTypeSize(Ty);
2534   if (Size > 256)
2535     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2536                                 "avx512f", IsArgument);
2537 
2538   if (Size > 128)
2539     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2540                                 IsArgument);
2541 
2542   return false;
2543 }
2544 
checkFunctionCallABI(CodeGenModule & CGM,SourceLocation CallLoc,const FunctionDecl * Caller,const FunctionDecl * Callee,const CallArgList & Args) const2545 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2546     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2547     const FunctionDecl *Callee, const CallArgList &Args) const {
2548   llvm::StringMap<bool> CallerMap;
2549   llvm::StringMap<bool> CalleeMap;
2550   unsigned ArgIndex = 0;
2551 
2552   // We need to loop through the actual call arguments rather than the the
2553   // function's parameters, in case this variadic.
2554   for (const CallArg &Arg : Args) {
2555     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2556     // additionally changes how vectors >256 in size are passed. Like GCC, we
2557     // warn when a function is called with an argument where this will change.
2558     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2559     // the caller and callee features are mismatched.
2560     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2561     // change its ABI with attribute-target after this call.
2562     if (Arg.getType()->isVectorType() &&
2563         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2564       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2565       QualType Ty = Arg.getType();
2566       // The CallArg seems to have desugared the type already, so for clearer
2567       // diagnostics, replace it with the type in the FunctionDecl if possible.
2568       if (ArgIndex < Callee->getNumParams())
2569         Ty = Callee->getParamDecl(ArgIndex)->getType();
2570 
2571       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2572                         CalleeMap, Ty, /*IsArgument*/ true))
2573         return;
2574     }
2575     ++ArgIndex;
2576   }
2577 
2578   // Check return always, as we don't have a good way of knowing in codegen
2579   // whether this value is used, tail-called, etc.
2580   if (Callee->getReturnType()->isVectorType() &&
2581       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2582     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2583     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2584                   CalleeMap, Callee->getReturnType(),
2585                   /*IsArgument*/ false);
2586   }
2587 }
2588 
qualifyWindowsLibrary(llvm::StringRef Lib)2589 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2590   // If the argument does not end in .lib, automatically add the suffix.
2591   // If the argument contains a space, enclose it in quotes.
2592   // This matches the behavior of MSVC.
2593   bool Quote = (Lib.find(" ") != StringRef::npos);
2594   std::string ArgStr = Quote ? "\"" : "";
2595   ArgStr += Lib;
2596   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2597     ArgStr += ".lib";
2598   ArgStr += Quote ? "\"" : "";
2599   return ArgStr;
2600 }
2601 
2602 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2603 public:
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters)2604   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2605         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2606         unsigned NumRegisterParameters)
2607     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2608         Win32StructABI, NumRegisterParameters, false) {}
2609 
2610   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2611                            CodeGen::CodeGenModule &CGM) const override;
2612 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const2613   void getDependentLibraryOption(llvm::StringRef Lib,
2614                                  llvm::SmallString<24> &Opt) const override {
2615     Opt = "/DEFAULTLIB:";
2616     Opt += qualifyWindowsLibrary(Lib);
2617   }
2618 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const2619   void getDetectMismatchOption(llvm::StringRef Name,
2620                                llvm::StringRef Value,
2621                                llvm::SmallString<32> &Opt) const override {
2622     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2623   }
2624 };
2625 
addStackProbeTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM)2626 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2627                                           CodeGen::CodeGenModule &CGM) {
2628   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2629 
2630     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2631       Fn->addFnAttr("stack-probe-size",
2632                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2633     if (CGM.getCodeGenOpts().NoStackArgProbe)
2634       Fn->addFnAttr("no-stack-arg-probe");
2635   }
2636 }
2637 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2638 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2639     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2640   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2641   if (GV->isDeclaration())
2642     return;
2643   addStackProbeTargetAttributes(D, GV, CGM);
2644 }
2645 
2646 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2647 public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)2648   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2649                              X86AVXABILevel AVXLevel)
2650       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2651 
2652   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2653                            CodeGen::CodeGenModule &CGM) const override;
2654 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const2655   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2656     return 7;
2657   }
2658 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const2659   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2660                                llvm::Value *Address) const override {
2661     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2662 
2663     // 0-15 are the 16 integer registers.
2664     // 16 is %rip.
2665     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2666     return false;
2667   }
2668 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const2669   void getDependentLibraryOption(llvm::StringRef Lib,
2670                                  llvm::SmallString<24> &Opt) const override {
2671     Opt = "/DEFAULTLIB:";
2672     Opt += qualifyWindowsLibrary(Lib);
2673   }
2674 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const2675   void getDetectMismatchOption(llvm::StringRef Name,
2676                                llvm::StringRef Value,
2677                                llvm::SmallString<32> &Opt) const override {
2678     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2679   }
2680 };
2681 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const2682 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2683     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2684   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2685   if (GV->isDeclaration())
2686     return;
2687   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2688     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2689       llvm::Function *Fn = cast<llvm::Function>(GV);
2690       Fn->addFnAttr("stackrealign");
2691     }
2692     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2693       llvm::Function *Fn = cast<llvm::Function>(GV);
2694       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2695     }
2696   }
2697 
2698   addStackProbeTargetAttributes(D, GV, CGM);
2699 }
2700 }
2701 
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const2702 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2703                               Class &Hi) const {
2704   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2705   //
2706   // (a) If one of the classes is Memory, the whole argument is passed in
2707   //     memory.
2708   //
2709   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2710   //     memory.
2711   //
2712   // (c) If the size of the aggregate exceeds two eightbytes and the first
2713   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2714   //     argument is passed in memory. NOTE: This is necessary to keep the
2715   //     ABI working for processors that don't support the __m256 type.
2716   //
2717   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2718   //
2719   // Some of these are enforced by the merging logic.  Others can arise
2720   // only with unions; for example:
2721   //   union { _Complex double; unsigned; }
2722   //
2723   // Note that clauses (b) and (c) were added in 0.98.
2724   //
2725   if (Hi == Memory)
2726     Lo = Memory;
2727   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2728     Lo = Memory;
2729   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2730     Lo = Memory;
2731   if (Hi == SSEUp && Lo != SSE)
2732     Hi = SSE;
2733 }
2734 
merge(Class Accum,Class Field)2735 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2736   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2737   // classified recursively so that always two fields are
2738   // considered. The resulting class is calculated according to
2739   // the classes of the fields in the eightbyte:
2740   //
2741   // (a) If both classes are equal, this is the resulting class.
2742   //
2743   // (b) If one of the classes is NO_CLASS, the resulting class is
2744   // the other class.
2745   //
2746   // (c) If one of the classes is MEMORY, the result is the MEMORY
2747   // class.
2748   //
2749   // (d) If one of the classes is INTEGER, the result is the
2750   // INTEGER.
2751   //
2752   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2753   // MEMORY is used as class.
2754   //
2755   // (f) Otherwise class SSE is used.
2756 
2757   // Accum should never be memory (we should have returned) or
2758   // ComplexX87 (because this cannot be passed in a structure).
2759   assert((Accum != Memory && Accum != ComplexX87) &&
2760          "Invalid accumulated classification during merge.");
2761   if (Accum == Field || Field == NoClass)
2762     return Accum;
2763   if (Field == Memory)
2764     return Memory;
2765   if (Accum == NoClass)
2766     return Field;
2767   if (Accum == Integer || Field == Integer)
2768     return Integer;
2769   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2770       Accum == X87 || Accum == X87Up)
2771     return Memory;
2772   return SSE;
2773 }
2774 
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi,bool isNamedArg) const2775 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2776                              Class &Lo, Class &Hi, bool isNamedArg) const {
2777   // FIXME: This code can be simplified by introducing a simple value class for
2778   // Class pairs with appropriate constructor methods for the various
2779   // situations.
2780 
2781   // FIXME: Some of the split computations are wrong; unaligned vectors
2782   // shouldn't be passed in registers for example, so there is no chance they
2783   // can straddle an eightbyte. Verify & simplify.
2784 
2785   Lo = Hi = NoClass;
2786 
2787   Class &Current = OffsetBase < 64 ? Lo : Hi;
2788   Current = Memory;
2789 
2790   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2791     BuiltinType::Kind k = BT->getKind();
2792 
2793     if (k == BuiltinType::Void) {
2794       Current = NoClass;
2795     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2796       Lo = Integer;
2797       Hi = Integer;
2798     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2799       Current = Integer;
2800     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2801       Current = SSE;
2802     } else if (k == BuiltinType::LongDouble) {
2803       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2804       if (LDF == &llvm::APFloat::IEEEquad()) {
2805         Lo = SSE;
2806         Hi = SSEUp;
2807       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2808         Lo = X87;
2809         Hi = X87Up;
2810       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2811         Current = SSE;
2812       } else
2813         llvm_unreachable("unexpected long double representation!");
2814     }
2815     // FIXME: _Decimal32 and _Decimal64 are SSE.
2816     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2817     return;
2818   }
2819 
2820   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2821     // Classify the underlying integer type.
2822     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2823     return;
2824   }
2825 
2826   if (Ty->hasPointerRepresentation()) {
2827     Current = Integer;
2828     return;
2829   }
2830 
2831   if (Ty->isMemberPointerType()) {
2832     if (Ty->isMemberFunctionPointerType()) {
2833       if (Has64BitPointers) {
2834         // If Has64BitPointers, this is an {i64, i64}, so classify both
2835         // Lo and Hi now.
2836         Lo = Hi = Integer;
2837       } else {
2838         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2839         // straddles an eightbyte boundary, Hi should be classified as well.
2840         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2841         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2842         if (EB_FuncPtr != EB_ThisAdj) {
2843           Lo = Hi = Integer;
2844         } else {
2845           Current = Integer;
2846         }
2847       }
2848     } else {
2849       Current = Integer;
2850     }
2851     return;
2852   }
2853 
2854   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2855     uint64_t Size = getContext().getTypeSize(VT);
2856     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2857       // gcc passes the following as integer:
2858       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2859       // 2 bytes - <2 x char>, <1 x short>
2860       // 1 byte  - <1 x char>
2861       Current = Integer;
2862 
2863       // If this type crosses an eightbyte boundary, it should be
2864       // split.
2865       uint64_t EB_Lo = (OffsetBase) / 64;
2866       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2867       if (EB_Lo != EB_Hi)
2868         Hi = Lo;
2869     } else if (Size == 64) {
2870       QualType ElementType = VT->getElementType();
2871 
2872       // gcc passes <1 x double> in memory. :(
2873       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2874         return;
2875 
2876       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2877       // pass them as integer.  For platforms where clang is the de facto
2878       // platform compiler, we must continue to use integer.
2879       if (!classifyIntegerMMXAsSSE() &&
2880           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2881            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2882            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2883            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2884         Current = Integer;
2885       else
2886         Current = SSE;
2887 
2888       // If this type crosses an eightbyte boundary, it should be
2889       // split.
2890       if (OffsetBase && OffsetBase != 64)
2891         Hi = Lo;
2892     } else if (Size == 128 ||
2893                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2894       QualType ElementType = VT->getElementType();
2895 
2896       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2897       if (passInt128VectorsInMem() && Size != 128 &&
2898           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2899            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2900         return;
2901 
2902       // Arguments of 256-bits are split into four eightbyte chunks. The
2903       // least significant one belongs to class SSE and all the others to class
2904       // SSEUP. The original Lo and Hi design considers that types can't be
2905       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2906       // This design isn't correct for 256-bits, but since there're no cases
2907       // where the upper parts would need to be inspected, avoid adding
2908       // complexity and just consider Hi to match the 64-256 part.
2909       //
2910       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2911       // registers if they are "named", i.e. not part of the "..." of a
2912       // variadic function.
2913       //
2914       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2915       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2916       Lo = SSE;
2917       Hi = SSEUp;
2918     }
2919     return;
2920   }
2921 
2922   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2923     QualType ET = getContext().getCanonicalType(CT->getElementType());
2924 
2925     uint64_t Size = getContext().getTypeSize(Ty);
2926     if (ET->isIntegralOrEnumerationType()) {
2927       if (Size <= 64)
2928         Current = Integer;
2929       else if (Size <= 128)
2930         Lo = Hi = Integer;
2931     } else if (ET == getContext().FloatTy) {
2932       Current = SSE;
2933     } else if (ET == getContext().DoubleTy) {
2934       Lo = Hi = SSE;
2935     } else if (ET == getContext().LongDoubleTy) {
2936       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2937       if (LDF == &llvm::APFloat::IEEEquad())
2938         Current = Memory;
2939       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2940         Current = ComplexX87;
2941       else if (LDF == &llvm::APFloat::IEEEdouble())
2942         Lo = Hi = SSE;
2943       else
2944         llvm_unreachable("unexpected long double representation!");
2945     }
2946 
2947     // If this complex type crosses an eightbyte boundary then it
2948     // should be split.
2949     uint64_t EB_Real = (OffsetBase) / 64;
2950     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2951     if (Hi == NoClass && EB_Real != EB_Imag)
2952       Hi = Lo;
2953 
2954     return;
2955   }
2956 
2957   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2958     if (EITy->getNumBits() <= 64)
2959       Current = Integer;
2960     else if (EITy->getNumBits() <= 128)
2961       Lo = Hi = Integer;
2962     // Larger values need to get passed in memory.
2963     return;
2964   }
2965 
2966   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2967     // Arrays are treated like structures.
2968 
2969     uint64_t Size = getContext().getTypeSize(Ty);
2970 
2971     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2972     // than eight eightbytes, ..., it has class MEMORY.
2973     if (Size > 512)
2974       return;
2975 
2976     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2977     // fields, it has class MEMORY.
2978     //
2979     // Only need to check alignment of array base.
2980     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2981       return;
2982 
2983     // Otherwise implement simplified merge. We could be smarter about
2984     // this, but it isn't worth it and would be harder to verify.
2985     Current = NoClass;
2986     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2987     uint64_t ArraySize = AT->getSize().getZExtValue();
2988 
2989     // The only case a 256-bit wide vector could be used is when the array
2990     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2991     // to work for sizes wider than 128, early check and fallback to memory.
2992     //
2993     if (Size > 128 &&
2994         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2995       return;
2996 
2997     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2998       Class FieldLo, FieldHi;
2999       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3000       Lo = merge(Lo, FieldLo);
3001       Hi = merge(Hi, FieldHi);
3002       if (Lo == Memory || Hi == Memory)
3003         break;
3004     }
3005 
3006     postMerge(Size, Lo, Hi);
3007     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3008     return;
3009   }
3010 
3011   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3012     uint64_t Size = getContext().getTypeSize(Ty);
3013 
3014     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3015     // than eight eightbytes, ..., it has class MEMORY.
3016     if (Size > 512)
3017       return;
3018 
3019     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3020     // copy constructor or a non-trivial destructor, it is passed by invisible
3021     // reference.
3022     if (getRecordArgABI(RT, getCXXABI()))
3023       return;
3024 
3025     const RecordDecl *RD = RT->getDecl();
3026 
3027     // Assume variable sized types are passed in memory.
3028     if (RD->hasFlexibleArrayMember())
3029       return;
3030 
3031     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3032 
3033     // Reset Lo class, this will be recomputed.
3034     Current = NoClass;
3035 
3036     // If this is a C++ record, classify the bases first.
3037     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3038       for (const auto &I : CXXRD->bases()) {
3039         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3040                "Unexpected base class!");
3041         const auto *Base =
3042             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3043 
3044         // Classify this field.
3045         //
3046         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3047         // single eightbyte, each is classified separately. Each eightbyte gets
3048         // initialized to class NO_CLASS.
3049         Class FieldLo, FieldHi;
3050         uint64_t Offset =
3051           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3052         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3053         Lo = merge(Lo, FieldLo);
3054         Hi = merge(Hi, FieldHi);
3055         if (Lo == Memory || Hi == Memory) {
3056           postMerge(Size, Lo, Hi);
3057           return;
3058         }
3059       }
3060     }
3061 
3062     // Classify the fields one at a time, merging the results.
3063     unsigned idx = 0;
3064     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
3065                                 LangOptions::ClangABI::Ver11 ||
3066                             getContext().getTargetInfo().getTriple().isPS4();
3067     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
3068 
3069     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3070            i != e; ++i, ++idx) {
3071       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3072       bool BitField = i->isBitField();
3073 
3074       // Ignore padding bit-fields.
3075       if (BitField && i->isUnnamedBitfield())
3076         continue;
3077 
3078       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3079       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
3080       //
3081       // The only case a 256-bit or a 512-bit wide vector could be used is when
3082       // the struct contains a single 256-bit or 512-bit element. Early check
3083       // and fallback to memory.
3084       //
3085       // FIXME: Extended the Lo and Hi logic properly to work for size wider
3086       // than 128.
3087       if (Size > 128 &&
3088           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
3089            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3090         Lo = Memory;
3091         postMerge(Size, Lo, Hi);
3092         return;
3093       }
3094       // Note, skip this test for bit-fields, see below.
3095       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3096         Lo = Memory;
3097         postMerge(Size, Lo, Hi);
3098         return;
3099       }
3100 
3101       // Classify this field.
3102       //
3103       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3104       // exceeds a single eightbyte, each is classified
3105       // separately. Each eightbyte gets initialized to class
3106       // NO_CLASS.
3107       Class FieldLo, FieldHi;
3108 
3109       // Bit-fields require special handling, they do not force the
3110       // structure to be passed in memory even if unaligned, and
3111       // therefore they can straddle an eightbyte.
3112       if (BitField) {
3113         assert(!i->isUnnamedBitfield());
3114         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3115         uint64_t Size = i->getBitWidthValue(getContext());
3116 
3117         uint64_t EB_Lo = Offset / 64;
3118         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3119 
3120         if (EB_Lo) {
3121           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3122           FieldLo = NoClass;
3123           FieldHi = Integer;
3124         } else {
3125           FieldLo = Integer;
3126           FieldHi = EB_Hi ? Integer : NoClass;
3127         }
3128       } else
3129         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3130       Lo = merge(Lo, FieldLo);
3131       Hi = merge(Hi, FieldHi);
3132       if (Lo == Memory || Hi == Memory)
3133         break;
3134     }
3135 
3136     postMerge(Size, Lo, Hi);
3137   }
3138 }
3139 
getIndirectReturnResult(QualType Ty) const3140 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3141   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3142   // place naturally.
3143   if (!isAggregateTypeForABI(Ty)) {
3144     // Treat an enum type as its underlying type.
3145     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3146       Ty = EnumTy->getDecl()->getIntegerType();
3147 
3148     if (Ty->isExtIntType())
3149       return getNaturalAlignIndirect(Ty);
3150 
3151     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3152                                               : ABIArgInfo::getDirect());
3153   }
3154 
3155   return getNaturalAlignIndirect(Ty);
3156 }
3157 
IsIllegalVectorType(QualType Ty) const3158 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3159   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3160     uint64_t Size = getContext().getTypeSize(VecTy);
3161     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3162     if (Size <= 64 || Size > LargestVector)
3163       return true;
3164     QualType EltTy = VecTy->getElementType();
3165     if (passInt128VectorsInMem() &&
3166         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3167          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3168       return true;
3169   }
3170 
3171   return false;
3172 }
3173 
getIndirectResult(QualType Ty,unsigned freeIntRegs) const3174 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3175                                             unsigned freeIntRegs) const {
3176   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3177   // place naturally.
3178   //
3179   // This assumption is optimistic, as there could be free registers available
3180   // when we need to pass this argument in memory, and LLVM could try to pass
3181   // the argument in the free register. This does not seem to happen currently,
3182   // but this code would be much safer if we could mark the argument with
3183   // 'onstack'. See PR12193.
3184   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3185       !Ty->isExtIntType()) {
3186     // Treat an enum type as its underlying type.
3187     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3188       Ty = EnumTy->getDecl()->getIntegerType();
3189 
3190     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3191                                               : ABIArgInfo::getDirect());
3192   }
3193 
3194   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3195     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3196 
3197   // Compute the byval alignment. We specify the alignment of the byval in all
3198   // cases so that the mid-level optimizer knows the alignment of the byval.
3199   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3200 
3201   // Attempt to avoid passing indirect results using byval when possible. This
3202   // is important for good codegen.
3203   //
3204   // We do this by coercing the value into a scalar type which the backend can
3205   // handle naturally (i.e., without using byval).
3206   //
3207   // For simplicity, we currently only do this when we have exhausted all of the
3208   // free integer registers. Doing this when there are free integer registers
3209   // would require more care, as we would have to ensure that the coerced value
3210   // did not claim the unused register. That would require either reording the
3211   // arguments to the function (so that any subsequent inreg values came first),
3212   // or only doing this optimization when there were no following arguments that
3213   // might be inreg.
3214   //
3215   // We currently expect it to be rare (particularly in well written code) for
3216   // arguments to be passed on the stack when there are still free integer
3217   // registers available (this would typically imply large structs being passed
3218   // by value), so this seems like a fair tradeoff for now.
3219   //
3220   // We can revisit this if the backend grows support for 'onstack' parameter
3221   // attributes. See PR12193.
3222   if (freeIntRegs == 0) {
3223     uint64_t Size = getContext().getTypeSize(Ty);
3224 
3225     // If this type fits in an eightbyte, coerce it into the matching integral
3226     // type, which will end up on the stack (with alignment 8).
3227     if (Align == 8 && Size <= 64)
3228       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3229                                                           Size));
3230   }
3231 
3232   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3233 }
3234 
3235 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3236 /// register. Pick an LLVM IR type that will be passed as a vector register.
GetByteVectorType(QualType Ty) const3237 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3238   // Wrapper structs/arrays that only contain vectors are passed just like
3239   // vectors; strip them off if present.
3240   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3241     Ty = QualType(InnerTy, 0);
3242 
3243   llvm::Type *IRType = CGT.ConvertType(Ty);
3244   if (isa<llvm::VectorType>(IRType)) {
3245     // Don't pass vXi128 vectors in their native type, the backend can't
3246     // legalize them.
3247     if (passInt128VectorsInMem() &&
3248         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3249       // Use a vXi64 vector.
3250       uint64_t Size = getContext().getTypeSize(Ty);
3251       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3252                                         Size / 64);
3253     }
3254 
3255     return IRType;
3256   }
3257 
3258   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3259     return IRType;
3260 
3261   // We couldn't find the preferred IR vector type for 'Ty'.
3262   uint64_t Size = getContext().getTypeSize(Ty);
3263   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3264 
3265 
3266   // Return a LLVM IR vector type based on the size of 'Ty'.
3267   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3268                                     Size / 64);
3269 }
3270 
3271 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3272 /// is known to either be off the end of the specified type or being in
3273 /// alignment padding.  The user type specified is known to be at most 128 bits
3274 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3275 /// classification that put one of the two halves in the INTEGER class.
3276 ///
3277 /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)3278 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3279                                   unsigned EndBit, ASTContext &Context) {
3280   // If the bytes being queried are off the end of the type, there is no user
3281   // data hiding here.  This handles analysis of builtins, vectors and other
3282   // types that don't contain interesting padding.
3283   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3284   if (TySize <= StartBit)
3285     return true;
3286 
3287   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3288     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3289     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3290 
3291     // Check each element to see if the element overlaps with the queried range.
3292     for (unsigned i = 0; i != NumElts; ++i) {
3293       // If the element is after the span we care about, then we're done..
3294       unsigned EltOffset = i*EltSize;
3295       if (EltOffset >= EndBit) break;
3296 
3297       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3298       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3299                                  EndBit-EltOffset, Context))
3300         return false;
3301     }
3302     // If it overlaps no elements, then it is safe to process as padding.
3303     return true;
3304   }
3305 
3306   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3307     const RecordDecl *RD = RT->getDecl();
3308     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3309 
3310     // If this is a C++ record, check the bases first.
3311     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3312       for (const auto &I : CXXRD->bases()) {
3313         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3314                "Unexpected base class!");
3315         const auto *Base =
3316             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3317 
3318         // If the base is after the span we care about, ignore it.
3319         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3320         if (BaseOffset >= EndBit) continue;
3321 
3322         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3323         if (!BitsContainNoUserData(I.getType(), BaseStart,
3324                                    EndBit-BaseOffset, Context))
3325           return false;
3326       }
3327     }
3328 
3329     // Verify that no field has data that overlaps the region of interest.  Yes
3330     // this could be sped up a lot by being smarter about queried fields,
3331     // however we're only looking at structs up to 16 bytes, so we don't care
3332     // much.
3333     unsigned idx = 0;
3334     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3335          i != e; ++i, ++idx) {
3336       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3337 
3338       // If we found a field after the region we care about, then we're done.
3339       if (FieldOffset >= EndBit) break;
3340 
3341       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3342       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3343                                  Context))
3344         return false;
3345     }
3346 
3347     // If nothing in this record overlapped the area of interest, then we're
3348     // clean.
3349     return true;
3350   }
3351 
3352   return false;
3353 }
3354 
3355 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3356 /// float member at the specified offset.  For example, {int,{float}} has a
3357 /// float at offset 4.  It is conservatively correct for this routine to return
3358 /// false.
ContainsFloatAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::DataLayout & TD)3359 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3360                                   const llvm::DataLayout &TD) {
3361   // Base case if we find a float.
3362   if (IROffset == 0 && IRType->isFloatTy())
3363     return true;
3364 
3365   // If this is a struct, recurse into the field at the specified offset.
3366   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3367     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3368     unsigned Elt = SL->getElementContainingOffset(IROffset);
3369     IROffset -= SL->getElementOffset(Elt);
3370     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3371   }
3372 
3373   // If this is an array, recurse into the field at the specified offset.
3374   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3375     llvm::Type *EltTy = ATy->getElementType();
3376     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3377     IROffset -= IROffset/EltSize*EltSize;
3378     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3379   }
3380 
3381   return false;
3382 }
3383 
3384 
3385 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3386 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3387 llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const3388 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3389                    QualType SourceTy, unsigned SourceOffset) const {
3390   // The only three choices we have are either double, <2 x float>, or float. We
3391   // pass as float if the last 4 bytes is just padding.  This happens for
3392   // structs that contain 3 floats.
3393   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3394                             SourceOffset*8+64, getContext()))
3395     return llvm::Type::getFloatTy(getVMContext());
3396 
3397   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3398   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3399   // case.
3400   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3401       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3402     return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
3403                                       2);
3404 
3405   return llvm::Type::getDoubleTy(getVMContext());
3406 }
3407 
3408 
3409 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3410 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3411 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3412 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3413 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3414 /// etc).
3415 ///
3416 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3417 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3418 /// the 8-byte value references.  PrefType may be null.
3419 ///
3420 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3421 /// an offset into this that we're processing (which is always either 0 or 8).
3422 ///
3423 llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const3424 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3425                        QualType SourceTy, unsigned SourceOffset) const {
3426   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3427   // returning an 8-byte unit starting with it.  See if we can safely use it.
3428   if (IROffset == 0) {
3429     // Pointers and int64's always fill the 8-byte unit.
3430     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3431         IRType->isIntegerTy(64))
3432       return IRType;
3433 
3434     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3435     // goodness in the source type is just tail padding.  This is allowed to
3436     // kick in for struct {double,int} on the int, but not on
3437     // struct{double,int,int} because we wouldn't return the second int.  We
3438     // have to do this analysis on the source type because we can't depend on
3439     // unions being lowered a specific way etc.
3440     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3441         IRType->isIntegerTy(32) ||
3442         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3443       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3444           cast<llvm::IntegerType>(IRType)->getBitWidth();
3445 
3446       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3447                                 SourceOffset*8+64, getContext()))
3448         return IRType;
3449     }
3450   }
3451 
3452   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3453     // If this is a struct, recurse into the field at the specified offset.
3454     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3455     if (IROffset < SL->getSizeInBytes()) {
3456       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3457       IROffset -= SL->getElementOffset(FieldIdx);
3458 
3459       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3460                                     SourceTy, SourceOffset);
3461     }
3462   }
3463 
3464   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3465     llvm::Type *EltTy = ATy->getElementType();
3466     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3467     unsigned EltOffset = IROffset/EltSize*EltSize;
3468     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3469                                   SourceOffset);
3470   }
3471 
3472   // Okay, we don't have any better idea of what to pass, so we pass this in an
3473   // integer register that isn't too big to fit the rest of the struct.
3474   unsigned TySizeInBytes =
3475     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3476 
3477   assert(TySizeInBytes != SourceOffset && "Empty field?");
3478 
3479   // It is always safe to classify this as an integer type up to i64 that
3480   // isn't larger than the structure.
3481   return llvm::IntegerType::get(getVMContext(),
3482                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3483 }
3484 
3485 
3486 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3487 /// be used as elements of a two register pair to pass or return, return a
3488 /// first class aggregate to represent them.  For example, if the low part of
3489 /// a by-value argument should be passed as i32* and the high part as float,
3490 /// return {i32*, float}.
3491 static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::DataLayout & TD)3492 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3493                            const llvm::DataLayout &TD) {
3494   // In order to correctly satisfy the ABI, we need to the high part to start
3495   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3496   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3497   // the second element at offset 8.  Check for this:
3498   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3499   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3500   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3501   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3502 
3503   // To handle this, we have to increase the size of the low part so that the
3504   // second element will start at an 8 byte offset.  We can't increase the size
3505   // of the second element because it might make us access off the end of the
3506   // struct.
3507   if (HiStart != 8) {
3508     // There are usually two sorts of types the ABI generation code can produce
3509     // for the low part of a pair that aren't 8 bytes in size: float or
3510     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3511     // NaCl).
3512     // Promote these to a larger type.
3513     if (Lo->isFloatTy())
3514       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3515     else {
3516       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3517              && "Invalid/unknown lo type");
3518       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3519     }
3520   }
3521 
3522   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3523 
3524   // Verify that the second element is at an 8-byte offset.
3525   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3526          "Invalid x86-64 argument pair!");
3527   return Result;
3528 }
3529 
3530 ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const3531 classifyReturnType(QualType RetTy) const {
3532   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3533   // classification algorithm.
3534   X86_64ABIInfo::Class Lo, Hi;
3535   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3536 
3537   // Check some invariants.
3538   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3539   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3540 
3541   llvm::Type *ResType = nullptr;
3542   switch (Lo) {
3543   case NoClass:
3544     if (Hi == NoClass)
3545       return ABIArgInfo::getIgnore();
3546     // If the low part is just padding, it takes no register, leave ResType
3547     // null.
3548     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3549            "Unknown missing lo part");
3550     break;
3551 
3552   case SSEUp:
3553   case X87Up:
3554     llvm_unreachable("Invalid classification for lo word.");
3555 
3556     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3557     // hidden argument.
3558   case Memory:
3559     return getIndirectReturnResult(RetTy);
3560 
3561     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3562     // available register of the sequence %rax, %rdx is used.
3563   case Integer:
3564     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3565 
3566     // If we have a sign or zero extended integer, make sure to return Extend
3567     // so that the parameter gets the right LLVM IR attributes.
3568     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3569       // Treat an enum type as its underlying type.
3570       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3571         RetTy = EnumTy->getDecl()->getIntegerType();
3572 
3573       if (RetTy->isIntegralOrEnumerationType() &&
3574           isPromotableIntegerTypeForABI(RetTy))
3575         return ABIArgInfo::getExtend(RetTy);
3576     }
3577     break;
3578 
3579     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3580     // available SSE register of the sequence %xmm0, %xmm1 is used.
3581   case SSE:
3582     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3583     break;
3584 
3585     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3586     // returned on the X87 stack in %st0 as 80-bit x87 number.
3587   case X87:
3588     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3589     break;
3590 
3591     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3592     // part of the value is returned in %st0 and the imaginary part in
3593     // %st1.
3594   case ComplexX87:
3595     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3596     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3597                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3598     break;
3599   }
3600 
3601   llvm::Type *HighPart = nullptr;
3602   switch (Hi) {
3603     // Memory was handled previously and X87 should
3604     // never occur as a hi class.
3605   case Memory:
3606   case X87:
3607     llvm_unreachable("Invalid classification for hi word.");
3608 
3609   case ComplexX87: // Previously handled.
3610   case NoClass:
3611     break;
3612 
3613   case Integer:
3614     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3615     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3616       return ABIArgInfo::getDirect(HighPart, 8);
3617     break;
3618   case SSE:
3619     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3620     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3621       return ABIArgInfo::getDirect(HighPart, 8);
3622     break;
3623 
3624     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3625     // is passed in the next available eightbyte chunk if the last used
3626     // vector register.
3627     //
3628     // SSEUP should always be preceded by SSE, just widen.
3629   case SSEUp:
3630     assert(Lo == SSE && "Unexpected SSEUp classification.");
3631     ResType = GetByteVectorType(RetTy);
3632     break;
3633 
3634     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3635     // returned together with the previous X87 value in %st0.
3636   case X87Up:
3637     // If X87Up is preceded by X87, we don't need to do
3638     // anything. However, in some cases with unions it may not be
3639     // preceded by X87. In such situations we follow gcc and pass the
3640     // extra bits in an SSE reg.
3641     if (Lo != X87) {
3642       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3643       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3644         return ABIArgInfo::getDirect(HighPart, 8);
3645     }
3646     break;
3647   }
3648 
3649   // If a high part was specified, merge it together with the low part.  It is
3650   // known to pass in the high eightbyte of the result.  We do this by forming a
3651   // first class struct aggregate with the high and low part: {low, high}
3652   if (HighPart)
3653     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3654 
3655   return ABIArgInfo::getDirect(ResType);
3656 }
3657 
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE,bool isNamedArg) const3658 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3659   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3660   bool isNamedArg)
3661   const
3662 {
3663   Ty = useFirstFieldIfTransparentUnion(Ty);
3664 
3665   X86_64ABIInfo::Class Lo, Hi;
3666   classify(Ty, 0, Lo, Hi, isNamedArg);
3667 
3668   // Check some invariants.
3669   // FIXME: Enforce these by construction.
3670   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3671   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3672 
3673   neededInt = 0;
3674   neededSSE = 0;
3675   llvm::Type *ResType = nullptr;
3676   switch (Lo) {
3677   case NoClass:
3678     if (Hi == NoClass)
3679       return ABIArgInfo::getIgnore();
3680     // If the low part is just padding, it takes no register, leave ResType
3681     // null.
3682     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3683            "Unknown missing lo part");
3684     break;
3685 
3686     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3687     // on the stack.
3688   case Memory:
3689 
3690     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3691     // COMPLEX_X87, it is passed in memory.
3692   case X87:
3693   case ComplexX87:
3694     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3695       ++neededInt;
3696     return getIndirectResult(Ty, freeIntRegs);
3697 
3698   case SSEUp:
3699   case X87Up:
3700     llvm_unreachable("Invalid classification for lo word.");
3701 
3702     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3703     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3704     // and %r9 is used.
3705   case Integer:
3706     ++neededInt;
3707 
3708     // Pick an 8-byte type based on the preferred type.
3709     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3710 
3711     // If we have a sign or zero extended integer, make sure to return Extend
3712     // so that the parameter gets the right LLVM IR attributes.
3713     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3714       // Treat an enum type as its underlying type.
3715       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3716         Ty = EnumTy->getDecl()->getIntegerType();
3717 
3718       if (Ty->isIntegralOrEnumerationType() &&
3719           isPromotableIntegerTypeForABI(Ty))
3720         return ABIArgInfo::getExtend(Ty);
3721     }
3722 
3723     break;
3724 
3725     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3726     // available SSE register is used, the registers are taken in the
3727     // order from %xmm0 to %xmm7.
3728   case SSE: {
3729     llvm::Type *IRType = CGT.ConvertType(Ty);
3730     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3731     ++neededSSE;
3732     break;
3733   }
3734   }
3735 
3736   llvm::Type *HighPart = nullptr;
3737   switch (Hi) {
3738     // Memory was handled previously, ComplexX87 and X87 should
3739     // never occur as hi classes, and X87Up must be preceded by X87,
3740     // which is passed in memory.
3741   case Memory:
3742   case X87:
3743   case ComplexX87:
3744     llvm_unreachable("Invalid classification for hi word.");
3745 
3746   case NoClass: break;
3747 
3748   case Integer:
3749     ++neededInt;
3750     // Pick an 8-byte type based on the preferred type.
3751     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3752 
3753     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3754       return ABIArgInfo::getDirect(HighPart, 8);
3755     break;
3756 
3757     // X87Up generally doesn't occur here (long double is passed in
3758     // memory), except in situations involving unions.
3759   case X87Up:
3760   case SSE:
3761     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3762 
3763     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3764       return ABIArgInfo::getDirect(HighPart, 8);
3765 
3766     ++neededSSE;
3767     break;
3768 
3769     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3770     // eightbyte is passed in the upper half of the last used SSE
3771     // register.  This only happens when 128-bit vectors are passed.
3772   case SSEUp:
3773     assert(Lo == SSE && "Unexpected SSEUp classification");
3774     ResType = GetByteVectorType(Ty);
3775     break;
3776   }
3777 
3778   // If a high part was specified, merge it together with the low part.  It is
3779   // known to pass in the high eightbyte of the result.  We do this by forming a
3780   // first class struct aggregate with the high and low part: {low, high}
3781   if (HighPart)
3782     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3783 
3784   return ABIArgInfo::getDirect(ResType);
3785 }
3786 
3787 ABIArgInfo
classifyRegCallStructTypeImpl(QualType Ty,unsigned & NeededInt,unsigned & NeededSSE) const3788 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3789                                              unsigned &NeededSSE) const {
3790   auto RT = Ty->getAs<RecordType>();
3791   assert(RT && "classifyRegCallStructType only valid with struct types");
3792 
3793   if (RT->getDecl()->hasFlexibleArrayMember())
3794     return getIndirectReturnResult(Ty);
3795 
3796   // Sum up bases
3797   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3798     if (CXXRD->isDynamicClass()) {
3799       NeededInt = NeededSSE = 0;
3800       return getIndirectReturnResult(Ty);
3801     }
3802 
3803     for (const auto &I : CXXRD->bases())
3804       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3805               .isIndirect()) {
3806         NeededInt = NeededSSE = 0;
3807         return getIndirectReturnResult(Ty);
3808       }
3809   }
3810 
3811   // Sum up members
3812   for (const auto *FD : RT->getDecl()->fields()) {
3813     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3814       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3815               .isIndirect()) {
3816         NeededInt = NeededSSE = 0;
3817         return getIndirectReturnResult(Ty);
3818       }
3819     } else {
3820       unsigned LocalNeededInt, LocalNeededSSE;
3821       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3822                                LocalNeededSSE, true)
3823               .isIndirect()) {
3824         NeededInt = NeededSSE = 0;
3825         return getIndirectReturnResult(Ty);
3826       }
3827       NeededInt += LocalNeededInt;
3828       NeededSSE += LocalNeededSSE;
3829     }
3830   }
3831 
3832   return ABIArgInfo::getDirect();
3833 }
3834 
classifyRegCallStructType(QualType Ty,unsigned & NeededInt,unsigned & NeededSSE) const3835 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3836                                                     unsigned &NeededInt,
3837                                                     unsigned &NeededSSE) const {
3838 
3839   NeededInt = 0;
3840   NeededSSE = 0;
3841 
3842   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3843 }
3844 
computeInfo(CGFunctionInfo & FI) const3845 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3846 
3847   const unsigned CallingConv = FI.getCallingConvention();
3848   // It is possible to force Win64 calling convention on any x86_64 target by
3849   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3850   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3851   if (CallingConv == llvm::CallingConv::Win64) {
3852     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3853     Win64ABIInfo.computeInfo(FI);
3854     return;
3855   }
3856 
3857   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3858 
3859   // Keep track of the number of assigned registers.
3860   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3861   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3862   unsigned NeededInt, NeededSSE;
3863 
3864   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3865     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3866         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3867       FI.getReturnInfo() =
3868           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3869       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3870         FreeIntRegs -= NeededInt;
3871         FreeSSERegs -= NeededSSE;
3872       } else {
3873         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3874       }
3875     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3876                getContext().getCanonicalType(FI.getReturnType()
3877                                                  ->getAs<ComplexType>()
3878                                                  ->getElementType()) ==
3879                    getContext().LongDoubleTy)
3880       // Complex Long Double Type is passed in Memory when Regcall
3881       // calling convention is used.
3882       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3883     else
3884       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3885   }
3886 
3887   // If the return value is indirect, then the hidden argument is consuming one
3888   // integer register.
3889   if (FI.getReturnInfo().isIndirect())
3890     --FreeIntRegs;
3891 
3892   // The chain argument effectively gives us another free register.
3893   if (FI.isChainCall())
3894     ++FreeIntRegs;
3895 
3896   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3897   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3898   // get assigned (in left-to-right order) for passing as follows...
3899   unsigned ArgNo = 0;
3900   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3901        it != ie; ++it, ++ArgNo) {
3902     bool IsNamedArg = ArgNo < NumRequiredArgs;
3903 
3904     if (IsRegCall && it->type->isStructureOrClassType())
3905       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3906     else
3907       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3908                                       NeededSSE, IsNamedArg);
3909 
3910     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3911     // eightbyte of an argument, the whole argument is passed on the
3912     // stack. If registers have already been assigned for some
3913     // eightbytes of such an argument, the assignments get reverted.
3914     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3915       FreeIntRegs -= NeededInt;
3916       FreeSSERegs -= NeededSSE;
3917     } else {
3918       it->info = getIndirectResult(it->type, FreeIntRegs);
3919     }
3920   }
3921 }
3922 
EmitX86_64VAArgFromMemory(CodeGenFunction & CGF,Address VAListAddr,QualType Ty)3923 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3924                                          Address VAListAddr, QualType Ty) {
3925   Address overflow_arg_area_p =
3926       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3927   llvm::Value *overflow_arg_area =
3928     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3929 
3930   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3931   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3932   // It isn't stated explicitly in the standard, but in practice we use
3933   // alignment greater than 16 where necessary.
3934   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3935   if (Align > CharUnits::fromQuantity(8)) {
3936     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3937                                                       Align);
3938   }
3939 
3940   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3941   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3942   llvm::Value *Res =
3943     CGF.Builder.CreateBitCast(overflow_arg_area,
3944                               llvm::PointerType::getUnqual(LTy));
3945 
3946   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3947   // l->overflow_arg_area + sizeof(type).
3948   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3949   // an 8 byte boundary.
3950 
3951   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3952   llvm::Value *Offset =
3953       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3954   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3955                                             "overflow_arg_area.next");
3956   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3957 
3958   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3959   return Address(Res, Align);
3960 }
3961 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const3962 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3963                                  QualType Ty) const {
3964   // Assume that va_list type is correct; should be pointer to LLVM type:
3965   // struct {
3966   //   i32 gp_offset;
3967   //   i32 fp_offset;
3968   //   i8* overflow_arg_area;
3969   //   i8* reg_save_area;
3970   // };
3971   unsigned neededInt, neededSSE;
3972 
3973   Ty = getContext().getCanonicalType(Ty);
3974   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3975                                        /*isNamedArg*/false);
3976 
3977   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3978   // in the registers. If not go to step 7.
3979   if (!neededInt && !neededSSE)
3980     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3981 
3982   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3983   // general purpose registers needed to pass type and num_fp to hold
3984   // the number of floating point registers needed.
3985 
3986   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3987   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3988   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3989   //
3990   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3991   // register save space).
3992 
3993   llvm::Value *InRegs = nullptr;
3994   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3995   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3996   if (neededInt) {
3997     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3998     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3999     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
4000     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
4001   }
4002 
4003   if (neededSSE) {
4004     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
4005     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
4006     llvm::Value *FitsInFP =
4007       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4008     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4009     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4010   }
4011 
4012   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4013   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4014   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4015   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4016 
4017   // Emit code to load the value if it was passed in registers.
4018 
4019   CGF.EmitBlock(InRegBlock);
4020 
4021   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4022   // an offset of l->gp_offset and/or l->fp_offset. This may require
4023   // copying to a temporary location in case the parameter is passed
4024   // in different register classes or requires an alignment greater
4025   // than 8 for general purpose registers and 16 for XMM registers.
4026   //
4027   // FIXME: This really results in shameful code when we end up needing to
4028   // collect arguments from different places; often what should result in a
4029   // simple assembling of a structure from scattered addresses has many more
4030   // loads than necessary. Can we clean this up?
4031   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4032   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4033       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4034 
4035   Address RegAddr = Address::invalid();
4036   if (neededInt && neededSSE) {
4037     // FIXME: Cleanup.
4038     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4039     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4040     Address Tmp = CGF.CreateMemTemp(Ty);
4041     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4042     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4043     llvm::Type *TyLo = ST->getElementType(0);
4044     llvm::Type *TyHi = ST->getElementType(1);
4045     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4046            "Unexpected ABI info for mixed regs");
4047     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4048     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4049     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
4050     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
4051     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4052     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4053 
4054     // Copy the first element.
4055     // FIXME: Our choice of alignment here and below is probably pessimistic.
4056     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4057         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4058         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4059     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4060 
4061     // Copy the second element.
4062     V = CGF.Builder.CreateAlignedLoad(
4063         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4064         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4065     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4066 
4067     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4068   } else if (neededInt) {
4069     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
4070                       CharUnits::fromQuantity(8));
4071     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4072 
4073     // Copy to a temporary if necessary to ensure the appropriate alignment.
4074     auto TInfo = getContext().getTypeInfoInChars(Ty);
4075     uint64_t TySize = TInfo.Width.getQuantity();
4076     CharUnits TyAlign = TInfo.Align;
4077 
4078     // Copy into a temporary if the type is more aligned than the
4079     // register save area.
4080     if (TyAlign.getQuantity() > 8) {
4081       Address Tmp = CGF.CreateMemTemp(Ty);
4082       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4083       RegAddr = Tmp;
4084     }
4085 
4086   } else if (neededSSE == 1) {
4087     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4088                       CharUnits::fromQuantity(16));
4089     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4090   } else {
4091     assert(neededSSE == 2 && "Invalid number of needed registers!");
4092     // SSE registers are spaced 16 bytes apart in the register save
4093     // area, we need to collect the two eightbytes together.
4094     // The ABI isn't explicit about this, but it seems reasonable
4095     // to assume that the slots are 16-byte aligned, since the stack is
4096     // naturally 16-byte aligned and the prologue is expected to store
4097     // all the SSE registers to the RSA.
4098     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4099                                 CharUnits::fromQuantity(16));
4100     Address RegAddrHi =
4101       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4102                                              CharUnits::fromQuantity(16));
4103     llvm::Type *ST = AI.canHaveCoerceToType()
4104                          ? AI.getCoerceToType()
4105                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4106     llvm::Value *V;
4107     Address Tmp = CGF.CreateMemTemp(Ty);
4108     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4109     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4110         RegAddrLo, ST->getStructElementType(0)));
4111     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4112     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4113         RegAddrHi, ST->getStructElementType(1)));
4114     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4115 
4116     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4117   }
4118 
4119   // AMD64-ABI 3.5.7p5: Step 5. Set:
4120   // l->gp_offset = l->gp_offset + num_gp * 8
4121   // l->fp_offset = l->fp_offset + num_fp * 16.
4122   if (neededInt) {
4123     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4124     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4125                             gp_offset_p);
4126   }
4127   if (neededSSE) {
4128     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4129     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4130                             fp_offset_p);
4131   }
4132   CGF.EmitBranch(ContBlock);
4133 
4134   // Emit code to load the value if it was passed in memory.
4135 
4136   CGF.EmitBlock(InMemBlock);
4137   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4138 
4139   // Return the appropriate result.
4140 
4141   CGF.EmitBlock(ContBlock);
4142   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4143                                  "vaarg.addr");
4144   return ResAddr;
4145 }
4146 
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4147 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4148                                    QualType Ty) const {
4149   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
4150                           CGF.getContext().getTypeInfoInChars(Ty),
4151                           CharUnits::fromQuantity(8),
4152                           /*allowHigherAlign*/ false);
4153 }
4154 
4155 ABIArgInfo
reclassifyHvaArgType(QualType Ty,unsigned & FreeSSERegs,const ABIArgInfo & current) const4156 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
4157                                     const ABIArgInfo &current) const {
4158   // Assumes vectorCall calling convention.
4159   const Type *Base = nullptr;
4160   uint64_t NumElts = 0;
4161 
4162   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4163       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4164     FreeSSERegs -= NumElts;
4165     return getDirectX86Hva();
4166   }
4167   return current;
4168 }
4169 
classify(QualType Ty,unsigned & FreeSSERegs,bool IsReturnType,bool IsVectorCall,bool IsRegCall) const4170 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4171                                       bool IsReturnType, bool IsVectorCall,
4172                                       bool IsRegCall) const {
4173 
4174   if (Ty->isVoidType())
4175     return ABIArgInfo::getIgnore();
4176 
4177   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4178     Ty = EnumTy->getDecl()->getIntegerType();
4179 
4180   TypeInfo Info = getContext().getTypeInfo(Ty);
4181   uint64_t Width = Info.Width;
4182   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4183 
4184   const RecordType *RT = Ty->getAs<RecordType>();
4185   if (RT) {
4186     if (!IsReturnType) {
4187       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4188         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4189     }
4190 
4191     if (RT->getDecl()->hasFlexibleArrayMember())
4192       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4193 
4194   }
4195 
4196   const Type *Base = nullptr;
4197   uint64_t NumElts = 0;
4198   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4199   // other targets.
4200   if ((IsVectorCall || IsRegCall) &&
4201       isHomogeneousAggregate(Ty, Base, NumElts)) {
4202     if (IsRegCall) {
4203       if (FreeSSERegs >= NumElts) {
4204         FreeSSERegs -= NumElts;
4205         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4206           return ABIArgInfo::getDirect();
4207         return ABIArgInfo::getExpand();
4208       }
4209       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4210     } else if (IsVectorCall) {
4211       if (FreeSSERegs >= NumElts &&
4212           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4213         FreeSSERegs -= NumElts;
4214         return ABIArgInfo::getDirect();
4215       } else if (IsReturnType) {
4216         return ABIArgInfo::getExpand();
4217       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4218         // HVAs are delayed and reclassified in the 2nd step.
4219         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4220       }
4221     }
4222   }
4223 
4224   if (Ty->isMemberPointerType()) {
4225     // If the member pointer is represented by an LLVM int or ptr, pass it
4226     // directly.
4227     llvm::Type *LLTy = CGT.ConvertType(Ty);
4228     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4229       return ABIArgInfo::getDirect();
4230   }
4231 
4232   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4233     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4234     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4235     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4236       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4237 
4238     // Otherwise, coerce it to a small integer.
4239     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4240   }
4241 
4242   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4243     switch (BT->getKind()) {
4244     case BuiltinType::Bool:
4245       // Bool type is always extended to the ABI, other builtin types are not
4246       // extended.
4247       return ABIArgInfo::getExtend(Ty);
4248 
4249     case BuiltinType::LongDouble:
4250       // Mingw64 GCC uses the old 80 bit extended precision floating point
4251       // unit. It passes them indirectly through memory.
4252       if (IsMingw64) {
4253         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4254         if (LDF == &llvm::APFloat::x87DoubleExtended())
4255           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4256       }
4257       break;
4258 
4259     case BuiltinType::Int128:
4260     case BuiltinType::UInt128:
4261       // If it's a parameter type, the normal ABI rule is that arguments larger
4262       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4263       // even though it isn't particularly efficient.
4264       if (!IsReturnType)
4265         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4266 
4267       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4268       // Clang matches them for compatibility.
4269       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4270           llvm::Type::getInt64Ty(getVMContext()), 2));
4271 
4272     default:
4273       break;
4274     }
4275   }
4276 
4277   if (Ty->isExtIntType()) {
4278     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4279     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4280     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4281     // anyway as long is it fits in them, so we don't have to check the power of
4282     // 2.
4283     if (Width <= 64)
4284       return ABIArgInfo::getDirect();
4285     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4286   }
4287 
4288   return ABIArgInfo::getDirect();
4289 }
4290 
computeVectorCallArgs(CGFunctionInfo & FI,unsigned FreeSSERegs,bool IsVectorCall,bool IsRegCall) const4291 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4292                                              unsigned FreeSSERegs,
4293                                              bool IsVectorCall,
4294                                              bool IsRegCall) const {
4295   unsigned Count = 0;
4296   for (auto &I : FI.arguments()) {
4297     // Vectorcall in x64 only permits the first 6 arguments to be passed
4298     // as XMM/YMM registers.
4299     if (Count < VectorcallMaxParamNumAsReg)
4300       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4301     else {
4302       // Since these cannot be passed in registers, pretend no registers
4303       // are left.
4304       unsigned ZeroSSERegsAvail = 0;
4305       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4306                         IsVectorCall, IsRegCall);
4307     }
4308     ++Count;
4309   }
4310 
4311   for (auto &I : FI.arguments()) {
4312     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4313   }
4314 }
4315 
computeInfo(CGFunctionInfo & FI) const4316 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4317   const unsigned CC = FI.getCallingConvention();
4318   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4319   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4320 
4321   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4322   // classification rules.
4323   if (CC == llvm::CallingConv::X86_64_SysV) {
4324     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4325     SysVABIInfo.computeInfo(FI);
4326     return;
4327   }
4328 
4329   unsigned FreeSSERegs = 0;
4330   if (IsVectorCall) {
4331     // We can use up to 4 SSE return registers with vectorcall.
4332     FreeSSERegs = 4;
4333   } else if (IsRegCall) {
4334     // RegCall gives us 16 SSE registers.
4335     FreeSSERegs = 16;
4336   }
4337 
4338   if (!getCXXABI().classifyReturnType(FI))
4339     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4340                                   IsVectorCall, IsRegCall);
4341 
4342   if (IsVectorCall) {
4343     // We can use up to 6 SSE register parameters with vectorcall.
4344     FreeSSERegs = 6;
4345   } else if (IsRegCall) {
4346     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4347     FreeSSERegs = 16;
4348   }
4349 
4350   if (IsVectorCall) {
4351     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4352   } else {
4353     for (auto &I : FI.arguments())
4354       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4355   }
4356 
4357 }
4358 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4359 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4360                                     QualType Ty) const {
4361 
4362   bool IsIndirect = false;
4363 
4364   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4365   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4366   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4367     uint64_t Width = getContext().getTypeSize(Ty);
4368     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4369   }
4370 
4371   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4372                           CGF.getContext().getTypeInfoInChars(Ty),
4373                           CharUnits::fromQuantity(8),
4374                           /*allowHigherAlign*/ false);
4375 }
4376 
PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address,bool Is64Bit,bool IsAIX)4377 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4378                                         llvm::Value *Address, bool Is64Bit,
4379                                         bool IsAIX) {
4380   // This is calculated from the LLVM and GCC tables and verified
4381   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4382 
4383   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4384 
4385   llvm::IntegerType *i8 = CGF.Int8Ty;
4386   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4387   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4388   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4389 
4390   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4391   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4392 
4393   // 32-63: fp0-31, the 8-byte floating-point registers
4394   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4395 
4396   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4397   // 64: mq
4398   // 65: lr
4399   // 66: ctr
4400   // 67: ap
4401   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4402 
4403   // 68-76 are various 4-byte special-purpose registers:
4404   // 68-75 cr0-7
4405   // 76: xer
4406   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4407 
4408   // 77-108: v0-31, the 16-byte vector registers
4409   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4410 
4411   // 109: vrsave
4412   // 110: vscr
4413   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4414 
4415   // AIX does not utilize the rest of the registers.
4416   if (IsAIX)
4417     return false;
4418 
4419   // 111: spe_acc
4420   // 112: spefscr
4421   // 113: sfp
4422   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4423 
4424   if (!Is64Bit)
4425     return false;
4426 
4427   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4428   // or above CPU.
4429   // 64-bit only registers:
4430   // 114: tfhar
4431   // 115: tfiar
4432   // 116: texasr
4433   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4434 
4435   return false;
4436 }
4437 
4438 // AIX
4439 namespace {
4440 /// AIXABIInfo - The AIX XCOFF ABI information.
4441 class AIXABIInfo : public ABIInfo {
4442   const bool Is64Bit;
4443   const unsigned PtrByteSize;
4444   CharUnits getParamTypeAlignment(QualType Ty) const;
4445 
4446 public:
AIXABIInfo(CodeGen::CodeGenTypes & CGT,bool Is64Bit)4447   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4448       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4449 
4450   bool isPromotableTypeForABI(QualType Ty) const;
4451 
4452   ABIArgInfo classifyReturnType(QualType RetTy) const;
4453   ABIArgInfo classifyArgumentType(QualType Ty) const;
4454 
computeInfo(CGFunctionInfo & FI) const4455   void computeInfo(CGFunctionInfo &FI) const override {
4456     if (!getCXXABI().classifyReturnType(FI))
4457       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4458 
4459     for (auto &I : FI.arguments())
4460       I.info = classifyArgumentType(I.type);
4461   }
4462 
4463   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4464                     QualType Ty) const override;
4465 };
4466 
4467 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4468   const bool Is64Bit;
4469 
4470 public:
AIXTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool Is64Bit)4471   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4472       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4473         Is64Bit(Is64Bit) {}
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4474   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4475     return 1; // r1 is the dedicated stack pointer
4476   }
4477 
4478   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4479                                llvm::Value *Address) const override;
4480 };
4481 } // namespace
4482 
4483 // Return true if the ABI requires Ty to be passed sign- or zero-
4484 // extended to 32/64 bits.
isPromotableTypeForABI(QualType Ty) const4485 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4486   // Treat an enum type as its underlying type.
4487   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4488     Ty = EnumTy->getDecl()->getIntegerType();
4489 
4490   // Promotable integer types are required to be promoted by the ABI.
4491   if (Ty->isPromotableIntegerType())
4492     return true;
4493 
4494   if (!Is64Bit)
4495     return false;
4496 
4497   // For 64 bit mode, in addition to the usual promotable integer types, we also
4498   // need to extend all 32-bit types, since the ABI requires promotion to 64
4499   // bits.
4500   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4501     switch (BT->getKind()) {
4502     case BuiltinType::Int:
4503     case BuiltinType::UInt:
4504       return true;
4505     default:
4506       break;
4507     }
4508 
4509   return false;
4510 }
4511 
classifyReturnType(QualType RetTy) const4512 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4513   if (RetTy->isAnyComplexType())
4514     return ABIArgInfo::getDirect();
4515 
4516   if (RetTy->isVectorType())
4517     return ABIArgInfo::getDirect();
4518 
4519   if (RetTy->isVoidType())
4520     return ABIArgInfo::getIgnore();
4521 
4522   if (isAggregateTypeForABI(RetTy))
4523     return getNaturalAlignIndirect(RetTy);
4524 
4525   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4526                                         : ABIArgInfo::getDirect());
4527 }
4528 
classifyArgumentType(QualType Ty) const4529 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4530   Ty = useFirstFieldIfTransparentUnion(Ty);
4531 
4532   if (Ty->isAnyComplexType())
4533     return ABIArgInfo::getDirect();
4534 
4535   if (Ty->isVectorType())
4536     return ABIArgInfo::getDirect();
4537 
4538   if (isAggregateTypeForABI(Ty)) {
4539     // Records with non-trivial destructors/copy-constructors should not be
4540     // passed by value.
4541     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4542       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4543 
4544     CharUnits CCAlign = getParamTypeAlignment(Ty);
4545     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4546 
4547     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4548                                    /*Realign*/ TyAlign > CCAlign);
4549   }
4550 
4551   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4552                                      : ABIArgInfo::getDirect());
4553 }
4554 
getParamTypeAlignment(QualType Ty) const4555 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4556   // Complex types are passed just like their elements.
4557   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4558     Ty = CTy->getElementType();
4559 
4560   if (Ty->isVectorType())
4561     return CharUnits::fromQuantity(16);
4562 
4563   // If the structure contains a vector type, the alignment is 16.
4564   if (isRecordWithSIMDVectorType(getContext(), Ty))
4565     return CharUnits::fromQuantity(16);
4566 
4567   return CharUnits::fromQuantity(PtrByteSize);
4568 }
4569 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const4570 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4571                               QualType Ty) const {
4572   if (Ty->isAnyComplexType())
4573     llvm::report_fatal_error("complex type is not supported on AIX yet");
4574 
4575   if (Ty->isVectorType())
4576     llvm::report_fatal_error(
4577         "vector types are not yet supported for variadic functions on AIX");
4578 
4579   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4580   TypeInfo.Align = getParamTypeAlignment(Ty);
4581 
4582   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4583 
4584   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4585                           SlotSize, /*AllowHigher*/ true);
4586 }
4587 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4588 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4589     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4590   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4591 }
4592 
4593 // PowerPC-32
4594 namespace {
4595 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4596 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4597   bool IsSoftFloatABI;
4598   bool IsRetSmallStructInRegABI;
4599 
4600   CharUnits getParamTypeAlignment(QualType Ty) const;
4601 
4602 public:
PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT,bool SoftFloatABI,bool RetSmallStructInRegABI)4603   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4604                      bool RetSmallStructInRegABI)
4605       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4606         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4607 
4608   ABIArgInfo classifyReturnType(QualType RetTy) const;
4609 
computeInfo(CGFunctionInfo & FI) const4610   void computeInfo(CGFunctionInfo &FI) const override {
4611     if (!getCXXABI().classifyReturnType(FI))
4612       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4613     for (auto &I : FI.arguments())
4614       I.info = classifyArgumentType(I.type);
4615   }
4616 
4617   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4618                     QualType Ty) const override;
4619 };
4620 
4621 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4622 public:
PPC32TargetCodeGenInfo(CodeGenTypes & CGT,bool SoftFloatABI,bool RetSmallStructInRegABI)4623   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4624                          bool RetSmallStructInRegABI)
4625       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4626             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4627 
4628   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4629                                      const CodeGenOptions &Opts);
4630 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4631   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4632     // This is recovered from gcc output.
4633     return 1; // r1 is the dedicated stack pointer
4634   }
4635 
4636   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4637                                llvm::Value *Address) const override;
4638 };
4639 }
4640 
getParamTypeAlignment(QualType Ty) const4641 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4642   // Complex types are passed just like their elements.
4643   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4644     Ty = CTy->getElementType();
4645 
4646   if (Ty->isVectorType())
4647     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4648                                                                        : 4);
4649 
4650   // For single-element float/vector structs, we consider the whole type
4651   // to have the same alignment requirements as its single element.
4652   const Type *AlignTy = nullptr;
4653   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4654     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4655     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4656         (BT && BT->isFloatingPoint()))
4657       AlignTy = EltType;
4658   }
4659 
4660   if (AlignTy)
4661     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4662   return CharUnits::fromQuantity(4);
4663 }
4664 
classifyReturnType(QualType RetTy) const4665 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4666   uint64_t Size;
4667 
4668   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4669   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4670       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4671     // System V ABI (1995), page 3-22, specified:
4672     // > A structure or union whose size is less than or equal to 8 bytes
4673     // > shall be returned in r3 and r4, as if it were first stored in the
4674     // > 8-byte aligned memory area and then the low addressed word were
4675     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4676     // > the last member of the structure or union are not defined.
4677     //
4678     // GCC for big-endian PPC32 inserts the pad before the first member,
4679     // not "beyond the last member" of the struct.  To stay compatible
4680     // with GCC, we coerce the struct to an integer of the same size.
4681     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4682     if (Size == 0)
4683       return ABIArgInfo::getIgnore();
4684     else {
4685       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4686       return ABIArgInfo::getDirect(CoerceTy);
4687     }
4688   }
4689 
4690   return DefaultABIInfo::classifyReturnType(RetTy);
4691 }
4692 
4693 // TODO: this implementation is now likely redundant with
4694 // DefaultABIInfo::EmitVAArg.
EmitVAArg(CodeGenFunction & CGF,Address VAList,QualType Ty) const4695 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4696                                       QualType Ty) const {
4697   if (getTarget().getTriple().isOSDarwin()) {
4698     auto TI = getContext().getTypeInfoInChars(Ty);
4699     TI.Align = getParamTypeAlignment(Ty);
4700 
4701     CharUnits SlotSize = CharUnits::fromQuantity(4);
4702     return emitVoidPtrVAArg(CGF, VAList, Ty,
4703                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4704                             /*AllowHigherAlign=*/true);
4705   }
4706 
4707   const unsigned OverflowLimit = 8;
4708   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4709     // TODO: Implement this. For now ignore.
4710     (void)CTy;
4711     return Address::invalid(); // FIXME?
4712   }
4713 
4714   // struct __va_list_tag {
4715   //   unsigned char gpr;
4716   //   unsigned char fpr;
4717   //   unsigned short reserved;
4718   //   void *overflow_arg_area;
4719   //   void *reg_save_area;
4720   // };
4721 
4722   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4723   bool isInt =
4724       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4725   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4726 
4727   // All aggregates are passed indirectly?  That doesn't seem consistent
4728   // with the argument-lowering code.
4729   bool isIndirect = Ty->isAggregateType();
4730 
4731   CGBuilderTy &Builder = CGF.Builder;
4732 
4733   // The calling convention either uses 1-2 GPRs or 1 FPR.
4734   Address NumRegsAddr = Address::invalid();
4735   if (isInt || IsSoftFloatABI) {
4736     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4737   } else {
4738     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4739   }
4740 
4741   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4742 
4743   // "Align" the register count when TY is i64.
4744   if (isI64 || (isF64 && IsSoftFloatABI)) {
4745     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4746     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4747   }
4748 
4749   llvm::Value *CC =
4750       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4751 
4752   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4753   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4754   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4755 
4756   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4757 
4758   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4759   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4760 
4761   // Case 1: consume registers.
4762   Address RegAddr = Address::invalid();
4763   {
4764     CGF.EmitBlock(UsingRegs);
4765 
4766     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4767     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4768                       CharUnits::fromQuantity(8));
4769     assert(RegAddr.getElementType() == CGF.Int8Ty);
4770 
4771     // Floating-point registers start after the general-purpose registers.
4772     if (!(isInt || IsSoftFloatABI)) {
4773       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4774                                                    CharUnits::fromQuantity(32));
4775     }
4776 
4777     // Get the address of the saved value by scaling the number of
4778     // registers we've used by the number of
4779     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4780     llvm::Value *RegOffset =
4781       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4782     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4783                                             RegAddr.getPointer(), RegOffset),
4784                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4785     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4786 
4787     // Increase the used-register count.
4788     NumRegs =
4789       Builder.CreateAdd(NumRegs,
4790                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4791     Builder.CreateStore(NumRegs, NumRegsAddr);
4792 
4793     CGF.EmitBranch(Cont);
4794   }
4795 
4796   // Case 2: consume space in the overflow area.
4797   Address MemAddr = Address::invalid();
4798   {
4799     CGF.EmitBlock(UsingOverflow);
4800 
4801     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4802 
4803     // Everything in the overflow area is rounded up to a size of at least 4.
4804     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4805 
4806     CharUnits Size;
4807     if (!isIndirect) {
4808       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4809       Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
4810     } else {
4811       Size = CGF.getPointerSize();
4812     }
4813 
4814     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4815     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4816                          OverflowAreaAlign);
4817     // Round up address of argument to alignment
4818     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4819     if (Align > OverflowAreaAlign) {
4820       llvm::Value *Ptr = OverflowArea.getPointer();
4821       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4822                                                            Align);
4823     }
4824 
4825     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4826 
4827     // Increase the overflow area.
4828     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4829     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4830     CGF.EmitBranch(Cont);
4831   }
4832 
4833   CGF.EmitBlock(Cont);
4834 
4835   // Merge the cases with a phi.
4836   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4837                                 "vaarg.addr");
4838 
4839   // Load the pointer if the argument was passed indirectly.
4840   if (isIndirect) {
4841     Result = Address(Builder.CreateLoad(Result, "aggr"),
4842                      getContext().getTypeAlignInChars(Ty));
4843   }
4844 
4845   return Result;
4846 }
4847 
isStructReturnInRegABI(const llvm::Triple & Triple,const CodeGenOptions & Opts)4848 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4849     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4850   assert(Triple.getArch() == llvm::Triple::ppc);
4851 
4852   switch (Opts.getStructReturnConvention()) {
4853   case CodeGenOptions::SRCK_Default:
4854     break;
4855   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4856     return false;
4857   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4858     return true;
4859   }
4860 
4861   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4862     return true;
4863 
4864   return false;
4865 }
4866 
4867 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const4868 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4869                                                 llvm::Value *Address) const {
4870   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4871                                      /*IsAIX*/ false);
4872 }
4873 
4874 // PowerPC-64
4875 
4876 namespace {
4877 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4878 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4879 public:
4880   enum ABIKind {
4881     ELFv1 = 0,
4882     ELFv2
4883   };
4884 
4885 private:
4886   static const unsigned GPRBits = 64;
4887   ABIKind Kind;
4888   bool IsSoftFloatABI;
4889 
4890 public:
PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes & CGT,ABIKind Kind,bool SoftFloatABI)4891   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind,
4892                      bool SoftFloatABI)
4893       : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
4894 
4895   bool isPromotableTypeForABI(QualType Ty) const;
4896   CharUnits getParamTypeAlignment(QualType Ty) const;
4897 
4898   ABIArgInfo classifyReturnType(QualType RetTy) const;
4899   ABIArgInfo classifyArgumentType(QualType Ty) const;
4900 
4901   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4902   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4903                                          uint64_t Members) const override;
4904 
4905   // TODO: We can add more logic to computeInfo to improve performance.
4906   // Example: For aggregate arguments that fit in a register, we could
4907   // use getDirectInReg (as is done below for structs containing a single
4908   // floating-point value) to avoid pushing them to memory on function
4909   // entry.  This would require changing the logic in PPCISelLowering
4910   // when lowering the parameters in the caller and args in the callee.
computeInfo(CGFunctionInfo & FI) const4911   void computeInfo(CGFunctionInfo &FI) const override {
4912     if (!getCXXABI().classifyReturnType(FI))
4913       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4914     for (auto &I : FI.arguments()) {
4915       // We rely on the default argument classification for the most part.
4916       // One exception:  An aggregate containing a single floating-point
4917       // or vector item must be passed in a register if one is available.
4918       const Type *T = isSingleElementStruct(I.type, getContext());
4919       if (T) {
4920         const BuiltinType *BT = T->getAs<BuiltinType>();
4921         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4922             (BT && BT->isFloatingPoint())) {
4923           QualType QT(T, 0);
4924           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4925           continue;
4926         }
4927       }
4928       I.info = classifyArgumentType(I.type);
4929     }
4930   }
4931 
4932   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4933                     QualType Ty) const override;
4934 
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const4935   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4936                                     bool asReturnValue) const override {
4937     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4938   }
4939 
isSwiftErrorInRegister() const4940   bool isSwiftErrorInRegister() const override {
4941     return false;
4942   }
4943 };
4944 
4945 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4946 
4947 public:
PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes & CGT,PPC64_SVR4_ABIInfo::ABIKind Kind,bool SoftFloatABI)4948   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4949                                PPC64_SVR4_ABIInfo::ABIKind Kind,
4950                                bool SoftFloatABI)
4951       : TargetCodeGenInfo(
4952             std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {}
4953 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4954   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4955     // This is recovered from gcc output.
4956     return 1; // r1 is the dedicated stack pointer
4957   }
4958 
4959   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4960                                llvm::Value *Address) const override;
4961 };
4962 
4963 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4964 public:
PPC64TargetCodeGenInfo(CodeGenTypes & CGT)4965   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4966 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const4967   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4968     // This is recovered from gcc output.
4969     return 1; // r1 is the dedicated stack pointer
4970   }
4971 
4972   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4973                                llvm::Value *Address) const override;
4974 };
4975 
4976 }
4977 
4978 // Return true if the ABI requires Ty to be passed sign- or zero-
4979 // extended to 64 bits.
4980 bool
isPromotableTypeForABI(QualType Ty) const4981 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4982   // Treat an enum type as its underlying type.
4983   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4984     Ty = EnumTy->getDecl()->getIntegerType();
4985 
4986   // Promotable integer types are required to be promoted by the ABI.
4987   if (isPromotableIntegerTypeForABI(Ty))
4988     return true;
4989 
4990   // In addition to the usual promotable integer types, we also need to
4991   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4992   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4993     switch (BT->getKind()) {
4994     case BuiltinType::Int:
4995     case BuiltinType::UInt:
4996       return true;
4997     default:
4998       break;
4999     }
5000 
5001   if (const auto *EIT = Ty->getAs<ExtIntType>())
5002     if (EIT->getNumBits() < 64)
5003       return true;
5004 
5005   return false;
5006 }
5007 
5008 /// isAlignedParamType - Determine whether a type requires 16-byte or
5009 /// higher alignment in the parameter area.  Always returns at least 8.
getParamTypeAlignment(QualType Ty) const5010 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5011   // Complex types are passed just like their elements.
5012   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5013     Ty = CTy->getElementType();
5014 
5015   // Only vector types of size 16 bytes need alignment (larger types are
5016   // passed via reference, smaller types are not aligned).
5017   if (Ty->isVectorType()) {
5018     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5019   } else if (Ty->isRealFloatingType() &&
5020              &getContext().getFloatTypeSemantics(Ty) ==
5021                  &llvm::APFloat::IEEEquad()) {
5022     // According to ABI document section 'Optional Save Areas': If extended
5023     // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
5024     // format are supported, map them to a single quadword, quadword aligned.
5025     return CharUnits::fromQuantity(16);
5026   }
5027 
5028   // For single-element float/vector structs, we consider the whole type
5029   // to have the same alignment requirements as its single element.
5030   const Type *AlignAsType = nullptr;
5031   const Type *EltType = isSingleElementStruct(Ty, getContext());
5032   if (EltType) {
5033     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5034     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
5035         (BT && BT->isFloatingPoint()))
5036       AlignAsType = EltType;
5037   }
5038 
5039   // Likewise for ELFv2 homogeneous aggregates.
5040   const Type *Base = nullptr;
5041   uint64_t Members = 0;
5042   if (!AlignAsType && Kind == ELFv2 &&
5043       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5044     AlignAsType = Base;
5045 
5046   // With special case aggregates, only vector base types need alignment.
5047   if (AlignAsType) {
5048     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5049   }
5050 
5051   // Otherwise, we only need alignment for any aggregate type that
5052   // has an alignment requirement of >= 16 bytes.
5053   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5054     return CharUnits::fromQuantity(16);
5055   }
5056 
5057   return CharUnits::fromQuantity(8);
5058 }
5059 
5060 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5061 /// aggregate.  Base is set to the base element type, and Members is set
5062 /// to the number of base elements.
isHomogeneousAggregate(QualType Ty,const Type * & Base,uint64_t & Members) const5063 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5064                                      uint64_t &Members) const {
5065   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5066     uint64_t NElements = AT->getSize().getZExtValue();
5067     if (NElements == 0)
5068       return false;
5069     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5070       return false;
5071     Members *= NElements;
5072   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5073     const RecordDecl *RD = RT->getDecl();
5074     if (RD->hasFlexibleArrayMember())
5075       return false;
5076 
5077     Members = 0;
5078 
5079     // If this is a C++ record, check the bases first.
5080     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5081       for (const auto &I : CXXRD->bases()) {
5082         // Ignore empty records.
5083         if (isEmptyRecord(getContext(), I.getType(), true))
5084           continue;
5085 
5086         uint64_t FldMembers;
5087         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5088           return false;
5089 
5090         Members += FldMembers;
5091       }
5092     }
5093 
5094     for (const auto *FD : RD->fields()) {
5095       // Ignore (non-zero arrays of) empty records.
5096       QualType FT = FD->getType();
5097       while (const ConstantArrayType *AT =
5098              getContext().getAsConstantArrayType(FT)) {
5099         if (AT->getSize().getZExtValue() == 0)
5100           return false;
5101         FT = AT->getElementType();
5102       }
5103       if (isEmptyRecord(getContext(), FT, true))
5104         continue;
5105 
5106       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5107       if (getContext().getLangOpts().CPlusPlus &&
5108           FD->isZeroLengthBitField(getContext()))
5109         continue;
5110 
5111       uint64_t FldMembers;
5112       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5113         return false;
5114 
5115       Members = (RD->isUnion() ?
5116                  std::max(Members, FldMembers) : Members + FldMembers);
5117     }
5118 
5119     if (!Base)
5120       return false;
5121 
5122     // Ensure there is no padding.
5123     if (getContext().getTypeSize(Base) * Members !=
5124         getContext().getTypeSize(Ty))
5125       return false;
5126   } else {
5127     Members = 1;
5128     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5129       Members = 2;
5130       Ty = CT->getElementType();
5131     }
5132 
5133     // Most ABIs only support float, double, and some vector type widths.
5134     if (!isHomogeneousAggregateBaseType(Ty))
5135       return false;
5136 
5137     // The base type must be the same for all members.  Types that
5138     // agree in both total size and mode (float vs. vector) are
5139     // treated as being equivalent here.
5140     const Type *TyPtr = Ty.getTypePtr();
5141     if (!Base) {
5142       Base = TyPtr;
5143       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5144       // so make sure to widen it explicitly.
5145       if (const VectorType *VT = Base->getAs<VectorType>()) {
5146         QualType EltTy = VT->getElementType();
5147         unsigned NumElements =
5148             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5149         Base = getContext()
5150                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5151                    .getTypePtr();
5152       }
5153     }
5154 
5155     if (Base->isVectorType() != TyPtr->isVectorType() ||
5156         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5157       return false;
5158   }
5159   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5160 }
5161 
isHomogeneousAggregateBaseType(QualType Ty) const5162 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5163   // Homogeneous aggregates for ELFv2 must have base types of float,
5164   // double, long double, or 128-bit vectors.
5165   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5166     if (BT->getKind() == BuiltinType::Float ||
5167         BT->getKind() == BuiltinType::Double ||
5168         BT->getKind() == BuiltinType::LongDouble ||
5169         (getContext().getTargetInfo().hasFloat128Type() &&
5170           (BT->getKind() == BuiltinType::Float128))) {
5171       if (IsSoftFloatABI)
5172         return false;
5173       return true;
5174     }
5175   }
5176   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5177     if (getContext().getTypeSize(VT) == 128)
5178       return true;
5179   }
5180   return false;
5181 }
5182 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const5183 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5184     const Type *Base, uint64_t Members) const {
5185   // Vector and fp128 types require one register, other floating point types
5186   // require one or two registers depending on their size.
5187   uint32_t NumRegs =
5188       ((getContext().getTargetInfo().hasFloat128Type() &&
5189           Base->isFloat128Type()) ||
5190         Base->isVectorType()) ? 1
5191                               : (getContext().getTypeSize(Base) + 63) / 64;
5192 
5193   // Homogeneous Aggregates may occupy at most 8 registers.
5194   return Members * NumRegs <= 8;
5195 }
5196 
5197 ABIArgInfo
classifyArgumentType(QualType Ty) const5198 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5199   Ty = useFirstFieldIfTransparentUnion(Ty);
5200 
5201   if (Ty->isAnyComplexType())
5202     return ABIArgInfo::getDirect();
5203 
5204   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5205   // or via reference (larger than 16 bytes).
5206   if (Ty->isVectorType()) {
5207     uint64_t Size = getContext().getTypeSize(Ty);
5208     if (Size > 128)
5209       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5210     else if (Size < 128) {
5211       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5212       return ABIArgInfo::getDirect(CoerceTy);
5213     }
5214   }
5215 
5216   if (const auto *EIT = Ty->getAs<ExtIntType>())
5217     if (EIT->getNumBits() > 128)
5218       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5219 
5220   if (isAggregateTypeForABI(Ty)) {
5221     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5222       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5223 
5224     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5225     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5226 
5227     // ELFv2 homogeneous aggregates are passed as array types.
5228     const Type *Base = nullptr;
5229     uint64_t Members = 0;
5230     if (Kind == ELFv2 &&
5231         isHomogeneousAggregate(Ty, Base, Members)) {
5232       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5233       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5234       return ABIArgInfo::getDirect(CoerceTy);
5235     }
5236 
5237     // If an aggregate may end up fully in registers, we do not
5238     // use the ByVal method, but pass the aggregate as array.
5239     // This is usually beneficial since we avoid forcing the
5240     // back-end to store the argument to memory.
5241     uint64_t Bits = getContext().getTypeSize(Ty);
5242     if (Bits > 0 && Bits <= 8 * GPRBits) {
5243       llvm::Type *CoerceTy;
5244 
5245       // Types up to 8 bytes are passed as integer type (which will be
5246       // properly aligned in the argument save area doubleword).
5247       if (Bits <= GPRBits)
5248         CoerceTy =
5249             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5250       // Larger types are passed as arrays, with the base type selected
5251       // according to the required alignment in the save area.
5252       else {
5253         uint64_t RegBits = ABIAlign * 8;
5254         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5255         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5256         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5257       }
5258 
5259       return ABIArgInfo::getDirect(CoerceTy);
5260     }
5261 
5262     // All other aggregates are passed ByVal.
5263     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5264                                    /*ByVal=*/true,
5265                                    /*Realign=*/TyAlign > ABIAlign);
5266   }
5267 
5268   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5269                                      : ABIArgInfo::getDirect());
5270 }
5271 
5272 ABIArgInfo
classifyReturnType(QualType RetTy) const5273 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5274   if (RetTy->isVoidType())
5275     return ABIArgInfo::getIgnore();
5276 
5277   if (RetTy->isAnyComplexType())
5278     return ABIArgInfo::getDirect();
5279 
5280   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5281   // or via reference (larger than 16 bytes).
5282   if (RetTy->isVectorType()) {
5283     uint64_t Size = getContext().getTypeSize(RetTy);
5284     if (Size > 128)
5285       return getNaturalAlignIndirect(RetTy);
5286     else if (Size < 128) {
5287       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5288       return ABIArgInfo::getDirect(CoerceTy);
5289     }
5290   }
5291 
5292   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5293     if (EIT->getNumBits() > 128)
5294       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5295 
5296   if (isAggregateTypeForABI(RetTy)) {
5297     // ELFv2 homogeneous aggregates are returned as array types.
5298     const Type *Base = nullptr;
5299     uint64_t Members = 0;
5300     if (Kind == ELFv2 &&
5301         isHomogeneousAggregate(RetTy, Base, Members)) {
5302       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5303       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5304       return ABIArgInfo::getDirect(CoerceTy);
5305     }
5306 
5307     // ELFv2 small aggregates are returned in up to two registers.
5308     uint64_t Bits = getContext().getTypeSize(RetTy);
5309     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5310       if (Bits == 0)
5311         return ABIArgInfo::getIgnore();
5312 
5313       llvm::Type *CoerceTy;
5314       if (Bits > GPRBits) {
5315         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5316         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5317       } else
5318         CoerceTy =
5319             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5320       return ABIArgInfo::getDirect(CoerceTy);
5321     }
5322 
5323     // All other aggregates are returned indirectly.
5324     return getNaturalAlignIndirect(RetTy);
5325   }
5326 
5327   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5328                                         : ABIArgInfo::getDirect());
5329 }
5330 
5331 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5332 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5333                                       QualType Ty) const {
5334   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5335   TypeInfo.Align = getParamTypeAlignment(Ty);
5336 
5337   CharUnits SlotSize = CharUnits::fromQuantity(8);
5338 
5339   // If we have a complex type and the base type is smaller than 8 bytes,
5340   // the ABI calls for the real and imaginary parts to be right-adjusted
5341   // in separate doublewords.  However, Clang expects us to produce a
5342   // pointer to a structure with the two parts packed tightly.  So generate
5343   // loads of the real and imaginary parts relative to the va_list pointer,
5344   // and store them to a temporary structure.
5345   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5346     CharUnits EltSize = TypeInfo.Width / 2;
5347     if (EltSize < SlotSize) {
5348       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5349                                             SlotSize * 2, SlotSize,
5350                                             SlotSize, /*AllowHigher*/ true);
5351 
5352       Address RealAddr = Addr;
5353       Address ImagAddr = RealAddr;
5354       if (CGF.CGM.getDataLayout().isBigEndian()) {
5355         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5356                                                           SlotSize - EltSize);
5357         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5358                                                       2 * SlotSize - EltSize);
5359       } else {
5360         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5361       }
5362 
5363       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5364       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5365       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5366       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5367       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5368 
5369       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5370       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5371                              /*init*/ true);
5372       return Temp;
5373     }
5374   }
5375 
5376   // Otherwise, just use the general rule.
5377   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5378                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5379 }
5380 
5381 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const5382 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5383   CodeGen::CodeGenFunction &CGF,
5384   llvm::Value *Address) const {
5385   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5386                                      /*IsAIX*/ false);
5387 }
5388 
5389 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const5390 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5391                                                 llvm::Value *Address) const {
5392   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5393                                      /*IsAIX*/ false);
5394 }
5395 
5396 //===----------------------------------------------------------------------===//
5397 // AArch64 ABI Implementation
5398 //===----------------------------------------------------------------------===//
5399 
5400 namespace {
5401 
5402 class AArch64ABIInfo : public SwiftABIInfo {
5403 public:
5404   enum ABIKind {
5405     AAPCS = 0,
5406     DarwinPCS,
5407     Win64
5408   };
5409 
5410 private:
5411   ABIKind Kind;
5412 
5413 public:
AArch64ABIInfo(CodeGenTypes & CGT,ABIKind Kind)5414   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5415     : SwiftABIInfo(CGT), Kind(Kind) {}
5416 
5417 private:
getABIKind() const5418   ABIKind getABIKind() const { return Kind; }
isDarwinPCS() const5419   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5420 
5421   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5422   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5423   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5424   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5425   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5426                                          uint64_t Members) const override;
5427 
5428   bool isIllegalVectorType(QualType Ty) const;
5429 
computeInfo(CGFunctionInfo & FI) const5430   void computeInfo(CGFunctionInfo &FI) const override {
5431     if (!::classifyReturnType(getCXXABI(), FI, *this))
5432       FI.getReturnInfo() =
5433           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5434 
5435     for (auto &it : FI.arguments())
5436       it.info = classifyArgumentType(it.type);
5437   }
5438 
5439   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5440                           CodeGenFunction &CGF) const;
5441 
5442   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5443                          CodeGenFunction &CGF) const;
5444 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const5445   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5446                     QualType Ty) const override {
5447     llvm::Type *BaseTy = CGF.ConvertType(Ty);
5448     if (isa<llvm::ScalableVectorType>(BaseTy))
5449       llvm::report_fatal_error("Passing SVE types to variadic functions is "
5450                                "currently not supported");
5451 
5452     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5453                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5454                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5455   }
5456 
5457   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5458                       QualType Ty) const override;
5459 
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const5460   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5461                                     bool asReturnValue) const override {
5462     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5463   }
isSwiftErrorInRegister() const5464   bool isSwiftErrorInRegister() const override {
5465     return true;
5466   }
5467 
5468   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5469                                  unsigned elts) const override;
5470 
allowBFloatArgsAndRet() const5471   bool allowBFloatArgsAndRet() const override {
5472     return getTarget().hasBFloat16Type();
5473   }
5474 };
5475 
5476 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5477 public:
AArch64TargetCodeGenInfo(CodeGenTypes & CGT,AArch64ABIInfo::ABIKind Kind)5478   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5479       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5480 
getARCRetainAutoreleasedReturnValueMarker() const5481   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5482     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5483   }
5484 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const5485   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5486     return 31;
5487   }
5488 
doesReturnSlotInterfereWithArgs() const5489   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5490 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const5491   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5492                            CodeGen::CodeGenModule &CGM) const override {
5493     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5494     if (!FD)
5495       return;
5496 
5497     const auto *TA = FD->getAttr<TargetAttr>();
5498     if (TA == nullptr)
5499       return;
5500 
5501     ParsedTargetAttr Attr = TA->parse();
5502     if (Attr.BranchProtection.empty())
5503       return;
5504 
5505     TargetInfo::BranchProtectionInfo BPI;
5506     StringRef Error;
5507     (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5508                                                    BPI, Error);
5509     assert(Error.empty());
5510 
5511     auto *Fn = cast<llvm::Function>(GV);
5512     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5513     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5514 
5515     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5516       Fn->addFnAttr("sign-return-address-key",
5517                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5518                         ? "a_key"
5519                         : "b_key");
5520     }
5521 
5522     Fn->addFnAttr("branch-target-enforcement",
5523                   BPI.BranchTargetEnforcement ? "true" : "false");
5524   }
5525 };
5526 
5527 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5528 public:
WindowsAArch64TargetCodeGenInfo(CodeGenTypes & CGT,AArch64ABIInfo::ABIKind K)5529   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5530       : AArch64TargetCodeGenInfo(CGT, K) {}
5531 
5532   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5533                            CodeGen::CodeGenModule &CGM) const override;
5534 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const5535   void getDependentLibraryOption(llvm::StringRef Lib,
5536                                  llvm::SmallString<24> &Opt) const override {
5537     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5538   }
5539 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const5540   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5541                                llvm::SmallString<32> &Opt) const override {
5542     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5543   }
5544 };
5545 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const5546 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5547     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5548   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5549   if (GV->isDeclaration())
5550     return;
5551   addStackProbeTargetAttributes(D, GV, CGM);
5552 }
5553 }
5554 
coerceIllegalVector(QualType Ty) const5555 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5556   assert(Ty->isVectorType() && "expected vector type!");
5557 
5558   const auto *VT = Ty->castAs<VectorType>();
5559   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5560     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5561     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5562                BuiltinType::UChar &&
5563            "unexpected builtin type for SVE predicate!");
5564     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5565         llvm::Type::getInt1Ty(getVMContext()), 16));
5566   }
5567 
5568   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5569     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5570 
5571     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5572     llvm::ScalableVectorType *ResType = nullptr;
5573     switch (BT->getKind()) {
5574     default:
5575       llvm_unreachable("unexpected builtin type for SVE vector!");
5576     case BuiltinType::SChar:
5577     case BuiltinType::UChar:
5578       ResType = llvm::ScalableVectorType::get(
5579           llvm::Type::getInt8Ty(getVMContext()), 16);
5580       break;
5581     case BuiltinType::Short:
5582     case BuiltinType::UShort:
5583       ResType = llvm::ScalableVectorType::get(
5584           llvm::Type::getInt16Ty(getVMContext()), 8);
5585       break;
5586     case BuiltinType::Int:
5587     case BuiltinType::UInt:
5588       ResType = llvm::ScalableVectorType::get(
5589           llvm::Type::getInt32Ty(getVMContext()), 4);
5590       break;
5591     case BuiltinType::Long:
5592     case BuiltinType::ULong:
5593       ResType = llvm::ScalableVectorType::get(
5594           llvm::Type::getInt64Ty(getVMContext()), 2);
5595       break;
5596     case BuiltinType::Half:
5597       ResType = llvm::ScalableVectorType::get(
5598           llvm::Type::getHalfTy(getVMContext()), 8);
5599       break;
5600     case BuiltinType::Float:
5601       ResType = llvm::ScalableVectorType::get(
5602           llvm::Type::getFloatTy(getVMContext()), 4);
5603       break;
5604     case BuiltinType::Double:
5605       ResType = llvm::ScalableVectorType::get(
5606           llvm::Type::getDoubleTy(getVMContext()), 2);
5607       break;
5608     case BuiltinType::BFloat16:
5609       ResType = llvm::ScalableVectorType::get(
5610           llvm::Type::getBFloatTy(getVMContext()), 8);
5611       break;
5612     }
5613     return ABIArgInfo::getDirect(ResType);
5614   }
5615 
5616   uint64_t Size = getContext().getTypeSize(Ty);
5617   // Android promotes <2 x i8> to i16, not i32
5618   if (isAndroid() && (Size <= 16)) {
5619     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5620     return ABIArgInfo::getDirect(ResType);
5621   }
5622   if (Size <= 32) {
5623     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5624     return ABIArgInfo::getDirect(ResType);
5625   }
5626   if (Size == 64) {
5627     auto *ResType =
5628         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5629     return ABIArgInfo::getDirect(ResType);
5630   }
5631   if (Size == 128) {
5632     auto *ResType =
5633         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5634     return ABIArgInfo::getDirect(ResType);
5635   }
5636   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5637 }
5638 
classifyArgumentType(QualType Ty) const5639 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5640   Ty = useFirstFieldIfTransparentUnion(Ty);
5641 
5642   // Handle illegal vector types here.
5643   if (isIllegalVectorType(Ty))
5644     return coerceIllegalVector(Ty);
5645 
5646   if (!isAggregateTypeForABI(Ty)) {
5647     // Treat an enum type as its underlying type.
5648     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5649       Ty = EnumTy->getDecl()->getIntegerType();
5650 
5651     if (const auto *EIT = Ty->getAs<ExtIntType>())
5652       if (EIT->getNumBits() > 128)
5653         return getNaturalAlignIndirect(Ty);
5654 
5655     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5656                 ? ABIArgInfo::getExtend(Ty)
5657                 : ABIArgInfo::getDirect());
5658   }
5659 
5660   // Structures with either a non-trivial destructor or a non-trivial
5661   // copy constructor are always indirect.
5662   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5663     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5664                                      CGCXXABI::RAA_DirectInMemory);
5665   }
5666 
5667   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5668   // elsewhere for GNU compatibility.
5669   uint64_t Size = getContext().getTypeSize(Ty);
5670   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5671   if (IsEmpty || Size == 0) {
5672     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5673       return ABIArgInfo::getIgnore();
5674 
5675     // GNU C mode. The only argument that gets ignored is an empty one with size
5676     // 0.
5677     if (IsEmpty && Size == 0)
5678       return ABIArgInfo::getIgnore();
5679     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5680   }
5681 
5682   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5683   const Type *Base = nullptr;
5684   uint64_t Members = 0;
5685   if (isHomogeneousAggregate(Ty, Base, Members)) {
5686     return ABIArgInfo::getDirect(
5687         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5688   }
5689 
5690   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5691   if (Size <= 128) {
5692     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5693     // same size and alignment.
5694     if (getTarget().isRenderScriptTarget()) {
5695       return coerceToIntArray(Ty, getContext(), getVMContext());
5696     }
5697     unsigned Alignment;
5698     if (Kind == AArch64ABIInfo::AAPCS) {
5699       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5700       Alignment = Alignment < 128 ? 64 : 128;
5701     } else {
5702       Alignment = std::max(getContext().getTypeAlign(Ty),
5703                            (unsigned)getTarget().getPointerWidth(0));
5704     }
5705     Size = llvm::alignTo(Size, Alignment);
5706 
5707     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5708     // For aggregates with 16-byte alignment, we use i128.
5709     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5710     return ABIArgInfo::getDirect(
5711         Size == Alignment ? BaseTy
5712                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5713   }
5714 
5715   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5716 }
5717 
classifyReturnType(QualType RetTy,bool IsVariadic) const5718 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5719                                               bool IsVariadic) const {
5720   if (RetTy->isVoidType())
5721     return ABIArgInfo::getIgnore();
5722 
5723   if (const auto *VT = RetTy->getAs<VectorType>()) {
5724     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5725         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5726       return coerceIllegalVector(RetTy);
5727   }
5728 
5729   // Large vector types should be returned via memory.
5730   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5731     return getNaturalAlignIndirect(RetTy);
5732 
5733   if (!isAggregateTypeForABI(RetTy)) {
5734     // Treat an enum type as its underlying type.
5735     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5736       RetTy = EnumTy->getDecl()->getIntegerType();
5737 
5738     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5739       if (EIT->getNumBits() > 128)
5740         return getNaturalAlignIndirect(RetTy);
5741 
5742     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5743                 ? ABIArgInfo::getExtend(RetTy)
5744                 : ABIArgInfo::getDirect());
5745   }
5746 
5747   uint64_t Size = getContext().getTypeSize(RetTy);
5748   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5749     return ABIArgInfo::getIgnore();
5750 
5751   const Type *Base = nullptr;
5752   uint64_t Members = 0;
5753   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5754       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5755         IsVariadic))
5756     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5757     return ABIArgInfo::getDirect();
5758 
5759   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5760   if (Size <= 128) {
5761     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5762     // same size and alignment.
5763     if (getTarget().isRenderScriptTarget()) {
5764       return coerceToIntArray(RetTy, getContext(), getVMContext());
5765     }
5766     unsigned Alignment = getContext().getTypeAlign(RetTy);
5767     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5768 
5769     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5770     // For aggregates with 16-byte alignment, we use i128.
5771     if (Alignment < 128 && Size == 128) {
5772       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5773       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5774     }
5775     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5776   }
5777 
5778   return getNaturalAlignIndirect(RetTy);
5779 }
5780 
5781 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
isIllegalVectorType(QualType Ty) const5782 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5783   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5784     // Check whether VT is a fixed-length SVE vector. These types are
5785     // represented as scalable vectors in function args/return and must be
5786     // coerced from fixed vectors.
5787     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5788         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5789       return true;
5790 
5791     // Check whether VT is legal.
5792     unsigned NumElements = VT->getNumElements();
5793     uint64_t Size = getContext().getTypeSize(VT);
5794     // NumElements should be power of 2.
5795     if (!llvm::isPowerOf2_32(NumElements))
5796       return true;
5797 
5798     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5799     // vectors for some reason.
5800     llvm::Triple Triple = getTarget().getTriple();
5801     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5802         Triple.isOSBinFormatMachO())
5803       return Size <= 32;
5804 
5805     return Size != 64 && (Size != 128 || NumElements == 1);
5806   }
5807   return false;
5808 }
5809 
isLegalVectorTypeForSwift(CharUnits totalSize,llvm::Type * eltTy,unsigned elts) const5810 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5811                                                llvm::Type *eltTy,
5812                                                unsigned elts) const {
5813   if (!llvm::isPowerOf2_32(elts))
5814     return false;
5815   if (totalSize.getQuantity() != 8 &&
5816       (totalSize.getQuantity() != 16 || elts == 1))
5817     return false;
5818   return true;
5819 }
5820 
isHomogeneousAggregateBaseType(QualType Ty) const5821 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5822   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5823   // point type or a short-vector type. This is the same as the 32-bit ABI,
5824   // but with the difference that any floating-point type is allowed,
5825   // including __fp16.
5826   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5827     if (BT->isFloatingPoint())
5828       return true;
5829   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5830     unsigned VecSize = getContext().getTypeSize(VT);
5831     if (VecSize == 64 || VecSize == 128)
5832       return true;
5833   }
5834   return false;
5835 }
5836 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const5837 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5838                                                        uint64_t Members) const {
5839   return Members <= 4;
5840 }
5841 
EmitAAPCSVAArg(Address VAListAddr,QualType Ty,CodeGenFunction & CGF) const5842 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5843                                             QualType Ty,
5844                                             CodeGenFunction &CGF) const {
5845   ABIArgInfo AI = classifyArgumentType(Ty);
5846   bool IsIndirect = AI.isIndirect();
5847 
5848   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5849   if (IsIndirect)
5850     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5851   else if (AI.getCoerceToType())
5852     BaseTy = AI.getCoerceToType();
5853 
5854   unsigned NumRegs = 1;
5855   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5856     BaseTy = ArrTy->getElementType();
5857     NumRegs = ArrTy->getNumElements();
5858   }
5859   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5860 
5861   // The AArch64 va_list type and handling is specified in the Procedure Call
5862   // Standard, section B.4:
5863   //
5864   // struct {
5865   //   void *__stack;
5866   //   void *__gr_top;
5867   //   void *__vr_top;
5868   //   int __gr_offs;
5869   //   int __vr_offs;
5870   // };
5871 
5872   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5873   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5874   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5875   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5876 
5877   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5878   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5879 
5880   Address reg_offs_p = Address::invalid();
5881   llvm::Value *reg_offs = nullptr;
5882   int reg_top_index;
5883   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5884   if (!IsFPR) {
5885     // 3 is the field number of __gr_offs
5886     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5887     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5888     reg_top_index = 1; // field number for __gr_top
5889     RegSize = llvm::alignTo(RegSize, 8);
5890   } else {
5891     // 4 is the field number of __vr_offs.
5892     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5893     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5894     reg_top_index = 2; // field number for __vr_top
5895     RegSize = 16 * NumRegs;
5896   }
5897 
5898   //=======================================
5899   // Find out where argument was passed
5900   //=======================================
5901 
5902   // If reg_offs >= 0 we're already using the stack for this type of
5903   // argument. We don't want to keep updating reg_offs (in case it overflows,
5904   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5905   // whatever they get).
5906   llvm::Value *UsingStack = nullptr;
5907   UsingStack = CGF.Builder.CreateICmpSGE(
5908       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5909 
5910   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5911 
5912   // Otherwise, at least some kind of argument could go in these registers, the
5913   // question is whether this particular type is too big.
5914   CGF.EmitBlock(MaybeRegBlock);
5915 
5916   // Integer arguments may need to correct register alignment (for example a
5917   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5918   // align __gr_offs to calculate the potential address.
5919   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5920     int Align = TyAlign.getQuantity();
5921 
5922     reg_offs = CGF.Builder.CreateAdd(
5923         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5924         "align_regoffs");
5925     reg_offs = CGF.Builder.CreateAnd(
5926         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5927         "aligned_regoffs");
5928   }
5929 
5930   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5931   // The fact that this is done unconditionally reflects the fact that
5932   // allocating an argument to the stack also uses up all the remaining
5933   // registers of the appropriate kind.
5934   llvm::Value *NewOffset = nullptr;
5935   NewOffset = CGF.Builder.CreateAdd(
5936       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5937   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5938 
5939   // Now we're in a position to decide whether this argument really was in
5940   // registers or not.
5941   llvm::Value *InRegs = nullptr;
5942   InRegs = CGF.Builder.CreateICmpSLE(
5943       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5944 
5945   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5946 
5947   //=======================================
5948   // Argument was in registers
5949   //=======================================
5950 
5951   // Now we emit the code for if the argument was originally passed in
5952   // registers. First start the appropriate block:
5953   CGF.EmitBlock(InRegBlock);
5954 
5955   llvm::Value *reg_top = nullptr;
5956   Address reg_top_p =
5957       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5958   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5959   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5960                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5961   Address RegAddr = Address::invalid();
5962   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5963 
5964   if (IsIndirect) {
5965     // If it's been passed indirectly (actually a struct), whatever we find from
5966     // stored registers or on the stack will actually be a struct **.
5967     MemTy = llvm::PointerType::getUnqual(MemTy);
5968   }
5969 
5970   const Type *Base = nullptr;
5971   uint64_t NumMembers = 0;
5972   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5973   if (IsHFA && NumMembers > 1) {
5974     // Homogeneous aggregates passed in registers will have their elements split
5975     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5976     // qN+1, ...). We reload and store into a temporary local variable
5977     // contiguously.
5978     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5979     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5980     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5981     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5982     Address Tmp = CGF.CreateTempAlloca(HFATy,
5983                                        std::max(TyAlign, BaseTyInfo.Align));
5984 
5985     // On big-endian platforms, the value will be right-aligned in its slot.
5986     int Offset = 0;
5987     if (CGF.CGM.getDataLayout().isBigEndian() &&
5988         BaseTyInfo.Width.getQuantity() < 16)
5989       Offset = 16 - BaseTyInfo.Width.getQuantity();
5990 
5991     for (unsigned i = 0; i < NumMembers; ++i) {
5992       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5993       Address LoadAddr =
5994         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5995       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5996 
5997       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5998 
5999       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
6000       CGF.Builder.CreateStore(Elem, StoreAddr);
6001     }
6002 
6003     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
6004   } else {
6005     // Otherwise the object is contiguous in memory.
6006 
6007     // It might be right-aligned in its slot.
6008     CharUnits SlotSize = BaseAddr.getAlignment();
6009     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6010         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6011         TySize < SlotSize) {
6012       CharUnits Offset = SlotSize - TySize;
6013       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6014     }
6015 
6016     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6017   }
6018 
6019   CGF.EmitBranch(ContBlock);
6020 
6021   //=======================================
6022   // Argument was on the stack
6023   //=======================================
6024   CGF.EmitBlock(OnStackBlock);
6025 
6026   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6027   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6028 
6029   // Again, stack arguments may need realignment. In this case both integer and
6030   // floating-point ones might be affected.
6031   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6032     int Align = TyAlign.getQuantity();
6033 
6034     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6035 
6036     OnStackPtr = CGF.Builder.CreateAdd(
6037         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6038         "align_stack");
6039     OnStackPtr = CGF.Builder.CreateAnd(
6040         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6041         "align_stack");
6042 
6043     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6044   }
6045   Address OnStackAddr(OnStackPtr,
6046                       std::max(CharUnits::fromQuantity(8), TyAlign));
6047 
6048   // All stack slots are multiples of 8 bytes.
6049   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6050   CharUnits StackSize;
6051   if (IsIndirect)
6052     StackSize = StackSlotSize;
6053   else
6054     StackSize = TySize.alignTo(StackSlotSize);
6055 
6056   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6057   llvm::Value *NewStack =
6058       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
6059 
6060   // Write the new value of __stack for the next call to va_arg
6061   CGF.Builder.CreateStore(NewStack, stack_p);
6062 
6063   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6064       TySize < StackSlotSize) {
6065     CharUnits Offset = StackSlotSize - TySize;
6066     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6067   }
6068 
6069   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6070 
6071   CGF.EmitBranch(ContBlock);
6072 
6073   //=======================================
6074   // Tidy up
6075   //=======================================
6076   CGF.EmitBlock(ContBlock);
6077 
6078   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6079                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6080 
6081   if (IsIndirect)
6082     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6083                    TyAlign);
6084 
6085   return ResAddr;
6086 }
6087 
EmitDarwinVAArg(Address VAListAddr,QualType Ty,CodeGenFunction & CGF) const6088 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6089                                         CodeGenFunction &CGF) const {
6090   // The backend's lowering doesn't support va_arg for aggregates or
6091   // illegal vector types.  Lower VAArg here for these cases and use
6092   // the LLVM va_arg instruction for everything else.
6093   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6094     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6095 
6096   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6097   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6098 
6099   // Empty records are ignored for parameter passing purposes.
6100   if (isEmptyRecord(getContext(), Ty, true)) {
6101     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6102     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6103     return Addr;
6104   }
6105 
6106   // The size of the actual thing passed, which might end up just
6107   // being a pointer for indirect types.
6108   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6109 
6110   // Arguments bigger than 16 bytes which aren't homogeneous
6111   // aggregates should be passed indirectly.
6112   bool IsIndirect = false;
6113   if (TyInfo.Width.getQuantity() > 16) {
6114     const Type *Base = nullptr;
6115     uint64_t Members = 0;
6116     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6117   }
6118 
6119   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6120                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6121 }
6122 
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const6123 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6124                                     QualType Ty) const {
6125   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6126                           CGF.getContext().getTypeInfoInChars(Ty),
6127                           CharUnits::fromQuantity(8),
6128                           /*allowHigherAlign*/ false);
6129 }
6130 
6131 //===----------------------------------------------------------------------===//
6132 // ARM ABI Implementation
6133 //===----------------------------------------------------------------------===//
6134 
6135 namespace {
6136 
6137 class ARMABIInfo : public SwiftABIInfo {
6138 public:
6139   enum ABIKind {
6140     APCS = 0,
6141     AAPCS = 1,
6142     AAPCS_VFP = 2,
6143     AAPCS16_VFP = 3,
6144   };
6145 
6146 private:
6147   ABIKind Kind;
6148   bool IsFloatABISoftFP;
6149 
6150 public:
ARMABIInfo(CodeGenTypes & CGT,ABIKind _Kind)6151   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6152       : SwiftABIInfo(CGT), Kind(_Kind) {
6153     setCCs();
6154     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6155         CGT.getCodeGenOpts().FloatABI == ""; // default
6156   }
6157 
isEABI() const6158   bool isEABI() const {
6159     switch (getTarget().getTriple().getEnvironment()) {
6160     case llvm::Triple::Android:
6161     case llvm::Triple::EABI:
6162     case llvm::Triple::EABIHF:
6163     case llvm::Triple::GNUEABI:
6164     case llvm::Triple::GNUEABIHF:
6165     case llvm::Triple::MuslEABI:
6166     case llvm::Triple::MuslEABIHF:
6167       return true;
6168     default:
6169       return false;
6170     }
6171   }
6172 
isEABIHF() const6173   bool isEABIHF() const {
6174     switch (getTarget().getTriple().getEnvironment()) {
6175     case llvm::Triple::EABIHF:
6176     case llvm::Triple::GNUEABIHF:
6177     case llvm::Triple::MuslEABIHF:
6178       return true;
6179     default:
6180       return false;
6181     }
6182   }
6183 
getABIKind() const6184   ABIKind getABIKind() const { return Kind; }
6185 
allowBFloatArgsAndRet() const6186   bool allowBFloatArgsAndRet() const override {
6187     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6188   }
6189 
6190 private:
6191   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6192                                 unsigned functionCallConv) const;
6193   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6194                                   unsigned functionCallConv) const;
6195   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6196                                           uint64_t Members) const;
6197   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6198   bool isIllegalVectorType(QualType Ty) const;
6199   bool containsAnyFP16Vectors(QualType Ty) const;
6200 
6201   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6202   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6203                                          uint64_t Members) const override;
6204 
6205   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6206 
6207   void computeInfo(CGFunctionInfo &FI) const override;
6208 
6209   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6210                     QualType Ty) const override;
6211 
6212   llvm::CallingConv::ID getLLVMDefaultCC() const;
6213   llvm::CallingConv::ID getABIDefaultCC() const;
6214   void setCCs();
6215 
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const6216   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6217                                     bool asReturnValue) const override {
6218     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6219   }
isSwiftErrorInRegister() const6220   bool isSwiftErrorInRegister() const override {
6221     return true;
6222   }
6223   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6224                                  unsigned elts) const override;
6225 };
6226 
6227 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6228 public:
ARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)6229   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6230       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6231 
getABIInfo() const6232   const ARMABIInfo &getABIInfo() const {
6233     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6234   }
6235 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const6236   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6237     return 13;
6238   }
6239 
getARCRetainAutoreleasedReturnValueMarker() const6240   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6241     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6242   }
6243 
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const6244   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6245                                llvm::Value *Address) const override {
6246     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6247 
6248     // 0-15 are the 16 integer registers.
6249     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6250     return false;
6251   }
6252 
getSizeOfUnwindException() const6253   unsigned getSizeOfUnwindException() const override {
6254     if (getABIInfo().isEABI()) return 88;
6255     return TargetCodeGenInfo::getSizeOfUnwindException();
6256   }
6257 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const6258   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6259                            CodeGen::CodeGenModule &CGM) const override {
6260     if (GV->isDeclaration())
6261       return;
6262     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6263     if (!FD)
6264       return;
6265 
6266     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6267     if (!Attr)
6268       return;
6269 
6270     const char *Kind;
6271     switch (Attr->getInterrupt()) {
6272     case ARMInterruptAttr::Generic: Kind = ""; break;
6273     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6274     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6275     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6276     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6277     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6278     }
6279 
6280     llvm::Function *Fn = cast<llvm::Function>(GV);
6281 
6282     Fn->addFnAttr("interrupt", Kind);
6283 
6284     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6285     if (ABI == ARMABIInfo::APCS)
6286       return;
6287 
6288     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6289     // however this is not necessarily true on taking any interrupt. Instruct
6290     // the backend to perform a realignment as part of the function prologue.
6291     llvm::AttrBuilder B;
6292     B.addStackAlignmentAttr(8);
6293     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
6294   }
6295 };
6296 
6297 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6298 public:
WindowsARMTargetCodeGenInfo(CodeGenTypes & CGT,ARMABIInfo::ABIKind K)6299   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6300       : ARMTargetCodeGenInfo(CGT, K) {}
6301 
6302   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6303                            CodeGen::CodeGenModule &CGM) const override;
6304 
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const6305   void getDependentLibraryOption(llvm::StringRef Lib,
6306                                  llvm::SmallString<24> &Opt) const override {
6307     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6308   }
6309 
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const6310   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6311                                llvm::SmallString<32> &Opt) const override {
6312     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6313   }
6314 };
6315 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const6316 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6317     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6318   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6319   if (GV->isDeclaration())
6320     return;
6321   addStackProbeTargetAttributes(D, GV, CGM);
6322 }
6323 }
6324 
computeInfo(CGFunctionInfo & FI) const6325 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6326   if (!::classifyReturnType(getCXXABI(), FI, *this))
6327     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6328                                             FI.getCallingConvention());
6329 
6330   for (auto &I : FI.arguments())
6331     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6332                                   FI.getCallingConvention());
6333 
6334 
6335   // Always honor user-specified calling convention.
6336   if (FI.getCallingConvention() != llvm::CallingConv::C)
6337     return;
6338 
6339   llvm::CallingConv::ID cc = getRuntimeCC();
6340   if (cc != llvm::CallingConv::C)
6341     FI.setEffectiveCallingConvention(cc);
6342 }
6343 
6344 /// Return the default calling convention that LLVM will use.
getLLVMDefaultCC() const6345 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6346   // The default calling convention that LLVM will infer.
6347   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6348     return llvm::CallingConv::ARM_AAPCS_VFP;
6349   else if (isEABI())
6350     return llvm::CallingConv::ARM_AAPCS;
6351   else
6352     return llvm::CallingConv::ARM_APCS;
6353 }
6354 
6355 /// Return the calling convention that our ABI would like us to use
6356 /// as the C calling convention.
getABIDefaultCC() const6357 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6358   switch (getABIKind()) {
6359   case APCS: return llvm::CallingConv::ARM_APCS;
6360   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6361   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6362   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6363   }
6364   llvm_unreachable("bad ABI kind");
6365 }
6366 
setCCs()6367 void ARMABIInfo::setCCs() {
6368   assert(getRuntimeCC() == llvm::CallingConv::C);
6369 
6370   // Don't muddy up the IR with a ton of explicit annotations if
6371   // they'd just match what LLVM will infer from the triple.
6372   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6373   if (abiCC != getLLVMDefaultCC())
6374     RuntimeCC = abiCC;
6375 }
6376 
coerceIllegalVector(QualType Ty) const6377 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6378   uint64_t Size = getContext().getTypeSize(Ty);
6379   if (Size <= 32) {
6380     llvm::Type *ResType =
6381         llvm::Type::getInt32Ty(getVMContext());
6382     return ABIArgInfo::getDirect(ResType);
6383   }
6384   if (Size == 64 || Size == 128) {
6385     auto *ResType = llvm::FixedVectorType::get(
6386         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6387     return ABIArgInfo::getDirect(ResType);
6388   }
6389   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6390 }
6391 
classifyHomogeneousAggregate(QualType Ty,const Type * Base,uint64_t Members) const6392 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6393                                                     const Type *Base,
6394                                                     uint64_t Members) const {
6395   assert(Base && "Base class should be set for homogeneous aggregate");
6396   // Base can be a floating-point or a vector.
6397   if (const VectorType *VT = Base->getAs<VectorType>()) {
6398     // FP16 vectors should be converted to integer vectors
6399     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6400       uint64_t Size = getContext().getTypeSize(VT);
6401       auto *NewVecTy = llvm::FixedVectorType::get(
6402           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6403       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6404       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6405     }
6406   }
6407   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6408 }
6409 
classifyArgumentType(QualType Ty,bool isVariadic,unsigned functionCallConv) const6410 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6411                                             unsigned functionCallConv) const {
6412   // 6.1.2.1 The following argument types are VFP CPRCs:
6413   //   A single-precision floating-point type (including promoted
6414   //   half-precision types); A double-precision floating-point type;
6415   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6416   //   with a Base Type of a single- or double-precision floating-point type,
6417   //   64-bit containerized vectors or 128-bit containerized vectors with one
6418   //   to four Elements.
6419   // Variadic functions should always marshal to the base standard.
6420   bool IsAAPCS_VFP =
6421       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6422 
6423   Ty = useFirstFieldIfTransparentUnion(Ty);
6424 
6425   // Handle illegal vector types here.
6426   if (isIllegalVectorType(Ty))
6427     return coerceIllegalVector(Ty);
6428 
6429   if (!isAggregateTypeForABI(Ty)) {
6430     // Treat an enum type as its underlying type.
6431     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6432       Ty = EnumTy->getDecl()->getIntegerType();
6433     }
6434 
6435     if (const auto *EIT = Ty->getAs<ExtIntType>())
6436       if (EIT->getNumBits() > 64)
6437         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6438 
6439     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6440                                               : ABIArgInfo::getDirect());
6441   }
6442 
6443   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6444     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6445   }
6446 
6447   // Ignore empty records.
6448   if (isEmptyRecord(getContext(), Ty, true))
6449     return ABIArgInfo::getIgnore();
6450 
6451   if (IsAAPCS_VFP) {
6452     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6453     // into VFP registers.
6454     const Type *Base = nullptr;
6455     uint64_t Members = 0;
6456     if (isHomogeneousAggregate(Ty, Base, Members))
6457       return classifyHomogeneousAggregate(Ty, Base, Members);
6458   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6459     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6460     // this convention even for a variadic function: the backend will use GPRs
6461     // if needed.
6462     const Type *Base = nullptr;
6463     uint64_t Members = 0;
6464     if (isHomogeneousAggregate(Ty, Base, Members)) {
6465       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6466       llvm::Type *Ty =
6467         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6468       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6469     }
6470   }
6471 
6472   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6473       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6474     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6475     // bigger than 128-bits, they get placed in space allocated by the caller,
6476     // and a pointer is passed.
6477     return ABIArgInfo::getIndirect(
6478         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6479   }
6480 
6481   // Support byval for ARM.
6482   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6483   // most 8-byte. We realign the indirect argument if type alignment is bigger
6484   // than ABI alignment.
6485   uint64_t ABIAlign = 4;
6486   uint64_t TyAlign;
6487   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6488       getABIKind() == ARMABIInfo::AAPCS) {
6489     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6490     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6491   } else {
6492     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6493   }
6494   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6495     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6496     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6497                                    /*ByVal=*/true,
6498                                    /*Realign=*/TyAlign > ABIAlign);
6499   }
6500 
6501   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6502   // same size and alignment.
6503   if (getTarget().isRenderScriptTarget()) {
6504     return coerceToIntArray(Ty, getContext(), getVMContext());
6505   }
6506 
6507   // Otherwise, pass by coercing to a structure of the appropriate size.
6508   llvm::Type* ElemTy;
6509   unsigned SizeRegs;
6510   // FIXME: Try to match the types of the arguments more accurately where
6511   // we can.
6512   if (TyAlign <= 4) {
6513     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6514     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6515   } else {
6516     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6517     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6518   }
6519 
6520   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6521 }
6522 
isIntegerLikeType(QualType Ty,ASTContext & Context,llvm::LLVMContext & VMContext)6523 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6524                               llvm::LLVMContext &VMContext) {
6525   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6526   // is called integer-like if its size is less than or equal to one word, and
6527   // the offset of each of its addressable sub-fields is zero.
6528 
6529   uint64_t Size = Context.getTypeSize(Ty);
6530 
6531   // Check that the type fits in a word.
6532   if (Size > 32)
6533     return false;
6534 
6535   // FIXME: Handle vector types!
6536   if (Ty->isVectorType())
6537     return false;
6538 
6539   // Float types are never treated as "integer like".
6540   if (Ty->isRealFloatingType())
6541     return false;
6542 
6543   // If this is a builtin or pointer type then it is ok.
6544   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6545     return true;
6546 
6547   // Small complex integer types are "integer like".
6548   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6549     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6550 
6551   // Single element and zero sized arrays should be allowed, by the definition
6552   // above, but they are not.
6553 
6554   // Otherwise, it must be a record type.
6555   const RecordType *RT = Ty->getAs<RecordType>();
6556   if (!RT) return false;
6557 
6558   // Ignore records with flexible arrays.
6559   const RecordDecl *RD = RT->getDecl();
6560   if (RD->hasFlexibleArrayMember())
6561     return false;
6562 
6563   // Check that all sub-fields are at offset 0, and are themselves "integer
6564   // like".
6565   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6566 
6567   bool HadField = false;
6568   unsigned idx = 0;
6569   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6570        i != e; ++i, ++idx) {
6571     const FieldDecl *FD = *i;
6572 
6573     // Bit-fields are not addressable, we only need to verify they are "integer
6574     // like". We still have to disallow a subsequent non-bitfield, for example:
6575     //   struct { int : 0; int x }
6576     // is non-integer like according to gcc.
6577     if (FD->isBitField()) {
6578       if (!RD->isUnion())
6579         HadField = true;
6580 
6581       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6582         return false;
6583 
6584       continue;
6585     }
6586 
6587     // Check if this field is at offset 0.
6588     if (Layout.getFieldOffset(idx) != 0)
6589       return false;
6590 
6591     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6592       return false;
6593 
6594     // Only allow at most one field in a structure. This doesn't match the
6595     // wording above, but follows gcc in situations with a field following an
6596     // empty structure.
6597     if (!RD->isUnion()) {
6598       if (HadField)
6599         return false;
6600 
6601       HadField = true;
6602     }
6603   }
6604 
6605   return true;
6606 }
6607 
classifyReturnType(QualType RetTy,bool isVariadic,unsigned functionCallConv) const6608 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6609                                           unsigned functionCallConv) const {
6610 
6611   // Variadic functions should always marshal to the base standard.
6612   bool IsAAPCS_VFP =
6613       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6614 
6615   if (RetTy->isVoidType())
6616     return ABIArgInfo::getIgnore();
6617 
6618   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6619     // Large vector types should be returned via memory.
6620     if (getContext().getTypeSize(RetTy) > 128)
6621       return getNaturalAlignIndirect(RetTy);
6622     // TODO: FP16/BF16 vectors should be converted to integer vectors
6623     // This check is similar  to isIllegalVectorType - refactor?
6624     if ((!getTarget().hasLegalHalfType() &&
6625         (VT->getElementType()->isFloat16Type() ||
6626          VT->getElementType()->isHalfType())) ||
6627         (IsFloatABISoftFP &&
6628          VT->getElementType()->isBFloat16Type()))
6629       return coerceIllegalVector(RetTy);
6630   }
6631 
6632   if (!isAggregateTypeForABI(RetTy)) {
6633     // Treat an enum type as its underlying type.
6634     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6635       RetTy = EnumTy->getDecl()->getIntegerType();
6636 
6637     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6638       if (EIT->getNumBits() > 64)
6639         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6640 
6641     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6642                                                 : ABIArgInfo::getDirect();
6643   }
6644 
6645   // Are we following APCS?
6646   if (getABIKind() == APCS) {
6647     if (isEmptyRecord(getContext(), RetTy, false))
6648       return ABIArgInfo::getIgnore();
6649 
6650     // Complex types are all returned as packed integers.
6651     //
6652     // FIXME: Consider using 2 x vector types if the back end handles them
6653     // correctly.
6654     if (RetTy->isAnyComplexType())
6655       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6656           getVMContext(), getContext().getTypeSize(RetTy)));
6657 
6658     // Integer like structures are returned in r0.
6659     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6660       // Return in the smallest viable integer type.
6661       uint64_t Size = getContext().getTypeSize(RetTy);
6662       if (Size <= 8)
6663         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6664       if (Size <= 16)
6665         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6666       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6667     }
6668 
6669     // Otherwise return in memory.
6670     return getNaturalAlignIndirect(RetTy);
6671   }
6672 
6673   // Otherwise this is an AAPCS variant.
6674 
6675   if (isEmptyRecord(getContext(), RetTy, true))
6676     return ABIArgInfo::getIgnore();
6677 
6678   // Check for homogeneous aggregates with AAPCS-VFP.
6679   if (IsAAPCS_VFP) {
6680     const Type *Base = nullptr;
6681     uint64_t Members = 0;
6682     if (isHomogeneousAggregate(RetTy, Base, Members))
6683       return classifyHomogeneousAggregate(RetTy, Base, Members);
6684   }
6685 
6686   // Aggregates <= 4 bytes are returned in r0; other aggregates
6687   // are returned indirectly.
6688   uint64_t Size = getContext().getTypeSize(RetTy);
6689   if (Size <= 32) {
6690     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6691     // same size and alignment.
6692     if (getTarget().isRenderScriptTarget()) {
6693       return coerceToIntArray(RetTy, getContext(), getVMContext());
6694     }
6695     if (getDataLayout().isBigEndian())
6696       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6697       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6698 
6699     // Return in the smallest viable integer type.
6700     if (Size <= 8)
6701       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6702     if (Size <= 16)
6703       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6704     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6705   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6706     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6707     llvm::Type *CoerceTy =
6708         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6709     return ABIArgInfo::getDirect(CoerceTy);
6710   }
6711 
6712   return getNaturalAlignIndirect(RetTy);
6713 }
6714 
6715 /// isIllegalVector - check whether Ty is an illegal vector type.
isIllegalVectorType(QualType Ty) const6716 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6717   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6718     // On targets that don't support half, fp16 or bfloat, they are expanded
6719     // into float, and we don't want the ABI to depend on whether or not they
6720     // are supported in hardware. Thus return false to coerce vectors of these
6721     // types into integer vectors.
6722     // We do not depend on hasLegalHalfType for bfloat as it is a
6723     // separate IR type.
6724     if ((!getTarget().hasLegalHalfType() &&
6725         (VT->getElementType()->isFloat16Type() ||
6726          VT->getElementType()->isHalfType())) ||
6727         (IsFloatABISoftFP &&
6728          VT->getElementType()->isBFloat16Type()))
6729       return true;
6730     if (isAndroid()) {
6731       // Android shipped using Clang 3.1, which supported a slightly different
6732       // vector ABI. The primary differences were that 3-element vector types
6733       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6734       // accepts that legacy behavior for Android only.
6735       // Check whether VT is legal.
6736       unsigned NumElements = VT->getNumElements();
6737       // NumElements should be power of 2 or equal to 3.
6738       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6739         return true;
6740     } else {
6741       // Check whether VT is legal.
6742       unsigned NumElements = VT->getNumElements();
6743       uint64_t Size = getContext().getTypeSize(VT);
6744       // NumElements should be power of 2.
6745       if (!llvm::isPowerOf2_32(NumElements))
6746         return true;
6747       // Size should be greater than 32 bits.
6748       return Size <= 32;
6749     }
6750   }
6751   return false;
6752 }
6753 
6754 /// Return true if a type contains any 16-bit floating point vectors
containsAnyFP16Vectors(QualType Ty) const6755 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6756   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6757     uint64_t NElements = AT->getSize().getZExtValue();
6758     if (NElements == 0)
6759       return false;
6760     return containsAnyFP16Vectors(AT->getElementType());
6761   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6762     const RecordDecl *RD = RT->getDecl();
6763 
6764     // If this is a C++ record, check the bases first.
6765     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6766       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6767             return containsAnyFP16Vectors(B.getType());
6768           }))
6769         return true;
6770 
6771     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6772           return FD && containsAnyFP16Vectors(FD->getType());
6773         }))
6774       return true;
6775 
6776     return false;
6777   } else {
6778     if (const VectorType *VT = Ty->getAs<VectorType>())
6779       return (VT->getElementType()->isFloat16Type() ||
6780               VT->getElementType()->isBFloat16Type() ||
6781               VT->getElementType()->isHalfType());
6782     return false;
6783   }
6784 }
6785 
isLegalVectorTypeForSwift(CharUnits vectorSize,llvm::Type * eltTy,unsigned numElts) const6786 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6787                                            llvm::Type *eltTy,
6788                                            unsigned numElts) const {
6789   if (!llvm::isPowerOf2_32(numElts))
6790     return false;
6791   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6792   if (size > 64)
6793     return false;
6794   if (vectorSize.getQuantity() != 8 &&
6795       (vectorSize.getQuantity() != 16 || numElts == 1))
6796     return false;
6797   return true;
6798 }
6799 
isHomogeneousAggregateBaseType(QualType Ty) const6800 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6801   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6802   // double, or 64-bit or 128-bit vectors.
6803   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6804     if (BT->getKind() == BuiltinType::Float ||
6805         BT->getKind() == BuiltinType::Double ||
6806         BT->getKind() == BuiltinType::LongDouble)
6807       return true;
6808   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6809     unsigned VecSize = getContext().getTypeSize(VT);
6810     if (VecSize == 64 || VecSize == 128)
6811       return true;
6812   }
6813   return false;
6814 }
6815 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const6816 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6817                                                    uint64_t Members) const {
6818   return Members <= 4;
6819 }
6820 
isEffectivelyAAPCS_VFP(unsigned callConvention,bool acceptHalf) const6821 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6822                                         bool acceptHalf) const {
6823   // Give precedence to user-specified calling conventions.
6824   if (callConvention != llvm::CallingConv::C)
6825     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6826   else
6827     return (getABIKind() == AAPCS_VFP) ||
6828            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6829 }
6830 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const6831 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6832                               QualType Ty) const {
6833   CharUnits SlotSize = CharUnits::fromQuantity(4);
6834 
6835   // Empty records are ignored for parameter passing purposes.
6836   if (isEmptyRecord(getContext(), Ty, true)) {
6837     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6838     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6839     return Addr;
6840   }
6841 
6842   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6843   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6844 
6845   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6846   bool IsIndirect = false;
6847   const Type *Base = nullptr;
6848   uint64_t Members = 0;
6849   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6850     IsIndirect = true;
6851 
6852   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6853   // allocated by the caller.
6854   } else if (TySize > CharUnits::fromQuantity(16) &&
6855              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6856              !isHomogeneousAggregate(Ty, Base, Members)) {
6857     IsIndirect = true;
6858 
6859   // Otherwise, bound the type's ABI alignment.
6860   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6861   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6862   // Our callers should be prepared to handle an under-aligned address.
6863   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6864              getABIKind() == ARMABIInfo::AAPCS) {
6865     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6866     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6867   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6868     // ARMv7k allows type alignment up to 16 bytes.
6869     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6870     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6871   } else {
6872     TyAlignForABI = CharUnits::fromQuantity(4);
6873   }
6874 
6875   TypeInfoChars TyInfo(TySize, TyAlignForABI, false);
6876   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6877                           SlotSize, /*AllowHigherAlign*/ true);
6878 }
6879 
6880 //===----------------------------------------------------------------------===//
6881 // NVPTX ABI Implementation
6882 //===----------------------------------------------------------------------===//
6883 
6884 namespace {
6885 
6886 class NVPTXTargetCodeGenInfo;
6887 
6888 class NVPTXABIInfo : public ABIInfo {
6889   NVPTXTargetCodeGenInfo &CGInfo;
6890 
6891 public:
NVPTXABIInfo(CodeGenTypes & CGT,NVPTXTargetCodeGenInfo & Info)6892   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6893       : ABIInfo(CGT), CGInfo(Info) {}
6894 
6895   ABIArgInfo classifyReturnType(QualType RetTy) const;
6896   ABIArgInfo classifyArgumentType(QualType Ty) const;
6897 
6898   void computeInfo(CGFunctionInfo &FI) const override;
6899   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6900                     QualType Ty) const override;
6901   bool isUnsupportedType(QualType T) const;
6902   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
6903 };
6904 
6905 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6906 public:
NVPTXTargetCodeGenInfo(CodeGenTypes & CGT)6907   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6908       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
6909 
6910   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6911                            CodeGen::CodeGenModule &M) const override;
6912   bool shouldEmitStaticExternCAliases() const override;
6913 
getCUDADeviceBuiltinSurfaceDeviceType() const6914   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6915     // On the device side, surface reference is represented as an object handle
6916     // in 64-bit integer.
6917     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6918   }
6919 
getCUDADeviceBuiltinTextureDeviceType() const6920   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6921     // On the device side, texture reference is represented as an object handle
6922     // in 64-bit integer.
6923     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6924   }
6925 
emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction & CGF,LValue Dst,LValue Src) const6926   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6927                                               LValue Src) const override {
6928     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6929     return true;
6930   }
6931 
emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction & CGF,LValue Dst,LValue Src) const6932   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6933                                               LValue Src) const override {
6934     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6935     return true;
6936   }
6937 
6938 private:
6939   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6940   // resulting MDNode to the nvvm.annotations MDNode.
6941   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6942                               int Operand);
6943 
emitBuiltinSurfTexDeviceCopy(CodeGenFunction & CGF,LValue Dst,LValue Src)6944   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6945                                            LValue Src) {
6946     llvm::Value *Handle = nullptr;
6947     llvm::Constant *C =
6948         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6949     // Lookup `addrspacecast` through the constant pointer if any.
6950     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6951       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
6952     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
6953       // Load the handle from the specific global variable using
6954       // `nvvm.texsurf.handle.internal` intrinsic.
6955       Handle = CGF.EmitRuntimeCall(
6956           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
6957                                {GV->getType()}),
6958           {GV}, "texsurf_handle");
6959     } else
6960       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
6961     CGF.EmitStoreOfScalar(Handle, Dst);
6962   }
6963 };
6964 
6965 /// Checks if the type is unsupported directly by the current target.
isUnsupportedType(QualType T) const6966 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
6967   ASTContext &Context = getContext();
6968   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6969     return true;
6970   if (!Context.getTargetInfo().hasFloat128Type() &&
6971       (T->isFloat128Type() ||
6972        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6973     return true;
6974   if (const auto *EIT = T->getAs<ExtIntType>())
6975     return EIT->getNumBits() >
6976            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
6977   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6978       Context.getTypeSize(T) > 64U)
6979     return true;
6980   if (const auto *AT = T->getAsArrayTypeUnsafe())
6981     return isUnsupportedType(AT->getElementType());
6982   const auto *RT = T->getAs<RecordType>();
6983   if (!RT)
6984     return false;
6985   const RecordDecl *RD = RT->getDecl();
6986 
6987   // If this is a C++ record, check the bases first.
6988   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6989     for (const CXXBaseSpecifier &I : CXXRD->bases())
6990       if (isUnsupportedType(I.getType()))
6991         return true;
6992 
6993   for (const FieldDecl *I : RD->fields())
6994     if (isUnsupportedType(I->getType()))
6995       return true;
6996   return false;
6997 }
6998 
6999 /// Coerce the given type into an array with maximum allowed size of elements.
coerceToIntArrayWithLimit(QualType Ty,unsigned MaxSize) const7000 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
7001                                                    unsigned MaxSize) const {
7002   // Alignment and Size are measured in bits.
7003   const uint64_t Size = getContext().getTypeSize(Ty);
7004   const uint64_t Alignment = getContext().getTypeAlign(Ty);
7005   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
7006   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
7007   const uint64_t NumElements = (Size + Div - 1) / Div;
7008   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7009 }
7010 
classifyReturnType(QualType RetTy) const7011 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7012   if (RetTy->isVoidType())
7013     return ABIArgInfo::getIgnore();
7014 
7015   if (getContext().getLangOpts().OpenMP &&
7016       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7017     return coerceToIntArrayWithLimit(RetTy, 64);
7018 
7019   // note: this is different from default ABI
7020   if (!RetTy->isScalarType())
7021     return ABIArgInfo::getDirect();
7022 
7023   // Treat an enum type as its underlying type.
7024   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7025     RetTy = EnumTy->getDecl()->getIntegerType();
7026 
7027   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7028                                                : ABIArgInfo::getDirect());
7029 }
7030 
classifyArgumentType(QualType Ty) const7031 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7032   // Treat an enum type as its underlying type.
7033   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7034     Ty = EnumTy->getDecl()->getIntegerType();
7035 
7036   // Return aggregates type as indirect by value
7037   if (isAggregateTypeForABI(Ty)) {
7038     // Under CUDA device compilation, tex/surf builtin types are replaced with
7039     // object types and passed directly.
7040     if (getContext().getLangOpts().CUDAIsDevice) {
7041       if (Ty->isCUDADeviceBuiltinSurfaceType())
7042         return ABIArgInfo::getDirect(
7043             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7044       if (Ty->isCUDADeviceBuiltinTextureType())
7045         return ABIArgInfo::getDirect(
7046             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7047     }
7048     return getNaturalAlignIndirect(Ty, /* byval */ true);
7049   }
7050 
7051   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7052     if ((EIT->getNumBits() > 128) ||
7053         (!getContext().getTargetInfo().hasInt128Type() &&
7054          EIT->getNumBits() > 64))
7055       return getNaturalAlignIndirect(Ty, /* byval */ true);
7056   }
7057 
7058   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7059                                             : ABIArgInfo::getDirect());
7060 }
7061 
computeInfo(CGFunctionInfo & FI) const7062 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7063   if (!getCXXABI().classifyReturnType(FI))
7064     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7065   for (auto &I : FI.arguments())
7066     I.info = classifyArgumentType(I.type);
7067 
7068   // Always honor user-specified calling convention.
7069   if (FI.getCallingConvention() != llvm::CallingConv::C)
7070     return;
7071 
7072   FI.setEffectiveCallingConvention(getRuntimeCC());
7073 }
7074 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const7075 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7076                                 QualType Ty) const {
7077   llvm_unreachable("NVPTX does not support varargs");
7078 }
7079 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const7080 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7081     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7082   if (GV->isDeclaration())
7083     return;
7084   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7085   if (VD) {
7086     if (M.getLangOpts().CUDA) {
7087       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7088         addNVVMMetadata(GV, "surface", 1);
7089       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7090         addNVVMMetadata(GV, "texture", 1);
7091       return;
7092     }
7093   }
7094 
7095   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7096   if (!FD) return;
7097 
7098   llvm::Function *F = cast<llvm::Function>(GV);
7099 
7100   // Perform special handling in OpenCL mode
7101   if (M.getLangOpts().OpenCL) {
7102     // Use OpenCL function attributes to check for kernel functions
7103     // By default, all functions are device functions
7104     if (FD->hasAttr<OpenCLKernelAttr>()) {
7105       // OpenCL __kernel functions get kernel metadata
7106       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7107       addNVVMMetadata(F, "kernel", 1);
7108       // And kernel functions are not subject to inlining
7109       F->addFnAttr(llvm::Attribute::NoInline);
7110     }
7111   }
7112 
7113   // Perform special handling in CUDA mode.
7114   if (M.getLangOpts().CUDA) {
7115     // CUDA __global__ functions get a kernel metadata entry.  Since
7116     // __global__ functions cannot be called from the device, we do not
7117     // need to set the noinline attribute.
7118     if (FD->hasAttr<CUDAGlobalAttr>()) {
7119       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7120       addNVVMMetadata(F, "kernel", 1);
7121     }
7122     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7123       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7124       llvm::APSInt MaxThreads(32);
7125       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7126       if (MaxThreads > 0)
7127         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7128 
7129       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7130       // not specified in __launch_bounds__ or if the user specified a 0 value,
7131       // we don't have to add a PTX directive.
7132       if (Attr->getMinBlocks()) {
7133         llvm::APSInt MinBlocks(32);
7134         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7135         if (MinBlocks > 0)
7136           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7137           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7138       }
7139     }
7140   }
7141 }
7142 
addNVVMMetadata(llvm::GlobalValue * GV,StringRef Name,int Operand)7143 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7144                                              StringRef Name, int Operand) {
7145   llvm::Module *M = GV->getParent();
7146   llvm::LLVMContext &Ctx = M->getContext();
7147 
7148   // Get "nvvm.annotations" metadata node
7149   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7150 
7151   llvm::Metadata *MDVals[] = {
7152       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7153       llvm::ConstantAsMetadata::get(
7154           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7155   // Append metadata to nvvm.annotations
7156   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7157 }
7158 
shouldEmitStaticExternCAliases() const7159 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7160   return false;
7161 }
7162 }
7163 
7164 //===----------------------------------------------------------------------===//
7165 // SystemZ ABI Implementation
7166 //===----------------------------------------------------------------------===//
7167 
7168 namespace {
7169 
7170 class SystemZABIInfo : public SwiftABIInfo {
7171   bool HasVector;
7172   bool IsSoftFloatABI;
7173 
7174 public:
SystemZABIInfo(CodeGenTypes & CGT,bool HV,bool SF)7175   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7176     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7177 
7178   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7179   bool isCompoundType(QualType Ty) const;
7180   bool isVectorArgumentType(QualType Ty) const;
7181   bool isFPArgumentType(QualType Ty) const;
7182   QualType GetSingleElementType(QualType Ty) const;
7183 
7184   ABIArgInfo classifyReturnType(QualType RetTy) const;
7185   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7186 
computeInfo(CGFunctionInfo & FI) const7187   void computeInfo(CGFunctionInfo &FI) const override {
7188     if (!getCXXABI().classifyReturnType(FI))
7189       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7190     for (auto &I : FI.arguments())
7191       I.info = classifyArgumentType(I.type);
7192   }
7193 
7194   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7195                     QualType Ty) const override;
7196 
shouldPassIndirectlyForSwift(ArrayRef<llvm::Type * > scalars,bool asReturnValue) const7197   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7198                                     bool asReturnValue) const override {
7199     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7200   }
isSwiftErrorInRegister() const7201   bool isSwiftErrorInRegister() const override {
7202     return false;
7203   }
7204 };
7205 
7206 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7207 public:
SystemZTargetCodeGenInfo(CodeGenTypes & CGT,bool HasVector,bool SoftFloatABI)7208   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7209       : TargetCodeGenInfo(
7210             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7211 };
7212 
7213 }
7214 
isPromotableIntegerTypeForABI(QualType Ty) const7215 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7216   // Treat an enum type as its underlying type.
7217   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7218     Ty = EnumTy->getDecl()->getIntegerType();
7219 
7220   // Promotable integer types are required to be promoted by the ABI.
7221   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7222     return true;
7223 
7224   if (const auto *EIT = Ty->getAs<ExtIntType>())
7225     if (EIT->getNumBits() < 64)
7226       return true;
7227 
7228   // 32-bit values must also be promoted.
7229   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7230     switch (BT->getKind()) {
7231     case BuiltinType::Int:
7232     case BuiltinType::UInt:
7233       return true;
7234     default:
7235       return false;
7236     }
7237   return false;
7238 }
7239 
isCompoundType(QualType Ty) const7240 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7241   return (Ty->isAnyComplexType() ||
7242           Ty->isVectorType() ||
7243           isAggregateTypeForABI(Ty));
7244 }
7245 
isVectorArgumentType(QualType Ty) const7246 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7247   return (HasVector &&
7248           Ty->isVectorType() &&
7249           getContext().getTypeSize(Ty) <= 128);
7250 }
7251 
isFPArgumentType(QualType Ty) const7252 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7253   if (IsSoftFloatABI)
7254     return false;
7255 
7256   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7257     switch (BT->getKind()) {
7258     case BuiltinType::Float:
7259     case BuiltinType::Double:
7260       return true;
7261     default:
7262       return false;
7263     }
7264 
7265   return false;
7266 }
7267 
GetSingleElementType(QualType Ty) const7268 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7269   const RecordType *RT = Ty->getAs<RecordType>();
7270 
7271   if (RT && RT->isStructureOrClassType()) {
7272     const RecordDecl *RD = RT->getDecl();
7273     QualType Found;
7274 
7275     // If this is a C++ record, check the bases first.
7276     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7277       for (const auto &I : CXXRD->bases()) {
7278         QualType Base = I.getType();
7279 
7280         // Empty bases don't affect things either way.
7281         if (isEmptyRecord(getContext(), Base, true))
7282           continue;
7283 
7284         if (!Found.isNull())
7285           return Ty;
7286         Found = GetSingleElementType(Base);
7287       }
7288 
7289     // Check the fields.
7290     for (const auto *FD : RD->fields()) {
7291       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7292       // Unlike isSingleElementStruct(), empty structure and array fields
7293       // do count.  So do anonymous bitfields that aren't zero-sized.
7294       if (getContext().getLangOpts().CPlusPlus &&
7295           FD->isZeroLengthBitField(getContext()))
7296         continue;
7297       // Like isSingleElementStruct(), ignore C++20 empty data members.
7298       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7299           isEmptyRecord(getContext(), FD->getType(), true))
7300         continue;
7301 
7302       // Unlike isSingleElementStruct(), arrays do not count.
7303       // Nested structures still do though.
7304       if (!Found.isNull())
7305         return Ty;
7306       Found = GetSingleElementType(FD->getType());
7307     }
7308 
7309     // Unlike isSingleElementStruct(), trailing padding is allowed.
7310     // An 8-byte aligned struct s { float f; } is passed as a double.
7311     if (!Found.isNull())
7312       return Found;
7313   }
7314 
7315   return Ty;
7316 }
7317 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const7318 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7319                                   QualType Ty) const {
7320   // Assume that va_list type is correct; should be pointer to LLVM type:
7321   // struct {
7322   //   i64 __gpr;
7323   //   i64 __fpr;
7324   //   i8 *__overflow_arg_area;
7325   //   i8 *__reg_save_area;
7326   // };
7327 
7328   // Every non-vector argument occupies 8 bytes and is passed by preference
7329   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7330   // always passed on the stack.
7331   Ty = getContext().getCanonicalType(Ty);
7332   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7333   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7334   llvm::Type *DirectTy = ArgTy;
7335   ABIArgInfo AI = classifyArgumentType(Ty);
7336   bool IsIndirect = AI.isIndirect();
7337   bool InFPRs = false;
7338   bool IsVector = false;
7339   CharUnits UnpaddedSize;
7340   CharUnits DirectAlign;
7341   if (IsIndirect) {
7342     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7343     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7344   } else {
7345     if (AI.getCoerceToType())
7346       ArgTy = AI.getCoerceToType();
7347     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7348     IsVector = ArgTy->isVectorTy();
7349     UnpaddedSize = TyInfo.Width;
7350     DirectAlign = TyInfo.Align;
7351   }
7352   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7353   if (IsVector && UnpaddedSize > PaddedSize)
7354     PaddedSize = CharUnits::fromQuantity(16);
7355   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7356 
7357   CharUnits Padding = (PaddedSize - UnpaddedSize);
7358 
7359   llvm::Type *IndexTy = CGF.Int64Ty;
7360   llvm::Value *PaddedSizeV =
7361     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7362 
7363   if (IsVector) {
7364     // Work out the address of a vector argument on the stack.
7365     // Vector arguments are always passed in the high bits of a
7366     // single (8 byte) or double (16 byte) stack slot.
7367     Address OverflowArgAreaPtr =
7368         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7369     Address OverflowArgArea =
7370       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7371               TyInfo.Align);
7372     Address MemAddr =
7373       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7374 
7375     // Update overflow_arg_area_ptr pointer
7376     llvm::Value *NewOverflowArgArea =
7377       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7378                             "overflow_arg_area");
7379     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7380 
7381     return MemAddr;
7382   }
7383 
7384   assert(PaddedSize.getQuantity() == 8);
7385 
7386   unsigned MaxRegs, RegCountField, RegSaveIndex;
7387   CharUnits RegPadding;
7388   if (InFPRs) {
7389     MaxRegs = 4; // Maximum of 4 FPR arguments
7390     RegCountField = 1; // __fpr
7391     RegSaveIndex = 16; // save offset for f0
7392     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7393   } else {
7394     MaxRegs = 5; // Maximum of 5 GPR arguments
7395     RegCountField = 0; // __gpr
7396     RegSaveIndex = 2; // save offset for r2
7397     RegPadding = Padding; // values are passed in the low bits of a GPR
7398   }
7399 
7400   Address RegCountPtr =
7401       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7402   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7403   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7404   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7405                                                  "fits_in_regs");
7406 
7407   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7408   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7409   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7410   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7411 
7412   // Emit code to load the value if it was passed in registers.
7413   CGF.EmitBlock(InRegBlock);
7414 
7415   // Work out the address of an argument register.
7416   llvm::Value *ScaledRegCount =
7417     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7418   llvm::Value *RegBase =
7419     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7420                                       + RegPadding.getQuantity());
7421   llvm::Value *RegOffset =
7422     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7423   Address RegSaveAreaPtr =
7424       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7425   llvm::Value *RegSaveArea =
7426     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7427   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
7428                                            "raw_reg_addr"),
7429                      PaddedSize);
7430   Address RegAddr =
7431     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7432 
7433   // Update the register count
7434   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7435   llvm::Value *NewRegCount =
7436     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7437   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7438   CGF.EmitBranch(ContBlock);
7439 
7440   // Emit code to load the value if it was passed in memory.
7441   CGF.EmitBlock(InMemBlock);
7442 
7443   // Work out the address of a stack argument.
7444   Address OverflowArgAreaPtr =
7445       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7446   Address OverflowArgArea =
7447     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7448             PaddedSize);
7449   Address RawMemAddr =
7450     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7451   Address MemAddr =
7452     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7453 
7454   // Update overflow_arg_area_ptr pointer
7455   llvm::Value *NewOverflowArgArea =
7456     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7457                           "overflow_arg_area");
7458   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7459   CGF.EmitBranch(ContBlock);
7460 
7461   // Return the appropriate result.
7462   CGF.EmitBlock(ContBlock);
7463   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7464                                  MemAddr, InMemBlock, "va_arg.addr");
7465 
7466   if (IsIndirect)
7467     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7468                       TyInfo.Align);
7469 
7470   return ResAddr;
7471 }
7472 
classifyReturnType(QualType RetTy) const7473 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7474   if (RetTy->isVoidType())
7475     return ABIArgInfo::getIgnore();
7476   if (isVectorArgumentType(RetTy))
7477     return ABIArgInfo::getDirect();
7478   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7479     return getNaturalAlignIndirect(RetTy);
7480   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7481                                                : ABIArgInfo::getDirect());
7482 }
7483 
classifyArgumentType(QualType Ty) const7484 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7485   // Handle the generic C++ ABI.
7486   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7487     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7488 
7489   // Integers and enums are extended to full register width.
7490   if (isPromotableIntegerTypeForABI(Ty))
7491     return ABIArgInfo::getExtend(Ty);
7492 
7493   // Handle vector types and vector-like structure types.  Note that
7494   // as opposed to float-like structure types, we do not allow any
7495   // padding for vector-like structures, so verify the sizes match.
7496   uint64_t Size = getContext().getTypeSize(Ty);
7497   QualType SingleElementTy = GetSingleElementType(Ty);
7498   if (isVectorArgumentType(SingleElementTy) &&
7499       getContext().getTypeSize(SingleElementTy) == Size)
7500     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7501 
7502   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7503   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7504     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7505 
7506   // Handle small structures.
7507   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7508     // Structures with flexible arrays have variable length, so really
7509     // fail the size test above.
7510     const RecordDecl *RD = RT->getDecl();
7511     if (RD->hasFlexibleArrayMember())
7512       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7513 
7514     // The structure is passed as an unextended integer, a float, or a double.
7515     llvm::Type *PassTy;
7516     if (isFPArgumentType(SingleElementTy)) {
7517       assert(Size == 32 || Size == 64);
7518       if (Size == 32)
7519         PassTy = llvm::Type::getFloatTy(getVMContext());
7520       else
7521         PassTy = llvm::Type::getDoubleTy(getVMContext());
7522     } else
7523       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7524     return ABIArgInfo::getDirect(PassTy);
7525   }
7526 
7527   // Non-structure compounds are passed indirectly.
7528   if (isCompoundType(Ty))
7529     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7530 
7531   return ABIArgInfo::getDirect(nullptr);
7532 }
7533 
7534 //===----------------------------------------------------------------------===//
7535 // MSP430 ABI Implementation
7536 //===----------------------------------------------------------------------===//
7537 
7538 namespace {
7539 
7540 class MSP430ABIInfo : public DefaultABIInfo {
complexArgInfo()7541   static ABIArgInfo complexArgInfo() {
7542     ABIArgInfo Info = ABIArgInfo::getDirect();
7543     Info.setCanBeFlattened(false);
7544     return Info;
7545   }
7546 
7547 public:
MSP430ABIInfo(CodeGenTypes & CGT)7548   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7549 
classifyReturnType(QualType RetTy) const7550   ABIArgInfo classifyReturnType(QualType RetTy) const {
7551     if (RetTy->isAnyComplexType())
7552       return complexArgInfo();
7553 
7554     return DefaultABIInfo::classifyReturnType(RetTy);
7555   }
7556 
classifyArgumentType(QualType RetTy) const7557   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7558     if (RetTy->isAnyComplexType())
7559       return complexArgInfo();
7560 
7561     return DefaultABIInfo::classifyArgumentType(RetTy);
7562   }
7563 
7564   // Just copy the original implementations because
7565   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
computeInfo(CGFunctionInfo & FI) const7566   void computeInfo(CGFunctionInfo &FI) const override {
7567     if (!getCXXABI().classifyReturnType(FI))
7568       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7569     for (auto &I : FI.arguments())
7570       I.info = classifyArgumentType(I.type);
7571   }
7572 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const7573   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7574                     QualType Ty) const override {
7575     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7576   }
7577 };
7578 
7579 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7580 public:
MSP430TargetCodeGenInfo(CodeGenTypes & CGT)7581   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7582       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7583   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7584                            CodeGen::CodeGenModule &M) const override;
7585 };
7586 
7587 }
7588 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const7589 void MSP430TargetCodeGenInfo::setTargetAttributes(
7590     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7591   if (GV->isDeclaration())
7592     return;
7593   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7594     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7595     if (!InterruptAttr)
7596       return;
7597 
7598     // Handle 'interrupt' attribute:
7599     llvm::Function *F = cast<llvm::Function>(GV);
7600 
7601     // Step 1: Set ISR calling convention.
7602     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7603 
7604     // Step 2: Add attributes goodness.
7605     F->addFnAttr(llvm::Attribute::NoInline);
7606     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7607   }
7608 }
7609 
7610 //===----------------------------------------------------------------------===//
7611 // MIPS ABI Implementation.  This works for both little-endian and
7612 // big-endian variants.
7613 //===----------------------------------------------------------------------===//
7614 
7615 namespace {
7616 class MipsABIInfo : public ABIInfo {
7617   bool IsO32;
7618   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7619   void CoerceToIntArgs(uint64_t TySize,
7620                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7621   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7622   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7623   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7624 public:
MipsABIInfo(CodeGenTypes & CGT,bool _IsO32)7625   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7626     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7627     StackAlignInBytes(IsO32 ? 8 : 16) {}
7628 
7629   ABIArgInfo classifyReturnType(QualType RetTy) const;
7630   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7631   void computeInfo(CGFunctionInfo &FI) const override;
7632   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7633                     QualType Ty) const override;
7634   ABIArgInfo extendType(QualType Ty) const;
7635 };
7636 
7637 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7638   unsigned SizeOfUnwindException;
7639 public:
MIPSTargetCodeGenInfo(CodeGenTypes & CGT,bool IsO32)7640   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7641       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7642         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7643 
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const7644   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7645     return 29;
7646   }
7647 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const7648   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7649                            CodeGen::CodeGenModule &CGM) const override {
7650     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7651     if (!FD) return;
7652     llvm::Function *Fn = cast<llvm::Function>(GV);
7653 
7654     if (FD->hasAttr<MipsLongCallAttr>())
7655       Fn->addFnAttr("long-call");
7656     else if (FD->hasAttr<MipsShortCallAttr>())
7657       Fn->addFnAttr("short-call");
7658 
7659     // Other attributes do not have a meaning for declarations.
7660     if (GV->isDeclaration())
7661       return;
7662 
7663     if (FD->hasAttr<Mips16Attr>()) {
7664       Fn->addFnAttr("mips16");
7665     }
7666     else if (FD->hasAttr<NoMips16Attr>()) {
7667       Fn->addFnAttr("nomips16");
7668     }
7669 
7670     if (FD->hasAttr<MicroMipsAttr>())
7671       Fn->addFnAttr("micromips");
7672     else if (FD->hasAttr<NoMicroMipsAttr>())
7673       Fn->addFnAttr("nomicromips");
7674 
7675     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7676     if (!Attr)
7677       return;
7678 
7679     const char *Kind;
7680     switch (Attr->getInterrupt()) {
7681     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7682     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7683     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7684     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7685     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7686     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7687     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7688     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7689     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7690     }
7691 
7692     Fn->addFnAttr("interrupt", Kind);
7693 
7694   }
7695 
7696   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7697                                llvm::Value *Address) const override;
7698 
getSizeOfUnwindException() const7699   unsigned getSizeOfUnwindException() const override {
7700     return SizeOfUnwindException;
7701   }
7702 };
7703 }
7704 
CoerceToIntArgs(uint64_t TySize,SmallVectorImpl<llvm::Type * > & ArgList) const7705 void MipsABIInfo::CoerceToIntArgs(
7706     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7707   llvm::IntegerType *IntTy =
7708     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7709 
7710   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7711   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7712     ArgList.push_back(IntTy);
7713 
7714   // If necessary, add one more integer type to ArgList.
7715   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7716 
7717   if (R)
7718     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7719 }
7720 
7721 // In N32/64, an aligned double precision floating point field is passed in
7722 // a register.
HandleAggregates(QualType Ty,uint64_t TySize) const7723 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7724   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7725 
7726   if (IsO32) {
7727     CoerceToIntArgs(TySize, ArgList);
7728     return llvm::StructType::get(getVMContext(), ArgList);
7729   }
7730 
7731   if (Ty->isComplexType())
7732     return CGT.ConvertType(Ty);
7733 
7734   const RecordType *RT = Ty->getAs<RecordType>();
7735 
7736   // Unions/vectors are passed in integer registers.
7737   if (!RT || !RT->isStructureOrClassType()) {
7738     CoerceToIntArgs(TySize, ArgList);
7739     return llvm::StructType::get(getVMContext(), ArgList);
7740   }
7741 
7742   const RecordDecl *RD = RT->getDecl();
7743   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7744   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7745 
7746   uint64_t LastOffset = 0;
7747   unsigned idx = 0;
7748   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7749 
7750   // Iterate over fields in the struct/class and check if there are any aligned
7751   // double fields.
7752   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7753        i != e; ++i, ++idx) {
7754     const QualType Ty = i->getType();
7755     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7756 
7757     if (!BT || BT->getKind() != BuiltinType::Double)
7758       continue;
7759 
7760     uint64_t Offset = Layout.getFieldOffset(idx);
7761     if (Offset % 64) // Ignore doubles that are not aligned.
7762       continue;
7763 
7764     // Add ((Offset - LastOffset) / 64) args of type i64.
7765     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7766       ArgList.push_back(I64);
7767 
7768     // Add double type.
7769     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7770     LastOffset = Offset + 64;
7771   }
7772 
7773   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7774   ArgList.append(IntArgList.begin(), IntArgList.end());
7775 
7776   return llvm::StructType::get(getVMContext(), ArgList);
7777 }
7778 
getPaddingType(uint64_t OrigOffset,uint64_t Offset) const7779 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7780                                         uint64_t Offset) const {
7781   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7782     return nullptr;
7783 
7784   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7785 }
7786 
7787 ABIArgInfo
classifyArgumentType(QualType Ty,uint64_t & Offset) const7788 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7789   Ty = useFirstFieldIfTransparentUnion(Ty);
7790 
7791   uint64_t OrigOffset = Offset;
7792   uint64_t TySize = getContext().getTypeSize(Ty);
7793   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7794 
7795   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7796                    (uint64_t)StackAlignInBytes);
7797   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7798   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7799 
7800   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7801     // Ignore empty aggregates.
7802     if (TySize == 0)
7803       return ABIArgInfo::getIgnore();
7804 
7805     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7806       Offset = OrigOffset + MinABIStackAlignInBytes;
7807       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7808     }
7809 
7810     // If we have reached here, aggregates are passed directly by coercing to
7811     // another structure type. Padding is inserted if the offset of the
7812     // aggregate is unaligned.
7813     ABIArgInfo ArgInfo =
7814         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7815                               getPaddingType(OrigOffset, CurrOffset));
7816     ArgInfo.setInReg(true);
7817     return ArgInfo;
7818   }
7819 
7820   // Treat an enum type as its underlying type.
7821   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7822     Ty = EnumTy->getDecl()->getIntegerType();
7823 
7824   // Make sure we pass indirectly things that are too large.
7825   if (const auto *EIT = Ty->getAs<ExtIntType>())
7826     if (EIT->getNumBits() > 128 ||
7827         (EIT->getNumBits() > 64 &&
7828          !getContext().getTargetInfo().hasInt128Type()))
7829       return getNaturalAlignIndirect(Ty);
7830 
7831   // All integral types are promoted to the GPR width.
7832   if (Ty->isIntegralOrEnumerationType())
7833     return extendType(Ty);
7834 
7835   return ABIArgInfo::getDirect(
7836       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7837 }
7838 
7839 llvm::Type*
returnAggregateInRegs(QualType RetTy,uint64_t Size) const7840 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7841   const RecordType *RT = RetTy->getAs<RecordType>();
7842   SmallVector<llvm::Type*, 8> RTList;
7843 
7844   if (RT && RT->isStructureOrClassType()) {
7845     const RecordDecl *RD = RT->getDecl();
7846     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7847     unsigned FieldCnt = Layout.getFieldCount();
7848 
7849     // N32/64 returns struct/classes in floating point registers if the
7850     // following conditions are met:
7851     // 1. The size of the struct/class is no larger than 128-bit.
7852     // 2. The struct/class has one or two fields all of which are floating
7853     //    point types.
7854     // 3. The offset of the first field is zero (this follows what gcc does).
7855     //
7856     // Any other composite results are returned in integer registers.
7857     //
7858     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7859       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7860       for (; b != e; ++b) {
7861         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7862 
7863         if (!BT || !BT->isFloatingPoint())
7864           break;
7865 
7866         RTList.push_back(CGT.ConvertType(b->getType()));
7867       }
7868 
7869       if (b == e)
7870         return llvm::StructType::get(getVMContext(), RTList,
7871                                      RD->hasAttr<PackedAttr>());
7872 
7873       RTList.clear();
7874     }
7875   }
7876 
7877   CoerceToIntArgs(Size, RTList);
7878   return llvm::StructType::get(getVMContext(), RTList);
7879 }
7880 
classifyReturnType(QualType RetTy) const7881 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7882   uint64_t Size = getContext().getTypeSize(RetTy);
7883 
7884   if (RetTy->isVoidType())
7885     return ABIArgInfo::getIgnore();
7886 
7887   // O32 doesn't treat zero-sized structs differently from other structs.
7888   // However, N32/N64 ignores zero sized return values.
7889   if (!IsO32 && Size == 0)
7890     return ABIArgInfo::getIgnore();
7891 
7892   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7893     if (Size <= 128) {
7894       if (RetTy->isAnyComplexType())
7895         return ABIArgInfo::getDirect();
7896 
7897       // O32 returns integer vectors in registers and N32/N64 returns all small
7898       // aggregates in registers.
7899       if (!IsO32 ||
7900           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7901         ABIArgInfo ArgInfo =
7902             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7903         ArgInfo.setInReg(true);
7904         return ArgInfo;
7905       }
7906     }
7907 
7908     return getNaturalAlignIndirect(RetTy);
7909   }
7910 
7911   // Treat an enum type as its underlying type.
7912   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7913     RetTy = EnumTy->getDecl()->getIntegerType();
7914 
7915   // Make sure we pass indirectly things that are too large.
7916   if (const auto *EIT = RetTy->getAs<ExtIntType>())
7917     if (EIT->getNumBits() > 128 ||
7918         (EIT->getNumBits() > 64 &&
7919          !getContext().getTargetInfo().hasInt128Type()))
7920       return getNaturalAlignIndirect(RetTy);
7921 
7922   if (isPromotableIntegerTypeForABI(RetTy))
7923     return ABIArgInfo::getExtend(RetTy);
7924 
7925   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7926       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7927     return ABIArgInfo::getSignExtend(RetTy);
7928 
7929   return ABIArgInfo::getDirect();
7930 }
7931 
computeInfo(CGFunctionInfo & FI) const7932 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7933   ABIArgInfo &RetInfo = FI.getReturnInfo();
7934   if (!getCXXABI().classifyReturnType(FI))
7935     RetInfo = classifyReturnType(FI.getReturnType());
7936 
7937   // Check if a pointer to an aggregate is passed as a hidden argument.
7938   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7939 
7940   for (auto &I : FI.arguments())
7941     I.info = classifyArgumentType(I.type, Offset);
7942 }
7943 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType OrigTy) const7944 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7945                                QualType OrigTy) const {
7946   QualType Ty = OrigTy;
7947 
7948   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7949   // Pointers are also promoted in the same way but this only matters for N32.
7950   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7951   unsigned PtrWidth = getTarget().getPointerWidth(0);
7952   bool DidPromote = false;
7953   if ((Ty->isIntegerType() &&
7954           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7955       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7956     DidPromote = true;
7957     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7958                                             Ty->isSignedIntegerType());
7959   }
7960 
7961   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7962 
7963   // The alignment of things in the argument area is never larger than
7964   // StackAlignInBytes.
7965   TyInfo.Align =
7966     std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
7967 
7968   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7969   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7970 
7971   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7972                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7973 
7974 
7975   // If there was a promotion, "unpromote" into a temporary.
7976   // TODO: can we just use a pointer into a subset of the original slot?
7977   if (DidPromote) {
7978     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7979     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7980 
7981     // Truncate down to the right width.
7982     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7983                                                  : CGF.IntPtrTy);
7984     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7985     if (OrigTy->isPointerType())
7986       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7987 
7988     CGF.Builder.CreateStore(V, Temp);
7989     Addr = Temp;
7990   }
7991 
7992   return Addr;
7993 }
7994 
extendType(QualType Ty) const7995 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7996   int TySize = getContext().getTypeSize(Ty);
7997 
7998   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7999   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
8000     return ABIArgInfo::getSignExtend(Ty);
8001 
8002   return ABIArgInfo::getExtend(Ty);
8003 }
8004 
8005 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const8006 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
8007                                                llvm::Value *Address) const {
8008   // This information comes from gcc's implementation, which seems to
8009   // as canonical as it gets.
8010 
8011   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8012   // are aliased to pairs of single-precision FP registers.
8013   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8014 
8015   // 0-31 are the general purpose registers, $0 - $31.
8016   // 32-63 are the floating-point registers, $f0 - $f31.
8017   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8018   // 66 is the (notional, I think) register for signal-handler return.
8019   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8020 
8021   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8022   // They are one bit wide and ignored here.
8023 
8024   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8025   // (coprocessor 1 is the FP unit)
8026   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8027   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8028   // 176-181 are the DSP accumulator registers.
8029   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8030   return false;
8031 }
8032 
8033 //===----------------------------------------------------------------------===//
8034 // AVR ABI Implementation.
8035 //===----------------------------------------------------------------------===//
8036 
8037 namespace {
8038 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8039 public:
AVRTargetCodeGenInfo(CodeGenTypes & CGT)8040   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8041       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8042 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const8043   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8044                            CodeGen::CodeGenModule &CGM) const override {
8045     if (GV->isDeclaration())
8046       return;
8047     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8048     if (!FD) return;
8049     auto *Fn = cast<llvm::Function>(GV);
8050 
8051     if (FD->getAttr<AVRInterruptAttr>())
8052       Fn->addFnAttr("interrupt");
8053 
8054     if (FD->getAttr<AVRSignalAttr>())
8055       Fn->addFnAttr("signal");
8056   }
8057 };
8058 }
8059 
8060 //===----------------------------------------------------------------------===//
8061 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8062 // Currently subclassed only to implement custom OpenCL C function attribute
8063 // handling.
8064 //===----------------------------------------------------------------------===//
8065 
8066 namespace {
8067 
8068 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8069 public:
TCETargetCodeGenInfo(CodeGenTypes & CGT)8070   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8071     : DefaultTargetCodeGenInfo(CGT) {}
8072 
8073   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8074                            CodeGen::CodeGenModule &M) const override;
8075 };
8076 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const8077 void TCETargetCodeGenInfo::setTargetAttributes(
8078     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8079   if (GV->isDeclaration())
8080     return;
8081   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8082   if (!FD) return;
8083 
8084   llvm::Function *F = cast<llvm::Function>(GV);
8085 
8086   if (M.getLangOpts().OpenCL) {
8087     if (FD->hasAttr<OpenCLKernelAttr>()) {
8088       // OpenCL C Kernel functions are not subject to inlining
8089       F->addFnAttr(llvm::Attribute::NoInline);
8090       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8091       if (Attr) {
8092         // Convert the reqd_work_group_size() attributes to metadata.
8093         llvm::LLVMContext &Context = F->getContext();
8094         llvm::NamedMDNode *OpenCLMetadata =
8095             M.getModule().getOrInsertNamedMetadata(
8096                 "opencl.kernel_wg_size_info");
8097 
8098         SmallVector<llvm::Metadata *, 5> Operands;
8099         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8100 
8101         Operands.push_back(
8102             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8103                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8104         Operands.push_back(
8105             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8106                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8107         Operands.push_back(
8108             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8109                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8110 
8111         // Add a boolean constant operand for "required" (true) or "hint"
8112         // (false) for implementing the work_group_size_hint attr later.
8113         // Currently always true as the hint is not yet implemented.
8114         Operands.push_back(
8115             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8116         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8117       }
8118     }
8119   }
8120 }
8121 
8122 }
8123 
8124 //===----------------------------------------------------------------------===//
8125 // Hexagon ABI Implementation
8126 //===----------------------------------------------------------------------===//
8127 
8128 namespace {
8129 
8130 class HexagonABIInfo : public DefaultABIInfo {
8131 public:
HexagonABIInfo(CodeGenTypes & CGT)8132   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8133 
8134 private:
8135   ABIArgInfo classifyReturnType(QualType RetTy) const;
8136   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8137   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8138 
8139   void computeInfo(CGFunctionInfo &FI) const override;
8140 
8141   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8142                     QualType Ty) const override;
8143   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8144                               QualType Ty) const;
8145   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8146                               QualType Ty) const;
8147   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8148                                    QualType Ty) const;
8149 };
8150 
8151 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8152 public:
HexagonTargetCodeGenInfo(CodeGenTypes & CGT)8153   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8154       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8155 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const8156   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8157     return 29;
8158   }
8159 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & GCM) const8160   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8161                            CodeGen::CodeGenModule &GCM) const override {
8162     if (GV->isDeclaration())
8163       return;
8164     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8165     if (!FD)
8166       return;
8167   }
8168 };
8169 
8170 } // namespace
8171 
computeInfo(CGFunctionInfo & FI) const8172 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8173   unsigned RegsLeft = 6;
8174   if (!getCXXABI().classifyReturnType(FI))
8175     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8176   for (auto &I : FI.arguments())
8177     I.info = classifyArgumentType(I.type, &RegsLeft);
8178 }
8179 
HexagonAdjustRegsLeft(uint64_t Size,unsigned * RegsLeft)8180 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8181   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8182                        " through registers");
8183 
8184   if (*RegsLeft == 0)
8185     return false;
8186 
8187   if (Size <= 32) {
8188     (*RegsLeft)--;
8189     return true;
8190   }
8191 
8192   if (2 <= (*RegsLeft & (~1U))) {
8193     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8194     return true;
8195   }
8196 
8197   // Next available register was r5 but candidate was greater than 32-bits so it
8198   // has to go on the stack. However we still consume r5
8199   if (*RegsLeft == 1)
8200     *RegsLeft = 0;
8201 
8202   return false;
8203 }
8204 
classifyArgumentType(QualType Ty,unsigned * RegsLeft) const8205 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8206                                                 unsigned *RegsLeft) const {
8207   if (!isAggregateTypeForABI(Ty)) {
8208     // Treat an enum type as its underlying type.
8209     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8210       Ty = EnumTy->getDecl()->getIntegerType();
8211 
8212     uint64_t Size = getContext().getTypeSize(Ty);
8213     if (Size <= 64)
8214       HexagonAdjustRegsLeft(Size, RegsLeft);
8215 
8216     if (Size > 64 && Ty->isExtIntType())
8217       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8218 
8219     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8220                                              : ABIArgInfo::getDirect();
8221   }
8222 
8223   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8224     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8225 
8226   // Ignore empty records.
8227   if (isEmptyRecord(getContext(), Ty, true))
8228     return ABIArgInfo::getIgnore();
8229 
8230   uint64_t Size = getContext().getTypeSize(Ty);
8231   unsigned Align = getContext().getTypeAlign(Ty);
8232 
8233   if (Size > 64)
8234     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8235 
8236   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8237     Align = Size <= 32 ? 32 : 64;
8238   if (Size <= Align) {
8239     // Pass in the smallest viable integer type.
8240     if (!llvm::isPowerOf2_64(Size))
8241       Size = llvm::NextPowerOf2(Size);
8242     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8243   }
8244   return DefaultABIInfo::classifyArgumentType(Ty);
8245 }
8246 
classifyReturnType(QualType RetTy) const8247 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8248   if (RetTy->isVoidType())
8249     return ABIArgInfo::getIgnore();
8250 
8251   const TargetInfo &T = CGT.getTarget();
8252   uint64_t Size = getContext().getTypeSize(RetTy);
8253 
8254   if (RetTy->getAs<VectorType>()) {
8255     // HVX vectors are returned in vector registers or register pairs.
8256     if (T.hasFeature("hvx")) {
8257       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8258       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8259       if (Size == VecSize || Size == 2*VecSize)
8260         return ABIArgInfo::getDirectInReg();
8261     }
8262     // Large vector types should be returned via memory.
8263     if (Size > 64)
8264       return getNaturalAlignIndirect(RetTy);
8265   }
8266 
8267   if (!isAggregateTypeForABI(RetTy)) {
8268     // Treat an enum type as its underlying type.
8269     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8270       RetTy = EnumTy->getDecl()->getIntegerType();
8271 
8272     if (Size > 64 && RetTy->isExtIntType())
8273       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8274 
8275     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8276                                                 : ABIArgInfo::getDirect();
8277   }
8278 
8279   if (isEmptyRecord(getContext(), RetTy, true))
8280     return ABIArgInfo::getIgnore();
8281 
8282   // Aggregates <= 8 bytes are returned in registers, other aggregates
8283   // are returned indirectly.
8284   if (Size <= 64) {
8285     // Return in the smallest viable integer type.
8286     if (!llvm::isPowerOf2_64(Size))
8287       Size = llvm::NextPowerOf2(Size);
8288     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8289   }
8290   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8291 }
8292 
EmitVAArgFromMemory(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const8293 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8294                                             Address VAListAddr,
8295                                             QualType Ty) const {
8296   // Load the overflow area pointer.
8297   Address __overflow_area_pointer_p =
8298       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8299   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8300       __overflow_area_pointer_p, "__overflow_area_pointer");
8301 
8302   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8303   if (Align > 4) {
8304     // Alignment should be a power of 2.
8305     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8306 
8307     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8308     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8309 
8310     // Add offset to the current pointer to access the argument.
8311     __overflow_area_pointer =
8312         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
8313     llvm::Value *AsInt =
8314         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8315 
8316     // Create a mask which should be "AND"ed
8317     // with (overflow_arg_area + align - 1)
8318     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8319     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8320         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8321         "__overflow_area_pointer.align");
8322   }
8323 
8324   // Get the type of the argument from memory and bitcast
8325   // overflow area pointer to the argument type.
8326   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8327   Address AddrTyped = CGF.Builder.CreateBitCast(
8328       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8329       llvm::PointerType::getUnqual(PTy));
8330 
8331   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8332   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8333 
8334   __overflow_area_pointer = CGF.Builder.CreateGEP(
8335       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8336       "__overflow_area_pointer.next");
8337   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8338 
8339   return AddrTyped;
8340 }
8341 
EmitVAArgForHexagon(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const8342 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8343                                             Address VAListAddr,
8344                                             QualType Ty) const {
8345   // FIXME: Need to handle alignment
8346   llvm::Type *BP = CGF.Int8PtrTy;
8347   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8348   CGBuilderTy &Builder = CGF.Builder;
8349   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8350   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8351   // Handle address alignment for type alignment > 32 bits
8352   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8353   if (TyAlign > 4) {
8354     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8355     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8356     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8357     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8358     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8359   }
8360   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8361   Address AddrTyped = Builder.CreateBitCast(
8362       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8363 
8364   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8365   llvm::Value *NextAddr = Builder.CreateGEP(
8366       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8367   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8368 
8369   return AddrTyped;
8370 }
8371 
EmitVAArgForHexagonLinux(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const8372 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8373                                                  Address VAListAddr,
8374                                                  QualType Ty) const {
8375   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8376 
8377   if (ArgSize > 8)
8378     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8379 
8380   // Here we have check if the argument is in register area or
8381   // in overflow area.
8382   // If the saved register area pointer + argsize rounded up to alignment >
8383   // saved register area end pointer, argument is in overflow area.
8384   unsigned RegsLeft = 6;
8385   Ty = CGF.getContext().getCanonicalType(Ty);
8386   (void)classifyArgumentType(Ty, &RegsLeft);
8387 
8388   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8389   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8390   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8391   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8392 
8393   // Get rounded size of the argument.GCC does not allow vararg of
8394   // size < 4 bytes. We follow the same logic here.
8395   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8396   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8397 
8398   // Argument may be in saved register area
8399   CGF.EmitBlock(MaybeRegBlock);
8400 
8401   // Load the current saved register area pointer.
8402   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8403       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8404   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8405       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8406 
8407   // Load the saved register area end pointer.
8408   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8409       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8410   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8411       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8412 
8413   // If the size of argument is > 4 bytes, check if the stack
8414   // location is aligned to 8 bytes
8415   if (ArgAlign > 4) {
8416 
8417     llvm::Value *__current_saved_reg_area_pointer_int =
8418         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8419                                    CGF.Int32Ty);
8420 
8421     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8422         __current_saved_reg_area_pointer_int,
8423         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8424         "align_current_saved_reg_area_pointer");
8425 
8426     __current_saved_reg_area_pointer_int =
8427         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8428                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8429                               "align_current_saved_reg_area_pointer");
8430 
8431     __current_saved_reg_area_pointer =
8432         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8433                                    __current_saved_reg_area_pointer->getType(),
8434                                    "align_current_saved_reg_area_pointer");
8435   }
8436 
8437   llvm::Value *__new_saved_reg_area_pointer =
8438       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
8439                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8440                             "__new_saved_reg_area_pointer");
8441 
8442   llvm::Value *UsingStack = 0;
8443   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8444                                          __saved_reg_area_end_pointer);
8445 
8446   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8447 
8448   // Argument in saved register area
8449   // Implement the block where argument is in register saved area
8450   CGF.EmitBlock(InRegBlock);
8451 
8452   llvm::Type *PTy = CGF.ConvertType(Ty);
8453   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8454       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8455 
8456   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8457                           __current_saved_reg_area_pointer_p);
8458 
8459   CGF.EmitBranch(ContBlock);
8460 
8461   // Argument in overflow area
8462   // Implement the block where the argument is in overflow area.
8463   CGF.EmitBlock(OnStackBlock);
8464 
8465   // Load the overflow area pointer
8466   Address __overflow_area_pointer_p =
8467       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8468   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8469       __overflow_area_pointer_p, "__overflow_area_pointer");
8470 
8471   // Align the overflow area pointer according to the alignment of the argument
8472   if (ArgAlign > 4) {
8473     llvm::Value *__overflow_area_pointer_int =
8474         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8475 
8476     __overflow_area_pointer_int =
8477         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8478                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8479                               "align_overflow_area_pointer");
8480 
8481     __overflow_area_pointer_int =
8482         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8483                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8484                               "align_overflow_area_pointer");
8485 
8486     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8487         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8488         "align_overflow_area_pointer");
8489   }
8490 
8491   // Get the pointer for next argument in overflow area and store it
8492   // to overflow area pointer.
8493   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8494       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8495       "__overflow_area_pointer.next");
8496 
8497   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8498                           __overflow_area_pointer_p);
8499 
8500   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8501                           __current_saved_reg_area_pointer_p);
8502 
8503   // Bitcast the overflow area pointer to the type of argument.
8504   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8505   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8506       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8507 
8508   CGF.EmitBranch(ContBlock);
8509 
8510   // Get the correct pointer to load the variable argument
8511   // Implement the ContBlock
8512   CGF.EmitBlock(ContBlock);
8513 
8514   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8515   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8516   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8517   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8518 
8519   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8520 }
8521 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const8522 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8523                                   QualType Ty) const {
8524 
8525   if (getTarget().getTriple().isMusl())
8526     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8527 
8528   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8529 }
8530 
8531 //===----------------------------------------------------------------------===//
8532 // Lanai ABI Implementation
8533 //===----------------------------------------------------------------------===//
8534 
8535 namespace {
8536 class LanaiABIInfo : public DefaultABIInfo {
8537 public:
LanaiABIInfo(CodeGen::CodeGenTypes & CGT)8538   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8539 
8540   bool shouldUseInReg(QualType Ty, CCState &State) const;
8541 
computeInfo(CGFunctionInfo & FI) const8542   void computeInfo(CGFunctionInfo &FI) const override {
8543     CCState State(FI);
8544     // Lanai uses 4 registers to pass arguments unless the function has the
8545     // regparm attribute set.
8546     if (FI.getHasRegParm()) {
8547       State.FreeRegs = FI.getRegParm();
8548     } else {
8549       State.FreeRegs = 4;
8550     }
8551 
8552     if (!getCXXABI().classifyReturnType(FI))
8553       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8554     for (auto &I : FI.arguments())
8555       I.info = classifyArgumentType(I.type, State);
8556   }
8557 
8558   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8559   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8560 };
8561 } // end anonymous namespace
8562 
shouldUseInReg(QualType Ty,CCState & State) const8563 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8564   unsigned Size = getContext().getTypeSize(Ty);
8565   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8566 
8567   if (SizeInRegs == 0)
8568     return false;
8569 
8570   if (SizeInRegs > State.FreeRegs) {
8571     State.FreeRegs = 0;
8572     return false;
8573   }
8574 
8575   State.FreeRegs -= SizeInRegs;
8576 
8577   return true;
8578 }
8579 
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const8580 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8581                                            CCState &State) const {
8582   if (!ByVal) {
8583     if (State.FreeRegs) {
8584       --State.FreeRegs; // Non-byval indirects just use one pointer.
8585       return getNaturalAlignIndirectInReg(Ty);
8586     }
8587     return getNaturalAlignIndirect(Ty, false);
8588   }
8589 
8590   // Compute the byval alignment.
8591   const unsigned MinABIStackAlignInBytes = 4;
8592   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8593   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8594                                  /*Realign=*/TypeAlign >
8595                                      MinABIStackAlignInBytes);
8596 }
8597 
classifyArgumentType(QualType Ty,CCState & State) const8598 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8599                                               CCState &State) const {
8600   // Check with the C++ ABI first.
8601   const RecordType *RT = Ty->getAs<RecordType>();
8602   if (RT) {
8603     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8604     if (RAA == CGCXXABI::RAA_Indirect) {
8605       return getIndirectResult(Ty, /*ByVal=*/false, State);
8606     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8607       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8608     }
8609   }
8610 
8611   if (isAggregateTypeForABI(Ty)) {
8612     // Structures with flexible arrays are always indirect.
8613     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8614       return getIndirectResult(Ty, /*ByVal=*/true, State);
8615 
8616     // Ignore empty structs/unions.
8617     if (isEmptyRecord(getContext(), Ty, true))
8618       return ABIArgInfo::getIgnore();
8619 
8620     llvm::LLVMContext &LLVMContext = getVMContext();
8621     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8622     if (SizeInRegs <= State.FreeRegs) {
8623       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8624       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8625       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8626       State.FreeRegs -= SizeInRegs;
8627       return ABIArgInfo::getDirectInReg(Result);
8628     } else {
8629       State.FreeRegs = 0;
8630     }
8631     return getIndirectResult(Ty, true, State);
8632   }
8633 
8634   // Treat an enum type as its underlying type.
8635   if (const auto *EnumTy = Ty->getAs<EnumType>())
8636     Ty = EnumTy->getDecl()->getIntegerType();
8637 
8638   bool InReg = shouldUseInReg(Ty, State);
8639 
8640   // Don't pass >64 bit integers in registers.
8641   if (const auto *EIT = Ty->getAs<ExtIntType>())
8642     if (EIT->getNumBits() > 64)
8643       return getIndirectResult(Ty, /*ByVal=*/true, State);
8644 
8645   if (isPromotableIntegerTypeForABI(Ty)) {
8646     if (InReg)
8647       return ABIArgInfo::getDirectInReg();
8648     return ABIArgInfo::getExtend(Ty);
8649   }
8650   if (InReg)
8651     return ABIArgInfo::getDirectInReg();
8652   return ABIArgInfo::getDirect();
8653 }
8654 
8655 namespace {
8656 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8657 public:
LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)8658   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8659       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8660 };
8661 }
8662 
8663 //===----------------------------------------------------------------------===//
8664 // AMDGPU ABI Implementation
8665 //===----------------------------------------------------------------------===//
8666 
8667 namespace {
8668 
8669 class AMDGPUABIInfo final : public DefaultABIInfo {
8670 private:
8671   static const unsigned MaxNumRegsForArgsRet = 16;
8672 
8673   unsigned numRegsForType(QualType Ty) const;
8674 
8675   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8676   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8677                                          uint64_t Members) const override;
8678 
8679   // Coerce HIP scalar pointer arguments from generic pointers to global ones.
coerceKernelArgumentType(llvm::Type * Ty,unsigned FromAS,unsigned ToAS) const8680   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8681                                        unsigned ToAS) const {
8682     // Single value types.
8683     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8684       return llvm::PointerType::get(
8685           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8686     return Ty;
8687   }
8688 
8689 public:
AMDGPUABIInfo(CodeGen::CodeGenTypes & CGT)8690   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8691     DefaultABIInfo(CGT) {}
8692 
8693   ABIArgInfo classifyReturnType(QualType RetTy) const;
8694   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8695   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8696 
8697   void computeInfo(CGFunctionInfo &FI) const override;
8698   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8699                     QualType Ty) const override;
8700 };
8701 
isHomogeneousAggregateBaseType(QualType Ty) const8702 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8703   return true;
8704 }
8705 
isHomogeneousAggregateSmallEnough(const Type * Base,uint64_t Members) const8706 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8707   const Type *Base, uint64_t Members) const {
8708   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8709 
8710   // Homogeneous Aggregates may occupy at most 16 registers.
8711   return Members * NumRegs <= MaxNumRegsForArgsRet;
8712 }
8713 
8714 /// Estimate number of registers the type will use when passed in registers.
numRegsForType(QualType Ty) const8715 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8716   unsigned NumRegs = 0;
8717 
8718   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8719     // Compute from the number of elements. The reported size is based on the
8720     // in-memory size, which includes the padding 4th element for 3-vectors.
8721     QualType EltTy = VT->getElementType();
8722     unsigned EltSize = getContext().getTypeSize(EltTy);
8723 
8724     // 16-bit element vectors should be passed as packed.
8725     if (EltSize == 16)
8726       return (VT->getNumElements() + 1) / 2;
8727 
8728     unsigned EltNumRegs = (EltSize + 31) / 32;
8729     return EltNumRegs * VT->getNumElements();
8730   }
8731 
8732   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8733     const RecordDecl *RD = RT->getDecl();
8734     assert(!RD->hasFlexibleArrayMember());
8735 
8736     for (const FieldDecl *Field : RD->fields()) {
8737       QualType FieldTy = Field->getType();
8738       NumRegs += numRegsForType(FieldTy);
8739     }
8740 
8741     return NumRegs;
8742   }
8743 
8744   return (getContext().getTypeSize(Ty) + 31) / 32;
8745 }
8746 
computeInfo(CGFunctionInfo & FI) const8747 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8748   llvm::CallingConv::ID CC = FI.getCallingConvention();
8749 
8750   if (!getCXXABI().classifyReturnType(FI))
8751     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8752 
8753   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8754   for (auto &Arg : FI.arguments()) {
8755     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8756       Arg.info = classifyKernelArgumentType(Arg.type);
8757     } else {
8758       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8759     }
8760   }
8761 }
8762 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const8763 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8764                                  QualType Ty) const {
8765   llvm_unreachable("AMDGPU does not support varargs");
8766 }
8767 
classifyReturnType(QualType RetTy) const8768 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8769   if (isAggregateTypeForABI(RetTy)) {
8770     // Records with non-trivial destructors/copy-constructors should not be
8771     // returned by value.
8772     if (!getRecordArgABI(RetTy, getCXXABI())) {
8773       // Ignore empty structs/unions.
8774       if (isEmptyRecord(getContext(), RetTy, true))
8775         return ABIArgInfo::getIgnore();
8776 
8777       // Lower single-element structs to just return a regular value.
8778       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8779         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8780 
8781       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8782         const RecordDecl *RD = RT->getDecl();
8783         if (RD->hasFlexibleArrayMember())
8784           return DefaultABIInfo::classifyReturnType(RetTy);
8785       }
8786 
8787       // Pack aggregates <= 4 bytes into single VGPR or pair.
8788       uint64_t Size = getContext().getTypeSize(RetTy);
8789       if (Size <= 16)
8790         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8791 
8792       if (Size <= 32)
8793         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8794 
8795       if (Size <= 64) {
8796         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8797         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8798       }
8799 
8800       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8801         return ABIArgInfo::getDirect();
8802     }
8803   }
8804 
8805   // Otherwise just do the default thing.
8806   return DefaultABIInfo::classifyReturnType(RetTy);
8807 }
8808 
8809 /// For kernels all parameters are really passed in a special buffer. It doesn't
8810 /// make sense to pass anything byval, so everything must be direct.
classifyKernelArgumentType(QualType Ty) const8811 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8812   Ty = useFirstFieldIfTransparentUnion(Ty);
8813 
8814   // TODO: Can we omit empty structs?
8815 
8816   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8817     Ty = QualType(SeltTy, 0);
8818 
8819   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
8820   llvm::Type *LTy = OrigLTy;
8821   if (getContext().getLangOpts().HIP) {
8822     LTy = coerceKernelArgumentType(
8823         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8824         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8825   }
8826 
8827   // FIXME: Should also use this for OpenCL, but it requires addressing the
8828   // problem of kernels being called.
8829   //
8830   // FIXME: This doesn't apply the optimization of coercing pointers in structs
8831   // to global address space when using byref. This would require implementing a
8832   // new kind of coercion of the in-memory type when for indirect arguments.
8833   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
8834       isAggregateTypeForABI(Ty)) {
8835     return ABIArgInfo::getIndirectAliased(
8836         getContext().getTypeAlignInChars(Ty),
8837         getContext().getTargetAddressSpace(LangAS::opencl_constant),
8838         false /*Realign*/, nullptr /*Padding*/);
8839   }
8840 
8841   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8842   // individual elements, which confuses the Clover OpenCL backend; therefore we
8843   // have to set it to false here. Other args of getDirect() are just defaults.
8844   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8845 }
8846 
classifyArgumentType(QualType Ty,unsigned & NumRegsLeft) const8847 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8848                                                unsigned &NumRegsLeft) const {
8849   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8850 
8851   Ty = useFirstFieldIfTransparentUnion(Ty);
8852 
8853   if (isAggregateTypeForABI(Ty)) {
8854     // Records with non-trivial destructors/copy-constructors should not be
8855     // passed by value.
8856     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8857       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8858 
8859     // Ignore empty structs/unions.
8860     if (isEmptyRecord(getContext(), Ty, true))
8861       return ABIArgInfo::getIgnore();
8862 
8863     // Lower single-element structs to just pass a regular value. TODO: We
8864     // could do reasonable-size multiple-element structs too, using getExpand(),
8865     // though watch out for things like bitfields.
8866     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8867       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8868 
8869     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8870       const RecordDecl *RD = RT->getDecl();
8871       if (RD->hasFlexibleArrayMember())
8872         return DefaultABIInfo::classifyArgumentType(Ty);
8873     }
8874 
8875     // Pack aggregates <= 8 bytes into single VGPR or pair.
8876     uint64_t Size = getContext().getTypeSize(Ty);
8877     if (Size <= 64) {
8878       unsigned NumRegs = (Size + 31) / 32;
8879       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8880 
8881       if (Size <= 16)
8882         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8883 
8884       if (Size <= 32)
8885         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8886 
8887       // XXX: Should this be i64 instead, and should the limit increase?
8888       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8889       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8890     }
8891 
8892     if (NumRegsLeft > 0) {
8893       unsigned NumRegs = numRegsForType(Ty);
8894       if (NumRegsLeft >= NumRegs) {
8895         NumRegsLeft -= NumRegs;
8896         return ABIArgInfo::getDirect();
8897       }
8898     }
8899   }
8900 
8901   // Otherwise just do the default thing.
8902   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8903   if (!ArgInfo.isIndirect()) {
8904     unsigned NumRegs = numRegsForType(Ty);
8905     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8906   }
8907 
8908   return ArgInfo;
8909 }
8910 
8911 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8912 public:
AMDGPUTargetCodeGenInfo(CodeGenTypes & CGT)8913   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8914       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
8915   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8916                            CodeGen::CodeGenModule &M) const override;
8917   unsigned getOpenCLKernelCallingConv() const override;
8918 
8919   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8920       llvm::PointerType *T, QualType QT) const override;
8921 
getASTAllocaAddressSpace() const8922   LangAS getASTAllocaAddressSpace() const override {
8923     return getLangASFromTargetAS(
8924         getABIInfo().getDataLayout().getAllocaAddrSpace());
8925   }
8926   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8927                                   const VarDecl *D) const override;
8928   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8929                                          SyncScope Scope,
8930                                          llvm::AtomicOrdering Ordering,
8931                                          llvm::LLVMContext &Ctx) const override;
8932   llvm::Function *
8933   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8934                             llvm::Function *BlockInvokeFunc,
8935                             llvm::Value *BlockLiteral) const override;
8936   bool shouldEmitStaticExternCAliases() const override;
8937   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8938 };
8939 }
8940 
requiresAMDGPUProtectedVisibility(const Decl * D,llvm::GlobalValue * GV)8941 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8942                                               llvm::GlobalValue *GV) {
8943   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8944     return false;
8945 
8946   return D->hasAttr<OpenCLKernelAttr>() ||
8947          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
8948          (isa<VarDecl>(D) &&
8949           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
8950            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
8951            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
8952 }
8953 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & M) const8954 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
8955     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8956   if (requiresAMDGPUProtectedVisibility(D, GV)) {
8957     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
8958     GV->setDSOLocal(true);
8959   }
8960 
8961   if (GV->isDeclaration())
8962     return;
8963   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8964   if (!FD)
8965     return;
8966 
8967   llvm::Function *F = cast<llvm::Function>(GV);
8968 
8969   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
8970     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
8971 
8972 
8973   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
8974                               FD->hasAttr<OpenCLKernelAttr>();
8975   const bool IsHIPKernel = M.getLangOpts().HIP &&
8976                            FD->hasAttr<CUDAGlobalAttr>();
8977   if ((IsOpenCLKernel || IsHIPKernel) &&
8978       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
8979     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
8980 
8981   if (IsHIPKernel)
8982     F->addFnAttr("uniform-work-group-size", "true");
8983 
8984 
8985   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
8986   if (ReqdWGS || FlatWGS) {
8987     unsigned Min = 0;
8988     unsigned Max = 0;
8989     if (FlatWGS) {
8990       Min = FlatWGS->getMin()
8991                 ->EvaluateKnownConstInt(M.getContext())
8992                 .getExtValue();
8993       Max = FlatWGS->getMax()
8994                 ->EvaluateKnownConstInt(M.getContext())
8995                 .getExtValue();
8996     }
8997     if (ReqdWGS && Min == 0 && Max == 0)
8998       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
8999 
9000     if (Min != 0) {
9001       assert(Min <= Max && "Min must be less than or equal Max");
9002 
9003       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
9004       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9005     } else
9006       assert(Max == 0 && "Max must be zero");
9007   } else if (IsOpenCLKernel || IsHIPKernel) {
9008     // By default, restrict the maximum size to a value specified by
9009     // --gpu-max-threads-per-block=n or its default value.
9010     std::string AttrVal =
9011         std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
9012     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9013   }
9014 
9015   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9016     unsigned Min =
9017         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9018     unsigned Max = Attr->getMax() ? Attr->getMax()
9019                                         ->EvaluateKnownConstInt(M.getContext())
9020                                         .getExtValue()
9021                                   : 0;
9022 
9023     if (Min != 0) {
9024       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9025 
9026       std::string AttrVal = llvm::utostr(Min);
9027       if (Max != 0)
9028         AttrVal = AttrVal + "," + llvm::utostr(Max);
9029       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9030     } else
9031       assert(Max == 0 && "Max must be zero");
9032   }
9033 
9034   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9035     unsigned NumSGPR = Attr->getNumSGPR();
9036 
9037     if (NumSGPR != 0)
9038       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9039   }
9040 
9041   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9042     uint32_t NumVGPR = Attr->getNumVGPR();
9043 
9044     if (NumVGPR != 0)
9045       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9046   }
9047 
9048   if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
9049     F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
9050 }
9051 
getOpenCLKernelCallingConv() const9052 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9053   return llvm::CallingConv::AMDGPU_KERNEL;
9054 }
9055 
9056 // Currently LLVM assumes null pointers always have value 0,
9057 // which results in incorrectly transformed IR. Therefore, instead of
9058 // emitting null pointers in private and local address spaces, a null
9059 // pointer in generic address space is emitted which is casted to a
9060 // pointer in local or private address space.
getNullPointer(const CodeGen::CodeGenModule & CGM,llvm::PointerType * PT,QualType QT) const9061 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9062     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9063     QualType QT) const {
9064   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9065     return llvm::ConstantPointerNull::get(PT);
9066 
9067   auto &Ctx = CGM.getContext();
9068   auto NPT = llvm::PointerType::get(PT->getElementType(),
9069       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9070   return llvm::ConstantExpr::getAddrSpaceCast(
9071       llvm::ConstantPointerNull::get(NPT), PT);
9072 }
9073 
9074 LangAS
getGlobalVarAddressSpace(CodeGenModule & CGM,const VarDecl * D) const9075 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9076                                                   const VarDecl *D) const {
9077   assert(!CGM.getLangOpts().OpenCL &&
9078          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9079          "Address space agnostic languages only");
9080   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9081       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9082   if (!D)
9083     return DefaultGlobalAS;
9084 
9085   LangAS AddrSpace = D->getType().getAddressSpace();
9086   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9087   if (AddrSpace != LangAS::Default)
9088     return AddrSpace;
9089 
9090   if (CGM.isTypeConstant(D->getType(), false)) {
9091     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9092       return ConstAS.getValue();
9093   }
9094   return DefaultGlobalAS;
9095 }
9096 
9097 llvm::SyncScope::ID
getLLVMSyncScopeID(const LangOptions & LangOpts,SyncScope Scope,llvm::AtomicOrdering Ordering,llvm::LLVMContext & Ctx) const9098 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9099                                             SyncScope Scope,
9100                                             llvm::AtomicOrdering Ordering,
9101                                             llvm::LLVMContext &Ctx) const {
9102   std::string Name;
9103   switch (Scope) {
9104   case SyncScope::OpenCLWorkGroup:
9105     Name = "workgroup";
9106     break;
9107   case SyncScope::OpenCLDevice:
9108     Name = "agent";
9109     break;
9110   case SyncScope::OpenCLAllSVMDevices:
9111     Name = "";
9112     break;
9113   case SyncScope::OpenCLSubGroup:
9114     Name = "wavefront";
9115   }
9116 
9117   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9118     if (!Name.empty())
9119       Name = Twine(Twine(Name) + Twine("-")).str();
9120 
9121     Name = Twine(Twine(Name) + Twine("one-as")).str();
9122   }
9123 
9124   return Ctx.getOrInsertSyncScopeID(Name);
9125 }
9126 
shouldEmitStaticExternCAliases() const9127 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9128   return false;
9129 }
9130 
setCUDAKernelCallingConvention(const FunctionType * & FT) const9131 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9132     const FunctionType *&FT) const {
9133   FT = getABIInfo().getContext().adjustFunctionType(
9134       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9135 }
9136 
9137 //===----------------------------------------------------------------------===//
9138 // SPARC v8 ABI Implementation.
9139 // Based on the SPARC Compliance Definition version 2.4.1.
9140 //
9141 // Ensures that complex values are passed in registers.
9142 //
9143 namespace {
9144 class SparcV8ABIInfo : public DefaultABIInfo {
9145 public:
SparcV8ABIInfo(CodeGenTypes & CGT)9146   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9147 
9148 private:
9149   ABIArgInfo classifyReturnType(QualType RetTy) const;
9150   void computeInfo(CGFunctionInfo &FI) const override;
9151 };
9152 } // end anonymous namespace
9153 
9154 
9155 ABIArgInfo
classifyReturnType(QualType Ty) const9156 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9157   if (Ty->isAnyComplexType()) {
9158     return ABIArgInfo::getDirect();
9159   }
9160   else {
9161     return DefaultABIInfo::classifyReturnType(Ty);
9162   }
9163 }
9164 
computeInfo(CGFunctionInfo & FI) const9165 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9166 
9167   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9168   for (auto &Arg : FI.arguments())
9169     Arg.info = classifyArgumentType(Arg.type);
9170 }
9171 
9172 namespace {
9173 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9174 public:
SparcV8TargetCodeGenInfo(CodeGenTypes & CGT)9175   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9176       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9177 };
9178 } // end anonymous namespace
9179 
9180 //===----------------------------------------------------------------------===//
9181 // SPARC v9 ABI Implementation.
9182 // Based on the SPARC Compliance Definition version 2.4.1.
9183 //
9184 // Function arguments a mapped to a nominal "parameter array" and promoted to
9185 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9186 // the array, structs larger than 16 bytes are passed indirectly.
9187 //
9188 // One case requires special care:
9189 //
9190 //   struct mixed {
9191 //     int i;
9192 //     float f;
9193 //   };
9194 //
9195 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9196 // parameter array, but the int is passed in an integer register, and the float
9197 // is passed in a floating point register. This is represented as two arguments
9198 // with the LLVM IR inreg attribute:
9199 //
9200 //   declare void f(i32 inreg %i, float inreg %f)
9201 //
9202 // The code generator will only allocate 4 bytes from the parameter array for
9203 // the inreg arguments. All other arguments are allocated a multiple of 8
9204 // bytes.
9205 //
9206 namespace {
9207 class SparcV9ABIInfo : public ABIInfo {
9208 public:
SparcV9ABIInfo(CodeGenTypes & CGT)9209   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9210 
9211 private:
9212   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9213   void computeInfo(CGFunctionInfo &FI) const override;
9214   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9215                     QualType Ty) const override;
9216 
9217   // Coercion type builder for structs passed in registers. The coercion type
9218   // serves two purposes:
9219   //
9220   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9221   //    in registers.
9222   // 2. Expose aligned floating point elements as first-level elements, so the
9223   //    code generator knows to pass them in floating point registers.
9224   //
9225   // We also compute the InReg flag which indicates that the struct contains
9226   // aligned 32-bit floats.
9227   //
9228   struct CoerceBuilder {
9229     llvm::LLVMContext &Context;
9230     const llvm::DataLayout &DL;
9231     SmallVector<llvm::Type*, 8> Elems;
9232     uint64_t Size;
9233     bool InReg;
9234 
CoerceBuilder__anon57a50d411711::SparcV9ABIInfo::CoerceBuilder9235     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9236       : Context(c), DL(dl), Size(0), InReg(false) {}
9237 
9238     // Pad Elems with integers until Size is ToSize.
pad__anon57a50d411711::SparcV9ABIInfo::CoerceBuilder9239     void pad(uint64_t ToSize) {
9240       assert(ToSize >= Size && "Cannot remove elements");
9241       if (ToSize == Size)
9242         return;
9243 
9244       // Finish the current 64-bit word.
9245       uint64_t Aligned = llvm::alignTo(Size, 64);
9246       if (Aligned > Size && Aligned <= ToSize) {
9247         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9248         Size = Aligned;
9249       }
9250 
9251       // Add whole 64-bit words.
9252       while (Size + 64 <= ToSize) {
9253         Elems.push_back(llvm::Type::getInt64Ty(Context));
9254         Size += 64;
9255       }
9256 
9257       // Final in-word padding.
9258       if (Size < ToSize) {
9259         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9260         Size = ToSize;
9261       }
9262     }
9263 
9264     // Add a floating point element at Offset.
addFloat__anon57a50d411711::SparcV9ABIInfo::CoerceBuilder9265     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9266       // Unaligned floats are treated as integers.
9267       if (Offset % Bits)
9268         return;
9269       // The InReg flag is only required if there are any floats < 64 bits.
9270       if (Bits < 64)
9271         InReg = true;
9272       pad(Offset);
9273       Elems.push_back(Ty);
9274       Size = Offset + Bits;
9275     }
9276 
9277     // Add a struct type to the coercion type, starting at Offset (in bits).
addStruct__anon57a50d411711::SparcV9ABIInfo::CoerceBuilder9278     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9279       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9280       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9281         llvm::Type *ElemTy = StrTy->getElementType(i);
9282         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9283         switch (ElemTy->getTypeID()) {
9284         case llvm::Type::StructTyID:
9285           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9286           break;
9287         case llvm::Type::FloatTyID:
9288           addFloat(ElemOffset, ElemTy, 32);
9289           break;
9290         case llvm::Type::DoubleTyID:
9291           addFloat(ElemOffset, ElemTy, 64);
9292           break;
9293         case llvm::Type::FP128TyID:
9294           addFloat(ElemOffset, ElemTy, 128);
9295           break;
9296         case llvm::Type::PointerTyID:
9297           if (ElemOffset % 64 == 0) {
9298             pad(ElemOffset);
9299             Elems.push_back(ElemTy);
9300             Size += 64;
9301           }
9302           break;
9303         default:
9304           break;
9305         }
9306       }
9307     }
9308 
9309     // Check if Ty is a usable substitute for the coercion type.
isUsableType__anon57a50d411711::SparcV9ABIInfo::CoerceBuilder9310     bool isUsableType(llvm::StructType *Ty) const {
9311       return llvm::makeArrayRef(Elems) == Ty->elements();
9312     }
9313 
9314     // Get the coercion type as a literal struct type.
getType__anon57a50d411711::SparcV9ABIInfo::CoerceBuilder9315     llvm::Type *getType() const {
9316       if (Elems.size() == 1)
9317         return Elems.front();
9318       else
9319         return llvm::StructType::get(Context, Elems);
9320     }
9321   };
9322 };
9323 } // end anonymous namespace
9324 
9325 ABIArgInfo
classifyType(QualType Ty,unsigned SizeLimit) const9326 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9327   if (Ty->isVoidType())
9328     return ABIArgInfo::getIgnore();
9329 
9330   uint64_t Size = getContext().getTypeSize(Ty);
9331 
9332   // Anything too big to fit in registers is passed with an explicit indirect
9333   // pointer / sret pointer.
9334   if (Size > SizeLimit)
9335     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9336 
9337   // Treat an enum type as its underlying type.
9338   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9339     Ty = EnumTy->getDecl()->getIntegerType();
9340 
9341   // Integer types smaller than a register are extended.
9342   if (Size < 64 && Ty->isIntegerType())
9343     return ABIArgInfo::getExtend(Ty);
9344 
9345   if (const auto *EIT = Ty->getAs<ExtIntType>())
9346     if (EIT->getNumBits() < 64)
9347       return ABIArgInfo::getExtend(Ty);
9348 
9349   // Other non-aggregates go in registers.
9350   if (!isAggregateTypeForABI(Ty))
9351     return ABIArgInfo::getDirect();
9352 
9353   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9354   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9355   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9356     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9357 
9358   // This is a small aggregate type that should be passed in registers.
9359   // Build a coercion type from the LLVM struct type.
9360   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9361   if (!StrTy)
9362     return ABIArgInfo::getDirect();
9363 
9364   CoerceBuilder CB(getVMContext(), getDataLayout());
9365   CB.addStruct(0, StrTy);
9366   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9367 
9368   // Try to use the original type for coercion.
9369   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9370 
9371   if (CB.InReg)
9372     return ABIArgInfo::getDirectInReg(CoerceTy);
9373   else
9374     return ABIArgInfo::getDirect(CoerceTy);
9375 }
9376 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const9377 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9378                                   QualType Ty) const {
9379   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9380   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9381   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9382     AI.setCoerceToType(ArgTy);
9383 
9384   CharUnits SlotSize = CharUnits::fromQuantity(8);
9385 
9386   CGBuilderTy &Builder = CGF.Builder;
9387   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9388   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9389 
9390   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9391 
9392   Address ArgAddr = Address::invalid();
9393   CharUnits Stride;
9394   switch (AI.getKind()) {
9395   case ABIArgInfo::Expand:
9396   case ABIArgInfo::CoerceAndExpand:
9397   case ABIArgInfo::InAlloca:
9398     llvm_unreachable("Unsupported ABI kind for va_arg");
9399 
9400   case ABIArgInfo::Extend: {
9401     Stride = SlotSize;
9402     CharUnits Offset = SlotSize - TypeInfo.Width;
9403     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9404     break;
9405   }
9406 
9407   case ABIArgInfo::Direct: {
9408     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9409     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9410     ArgAddr = Addr;
9411     break;
9412   }
9413 
9414   case ABIArgInfo::Indirect:
9415   case ABIArgInfo::IndirectAliased:
9416     Stride = SlotSize;
9417     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9418     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9419                       TypeInfo.Align);
9420     break;
9421 
9422   case ABIArgInfo::Ignore:
9423     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align);
9424   }
9425 
9426   // Update VAList.
9427   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9428   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9429 
9430   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9431 }
9432 
computeInfo(CGFunctionInfo & FI) const9433 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9434   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9435   for (auto &I : FI.arguments())
9436     I.info = classifyType(I.type, 16 * 8);
9437 }
9438 
9439 namespace {
9440 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9441 public:
SparcV9TargetCodeGenInfo(CodeGenTypes & CGT)9442   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9443       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9444 
getDwarfEHStackPointer(CodeGen::CodeGenModule & M) const9445   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9446     return 14;
9447   }
9448 
9449   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9450                                llvm::Value *Address) const override;
9451 };
9452 } // end anonymous namespace
9453 
9454 bool
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const9455 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9456                                                 llvm::Value *Address) const {
9457   // This is calculated from the LLVM and GCC tables and verified
9458   // against gcc output.  AFAIK all ABIs use the same encoding.
9459 
9460   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9461 
9462   llvm::IntegerType *i8 = CGF.Int8Ty;
9463   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9464   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9465 
9466   // 0-31: the 8-byte general-purpose registers
9467   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9468 
9469   // 32-63: f0-31, the 4-byte floating-point registers
9470   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9471 
9472   //   Y   = 64
9473   //   PSR = 65
9474   //   WIM = 66
9475   //   TBR = 67
9476   //   PC  = 68
9477   //   NPC = 69
9478   //   FSR = 70
9479   //   CSR = 71
9480   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9481 
9482   // 72-87: d0-15, the 8-byte floating-point registers
9483   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9484 
9485   return false;
9486 }
9487 
9488 // ARC ABI implementation.
9489 namespace {
9490 
9491 class ARCABIInfo : public DefaultABIInfo {
9492 public:
9493   using DefaultABIInfo::DefaultABIInfo;
9494 
9495 private:
9496   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9497                     QualType Ty) const override;
9498 
updateState(const ABIArgInfo & Info,QualType Ty,CCState & State) const9499   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9500     if (!State.FreeRegs)
9501       return;
9502     if (Info.isIndirect() && Info.getInReg())
9503       State.FreeRegs--;
9504     else if (Info.isDirect() && Info.getInReg()) {
9505       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9506       if (sz < State.FreeRegs)
9507         State.FreeRegs -= sz;
9508       else
9509         State.FreeRegs = 0;
9510     }
9511   }
9512 
computeInfo(CGFunctionInfo & FI) const9513   void computeInfo(CGFunctionInfo &FI) const override {
9514     CCState State(FI);
9515     // ARC uses 8 registers to pass arguments.
9516     State.FreeRegs = 8;
9517 
9518     if (!getCXXABI().classifyReturnType(FI))
9519       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9520     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9521     for (auto &I : FI.arguments()) {
9522       I.info = classifyArgumentType(I.type, State.FreeRegs);
9523       updateState(I.info, I.type, State);
9524     }
9525   }
9526 
9527   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9528   ABIArgInfo getIndirectByValue(QualType Ty) const;
9529   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9530   ABIArgInfo classifyReturnType(QualType RetTy) const;
9531 };
9532 
9533 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9534 public:
ARCTargetCodeGenInfo(CodeGenTypes & CGT)9535   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9536       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9537 };
9538 
9539 
getIndirectByRef(QualType Ty,bool HasFreeRegs) const9540 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9541   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9542                        getNaturalAlignIndirect(Ty, false);
9543 }
9544 
getIndirectByValue(QualType Ty) const9545 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9546   // Compute the byval alignment.
9547   const unsigned MinABIStackAlignInBytes = 4;
9548   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9549   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9550                                  TypeAlign > MinABIStackAlignInBytes);
9551 }
9552 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const9553 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9554                               QualType Ty) const {
9555   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9556                           getContext().getTypeInfoInChars(Ty),
9557                           CharUnits::fromQuantity(4), true);
9558 }
9559 
classifyArgumentType(QualType Ty,uint8_t FreeRegs) const9560 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9561                                             uint8_t FreeRegs) const {
9562   // Handle the generic C++ ABI.
9563   const RecordType *RT = Ty->getAs<RecordType>();
9564   if (RT) {
9565     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9566     if (RAA == CGCXXABI::RAA_Indirect)
9567       return getIndirectByRef(Ty, FreeRegs > 0);
9568 
9569     if (RAA == CGCXXABI::RAA_DirectInMemory)
9570       return getIndirectByValue(Ty);
9571   }
9572 
9573   // Treat an enum type as its underlying type.
9574   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9575     Ty = EnumTy->getDecl()->getIntegerType();
9576 
9577   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9578 
9579   if (isAggregateTypeForABI(Ty)) {
9580     // Structures with flexible arrays are always indirect.
9581     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9582       return getIndirectByValue(Ty);
9583 
9584     // Ignore empty structs/unions.
9585     if (isEmptyRecord(getContext(), Ty, true))
9586       return ABIArgInfo::getIgnore();
9587 
9588     llvm::LLVMContext &LLVMContext = getVMContext();
9589 
9590     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9591     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9592     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9593 
9594     return FreeRegs >= SizeInRegs ?
9595         ABIArgInfo::getDirectInReg(Result) :
9596         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9597   }
9598 
9599   if (const auto *EIT = Ty->getAs<ExtIntType>())
9600     if (EIT->getNumBits() > 64)
9601       return getIndirectByValue(Ty);
9602 
9603   return isPromotableIntegerTypeForABI(Ty)
9604              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9605                                        : ABIArgInfo::getExtend(Ty))
9606              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9607                                        : ABIArgInfo::getDirect());
9608 }
9609 
classifyReturnType(QualType RetTy) const9610 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9611   if (RetTy->isAnyComplexType())
9612     return ABIArgInfo::getDirectInReg();
9613 
9614   // Arguments of size > 4 registers are indirect.
9615   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9616   if (RetSize > 4)
9617     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9618 
9619   return DefaultABIInfo::classifyReturnType(RetTy);
9620 }
9621 
9622 } // End anonymous namespace.
9623 
9624 //===----------------------------------------------------------------------===//
9625 // XCore ABI Implementation
9626 //===----------------------------------------------------------------------===//
9627 
9628 namespace {
9629 
9630 /// A SmallStringEnc instance is used to build up the TypeString by passing
9631 /// it by reference between functions that append to it.
9632 typedef llvm::SmallString<128> SmallStringEnc;
9633 
9634 /// TypeStringCache caches the meta encodings of Types.
9635 ///
9636 /// The reason for caching TypeStrings is two fold:
9637 ///   1. To cache a type's encoding for later uses;
9638 ///   2. As a means to break recursive member type inclusion.
9639 ///
9640 /// A cache Entry can have a Status of:
9641 ///   NonRecursive:   The type encoding is not recursive;
9642 ///   Recursive:      The type encoding is recursive;
9643 ///   Incomplete:     An incomplete TypeString;
9644 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9645 ///                   Recursive type encoding.
9646 ///
9647 /// A NonRecursive entry will have all of its sub-members expanded as fully
9648 /// as possible. Whilst it may contain types which are recursive, the type
9649 /// itself is not recursive and thus its encoding may be safely used whenever
9650 /// the type is encountered.
9651 ///
9652 /// A Recursive entry will have all of its sub-members expanded as fully as
9653 /// possible. The type itself is recursive and it may contain other types which
9654 /// are recursive. The Recursive encoding must not be used during the expansion
9655 /// of a recursive type's recursive branch. For simplicity the code uses
9656 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9657 ///
9658 /// An Incomplete entry is always a RecordType and only encodes its
9659 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9660 /// are placed into the cache during type expansion as a means to identify and
9661 /// handle recursive inclusion of types as sub-members. If there is recursion
9662 /// the entry becomes IncompleteUsed.
9663 ///
9664 /// During the expansion of a RecordType's members:
9665 ///
9666 ///   If the cache contains a NonRecursive encoding for the member type, the
9667 ///   cached encoding is used;
9668 ///
9669 ///   If the cache contains a Recursive encoding for the member type, the
9670 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9671 ///
9672 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9673 ///   cache to break potential recursive inclusion of itself as a sub-member;
9674 ///
9675 ///   Once a member RecordType has been expanded, its temporary incomplete
9676 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9677 ///   it is swapped back in;
9678 ///
9679 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9680 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9681 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9682 ///
9683 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9684 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9685 ///   Else the member is part of a recursive type and thus the recursion has
9686 ///   been exited too soon for the encoding to be correct for the member.
9687 ///
9688 class TypeStringCache {
9689   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9690   struct Entry {
9691     std::string Str;     // The encoded TypeString for the type.
9692     enum Status State;   // Information about the encoding in 'Str'.
9693     std::string Swapped; // A temporary place holder for a Recursive encoding
9694                          // during the expansion of RecordType's members.
9695   };
9696   std::map<const IdentifierInfo *, struct Entry> Map;
9697   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9698   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9699 public:
TypeStringCache()9700   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9701   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9702   bool removeIncomplete(const IdentifierInfo *ID);
9703   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9704                      bool IsRecursive);
9705   StringRef lookupStr(const IdentifierInfo *ID);
9706 };
9707 
9708 /// TypeString encodings for enum & union fields must be order.
9709 /// FieldEncoding is a helper for this ordering process.
9710 class FieldEncoding {
9711   bool HasName;
9712   std::string Enc;
9713 public:
FieldEncoding(bool b,SmallStringEnc & e)9714   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
str()9715   StringRef str() { return Enc; }
operator <(const FieldEncoding & rhs) const9716   bool operator<(const FieldEncoding &rhs) const {
9717     if (HasName != rhs.HasName) return HasName;
9718     return Enc < rhs.Enc;
9719   }
9720 };
9721 
9722 class XCoreABIInfo : public DefaultABIInfo {
9723 public:
XCoreABIInfo(CodeGen::CodeGenTypes & CGT)9724   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9725   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9726                     QualType Ty) const override;
9727 };
9728 
9729 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9730   mutable TypeStringCache TSC;
9731   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9732                     const CodeGen::CodeGenModule &M) const;
9733 
9734 public:
XCoreTargetCodeGenInfo(CodeGenTypes & CGT)9735   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9736       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9737   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9738                           const llvm::MapVector<GlobalDecl, StringRef>
9739                               &MangledDeclNames) const override;
9740 };
9741 
9742 } // End anonymous namespace.
9743 
9744 // TODO: this implementation is likely now redundant with the default
9745 // EmitVAArg.
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const9746 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9747                                 QualType Ty) const {
9748   CGBuilderTy &Builder = CGF.Builder;
9749 
9750   // Get the VAList.
9751   CharUnits SlotSize = CharUnits::fromQuantity(4);
9752   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9753 
9754   // Handle the argument.
9755   ABIArgInfo AI = classifyArgumentType(Ty);
9756   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9757   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9758   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9759     AI.setCoerceToType(ArgTy);
9760   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9761 
9762   Address Val = Address::invalid();
9763   CharUnits ArgSize = CharUnits::Zero();
9764   switch (AI.getKind()) {
9765   case ABIArgInfo::Expand:
9766   case ABIArgInfo::CoerceAndExpand:
9767   case ABIArgInfo::InAlloca:
9768     llvm_unreachable("Unsupported ABI kind for va_arg");
9769   case ABIArgInfo::Ignore:
9770     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9771     ArgSize = CharUnits::Zero();
9772     break;
9773   case ABIArgInfo::Extend:
9774   case ABIArgInfo::Direct:
9775     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9776     ArgSize = CharUnits::fromQuantity(
9777                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9778     ArgSize = ArgSize.alignTo(SlotSize);
9779     break;
9780   case ABIArgInfo::Indirect:
9781   case ABIArgInfo::IndirectAliased:
9782     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9783     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9784     ArgSize = SlotSize;
9785     break;
9786   }
9787 
9788   // Increment the VAList.
9789   if (!ArgSize.isZero()) {
9790     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9791     Builder.CreateStore(APN.getPointer(), VAListAddr);
9792   }
9793 
9794   return Val;
9795 }
9796 
9797 /// During the expansion of a RecordType, an incomplete TypeString is placed
9798 /// into the cache as a means to identify and break recursion.
9799 /// If there is a Recursive encoding in the cache, it is swapped out and will
9800 /// be reinserted by removeIncomplete().
9801 /// All other types of encoding should have been used rather than arriving here.
addIncomplete(const IdentifierInfo * ID,std::string StubEnc)9802 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9803                                     std::string StubEnc) {
9804   if (!ID)
9805     return;
9806   Entry &E = Map[ID];
9807   assert( (E.Str.empty() || E.State == Recursive) &&
9808          "Incorrectly use of addIncomplete");
9809   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9810   E.Swapped.swap(E.Str); // swap out the Recursive
9811   E.Str.swap(StubEnc);
9812   E.State = Incomplete;
9813   ++IncompleteCount;
9814 }
9815 
9816 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9817 /// must be removed from the cache.
9818 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9819 /// Returns true if the RecordType was defined recursively.
removeIncomplete(const IdentifierInfo * ID)9820 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9821   if (!ID)
9822     return false;
9823   auto I = Map.find(ID);
9824   assert(I != Map.end() && "Entry not present");
9825   Entry &E = I->second;
9826   assert( (E.State == Incomplete ||
9827            E.State == IncompleteUsed) &&
9828          "Entry must be an incomplete type");
9829   bool IsRecursive = false;
9830   if (E.State == IncompleteUsed) {
9831     // We made use of our Incomplete encoding, thus we are recursive.
9832     IsRecursive = true;
9833     --IncompleteUsedCount;
9834   }
9835   if (E.Swapped.empty())
9836     Map.erase(I);
9837   else {
9838     // Swap the Recursive back.
9839     E.Swapped.swap(E.Str);
9840     E.Swapped.clear();
9841     E.State = Recursive;
9842   }
9843   --IncompleteCount;
9844   return IsRecursive;
9845 }
9846 
9847 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9848 /// Recursive (viz: all sub-members were expanded as fully as possible).
addIfComplete(const IdentifierInfo * ID,StringRef Str,bool IsRecursive)9849 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9850                                     bool IsRecursive) {
9851   if (!ID || IncompleteUsedCount)
9852     return; // No key or it is is an incomplete sub-type so don't add.
9853   Entry &E = Map[ID];
9854   if (IsRecursive && !E.Str.empty()) {
9855     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9856            "This is not the same Recursive entry");
9857     // The parent container was not recursive after all, so we could have used
9858     // this Recursive sub-member entry after all, but we assumed the worse when
9859     // we started viz: IncompleteCount!=0.
9860     return;
9861   }
9862   assert(E.Str.empty() && "Entry already present");
9863   E.Str = Str.str();
9864   E.State = IsRecursive? Recursive : NonRecursive;
9865 }
9866 
9867 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9868 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9869 /// encoding is Recursive, return an empty StringRef.
lookupStr(const IdentifierInfo * ID)9870 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9871   if (!ID)
9872     return StringRef();   // We have no key.
9873   auto I = Map.find(ID);
9874   if (I == Map.end())
9875     return StringRef();   // We have no encoding.
9876   Entry &E = I->second;
9877   if (E.State == Recursive && IncompleteCount)
9878     return StringRef();   // We don't use Recursive encodings for member types.
9879 
9880   if (E.State == Incomplete) {
9881     // The incomplete type is being used to break out of recursion.
9882     E.State = IncompleteUsed;
9883     ++IncompleteUsedCount;
9884   }
9885   return E.Str;
9886 }
9887 
9888 /// The XCore ABI includes a type information section that communicates symbol
9889 /// type information to the linker. The linker uses this information to verify
9890 /// safety/correctness of things such as array bound and pointers et al.
9891 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9892 /// This type information (TypeString) is emitted into meta data for all global
9893 /// symbols: definitions, declarations, functions & variables.
9894 ///
9895 /// The TypeString carries type, qualifier, name, size & value details.
9896 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9897 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9898 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9899 ///
9900 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9901                           const CodeGen::CodeGenModule &CGM,
9902                           TypeStringCache &TSC);
9903 
9904 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
emitTargetMD(const Decl * D,llvm::GlobalValue * GV,const CodeGen::CodeGenModule & CGM) const9905 void XCoreTargetCodeGenInfo::emitTargetMD(
9906     const Decl *D, llvm::GlobalValue *GV,
9907     const CodeGen::CodeGenModule &CGM) const {
9908   SmallStringEnc Enc;
9909   if (getTypeString(Enc, D, CGM, TSC)) {
9910     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9911     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9912                                 llvm::MDString::get(Ctx, Enc.str())};
9913     llvm::NamedMDNode *MD =
9914       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9915     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9916   }
9917 }
9918 
emitTargetMetadata(CodeGen::CodeGenModule & CGM,const llvm::MapVector<GlobalDecl,StringRef> & MangledDeclNames) const9919 void XCoreTargetCodeGenInfo::emitTargetMetadata(
9920     CodeGen::CodeGenModule &CGM,
9921     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
9922   // Warning, new MangledDeclNames may be appended within this loop.
9923   // We rely on MapVector insertions adding new elements to the end
9924   // of the container.
9925   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
9926     auto Val = *(MangledDeclNames.begin() + I);
9927     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
9928     if (GV) {
9929       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
9930       emitTargetMD(D, GV, CGM);
9931     }
9932   }
9933 }
9934 //===----------------------------------------------------------------------===//
9935 // SPIR ABI Implementation
9936 //===----------------------------------------------------------------------===//
9937 
9938 namespace {
9939 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9940 public:
SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT)9941   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9942       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
9943   unsigned getOpenCLKernelCallingConv() const override;
9944 };
9945 
9946 } // End anonymous namespace.
9947 
9948 namespace clang {
9949 namespace CodeGen {
computeSPIRKernelABIInfo(CodeGenModule & CGM,CGFunctionInfo & FI)9950 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
9951   DefaultABIInfo SPIRABI(CGM.getTypes());
9952   SPIRABI.computeInfo(FI);
9953 }
9954 }
9955 }
9956 
getOpenCLKernelCallingConv() const9957 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9958   return llvm::CallingConv::SPIR_KERNEL;
9959 }
9960 
9961 static bool appendType(SmallStringEnc &Enc, QualType QType,
9962                        const CodeGen::CodeGenModule &CGM,
9963                        TypeStringCache &TSC);
9964 
9965 /// Helper function for appendRecordType().
9966 /// Builds a SmallVector containing the encoded field types in declaration
9967 /// order.
extractFieldType(SmallVectorImpl<FieldEncoding> & FE,const RecordDecl * RD,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)9968 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
9969                              const RecordDecl *RD,
9970                              const CodeGen::CodeGenModule &CGM,
9971                              TypeStringCache &TSC) {
9972   for (const auto *Field : RD->fields()) {
9973     SmallStringEnc Enc;
9974     Enc += "m(";
9975     Enc += Field->getName();
9976     Enc += "){";
9977     if (Field->isBitField()) {
9978       Enc += "b(";
9979       llvm::raw_svector_ostream OS(Enc);
9980       OS << Field->getBitWidthValue(CGM.getContext());
9981       Enc += ':';
9982     }
9983     if (!appendType(Enc, Field->getType(), CGM, TSC))
9984       return false;
9985     if (Field->isBitField())
9986       Enc += ')';
9987     Enc += '}';
9988     FE.emplace_back(!Field->getName().empty(), Enc);
9989   }
9990   return true;
9991 }
9992 
9993 /// Appends structure and union types to Enc and adds encoding to cache.
9994 /// Recursively calls appendType (via extractFieldType) for each field.
9995 /// Union types have their fields ordered according to the ABI.
appendRecordType(SmallStringEnc & Enc,const RecordType * RT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,const IdentifierInfo * ID)9996 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
9997                              const CodeGen::CodeGenModule &CGM,
9998                              TypeStringCache &TSC, const IdentifierInfo *ID) {
9999   // Append the cached TypeString if we have one.
10000   StringRef TypeString = TSC.lookupStr(ID);
10001   if (!TypeString.empty()) {
10002     Enc += TypeString;
10003     return true;
10004   }
10005 
10006   // Start to emit an incomplete TypeString.
10007   size_t Start = Enc.size();
10008   Enc += (RT->isUnionType()? 'u' : 's');
10009   Enc += '(';
10010   if (ID)
10011     Enc += ID->getName();
10012   Enc += "){";
10013 
10014   // We collect all encoded fields and order as necessary.
10015   bool IsRecursive = false;
10016   const RecordDecl *RD = RT->getDecl()->getDefinition();
10017   if (RD && !RD->field_empty()) {
10018     // An incomplete TypeString stub is placed in the cache for this RecordType
10019     // so that recursive calls to this RecordType will use it whilst building a
10020     // complete TypeString for this RecordType.
10021     SmallVector<FieldEncoding, 16> FE;
10022     std::string StubEnc(Enc.substr(Start).str());
10023     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10024     TSC.addIncomplete(ID, std::move(StubEnc));
10025     if (!extractFieldType(FE, RD, CGM, TSC)) {
10026       (void) TSC.removeIncomplete(ID);
10027       return false;
10028     }
10029     IsRecursive = TSC.removeIncomplete(ID);
10030     // The ABI requires unions to be sorted but not structures.
10031     // See FieldEncoding::operator< for sort algorithm.
10032     if (RT->isUnionType())
10033       llvm::sort(FE);
10034     // We can now complete the TypeString.
10035     unsigned E = FE.size();
10036     for (unsigned I = 0; I != E; ++I) {
10037       if (I)
10038         Enc += ',';
10039       Enc += FE[I].str();
10040     }
10041   }
10042   Enc += '}';
10043   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10044   return true;
10045 }
10046 
10047 /// Appends enum types to Enc and adds the encoding to the cache.
appendEnumType(SmallStringEnc & Enc,const EnumType * ET,TypeStringCache & TSC,const IdentifierInfo * ID)10048 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10049                            TypeStringCache &TSC,
10050                            const IdentifierInfo *ID) {
10051   // Append the cached TypeString if we have one.
10052   StringRef TypeString = TSC.lookupStr(ID);
10053   if (!TypeString.empty()) {
10054     Enc += TypeString;
10055     return true;
10056   }
10057 
10058   size_t Start = Enc.size();
10059   Enc += "e(";
10060   if (ID)
10061     Enc += ID->getName();
10062   Enc += "){";
10063 
10064   // We collect all encoded enumerations and order them alphanumerically.
10065   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10066     SmallVector<FieldEncoding, 16> FE;
10067     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10068          ++I) {
10069       SmallStringEnc EnumEnc;
10070       EnumEnc += "m(";
10071       EnumEnc += I->getName();
10072       EnumEnc += "){";
10073       I->getInitVal().toString(EnumEnc);
10074       EnumEnc += '}';
10075       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10076     }
10077     llvm::sort(FE);
10078     unsigned E = FE.size();
10079     for (unsigned I = 0; I != E; ++I) {
10080       if (I)
10081         Enc += ',';
10082       Enc += FE[I].str();
10083     }
10084   }
10085   Enc += '}';
10086   TSC.addIfComplete(ID, Enc.substr(Start), false);
10087   return true;
10088 }
10089 
10090 /// Appends type's qualifier to Enc.
10091 /// This is done prior to appending the type's encoding.
appendQualifier(SmallStringEnc & Enc,QualType QT)10092 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10093   // Qualifiers are emitted in alphabetical order.
10094   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10095   int Lookup = 0;
10096   if (QT.isConstQualified())
10097     Lookup += 1<<0;
10098   if (QT.isRestrictQualified())
10099     Lookup += 1<<1;
10100   if (QT.isVolatileQualified())
10101     Lookup += 1<<2;
10102   Enc += Table[Lookup];
10103 }
10104 
10105 /// Appends built-in types to Enc.
appendBuiltinType(SmallStringEnc & Enc,const BuiltinType * BT)10106 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10107   const char *EncType;
10108   switch (BT->getKind()) {
10109     case BuiltinType::Void:
10110       EncType = "0";
10111       break;
10112     case BuiltinType::Bool:
10113       EncType = "b";
10114       break;
10115     case BuiltinType::Char_U:
10116       EncType = "uc";
10117       break;
10118     case BuiltinType::UChar:
10119       EncType = "uc";
10120       break;
10121     case BuiltinType::SChar:
10122       EncType = "sc";
10123       break;
10124     case BuiltinType::UShort:
10125       EncType = "us";
10126       break;
10127     case BuiltinType::Short:
10128       EncType = "ss";
10129       break;
10130     case BuiltinType::UInt:
10131       EncType = "ui";
10132       break;
10133     case BuiltinType::Int:
10134       EncType = "si";
10135       break;
10136     case BuiltinType::ULong:
10137       EncType = "ul";
10138       break;
10139     case BuiltinType::Long:
10140       EncType = "sl";
10141       break;
10142     case BuiltinType::ULongLong:
10143       EncType = "ull";
10144       break;
10145     case BuiltinType::LongLong:
10146       EncType = "sll";
10147       break;
10148     case BuiltinType::Float:
10149       EncType = "ft";
10150       break;
10151     case BuiltinType::Double:
10152       EncType = "d";
10153       break;
10154     case BuiltinType::LongDouble:
10155       EncType = "ld";
10156       break;
10157     default:
10158       return false;
10159   }
10160   Enc += EncType;
10161   return true;
10162 }
10163 
10164 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
appendPointerType(SmallStringEnc & Enc,const PointerType * PT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)10165 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10166                               const CodeGen::CodeGenModule &CGM,
10167                               TypeStringCache &TSC) {
10168   Enc += "p(";
10169   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10170     return false;
10171   Enc += ')';
10172   return true;
10173 }
10174 
10175 /// Appends array encoding to Enc before calling appendType for the element.
appendArrayType(SmallStringEnc & Enc,QualType QT,const ArrayType * AT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC,StringRef NoSizeEnc)10176 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10177                             const ArrayType *AT,
10178                             const CodeGen::CodeGenModule &CGM,
10179                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10180   if (AT->getSizeModifier() != ArrayType::Normal)
10181     return false;
10182   Enc += "a(";
10183   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10184     CAT->getSize().toStringUnsigned(Enc);
10185   else
10186     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10187   Enc += ':';
10188   // The Qualifiers should be attached to the type rather than the array.
10189   appendQualifier(Enc, QT);
10190   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10191     return false;
10192   Enc += ')';
10193   return true;
10194 }
10195 
10196 /// Appends a function encoding to Enc, calling appendType for the return type
10197 /// and the arguments.
appendFunctionType(SmallStringEnc & Enc,const FunctionType * FT,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)10198 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10199                              const CodeGen::CodeGenModule &CGM,
10200                              TypeStringCache &TSC) {
10201   Enc += "f{";
10202   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10203     return false;
10204   Enc += "}(";
10205   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10206     // N.B. we are only interested in the adjusted param types.
10207     auto I = FPT->param_type_begin();
10208     auto E = FPT->param_type_end();
10209     if (I != E) {
10210       do {
10211         if (!appendType(Enc, *I, CGM, TSC))
10212           return false;
10213         ++I;
10214         if (I != E)
10215           Enc += ',';
10216       } while (I != E);
10217       if (FPT->isVariadic())
10218         Enc += ",va";
10219     } else {
10220       if (FPT->isVariadic())
10221         Enc += "va";
10222       else
10223         Enc += '0';
10224     }
10225   }
10226   Enc += ')';
10227   return true;
10228 }
10229 
10230 /// Handles the type's qualifier before dispatching a call to handle specific
10231 /// type encodings.
appendType(SmallStringEnc & Enc,QualType QType,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)10232 static bool appendType(SmallStringEnc &Enc, QualType QType,
10233                        const CodeGen::CodeGenModule &CGM,
10234                        TypeStringCache &TSC) {
10235 
10236   QualType QT = QType.getCanonicalType();
10237 
10238   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10239     // The Qualifiers should be attached to the type rather than the array.
10240     // Thus we don't call appendQualifier() here.
10241     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10242 
10243   appendQualifier(Enc, QT);
10244 
10245   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10246     return appendBuiltinType(Enc, BT);
10247 
10248   if (const PointerType *PT = QT->getAs<PointerType>())
10249     return appendPointerType(Enc, PT, CGM, TSC);
10250 
10251   if (const EnumType *ET = QT->getAs<EnumType>())
10252     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10253 
10254   if (const RecordType *RT = QT->getAsStructureType())
10255     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10256 
10257   if (const RecordType *RT = QT->getAsUnionType())
10258     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10259 
10260   if (const FunctionType *FT = QT->getAs<FunctionType>())
10261     return appendFunctionType(Enc, FT, CGM, TSC);
10262 
10263   return false;
10264 }
10265 
getTypeString(SmallStringEnc & Enc,const Decl * D,const CodeGen::CodeGenModule & CGM,TypeStringCache & TSC)10266 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10267                           const CodeGen::CodeGenModule &CGM,
10268                           TypeStringCache &TSC) {
10269   if (!D)
10270     return false;
10271 
10272   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10273     if (FD->getLanguageLinkage() != CLanguageLinkage)
10274       return false;
10275     return appendType(Enc, FD->getType(), CGM, TSC);
10276   }
10277 
10278   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10279     if (VD->getLanguageLinkage() != CLanguageLinkage)
10280       return false;
10281     QualType QT = VD->getType().getCanonicalType();
10282     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10283       // Global ArrayTypes are given a size of '*' if the size is unknown.
10284       // The Qualifiers should be attached to the type rather than the array.
10285       // Thus we don't call appendQualifier() here.
10286       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10287     }
10288     return appendType(Enc, QT, CGM, TSC);
10289   }
10290   return false;
10291 }
10292 
10293 //===----------------------------------------------------------------------===//
10294 // RISCV ABI Implementation
10295 //===----------------------------------------------------------------------===//
10296 
10297 namespace {
10298 class RISCVABIInfo : public DefaultABIInfo {
10299 private:
10300   // Size of the integer ('x') registers in bits.
10301   unsigned XLen;
10302   // Size of the floating point ('f') registers in bits. Note that the target
10303   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10304   // with soft float ABI has FLen==0).
10305   unsigned FLen;
10306   static const int NumArgGPRs = 8;
10307   static const int NumArgFPRs = 8;
10308   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10309                                       llvm::Type *&Field1Ty,
10310                                       CharUnits &Field1Off,
10311                                       llvm::Type *&Field2Ty,
10312                                       CharUnits &Field2Off) const;
10313 
10314 public:
RISCVABIInfo(CodeGen::CodeGenTypes & CGT,unsigned XLen,unsigned FLen)10315   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10316       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10317 
10318   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10319   // non-virtual, but computeInfo is virtual, so we overload it.
10320   void computeInfo(CGFunctionInfo &FI) const override;
10321 
10322   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10323                                   int &ArgFPRsLeft) const;
10324   ABIArgInfo classifyReturnType(QualType RetTy) const;
10325 
10326   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10327                     QualType Ty) const override;
10328 
10329   ABIArgInfo extendType(QualType Ty) const;
10330 
10331   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10332                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10333                                 CharUnits &Field2Off, int &NeededArgGPRs,
10334                                 int &NeededArgFPRs) const;
10335   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10336                                                CharUnits Field1Off,
10337                                                llvm::Type *Field2Ty,
10338                                                CharUnits Field2Off) const;
10339 };
10340 } // end anonymous namespace
10341 
computeInfo(CGFunctionInfo & FI) const10342 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10343   QualType RetTy = FI.getReturnType();
10344   if (!getCXXABI().classifyReturnType(FI))
10345     FI.getReturnInfo() = classifyReturnType(RetTy);
10346 
10347   // IsRetIndirect is true if classifyArgumentType indicated the value should
10348   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10349   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10350   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10351   // list and pass indirectly on RV32.
10352   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10353   if (!IsRetIndirect && RetTy->isScalarType() &&
10354       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10355     if (RetTy->isComplexType() && FLen) {
10356       QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
10357       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10358     } else {
10359       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10360       IsRetIndirect = true;
10361     }
10362   }
10363 
10364   // We must track the number of GPRs used in order to conform to the RISC-V
10365   // ABI, as integer scalars passed in registers should have signext/zeroext
10366   // when promoted, but are anyext if passed on the stack. As GPR usage is
10367   // different for variadic arguments, we must also track whether we are
10368   // examining a vararg or not.
10369   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10370   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10371   int NumFixedArgs = FI.getNumRequiredArgs();
10372 
10373   int ArgNum = 0;
10374   for (auto &ArgInfo : FI.arguments()) {
10375     bool IsFixed = ArgNum < NumFixedArgs;
10376     ArgInfo.info =
10377         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10378     ArgNum++;
10379   }
10380 }
10381 
10382 // Returns true if the struct is a potential candidate for the floating point
10383 // calling convention. If this function returns true, the caller is
10384 // responsible for checking that if there is only a single field then that
10385 // field is a float.
detectFPCCEligibleStructHelper(QualType Ty,CharUnits CurOff,llvm::Type * & Field1Ty,CharUnits & Field1Off,llvm::Type * & Field2Ty,CharUnits & Field2Off) const10386 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10387                                                   llvm::Type *&Field1Ty,
10388                                                   CharUnits &Field1Off,
10389                                                   llvm::Type *&Field2Ty,
10390                                                   CharUnits &Field2Off) const {
10391   bool IsInt = Ty->isIntegralOrEnumerationType();
10392   bool IsFloat = Ty->isRealFloatingType();
10393 
10394   if (IsInt || IsFloat) {
10395     uint64_t Size = getContext().getTypeSize(Ty);
10396     if (IsInt && Size > XLen)
10397       return false;
10398     // Can't be eligible if larger than the FP registers. Half precision isn't
10399     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10400     // default to the integer ABI in that case.
10401     if (IsFloat && (Size > FLen || Size < 32))
10402       return false;
10403     // Can't be eligible if an integer type was already found (int+int pairs
10404     // are not eligible).
10405     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10406       return false;
10407     if (!Field1Ty) {
10408       Field1Ty = CGT.ConvertType(Ty);
10409       Field1Off = CurOff;
10410       return true;
10411     }
10412     if (!Field2Ty) {
10413       Field2Ty = CGT.ConvertType(Ty);
10414       Field2Off = CurOff;
10415       return true;
10416     }
10417     return false;
10418   }
10419 
10420   if (auto CTy = Ty->getAs<ComplexType>()) {
10421     if (Field1Ty)
10422       return false;
10423     QualType EltTy = CTy->getElementType();
10424     if (getContext().getTypeSize(EltTy) > FLen)
10425       return false;
10426     Field1Ty = CGT.ConvertType(EltTy);
10427     Field1Off = CurOff;
10428     Field2Ty = Field1Ty;
10429     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10430     return true;
10431   }
10432 
10433   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10434     uint64_t ArraySize = ATy->getSize().getZExtValue();
10435     QualType EltTy = ATy->getElementType();
10436     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10437     for (uint64_t i = 0; i < ArraySize; ++i) {
10438       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10439                                                 Field1Off, Field2Ty, Field2Off);
10440       if (!Ret)
10441         return false;
10442       CurOff += EltSize;
10443     }
10444     return true;
10445   }
10446 
10447   if (const auto *RTy = Ty->getAs<RecordType>()) {
10448     // Structures with either a non-trivial destructor or a non-trivial
10449     // copy constructor are not eligible for the FP calling convention.
10450     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10451       return false;
10452     if (isEmptyRecord(getContext(), Ty, true))
10453       return true;
10454     const RecordDecl *RD = RTy->getDecl();
10455     // Unions aren't eligible unless they're empty (which is caught above).
10456     if (RD->isUnion())
10457       return false;
10458     int ZeroWidthBitFieldCount = 0;
10459     for (const FieldDecl *FD : RD->fields()) {
10460       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10461       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10462       QualType QTy = FD->getType();
10463       if (FD->isBitField()) {
10464         unsigned BitWidth = FD->getBitWidthValue(getContext());
10465         // Allow a bitfield with a type greater than XLen as long as the
10466         // bitwidth is XLen or less.
10467         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10468           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10469         if (BitWidth == 0) {
10470           ZeroWidthBitFieldCount++;
10471           continue;
10472         }
10473       }
10474 
10475       bool Ret = detectFPCCEligibleStructHelper(
10476           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10477           Field1Ty, Field1Off, Field2Ty, Field2Off);
10478       if (!Ret)
10479         return false;
10480 
10481       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10482       // or int+fp structs, but are ignored for a struct with an fp field and
10483       // any number of zero-width bitfields.
10484       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10485         return false;
10486     }
10487     return Field1Ty != nullptr;
10488   }
10489 
10490   return false;
10491 }
10492 
10493 // Determine if a struct is eligible for passing according to the floating
10494 // point calling convention (i.e., when flattened it contains a single fp
10495 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10496 // NeededArgGPRs are incremented appropriately.
detectFPCCEligibleStruct(QualType Ty,llvm::Type * & Field1Ty,CharUnits & Field1Off,llvm::Type * & Field2Ty,CharUnits & Field2Off,int & NeededArgGPRs,int & NeededArgFPRs) const10497 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10498                                             CharUnits &Field1Off,
10499                                             llvm::Type *&Field2Ty,
10500                                             CharUnits &Field2Off,
10501                                             int &NeededArgGPRs,
10502                                             int &NeededArgFPRs) const {
10503   Field1Ty = nullptr;
10504   Field2Ty = nullptr;
10505   NeededArgGPRs = 0;
10506   NeededArgFPRs = 0;
10507   bool IsCandidate = detectFPCCEligibleStructHelper(
10508       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10509   // Not really a candidate if we have a single int but no float.
10510   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10511     return false;
10512   if (!IsCandidate)
10513     return false;
10514   if (Field1Ty && Field1Ty->isFloatingPointTy())
10515     NeededArgFPRs++;
10516   else if (Field1Ty)
10517     NeededArgGPRs++;
10518   if (Field2Ty && Field2Ty->isFloatingPointTy())
10519     NeededArgFPRs++;
10520   else if (Field2Ty)
10521     NeededArgGPRs++;
10522   return true;
10523 }
10524 
10525 // Call getCoerceAndExpand for the two-element flattened struct described by
10526 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10527 // appropriate coerceToType and unpaddedCoerceToType.
coerceAndExpandFPCCEligibleStruct(llvm::Type * Field1Ty,CharUnits Field1Off,llvm::Type * Field2Ty,CharUnits Field2Off) const10528 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10529     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10530     CharUnits Field2Off) const {
10531   SmallVector<llvm::Type *, 3> CoerceElts;
10532   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10533   if (!Field1Off.isZero())
10534     CoerceElts.push_back(llvm::ArrayType::get(
10535         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10536 
10537   CoerceElts.push_back(Field1Ty);
10538   UnpaddedCoerceElts.push_back(Field1Ty);
10539 
10540   if (!Field2Ty) {
10541     return ABIArgInfo::getCoerceAndExpand(
10542         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10543         UnpaddedCoerceElts[0]);
10544   }
10545 
10546   CharUnits Field2Align =
10547       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10548   CharUnits Field1End = Field1Off +
10549       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10550   CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
10551 
10552   CharUnits Padding = CharUnits::Zero();
10553   if (Field2Off > Field2OffNoPadNoPack)
10554     Padding = Field2Off - Field2OffNoPadNoPack;
10555   else if (Field2Off != Field2Align && Field2Off > Field1End)
10556     Padding = Field2Off - Field1End;
10557 
10558   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10559 
10560   if (!Padding.isZero())
10561     CoerceElts.push_back(llvm::ArrayType::get(
10562         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10563 
10564   CoerceElts.push_back(Field2Ty);
10565   UnpaddedCoerceElts.push_back(Field2Ty);
10566 
10567   auto CoerceToType =
10568       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10569   auto UnpaddedCoerceToType =
10570       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10571 
10572   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10573 }
10574 
classifyArgumentType(QualType Ty,bool IsFixed,int & ArgGPRsLeft,int & ArgFPRsLeft) const10575 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10576                                               int &ArgGPRsLeft,
10577                                               int &ArgFPRsLeft) const {
10578   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10579   Ty = useFirstFieldIfTransparentUnion(Ty);
10580 
10581   // Structures with either a non-trivial destructor or a non-trivial
10582   // copy constructor are always passed indirectly.
10583   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10584     if (ArgGPRsLeft)
10585       ArgGPRsLeft -= 1;
10586     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10587                                            CGCXXABI::RAA_DirectInMemory);
10588   }
10589 
10590   // Ignore empty structs/unions.
10591   if (isEmptyRecord(getContext(), Ty, true))
10592     return ABIArgInfo::getIgnore();
10593 
10594   uint64_t Size = getContext().getTypeSize(Ty);
10595 
10596   // Pass floating point values via FPRs if possible.
10597   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10598       FLen >= Size && ArgFPRsLeft) {
10599     ArgFPRsLeft--;
10600     return ABIArgInfo::getDirect();
10601   }
10602 
10603   // Complex types for the hard float ABI must be passed direct rather than
10604   // using CoerceAndExpand.
10605   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10606     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10607     if (getContext().getTypeSize(EltTy) <= FLen) {
10608       ArgFPRsLeft -= 2;
10609       return ABIArgInfo::getDirect();
10610     }
10611   }
10612 
10613   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10614     llvm::Type *Field1Ty = nullptr;
10615     llvm::Type *Field2Ty = nullptr;
10616     CharUnits Field1Off = CharUnits::Zero();
10617     CharUnits Field2Off = CharUnits::Zero();
10618     int NeededArgGPRs;
10619     int NeededArgFPRs;
10620     bool IsCandidate =
10621         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10622                                  NeededArgGPRs, NeededArgFPRs);
10623     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10624         NeededArgFPRs <= ArgFPRsLeft) {
10625       ArgGPRsLeft -= NeededArgGPRs;
10626       ArgFPRsLeft -= NeededArgFPRs;
10627       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10628                                                Field2Off);
10629     }
10630   }
10631 
10632   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10633   bool MustUseStack = false;
10634   // Determine the number of GPRs needed to pass the current argument
10635   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10636   // register pairs, so may consume 3 registers.
10637   int NeededArgGPRs = 1;
10638   if (!IsFixed && NeededAlign == 2 * XLen)
10639     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10640   else if (Size > XLen && Size <= 2 * XLen)
10641     NeededArgGPRs = 2;
10642 
10643   if (NeededArgGPRs > ArgGPRsLeft) {
10644     MustUseStack = true;
10645     NeededArgGPRs = ArgGPRsLeft;
10646   }
10647 
10648   ArgGPRsLeft -= NeededArgGPRs;
10649 
10650   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10651     // Treat an enum type as its underlying type.
10652     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10653       Ty = EnumTy->getDecl()->getIntegerType();
10654 
10655     // All integral types are promoted to XLen width, unless passed on the
10656     // stack.
10657     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10658       return extendType(Ty);
10659     }
10660 
10661     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10662       if (EIT->getNumBits() < XLen && !MustUseStack)
10663         return extendType(Ty);
10664       if (EIT->getNumBits() > 128 ||
10665           (!getContext().getTargetInfo().hasInt128Type() &&
10666            EIT->getNumBits() > 64))
10667         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10668     }
10669 
10670     return ABIArgInfo::getDirect();
10671   }
10672 
10673   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10674   // so coerce to integers.
10675   if (Size <= 2 * XLen) {
10676     unsigned Alignment = getContext().getTypeAlign(Ty);
10677 
10678     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10679     // required, and a 2-element XLen array if only XLen alignment is required.
10680     if (Size <= XLen) {
10681       return ABIArgInfo::getDirect(
10682           llvm::IntegerType::get(getVMContext(), XLen));
10683     } else if (Alignment == 2 * XLen) {
10684       return ABIArgInfo::getDirect(
10685           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10686     } else {
10687       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10688           llvm::IntegerType::get(getVMContext(), XLen), 2));
10689     }
10690   }
10691   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10692 }
10693 
classifyReturnType(QualType RetTy) const10694 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10695   if (RetTy->isVoidType())
10696     return ABIArgInfo::getIgnore();
10697 
10698   int ArgGPRsLeft = 2;
10699   int ArgFPRsLeft = FLen ? 2 : 0;
10700 
10701   // The rules for return and argument types are the same, so defer to
10702   // classifyArgumentType.
10703   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10704                               ArgFPRsLeft);
10705 }
10706 
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty) const10707 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10708                                 QualType Ty) const {
10709   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10710 
10711   // Empty records are ignored for parameter passing purposes.
10712   if (isEmptyRecord(getContext(), Ty, true)) {
10713     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10714     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10715     return Addr;
10716   }
10717 
10718   auto TInfo = getContext().getTypeInfoInChars(Ty);
10719 
10720   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10721   bool IsIndirect = TInfo.Width > 2 * SlotSize;
10722 
10723   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
10724                           SlotSize, /*AllowHigherAlign=*/true);
10725 }
10726 
extendType(QualType Ty) const10727 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10728   int TySize = getContext().getTypeSize(Ty);
10729   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10730   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10731     return ABIArgInfo::getSignExtend(Ty);
10732   return ABIArgInfo::getExtend(Ty);
10733 }
10734 
10735 namespace {
10736 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10737 public:
RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,unsigned XLen,unsigned FLen)10738   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10739                          unsigned FLen)
10740       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10741 
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const10742   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10743                            CodeGen::CodeGenModule &CGM) const override {
10744     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10745     if (!FD) return;
10746 
10747     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10748     if (!Attr)
10749       return;
10750 
10751     const char *Kind;
10752     switch (Attr->getInterrupt()) {
10753     case RISCVInterruptAttr::user: Kind = "user"; break;
10754     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10755     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10756     }
10757 
10758     auto *Fn = cast<llvm::Function>(GV);
10759 
10760     Fn->addFnAttr("interrupt", Kind);
10761   }
10762 };
10763 } // namespace
10764 
10765 //===----------------------------------------------------------------------===//
10766 // VE ABI Implementation.
10767 //
10768 namespace {
10769 class VEABIInfo : public DefaultABIInfo {
10770 public:
VEABIInfo(CodeGenTypes & CGT)10771   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
10772 
10773 private:
10774   ABIArgInfo classifyReturnType(QualType RetTy) const;
10775   ABIArgInfo classifyArgumentType(QualType RetTy) const;
10776   void computeInfo(CGFunctionInfo &FI) const override;
10777 };
10778 } // end anonymous namespace
10779 
classifyReturnType(QualType Ty) const10780 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
10781   if (Ty->isAnyComplexType())
10782     return ABIArgInfo::getDirect();
10783   uint64_t Size = getContext().getTypeSize(Ty);
10784   if (Size < 64 && Ty->isIntegerType())
10785     return ABIArgInfo::getExtend(Ty);
10786   return DefaultABIInfo::classifyReturnType(Ty);
10787 }
10788 
classifyArgumentType(QualType Ty) const10789 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
10790   if (Ty->isAnyComplexType())
10791     return ABIArgInfo::getDirect();
10792   uint64_t Size = getContext().getTypeSize(Ty);
10793   if (Size < 64 && Ty->isIntegerType())
10794     return ABIArgInfo::getExtend(Ty);
10795   return DefaultABIInfo::classifyArgumentType(Ty);
10796 }
10797 
computeInfo(CGFunctionInfo & FI) const10798 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
10799   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
10800   for (auto &Arg : FI.arguments())
10801     Arg.info = classifyArgumentType(Arg.type);
10802 }
10803 
10804 namespace {
10805 class VETargetCodeGenInfo : public TargetCodeGenInfo {
10806 public:
VETargetCodeGenInfo(CodeGenTypes & CGT)10807   VETargetCodeGenInfo(CodeGenTypes &CGT)
10808       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
10809   // VE ABI requires the arguments of variadic and prototype-less functions
10810   // are passed in both registers and memory.
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const10811   bool isNoProtoCallVariadic(const CallArgList &args,
10812                              const FunctionNoProtoType *fnType) const override {
10813     return true;
10814   }
10815 };
10816 } // end anonymous namespace
10817 
10818 //===----------------------------------------------------------------------===//
10819 // Driver code
10820 //===----------------------------------------------------------------------===//
10821 
supportsCOMDAT() const10822 bool CodeGenModule::supportsCOMDAT() const {
10823   return getTriple().supportsCOMDAT();
10824 }
10825 
getTargetCodeGenInfo()10826 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10827   if (TheTargetCodeGenInfo)
10828     return *TheTargetCodeGenInfo;
10829 
10830   // Helper to set the unique_ptr while still keeping the return value.
10831   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10832     this->TheTargetCodeGenInfo.reset(P);
10833     return *P;
10834   };
10835 
10836   const llvm::Triple &Triple = getTarget().getTriple();
10837   switch (Triple.getArch()) {
10838   default:
10839     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10840 
10841   case llvm::Triple::le32:
10842     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10843   case llvm::Triple::mips:
10844   case llvm::Triple::mipsel:
10845     if (Triple.getOS() == llvm::Triple::NaCl)
10846       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10847     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10848 
10849   case llvm::Triple::mips64:
10850   case llvm::Triple::mips64el:
10851     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10852 
10853   case llvm::Triple::avr:
10854     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10855 
10856   case llvm::Triple::aarch64:
10857   case llvm::Triple::aarch64_32:
10858   case llvm::Triple::aarch64_be: {
10859     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10860     if (getTarget().getABI() == "darwinpcs")
10861       Kind = AArch64ABIInfo::DarwinPCS;
10862     else if (Triple.isOSWindows())
10863       return SetCGInfo(
10864           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10865 
10866     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10867   }
10868 
10869   case llvm::Triple::wasm32:
10870   case llvm::Triple::wasm64: {
10871     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10872     if (getTarget().getABI() == "experimental-mv")
10873       Kind = WebAssemblyABIInfo::ExperimentalMV;
10874     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10875   }
10876 
10877   case llvm::Triple::arm:
10878   case llvm::Triple::armeb:
10879   case llvm::Triple::thumb:
10880   case llvm::Triple::thumbeb: {
10881     if (Triple.getOS() == llvm::Triple::Win32) {
10882       return SetCGInfo(
10883           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10884     }
10885 
10886     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10887     StringRef ABIStr = getTarget().getABI();
10888     if (ABIStr == "apcs-gnu")
10889       Kind = ARMABIInfo::APCS;
10890     else if (ABIStr == "aapcs16")
10891       Kind = ARMABIInfo::AAPCS16_VFP;
10892     else if (CodeGenOpts.FloatABI == "hard" ||
10893              (CodeGenOpts.FloatABI != "soft" &&
10894               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10895                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10896                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10897       Kind = ARMABIInfo::AAPCS_VFP;
10898 
10899     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10900   }
10901 
10902   case llvm::Triple::ppc: {
10903     if (Triple.isOSAIX())
10904       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
10905 
10906     bool IsSoftFloat =
10907         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
10908     bool RetSmallStructInRegABI =
10909         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10910     return SetCGInfo(
10911         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
10912   }
10913   case llvm::Triple::ppc64:
10914     if (Triple.isOSAIX())
10915       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
10916 
10917     if (Triple.isOSBinFormatELF()) {
10918       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10919       if (getTarget().getABI() == "elfv2")
10920         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10921       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10922 
10923       return SetCGInfo(
10924           new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
10925     }
10926     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10927   case llvm::Triple::ppc64le: {
10928     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10929     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10930     if (getTarget().getABI() == "elfv1")
10931       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10932     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10933 
10934     return SetCGInfo(
10935         new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
10936   }
10937 
10938   case llvm::Triple::nvptx:
10939   case llvm::Triple::nvptx64:
10940     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
10941 
10942   case llvm::Triple::msp430:
10943     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
10944 
10945   case llvm::Triple::riscv32:
10946   case llvm::Triple::riscv64: {
10947     StringRef ABIStr = getTarget().getABI();
10948     unsigned XLen = getTarget().getPointerWidth(0);
10949     unsigned ABIFLen = 0;
10950     if (ABIStr.endswith("f"))
10951       ABIFLen = 32;
10952     else if (ABIStr.endswith("d"))
10953       ABIFLen = 64;
10954     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
10955   }
10956 
10957   case llvm::Triple::systemz: {
10958     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
10959     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
10960     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
10961   }
10962 
10963   case llvm::Triple::tce:
10964   case llvm::Triple::tcele:
10965     return SetCGInfo(new TCETargetCodeGenInfo(Types));
10966 
10967   case llvm::Triple::x86: {
10968     bool IsDarwinVectorABI = Triple.isOSDarwin();
10969     bool RetSmallStructInRegABI =
10970         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10971     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
10972 
10973     if (Triple.getOS() == llvm::Triple::Win32) {
10974       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
10975           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10976           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
10977     } else {
10978       return SetCGInfo(new X86_32TargetCodeGenInfo(
10979           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10980           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
10981           CodeGenOpts.FloatABI == "soft"));
10982     }
10983   }
10984 
10985   case llvm::Triple::x86_64: {
10986     StringRef ABI = getTarget().getABI();
10987     X86AVXABILevel AVXLevel =
10988         (ABI == "avx512"
10989              ? X86AVXABILevel::AVX512
10990              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
10991 
10992     switch (Triple.getOS()) {
10993     case llvm::Triple::Win32:
10994       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
10995     default:
10996       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
10997     }
10998   }
10999   case llvm::Triple::hexagon:
11000     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11001   case llvm::Triple::lanai:
11002     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11003   case llvm::Triple::r600:
11004     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11005   case llvm::Triple::amdgcn:
11006     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11007   case llvm::Triple::sparc:
11008     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11009   case llvm::Triple::sparcv9:
11010     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11011   case llvm::Triple::xcore:
11012     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11013   case llvm::Triple::arc:
11014     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11015   case llvm::Triple::spir:
11016   case llvm::Triple::spir64:
11017     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
11018   case llvm::Triple::ve:
11019     return SetCGInfo(new VETargetCodeGenInfo(Types));
11020   }
11021 }
11022 
11023 /// Create an OpenCL kernel for an enqueued block.
11024 ///
11025 /// The kernel has the same function type as the block invoke function. Its
11026 /// name is the name of the block invoke function postfixed with "_kernel".
11027 /// It simply calls the block invoke function then returns.
11028 llvm::Function *
createEnqueuedBlockKernel(CodeGenFunction & CGF,llvm::Function * Invoke,llvm::Value * BlockLiteral) const11029 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11030                                              llvm::Function *Invoke,
11031                                              llvm::Value *BlockLiteral) const {
11032   auto *InvokeFT = Invoke->getFunctionType();
11033   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11034   for (auto &P : InvokeFT->params())
11035     ArgTys.push_back(P);
11036   auto &C = CGF.getLLVMContext();
11037   std::string Name = Invoke->getName().str() + "_kernel";
11038   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11039   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11040                                    &CGF.CGM.getModule());
11041   auto IP = CGF.Builder.saveIP();
11042   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11043   auto &Builder = CGF.Builder;
11044   Builder.SetInsertPoint(BB);
11045   llvm::SmallVector<llvm::Value *, 2> Args;
11046   for (auto &A : F->args())
11047     Args.push_back(&A);
11048   Builder.CreateCall(Invoke, Args);
11049   Builder.CreateRetVoid();
11050   Builder.restoreIP(IP);
11051   return F;
11052 }
11053 
11054 /// Create an OpenCL kernel for an enqueued block.
11055 ///
11056 /// The type of the first argument (the block literal) is the struct type
11057 /// of the block literal instead of a pointer type. The first argument
11058 /// (block literal) is passed directly by value to the kernel. The kernel
11059 /// allocates the same type of struct on stack and stores the block literal
11060 /// to it and passes its pointer to the block invoke function. The kernel
11061 /// has "enqueued-block" function attribute and kernel argument metadata.
createEnqueuedBlockKernel(CodeGenFunction & CGF,llvm::Function * Invoke,llvm::Value * BlockLiteral) const11062 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11063     CodeGenFunction &CGF, llvm::Function *Invoke,
11064     llvm::Value *BlockLiteral) const {
11065   auto &Builder = CGF.Builder;
11066   auto &C = CGF.getLLVMContext();
11067 
11068   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11069   auto *InvokeFT = Invoke->getFunctionType();
11070   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11071   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11072   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11073   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11074   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11075   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11076   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11077 
11078   ArgTys.push_back(BlockTy);
11079   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11080   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11081   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11082   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11083   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11084   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11085   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11086     ArgTys.push_back(InvokeFT->getParamType(I));
11087     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11088     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11089     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11090     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11091     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11092     ArgNames.push_back(
11093         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11094   }
11095   std::string Name = Invoke->getName().str() + "_kernel";
11096   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11097   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11098                                    &CGF.CGM.getModule());
11099   F->addFnAttr("enqueued-block");
11100   auto IP = CGF.Builder.saveIP();
11101   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11102   Builder.SetInsertPoint(BB);
11103   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11104   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11105   BlockPtr->setAlignment(BlockAlign);
11106   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11107   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11108   llvm::SmallVector<llvm::Value *, 2> Args;
11109   Args.push_back(Cast);
11110   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11111     Args.push_back(I);
11112   Builder.CreateCall(Invoke, Args);
11113   Builder.CreateRetVoid();
11114   Builder.restoreIP(IP);
11115 
11116   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11117   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11118   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11119   F->setMetadata("kernel_arg_base_type",
11120                  llvm::MDNode::get(C, ArgBaseTypeNames));
11121   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11122   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11123     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11124 
11125   return F;
11126 }
11127