1 //===--- TargetInfo.cpp - Information about Target machine ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the TargetInfo and TargetInfoImpl interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Basic/TargetInfo.h"
14 #include "clang/Basic/AddressSpaces.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/LangOptions.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/TargetParser.h"
23 #include <cstdlib>
24 using namespace clang;
25 
26 static const LangASMap DefaultAddrSpaceMap = {0};
27 
28 // TargetInfo Constructor.
TargetInfo(const llvm::Triple & T)29 TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
30   // Set defaults.  Defaults are set for a 32-bit RISC platform, like PPC or
31   // SPARC.  These should be overridden by concrete targets as needed.
32   BigEndian = !T.isLittleEndian();
33   TLSSupported = true;
34   VLASupported = true;
35   NoAsmVariants = false;
36   HasLegalHalfType = false;
37   HasFloat128 = false;
38   HasFloat16 = false;
39   HasBFloat16 = false;
40   HasStrictFP = false;
41   PointerWidth = PointerAlign = 32;
42   BoolWidth = BoolAlign = 8;
43   IntWidth = IntAlign = 32;
44   LongWidth = LongAlign = 32;
45   LongLongWidth = LongLongAlign = 64;
46 
47   // Fixed point default bit widths
48   ShortAccumWidth = ShortAccumAlign = 16;
49   AccumWidth = AccumAlign = 32;
50   LongAccumWidth = LongAccumAlign = 64;
51   ShortFractWidth = ShortFractAlign = 8;
52   FractWidth = FractAlign = 16;
53   LongFractWidth = LongFractAlign = 32;
54 
55   // Fixed point default integral and fractional bit sizes
56   // We give the _Accum 1 fewer fractional bits than their corresponding _Fract
57   // types by default to have the same number of fractional bits between _Accum
58   // and _Fract types.
59   PaddingOnUnsignedFixedPoint = false;
60   ShortAccumScale = 7;
61   AccumScale = 15;
62   LongAccumScale = 31;
63 
64   SuitableAlign = 64;
65   DefaultAlignForAttributeAligned = 128;
66   MinGlobalAlign = 0;
67   // From the glibc documentation, on GNU systems, malloc guarantees 16-byte
68   // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
69   // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
70   // This alignment guarantee also applies to Windows and Android.
71   if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
72     NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
73   else
74     NewAlign = 0; // Infer from basic type alignment.
75   HalfWidth = 16;
76   HalfAlign = 16;
77   FloatWidth = 32;
78   FloatAlign = 32;
79   DoubleWidth = 64;
80   DoubleAlign = 64;
81   LongDoubleWidth = 64;
82   LongDoubleAlign = 64;
83   Float128Align = 128;
84   LargeArrayMinWidth = 0;
85   LargeArrayAlign = 0;
86   MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
87   MaxVectorAlign = 0;
88   MaxTLSAlign = 0;
89   SimdDefaultAlign = 0;
90   SizeType = UnsignedLong;
91   PtrDiffType = SignedLong;
92   IntMaxType = SignedLongLong;
93   IntPtrType = SignedLong;
94   WCharType = SignedInt;
95   WIntType = SignedInt;
96   Char16Type = UnsignedShort;
97   Char32Type = UnsignedInt;
98   Int64Type = SignedLongLong;
99   SigAtomicType = SignedInt;
100   ProcessIDType = SignedInt;
101   UseSignedCharForObjCBool = true;
102   UseBitFieldTypeAlignment = true;
103   UseZeroLengthBitfieldAlignment = false;
104   UseExplicitBitFieldAlignment = true;
105   ZeroLengthBitfieldBoundary = 0;
106   HalfFormat = &llvm::APFloat::IEEEhalf();
107   FloatFormat = &llvm::APFloat::IEEEsingle();
108   DoubleFormat = &llvm::APFloat::IEEEdouble();
109   LongDoubleFormat = &llvm::APFloat::IEEEdouble();
110   Float128Format = &llvm::APFloat::IEEEquad();
111   MCountName = "mcount";
112   RegParmMax = 0;
113   SSERegParmMax = 0;
114   HasAlignMac68kSupport = false;
115   HasBuiltinMSVaList = false;
116   IsRenderScriptTarget = false;
117   HasAArch64SVETypes = false;
118   AllowAMDGPUUnsafeFPAtomics = false;
119   ARMCDECoprocMask = 0;
120 
121   // Default to no types using fpret.
122   RealTypeUsesObjCFPRet = 0;
123 
124   // Default to not using fp2ret for __Complex long double
125   ComplexLongDoubleUsesFP2Ret = false;
126 
127   // Set the C++ ABI based on the triple.
128   TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
129                     ? TargetCXXABI::Microsoft
130                     : TargetCXXABI::GenericItanium);
131 
132   // Default to an empty address space map.
133   AddrSpaceMap = &DefaultAddrSpaceMap;
134   UseAddrSpaceMapMangling = false;
135 
136   // Default to an unknown platform name.
137   PlatformName = "unknown";
138   PlatformMinVersion = VersionTuple();
139 
140   MaxOpenCLWorkGroupSize = 1024;
141 }
142 
143 // Out of line virtual dtor for TargetInfo.
~TargetInfo()144 TargetInfo::~TargetInfo() {}
145 
resetDataLayout(StringRef DL)146 void TargetInfo::resetDataLayout(StringRef DL) {
147   DataLayout.reset(new llvm::DataLayout(DL));
148 }
149 
150 bool
checkCFProtectionBranchSupported(DiagnosticsEngine & Diags) const151 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
152   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
153   return false;
154 }
155 
156 bool
checkCFProtectionReturnSupported(DiagnosticsEngine & Diags) const157 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
158   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
159   return false;
160 }
161 
162 /// getTypeName - Return the user string for the specified integer type enum.
163 /// For example, SignedShort -> "short".
getTypeName(IntType T)164 const char *TargetInfo::getTypeName(IntType T) {
165   switch (T) {
166   default: llvm_unreachable("not an integer!");
167   case SignedChar:       return "signed char";
168   case UnsignedChar:     return "unsigned char";
169   case SignedShort:      return "short";
170   case UnsignedShort:    return "unsigned short";
171   case SignedInt:        return "int";
172   case UnsignedInt:      return "unsigned int";
173   case SignedLong:       return "long int";
174   case UnsignedLong:     return "long unsigned int";
175   case SignedLongLong:   return "long long int";
176   case UnsignedLongLong: return "long long unsigned int";
177   }
178 }
179 
180 /// getTypeConstantSuffix - Return the constant suffix for the specified
181 /// integer type enum. For example, SignedLong -> "L".
getTypeConstantSuffix(IntType T) const182 const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
183   switch (T) {
184   default: llvm_unreachable("not an integer!");
185   case SignedChar:
186   case SignedShort:
187   case SignedInt:        return "";
188   case SignedLong:       return "L";
189   case SignedLongLong:   return "LL";
190   case UnsignedChar:
191     if (getCharWidth() < getIntWidth())
192       return "";
193     LLVM_FALLTHROUGH;
194   case UnsignedShort:
195     if (getShortWidth() < getIntWidth())
196       return "";
197     LLVM_FALLTHROUGH;
198   case UnsignedInt:      return "U";
199   case UnsignedLong:     return "UL";
200   case UnsignedLongLong: return "ULL";
201   }
202 }
203 
204 /// getTypeFormatModifier - Return the printf format modifier for the
205 /// specified integer type enum. For example, SignedLong -> "l".
206 
getTypeFormatModifier(IntType T)207 const char *TargetInfo::getTypeFormatModifier(IntType T) {
208   switch (T) {
209   default: llvm_unreachable("not an integer!");
210   case SignedChar:
211   case UnsignedChar:     return "hh";
212   case SignedShort:
213   case UnsignedShort:    return "h";
214   case SignedInt:
215   case UnsignedInt:      return "";
216   case SignedLong:
217   case UnsignedLong:     return "l";
218   case SignedLongLong:
219   case UnsignedLongLong: return "ll";
220   }
221 }
222 
223 /// getTypeWidth - Return the width (in bits) of the specified integer type
224 /// enum. For example, SignedInt -> getIntWidth().
getTypeWidth(IntType T) const225 unsigned TargetInfo::getTypeWidth(IntType T) const {
226   switch (T) {
227   default: llvm_unreachable("not an integer!");
228   case SignedChar:
229   case UnsignedChar:     return getCharWidth();
230   case SignedShort:
231   case UnsignedShort:    return getShortWidth();
232   case SignedInt:
233   case UnsignedInt:      return getIntWidth();
234   case SignedLong:
235   case UnsignedLong:     return getLongWidth();
236   case SignedLongLong:
237   case UnsignedLongLong: return getLongLongWidth();
238   };
239 }
240 
getIntTypeByWidth(unsigned BitWidth,bool IsSigned) const241 TargetInfo::IntType TargetInfo::getIntTypeByWidth(
242     unsigned BitWidth, bool IsSigned) const {
243   if (getCharWidth() == BitWidth)
244     return IsSigned ? SignedChar : UnsignedChar;
245   if (getShortWidth() == BitWidth)
246     return IsSigned ? SignedShort : UnsignedShort;
247   if (getIntWidth() == BitWidth)
248     return IsSigned ? SignedInt : UnsignedInt;
249   if (getLongWidth() == BitWidth)
250     return IsSigned ? SignedLong : UnsignedLong;
251   if (getLongLongWidth() == BitWidth)
252     return IsSigned ? SignedLongLong : UnsignedLongLong;
253   return NoInt;
254 }
255 
getLeastIntTypeByWidth(unsigned BitWidth,bool IsSigned) const256 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
257                                                        bool IsSigned) const {
258   if (getCharWidth() >= BitWidth)
259     return IsSigned ? SignedChar : UnsignedChar;
260   if (getShortWidth() >= BitWidth)
261     return IsSigned ? SignedShort : UnsignedShort;
262   if (getIntWidth() >= BitWidth)
263     return IsSigned ? SignedInt : UnsignedInt;
264   if (getLongWidth() >= BitWidth)
265     return IsSigned ? SignedLong : UnsignedLong;
266   if (getLongLongWidth() >= BitWidth)
267     return IsSigned ? SignedLongLong : UnsignedLongLong;
268   return NoInt;
269 }
270 
getRealTypeByWidth(unsigned BitWidth,bool ExplicitIEEE) const271 TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth,
272                                                     bool ExplicitIEEE) const {
273   if (getFloatWidth() == BitWidth)
274     return Float;
275   if (getDoubleWidth() == BitWidth)
276     return Double;
277 
278   switch (BitWidth) {
279   case 96:
280     if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
281       return LongDouble;
282     break;
283   case 128:
284     // The caller explicitly asked for an IEEE compliant type but we still
285     // have to check if the target supports it.
286     if (ExplicitIEEE)
287       return hasFloat128Type() ? Float128 : NoFloat;
288     if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
289         &getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
290       return LongDouble;
291     if (hasFloat128Type())
292       return Float128;
293     break;
294   }
295 
296   return NoFloat;
297 }
298 
299 /// getTypeAlign - Return the alignment (in bits) of the specified integer type
300 /// enum. For example, SignedInt -> getIntAlign().
getTypeAlign(IntType T) const301 unsigned TargetInfo::getTypeAlign(IntType T) const {
302   switch (T) {
303   default: llvm_unreachable("not an integer!");
304   case SignedChar:
305   case UnsignedChar:     return getCharAlign();
306   case SignedShort:
307   case UnsignedShort:    return getShortAlign();
308   case SignedInt:
309   case UnsignedInt:      return getIntAlign();
310   case SignedLong:
311   case UnsignedLong:     return getLongAlign();
312   case SignedLongLong:
313   case UnsignedLongLong: return getLongLongAlign();
314   };
315 }
316 
317 /// isTypeSigned - Return whether an integer types is signed. Returns true if
318 /// the type is signed; false otherwise.
isTypeSigned(IntType T)319 bool TargetInfo::isTypeSigned(IntType T) {
320   switch (T) {
321   default: llvm_unreachable("not an integer!");
322   case SignedChar:
323   case SignedShort:
324   case SignedInt:
325   case SignedLong:
326   case SignedLongLong:
327     return true;
328   case UnsignedChar:
329   case UnsignedShort:
330   case UnsignedInt:
331   case UnsignedLong:
332   case UnsignedLongLong:
333     return false;
334   };
335 }
336 
337 /// adjust - Set forced language options.
338 /// Apply changes to the target information with respect to certain
339 /// language options which change the target configuration and adjust
340 /// the language based on the target options where applicable.
adjust(LangOptions & Opts)341 void TargetInfo::adjust(LangOptions &Opts) {
342   if (Opts.NoBitFieldTypeAlign)
343     UseBitFieldTypeAlignment = false;
344 
345   switch (Opts.WCharSize) {
346   default: llvm_unreachable("invalid wchar_t width");
347   case 0: break;
348   case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
349   case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
350   case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
351   }
352 
353   if (Opts.AlignDouble) {
354     DoubleAlign = LongLongAlign = 64;
355     LongDoubleAlign = 64;
356   }
357 
358   if (Opts.OpenCL) {
359     // OpenCL C requires specific widths for types, irrespective of
360     // what these normally are for the target.
361     // We also define long long and long double here, although the
362     // OpenCL standard only mentions these as "reserved".
363     IntWidth = IntAlign = 32;
364     LongWidth = LongAlign = 64;
365     LongLongWidth = LongLongAlign = 128;
366     HalfWidth = HalfAlign = 16;
367     FloatWidth = FloatAlign = 32;
368 
369     // Embedded 32-bit targets (OpenCL EP) might have double C type
370     // defined as float. Let's not override this as it might lead
371     // to generating illegal code that uses 64bit doubles.
372     if (DoubleWidth != FloatWidth) {
373       DoubleWidth = DoubleAlign = 64;
374       DoubleFormat = &llvm::APFloat::IEEEdouble();
375     }
376     LongDoubleWidth = LongDoubleAlign = 128;
377 
378     unsigned MaxPointerWidth = getMaxPointerWidth();
379     assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
380     bool Is32BitArch = MaxPointerWidth == 32;
381     SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
382     PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
383     IntPtrType = Is32BitArch ? SignedInt : SignedLong;
384 
385     IntMaxType = SignedLongLong;
386     Int64Type = SignedLong;
387 
388     HalfFormat = &llvm::APFloat::IEEEhalf();
389     FloatFormat = &llvm::APFloat::IEEEsingle();
390     LongDoubleFormat = &llvm::APFloat::IEEEquad();
391   }
392 
393   if (Opts.DoubleSize) {
394     if (Opts.DoubleSize == 32) {
395       DoubleWidth = 32;
396       LongDoubleWidth = 32;
397       DoubleFormat = &llvm::APFloat::IEEEsingle();
398       LongDoubleFormat = &llvm::APFloat::IEEEsingle();
399     } else if (Opts.DoubleSize == 64) {
400       DoubleWidth = 64;
401       LongDoubleWidth = 64;
402       DoubleFormat = &llvm::APFloat::IEEEdouble();
403       LongDoubleFormat = &llvm::APFloat::IEEEdouble();
404     }
405   }
406 
407   if (Opts.LongDoubleSize) {
408     if (Opts.LongDoubleSize == DoubleWidth) {
409       LongDoubleWidth = DoubleWidth;
410       LongDoubleAlign = DoubleAlign;
411       LongDoubleFormat = DoubleFormat;
412     } else if (Opts.LongDoubleSize == 128) {
413       LongDoubleWidth = LongDoubleAlign = 128;
414       LongDoubleFormat = &llvm::APFloat::IEEEquad();
415     }
416   }
417 
418   if (Opts.NewAlignOverride)
419     NewAlign = Opts.NewAlignOverride * getCharWidth();
420 
421   // Each unsigned fixed point type has the same number of fractional bits as
422   // its corresponding signed type.
423   PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
424   CheckFixedPointBits();
425 }
426 
initFeatureMap(llvm::StringMap<bool> & Features,DiagnosticsEngine & Diags,StringRef CPU,const std::vector<std::string> & FeatureVec) const427 bool TargetInfo::initFeatureMap(
428     llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
429     const std::vector<std::string> &FeatureVec) const {
430   for (const auto &F : FeatureVec) {
431     StringRef Name = F;
432     // Apply the feature via the target.
433     bool Enabled = Name[0] == '+';
434     setFeatureEnabled(Features, Name.substr(1), Enabled);
435   }
436   return true;
437 }
438 
439 TargetInfo::CallingConvKind
getCallingConvKind(bool ClangABICompat4) const440 TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
441   if (getCXXABI() != TargetCXXABI::Microsoft &&
442       (ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4))
443     return CCK_ClangABI4OrPS4;
444   return CCK_Default;
445 }
446 
getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const447 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
448   switch (TK) {
449   case OCLTK_Image:
450   case OCLTK_Pipe:
451     return LangAS::opencl_global;
452 
453   case OCLTK_Sampler:
454     return LangAS::opencl_constant;
455 
456   default:
457     return LangAS::Default;
458   }
459 }
460 
461 //===----------------------------------------------------------------------===//
462 
463 
removeGCCRegisterPrefix(StringRef Name)464 static StringRef removeGCCRegisterPrefix(StringRef Name) {
465   if (Name[0] == '%' || Name[0] == '#')
466     Name = Name.substr(1);
467 
468   return Name;
469 }
470 
471 /// isValidClobber - Returns whether the passed in string is
472 /// a valid clobber in an inline asm statement. This is used by
473 /// Sema.
isValidClobber(StringRef Name) const474 bool TargetInfo::isValidClobber(StringRef Name) const {
475   return (isValidGCCRegisterName(Name) ||
476           Name == "memory" || Name == "cc");
477 }
478 
479 /// isValidGCCRegisterName - Returns whether the passed in string
480 /// is a valid register name according to GCC. This is used by Sema for
481 /// inline asm statements.
isValidGCCRegisterName(StringRef Name) const482 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
483   if (Name.empty())
484     return false;
485 
486   // Get rid of any register prefix.
487   Name = removeGCCRegisterPrefix(Name);
488   if (Name.empty())
489     return false;
490 
491   ArrayRef<const char *> Names = getGCCRegNames();
492 
493   // If we have a number it maps to an entry in the register name array.
494   if (isDigit(Name[0])) {
495     unsigned n;
496     if (!Name.getAsInteger(0, n))
497       return n < Names.size();
498   }
499 
500   // Check register names.
501   if (llvm::is_contained(Names, Name))
502     return true;
503 
504   // Check any additional names that we have.
505   for (const AddlRegName &ARN : getGCCAddlRegNames())
506     for (const char *AN : ARN.Names) {
507       if (!AN)
508         break;
509       // Make sure the register that the additional name is for is within
510       // the bounds of the register names from above.
511       if (AN == Name && ARN.RegNum < Names.size())
512         return true;
513     }
514 
515   // Now check aliases.
516   for (const GCCRegAlias &GRA : getGCCRegAliases())
517     for (const char *A : GRA.Aliases) {
518       if (!A)
519         break;
520       if (A == Name)
521         return true;
522     }
523 
524   return false;
525 }
526 
getNormalizedGCCRegisterName(StringRef Name,bool ReturnCanonical) const527 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
528                                                    bool ReturnCanonical) const {
529   assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
530 
531   // Get rid of any register prefix.
532   Name = removeGCCRegisterPrefix(Name);
533 
534   ArrayRef<const char *> Names = getGCCRegNames();
535 
536   // First, check if we have a number.
537   if (isDigit(Name[0])) {
538     unsigned n;
539     if (!Name.getAsInteger(0, n)) {
540       assert(n < Names.size() && "Out of bounds register number!");
541       return Names[n];
542     }
543   }
544 
545   // Check any additional names that we have.
546   for (const AddlRegName &ARN : getGCCAddlRegNames())
547     for (const char *AN : ARN.Names) {
548       if (!AN)
549         break;
550       // Make sure the register that the additional name is for is within
551       // the bounds of the register names from above.
552       if (AN == Name && ARN.RegNum < Names.size())
553         return ReturnCanonical ? Names[ARN.RegNum] : Name;
554     }
555 
556   // Now check aliases.
557   for (const GCCRegAlias &RA : getGCCRegAliases())
558     for (const char *A : RA.Aliases) {
559       if (!A)
560         break;
561       if (A == Name)
562         return RA.Register;
563     }
564 
565   return Name;
566 }
567 
validateOutputConstraint(ConstraintInfo & Info) const568 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
569   const char *Name = Info.getConstraintStr().c_str();
570   // An output constraint must start with '=' or '+'
571   if (*Name != '=' && *Name != '+')
572     return false;
573 
574   if (*Name == '+')
575     Info.setIsReadWrite();
576 
577   Name++;
578   while (*Name) {
579     switch (*Name) {
580     default:
581       if (!validateAsmConstraint(Name, Info)) {
582         // FIXME: We temporarily return false
583         // so we can add more constraints as we hit it.
584         // Eventually, an unknown constraint should just be treated as 'g'.
585         return false;
586       }
587       break;
588     case '&': // early clobber.
589       Info.setEarlyClobber();
590       break;
591     case '%': // commutative.
592       // FIXME: Check that there is a another register after this one.
593       break;
594     case 'r': // general register.
595       Info.setAllowsRegister();
596       break;
597     case 'm': // memory operand.
598     case 'o': // offsetable memory operand.
599     case 'V': // non-offsetable memory operand.
600     case '<': // autodecrement memory operand.
601     case '>': // autoincrement memory operand.
602       Info.setAllowsMemory();
603       break;
604     case 'g': // general register, memory operand or immediate integer.
605     case 'X': // any operand.
606       Info.setAllowsRegister();
607       Info.setAllowsMemory();
608       break;
609     case ',': // multiple alternative constraint.  Pass it.
610       // Handle additional optional '=' or '+' modifiers.
611       if (Name[1] == '=' || Name[1] == '+')
612         Name++;
613       break;
614     case '#': // Ignore as constraint.
615       while (Name[1] && Name[1] != ',')
616         Name++;
617       break;
618     case '?': // Disparage slightly code.
619     case '!': // Disparage severely.
620     case '*': // Ignore for choosing register preferences.
621     case 'i': // Ignore i,n,E,F as output constraints (match from the other
622               // chars)
623     case 'n':
624     case 'E':
625     case 'F':
626       break;  // Pass them.
627     }
628 
629     Name++;
630   }
631 
632   // Early clobber with a read-write constraint which doesn't permit registers
633   // is invalid.
634   if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
635     return false;
636 
637   // If a constraint allows neither memory nor register operands it contains
638   // only modifiers. Reject it.
639   return Info.allowsMemory() || Info.allowsRegister();
640 }
641 
resolveSymbolicName(const char * & Name,ArrayRef<ConstraintInfo> OutputConstraints,unsigned & Index) const642 bool TargetInfo::resolveSymbolicName(const char *&Name,
643                                      ArrayRef<ConstraintInfo> OutputConstraints,
644                                      unsigned &Index) const {
645   assert(*Name == '[' && "Symbolic name did not start with '['");
646   Name++;
647   const char *Start = Name;
648   while (*Name && *Name != ']')
649     Name++;
650 
651   if (!*Name) {
652     // Missing ']'
653     return false;
654   }
655 
656   std::string SymbolicName(Start, Name - Start);
657 
658   for (Index = 0; Index != OutputConstraints.size(); ++Index)
659     if (SymbolicName == OutputConstraints[Index].getName())
660       return true;
661 
662   return false;
663 }
664 
validateInputConstraint(MutableArrayRef<ConstraintInfo> OutputConstraints,ConstraintInfo & Info) const665 bool TargetInfo::validateInputConstraint(
666                               MutableArrayRef<ConstraintInfo> OutputConstraints,
667                               ConstraintInfo &Info) const {
668   const char *Name = Info.ConstraintStr.c_str();
669 
670   if (!*Name)
671     return false;
672 
673   while (*Name) {
674     switch (*Name) {
675     default:
676       // Check if we have a matching constraint
677       if (*Name >= '0' && *Name <= '9') {
678         const char *DigitStart = Name;
679         while (Name[1] >= '0' && Name[1] <= '9')
680           Name++;
681         const char *DigitEnd = Name;
682         unsigned i;
683         if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
684                 .getAsInteger(10, i))
685           return false;
686 
687         // Check if matching constraint is out of bounds.
688         if (i >= OutputConstraints.size()) return false;
689 
690         // A number must refer to an output only operand.
691         if (OutputConstraints[i].isReadWrite())
692           return false;
693 
694         // If the constraint is already tied, it must be tied to the
695         // same operand referenced to by the number.
696         if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
697           return false;
698 
699         // The constraint should have the same info as the respective
700         // output constraint.
701         Info.setTiedOperand(i, OutputConstraints[i]);
702       } else if (!validateAsmConstraint(Name, Info)) {
703         // FIXME: This error return is in place temporarily so we can
704         // add more constraints as we hit it.  Eventually, an unknown
705         // constraint should just be treated as 'g'.
706         return false;
707       }
708       break;
709     case '[': {
710       unsigned Index = 0;
711       if (!resolveSymbolicName(Name, OutputConstraints, Index))
712         return false;
713 
714       // If the constraint is already tied, it must be tied to the
715       // same operand referenced to by the number.
716       if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
717         return false;
718 
719       // A number must refer to an output only operand.
720       if (OutputConstraints[Index].isReadWrite())
721         return false;
722 
723       Info.setTiedOperand(Index, OutputConstraints[Index]);
724       break;
725     }
726     case '%': // commutative
727       // FIXME: Fail if % is used with the last operand.
728       break;
729     case 'i': // immediate integer.
730       break;
731     case 'n': // immediate integer with a known value.
732       Info.setRequiresImmediate();
733       break;
734     case 'I':  // Various constant constraints with target-specific meanings.
735     case 'J':
736     case 'K':
737     case 'L':
738     case 'M':
739     case 'N':
740     case 'O':
741     case 'P':
742       if (!validateAsmConstraint(Name, Info))
743         return false;
744       break;
745     case 'r': // general register.
746       Info.setAllowsRegister();
747       break;
748     case 'm': // memory operand.
749     case 'o': // offsettable memory operand.
750     case 'V': // non-offsettable memory operand.
751     case '<': // autodecrement memory operand.
752     case '>': // autoincrement memory operand.
753       Info.setAllowsMemory();
754       break;
755     case 'g': // general register, memory operand or immediate integer.
756     case 'X': // any operand.
757       Info.setAllowsRegister();
758       Info.setAllowsMemory();
759       break;
760     case 'E': // immediate floating point.
761     case 'F': // immediate floating point.
762     case 'p': // address operand.
763       break;
764     case ',': // multiple alternative constraint.  Ignore comma.
765       break;
766     case '#': // Ignore as constraint.
767       while (Name[1] && Name[1] != ',')
768         Name++;
769       break;
770     case '?': // Disparage slightly code.
771     case '!': // Disparage severely.
772     case '*': // Ignore for choosing register preferences.
773       break;  // Pass them.
774     }
775 
776     Name++;
777   }
778 
779   return true;
780 }
781 
CheckFixedPointBits() const782 void TargetInfo::CheckFixedPointBits() const {
783   // Check that the number of fractional and integral bits (and maybe sign) can
784   // fit into the bits given for a fixed point type.
785   assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
786   assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
787   assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
788   assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
789          ShortAccumWidth);
790   assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
791   assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
792          LongAccumWidth);
793 
794   assert(getShortFractScale() + 1 <= ShortFractWidth);
795   assert(getFractScale() + 1 <= FractWidth);
796   assert(getLongFractScale() + 1 <= LongFractWidth);
797   assert(getUnsignedShortFractScale() <= ShortFractWidth);
798   assert(getUnsignedFractScale() <= FractWidth);
799   assert(getUnsignedLongFractScale() <= LongFractWidth);
800 
801   // Each unsigned fract type has either the same number of fractional bits
802   // as, or one more fractional bit than, its corresponding signed fract type.
803   assert(getShortFractScale() == getUnsignedShortFractScale() ||
804          getShortFractScale() == getUnsignedShortFractScale() - 1);
805   assert(getFractScale() == getUnsignedFractScale() ||
806          getFractScale() == getUnsignedFractScale() - 1);
807   assert(getLongFractScale() == getUnsignedLongFractScale() ||
808          getLongFractScale() == getUnsignedLongFractScale() - 1);
809 
810   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
811   // fractional bits is nondecreasing for each of the following sets of
812   // fixed-point types:
813   // - signed fract types
814   // - unsigned fract types
815   // - signed accum types
816   // - unsigned accum types.
817   assert(getLongFractScale() >= getFractScale() &&
818          getFractScale() >= getShortFractScale());
819   assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
820          getUnsignedFractScale() >= getUnsignedShortFractScale());
821   assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
822   assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
823          getUnsignedAccumScale() >= getUnsignedShortAccumScale());
824 
825   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
826   // integral bits is nondecreasing for each of the following sets of
827   // fixed-point types:
828   // - signed accum types
829   // - unsigned accum types
830   assert(getLongAccumIBits() >= getAccumIBits() &&
831          getAccumIBits() >= getShortAccumIBits());
832   assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
833          getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());
834 
835   // Each signed accum type has at least as many integral bits as its
836   // corresponding unsigned accum type.
837   assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
838   assert(getAccumIBits() >= getUnsignedAccumIBits());
839   assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
840 }
841 
copyAuxTarget(const TargetInfo * Aux)842 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) {
843   auto *Target = static_cast<TransferrableTargetInfo*>(this);
844   auto *Src = static_cast<const TransferrableTargetInfo*>(Aux);
845   *Target = *Src;
846 }
847