1 //===- ScopDetection.cpp - Detect Scops -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Detect the maximal Scops of a function.
10 //
11 // A static control part (Scop) is a subgraph of the control flow graph (CFG)
12 // that only has statically known control flow and can therefore be described
13 // within the polyhedral model.
14 //
15 // Every Scop fulfills these restrictions:
16 //
17 // * It is a single entry single exit region
18 //
19 // * Only affine linear bounds in the loops
20 //
21 // Every natural loop in a Scop must have a number of loop iterations that can
22 // be described as an affine linear function in surrounding loop iterators or
23 // parameters. (A parameter is a scalar that does not change its value during
24 // execution of the Scop).
25 //
26 // * Only comparisons of affine linear expressions in conditions
27 //
28 // * All loops and conditions perfectly nested
29 //
30 // The control flow needs to be structured such that it could be written using
31 // just 'for' and 'if' statements, without the need for any 'goto', 'break' or
32 // 'continue'.
33 //
34 // * Side effect free functions call
35 //
36 // Function calls and intrinsics that do not have side effects (readnone)
37 // or memory intrinsics (memset, memcpy, memmove) are allowed.
38 //
39 // The Scop detection finds the largest Scops by checking if the largest
40 // region is a Scop. If this is not the case, its canonical subregions are
41 // checked until a region is a Scop. It is now tried to extend this Scop by
42 // creating a larger non canonical region.
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "polly/ScopDetection.h"
47 #include "polly/LinkAllPasses.h"
48 #include "polly/Options.h"
49 #include "polly/ScopDetectionDiagnostic.h"
50 #include "polly/Support/SCEVValidator.h"
51 #include "polly/Support/ScopHelper.h"
52 #include "polly/Support/ScopLocation.h"
53 #include "llvm/ADT/SmallPtrSet.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/Loads.h"
57 #include "llvm/Analysis/LoopInfo.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/RegionInfo.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/DiagnosticInfo.h"
66 #include "llvm/IR/DiagnosticPrinter.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/InstrTypes.h"
70 #include "llvm/IR/Instruction.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/IntrinsicInst.h"
73 #include "llvm/IR/Metadata.h"
74 #include "llvm/IR/Module.h"
75 #include "llvm/IR/PassManager.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <cassert>
82 
83 using namespace llvm;
84 using namespace polly;
85 
86 #define DEBUG_TYPE "polly-detect"
87 
88 // This option is set to a very high value, as analyzing such loops increases
89 // compile time on several cases. For experiments that enable this option,
90 // a value of around 40 has been working to avoid run-time regressions with
91 // Polly while still exposing interesting optimization opportunities.
92 static cl::opt<int> ProfitabilityMinPerLoopInstructions(
93     "polly-detect-profitability-min-per-loop-insts",
94     cl::desc("The minimal number of per-loop instructions before a single loop "
95              "region is considered profitable"),
96     cl::Hidden, cl::ValueRequired, cl::init(100000000), cl::cat(PollyCategory));
97 
98 bool polly::PollyProcessUnprofitable;
99 
100 static cl::opt<bool, true> XPollyProcessUnprofitable(
101     "polly-process-unprofitable",
102     cl::desc(
103         "Process scops that are unlikely to benefit from Polly optimizations."),
104     cl::location(PollyProcessUnprofitable), cl::init(false), cl::ZeroOrMore,
105     cl::cat(PollyCategory));
106 
107 static cl::list<std::string> OnlyFunctions(
108     "polly-only-func",
109     cl::desc("Only run on functions that match a regex. "
110              "Multiple regexes can be comma separated. "
111              "Scop detection will run on all functions that match "
112              "ANY of the regexes provided."),
113     cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
114 
115 static cl::list<std::string> IgnoredFunctions(
116     "polly-ignore-func",
117     cl::desc("Ignore functions that match a regex. "
118              "Multiple regexes can be comma separated. "
119              "Scop detection will ignore all functions that match "
120              "ANY of the regexes provided."),
121     cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
122 
123 bool polly::PollyAllowFullFunction;
124 
125 static cl::opt<bool, true>
126     XAllowFullFunction("polly-detect-full-functions",
127                        cl::desc("Allow the detection of full functions"),
128                        cl::location(polly::PollyAllowFullFunction),
129                        cl::init(false), cl::cat(PollyCategory));
130 
131 static cl::opt<std::string> OnlyRegion(
132     "polly-only-region",
133     cl::desc("Only run on certain regions (The provided identifier must "
134              "appear in the name of the region's entry block"),
135     cl::value_desc("identifier"), cl::ValueRequired, cl::init(""),
136     cl::cat(PollyCategory));
137 
138 static cl::opt<bool>
139     IgnoreAliasing("polly-ignore-aliasing",
140                    cl::desc("Ignore possible aliasing of the array bases"),
141                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
142                    cl::cat(PollyCategory));
143 
144 bool polly::PollyAllowUnsignedOperations;
145 
146 static cl::opt<bool, true> XPollyAllowUnsignedOperations(
147     "polly-allow-unsigned-operations",
148     cl::desc("Allow unsigned operations such as comparisons or zero-extends."),
149     cl::location(PollyAllowUnsignedOperations), cl::Hidden, cl::ZeroOrMore,
150     cl::init(true), cl::cat(PollyCategory));
151 
152 bool polly::PollyUseRuntimeAliasChecks;
153 
154 static cl::opt<bool, true> XPollyUseRuntimeAliasChecks(
155     "polly-use-runtime-alias-checks",
156     cl::desc("Use runtime alias checks to resolve possible aliasing."),
157     cl::location(PollyUseRuntimeAliasChecks), cl::Hidden, cl::ZeroOrMore,
158     cl::init(true), cl::cat(PollyCategory));
159 
160 static cl::opt<bool>
161     ReportLevel("polly-report",
162                 cl::desc("Print information about the activities of Polly"),
163                 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
164 
165 static cl::opt<bool> AllowDifferentTypes(
166     "polly-allow-differing-element-types",
167     cl::desc("Allow different element types for array accesses"), cl::Hidden,
168     cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
169 
170 static cl::opt<bool>
171     AllowNonAffine("polly-allow-nonaffine",
172                    cl::desc("Allow non affine access functions in arrays"),
173                    cl::Hidden, cl::init(false), cl::ZeroOrMore,
174                    cl::cat(PollyCategory));
175 
176 static cl::opt<bool>
177     AllowModrefCall("polly-allow-modref-calls",
178                     cl::desc("Allow functions with known modref behavior"),
179                     cl::Hidden, cl::init(false), cl::ZeroOrMore,
180                     cl::cat(PollyCategory));
181 
182 static cl::opt<bool> AllowNonAffineSubRegions(
183     "polly-allow-nonaffine-branches",
184     cl::desc("Allow non affine conditions for branches"), cl::Hidden,
185     cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
186 
187 static cl::opt<bool>
188     AllowNonAffineSubLoops("polly-allow-nonaffine-loops",
189                            cl::desc("Allow non affine conditions for loops"),
190                            cl::Hidden, cl::init(false), cl::ZeroOrMore,
191                            cl::cat(PollyCategory));
192 
193 static cl::opt<bool, true>
194     TrackFailures("polly-detect-track-failures",
195                   cl::desc("Track failure strings in detecting scop regions"),
196                   cl::location(PollyTrackFailures), cl::Hidden, cl::ZeroOrMore,
197                   cl::init(true), cl::cat(PollyCategory));
198 
199 static cl::opt<bool> KeepGoing("polly-detect-keep-going",
200                                cl::desc("Do not fail on the first error."),
201                                cl::Hidden, cl::ZeroOrMore, cl::init(false),
202                                cl::cat(PollyCategory));
203 
204 static cl::opt<bool, true>
205     PollyDelinearizeX("polly-delinearize",
206                       cl::desc("Delinearize array access functions"),
207                       cl::location(PollyDelinearize), cl::Hidden,
208                       cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
209 
210 static cl::opt<bool>
211     VerifyScops("polly-detect-verify",
212                 cl::desc("Verify the detected SCoPs after each transformation"),
213                 cl::Hidden, cl::init(false), cl::ZeroOrMore,
214                 cl::cat(PollyCategory));
215 
216 bool polly::PollyInvariantLoadHoisting;
217 
218 static cl::opt<bool, true> XPollyInvariantLoadHoisting(
219     "polly-invariant-load-hoisting", cl::desc("Hoist invariant loads."),
220     cl::location(PollyInvariantLoadHoisting), cl::Hidden, cl::ZeroOrMore,
221     cl::init(false), cl::cat(PollyCategory));
222 
223 /// The minimal trip count under which loops are considered unprofitable.
224 static const unsigned MIN_LOOP_TRIP_COUNT = 8;
225 
226 bool polly::PollyTrackFailures = false;
227 bool polly::PollyDelinearize = false;
228 StringRef polly::PollySkipFnAttr = "polly.skip.fn";
229 
230 //===----------------------------------------------------------------------===//
231 // Statistics.
232 
233 STATISTIC(NumScopRegions, "Number of scops");
234 STATISTIC(NumLoopsInScop, "Number of loops in scops");
235 STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0");
236 STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
237 STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
238 STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
239 STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
240 STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
241 STATISTIC(NumScopsDepthLarger,
242           "Number of scops with maximal loop depth 6 and larger");
243 STATISTIC(NumProfScopRegions, "Number of scops (profitable scops only)");
244 STATISTIC(NumLoopsInProfScop,
245           "Number of loops in scops (profitable scops only)");
246 STATISTIC(NumLoopsOverall, "Number of total loops");
247 STATISTIC(NumProfScopsDepthZero,
248           "Number of scops with maximal loop depth 0 (profitable scops only)");
249 STATISTIC(NumProfScopsDepthOne,
250           "Number of scops with maximal loop depth 1 (profitable scops only)");
251 STATISTIC(NumProfScopsDepthTwo,
252           "Number of scops with maximal loop depth 2 (profitable scops only)");
253 STATISTIC(NumProfScopsDepthThree,
254           "Number of scops with maximal loop depth 3 (profitable scops only)");
255 STATISTIC(NumProfScopsDepthFour,
256           "Number of scops with maximal loop depth 4 (profitable scops only)");
257 STATISTIC(NumProfScopsDepthFive,
258           "Number of scops with maximal loop depth 5 (profitable scops only)");
259 STATISTIC(NumProfScopsDepthLarger,
260           "Number of scops with maximal loop depth 6 and larger "
261           "(profitable scops only)");
262 STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops");
263 STATISTIC(MaxNumLoopsInProfScop,
264           "Maximal number of loops in scops (profitable scops only)");
265 
266 static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
267                                      bool OnlyProfitable);
268 
269 namespace {
270 
271 class DiagnosticScopFound : public DiagnosticInfo {
272 private:
273   static int PluginDiagnosticKind;
274 
275   Function &F;
276   std::string FileName;
277   unsigned EntryLine, ExitLine;
278 
279 public:
DiagnosticScopFound(Function & F,std::string FileName,unsigned EntryLine,unsigned ExitLine)280   DiagnosticScopFound(Function &F, std::string FileName, unsigned EntryLine,
281                       unsigned ExitLine)
282       : DiagnosticInfo(PluginDiagnosticKind, DS_Note), F(F), FileName(FileName),
283         EntryLine(EntryLine), ExitLine(ExitLine) {}
284 
285   void print(DiagnosticPrinter &DP) const override;
286 
classof(const DiagnosticInfo * DI)287   static bool classof(const DiagnosticInfo *DI) {
288     return DI->getKind() == PluginDiagnosticKind;
289   }
290 };
291 } // namespace
292 
293 int DiagnosticScopFound::PluginDiagnosticKind =
294     getNextAvailablePluginDiagnosticKind();
295 
print(DiagnosticPrinter & DP) const296 void DiagnosticScopFound::print(DiagnosticPrinter &DP) const {
297   DP << "Polly detected an optimizable loop region (scop) in function '" << F
298      << "'\n";
299 
300   if (FileName.empty()) {
301     DP << "Scop location is unknown. Compile with debug info "
302           "(-g) to get more precise information. ";
303     return;
304   }
305 
306   DP << FileName << ":" << EntryLine << ": Start of scop\n";
307   DP << FileName << ":" << ExitLine << ": End of scop";
308 }
309 
310 /// Check if a string matches any regex in a list of regexes.
311 /// @param Str the input string to match against.
312 /// @param RegexList a list of strings that are regular expressions.
doesStringMatchAnyRegex(StringRef Str,const cl::list<std::string> & RegexList)313 static bool doesStringMatchAnyRegex(StringRef Str,
314                                     const cl::list<std::string> &RegexList) {
315   for (auto RegexStr : RegexList) {
316     Regex R(RegexStr);
317 
318     std::string Err;
319     if (!R.isValid(Err))
320       report_fatal_error("invalid regex given as input to polly: " + Err, true);
321 
322     if (R.match(Str))
323       return true;
324   }
325   return false;
326 }
327 //===----------------------------------------------------------------------===//
328 // ScopDetection.
329 
ScopDetection(Function & F,const DominatorTree & DT,ScalarEvolution & SE,LoopInfo & LI,RegionInfo & RI,AliasAnalysis & AA,OptimizationRemarkEmitter & ORE)330 ScopDetection::ScopDetection(Function &F, const DominatorTree &DT,
331                              ScalarEvolution &SE, LoopInfo &LI, RegionInfo &RI,
332                              AliasAnalysis &AA, OptimizationRemarkEmitter &ORE)
333     : DT(DT), SE(SE), LI(LI), RI(RI), AA(AA), ORE(ORE) {
334   if (!PollyProcessUnprofitable && LI.empty())
335     return;
336 
337   Region *TopRegion = RI.getTopLevelRegion();
338 
339   if (!OnlyFunctions.empty() &&
340       !doesStringMatchAnyRegex(F.getName(), OnlyFunctions))
341     return;
342 
343   if (doesStringMatchAnyRegex(F.getName(), IgnoredFunctions))
344     return;
345 
346   if (!isValidFunction(F))
347     return;
348 
349   findScops(*TopRegion);
350 
351   NumScopRegions += ValidRegions.size();
352 
353   // Prune non-profitable regions.
354   for (auto &DIt : DetectionContextMap) {
355     auto &DC = DIt.getSecond();
356     if (DC.Log.hasErrors())
357       continue;
358     if (!ValidRegions.count(&DC.CurRegion))
359       continue;
360     LoopStats Stats = countBeneficialLoops(&DC.CurRegion, SE, LI, 0);
361     updateLoopCountStatistic(Stats, false /* OnlyProfitable */);
362     if (isProfitableRegion(DC)) {
363       updateLoopCountStatistic(Stats, true /* OnlyProfitable */);
364       continue;
365     }
366 
367     ValidRegions.remove(&DC.CurRegion);
368   }
369 
370   NumProfScopRegions += ValidRegions.size();
371   NumLoopsOverall += countBeneficialLoops(TopRegion, SE, LI, 0).NumLoops;
372 
373   // Only makes sense when we tracked errors.
374   if (PollyTrackFailures)
375     emitMissedRemarks(F);
376 
377   if (ReportLevel)
378     printLocations(F);
379 
380   assert(ValidRegions.size() <= DetectionContextMap.size() &&
381          "Cached more results than valid regions");
382 }
383 
384 template <class RR, typename... Args>
invalid(DetectionContext & Context,bool Assert,Args &&...Arguments) const385 inline bool ScopDetection::invalid(DetectionContext &Context, bool Assert,
386                                    Args &&...Arguments) const {
387   if (!Context.Verifying) {
388     RejectLog &Log = Context.Log;
389     std::shared_ptr<RR> RejectReason = std::make_shared<RR>(Arguments...);
390 
391     if (PollyTrackFailures)
392       Log.report(RejectReason);
393 
394     LLVM_DEBUG(dbgs() << RejectReason->getMessage());
395     LLVM_DEBUG(dbgs() << "\n");
396   } else {
397     assert(!Assert && "Verification of detected scop failed");
398   }
399 
400   return false;
401 }
402 
isMaxRegionInScop(const Region & R,bool Verify) const403 bool ScopDetection::isMaxRegionInScop(const Region &R, bool Verify) const {
404   if (!ValidRegions.count(&R))
405     return false;
406 
407   if (Verify) {
408     DetectionContextMap.erase(getBBPairForRegion(&R));
409     const auto &It = DetectionContextMap.insert(std::make_pair(
410         getBBPairForRegion(&R),
411         DetectionContext(const_cast<Region &>(R), AA, false /*verifying*/)));
412     DetectionContext &Context = It.first->second;
413     return isValidRegion(Context);
414   }
415 
416   return true;
417 }
418 
regionIsInvalidBecause(const Region * R) const419 std::string ScopDetection::regionIsInvalidBecause(const Region *R) const {
420   // Get the first error we found. Even in keep-going mode, this is the first
421   // reason that caused the candidate to be rejected.
422   auto *Log = lookupRejectionLog(R);
423 
424   // This can happen when we marked a region invalid, but didn't track
425   // an error for it.
426   if (!Log || !Log->hasErrors())
427     return "";
428 
429   RejectReasonPtr RR = *Log->begin();
430   return RR->getMessage();
431 }
432 
addOverApproximatedRegion(Region * AR,DetectionContext & Context) const433 bool ScopDetection::addOverApproximatedRegion(Region *AR,
434                                               DetectionContext &Context) const {
435   // If we already know about Ar we can exit.
436   if (!Context.NonAffineSubRegionSet.insert(AR))
437     return true;
438 
439   // All loops in the region have to be overapproximated too if there
440   // are accesses that depend on the iteration count.
441 
442   for (BasicBlock *BB : AR->blocks()) {
443     Loop *L = LI.getLoopFor(BB);
444     if (AR->contains(L))
445       Context.BoxedLoopsSet.insert(L);
446   }
447 
448   return (AllowNonAffineSubLoops || Context.BoxedLoopsSet.empty());
449 }
450 
onlyValidRequiredInvariantLoads(InvariantLoadsSetTy & RequiredILS,DetectionContext & Context) const451 bool ScopDetection::onlyValidRequiredInvariantLoads(
452     InvariantLoadsSetTy &RequiredILS, DetectionContext &Context) const {
453   Region &CurRegion = Context.CurRegion;
454   const DataLayout &DL = CurRegion.getEntry()->getModule()->getDataLayout();
455 
456   if (!PollyInvariantLoadHoisting && !RequiredILS.empty())
457     return false;
458 
459   for (LoadInst *Load : RequiredILS) {
460     // If we already know a load has been accepted as required invariant, we
461     // already run the validation below once and consequently don't need to
462     // run it again. Hence, we return early. For certain test cases (e.g.,
463     // COSMO this avoids us spending 50% of scop-detection time in this
464     // very function (and its children).
465     if (Context.RequiredILS.count(Load))
466       continue;
467     if (!isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
468       return false;
469 
470     for (auto NonAffineRegion : Context.NonAffineSubRegionSet) {
471       if (isSafeToLoadUnconditionally(Load->getPointerOperand(),
472                                       Load->getType(), Load->getAlign(), DL))
473         continue;
474 
475       if (NonAffineRegion->contains(Load) &&
476           Load->getParent() != NonAffineRegion->getEntry())
477         return false;
478     }
479   }
480 
481   Context.RequiredILS.insert(RequiredILS.begin(), RequiredILS.end());
482 
483   return true;
484 }
485 
involvesMultiplePtrs(const SCEV * S0,const SCEV * S1,Loop * Scope) const486 bool ScopDetection::involvesMultiplePtrs(const SCEV *S0, const SCEV *S1,
487                                          Loop *Scope) const {
488   SetVector<Value *> Values;
489   findValues(S0, SE, Values);
490   if (S1)
491     findValues(S1, SE, Values);
492 
493   SmallPtrSet<Value *, 8> PtrVals;
494   for (auto *V : Values) {
495     if (auto *P2I = dyn_cast<PtrToIntInst>(V))
496       V = P2I->getOperand(0);
497 
498     if (!V->getType()->isPointerTy())
499       continue;
500 
501     auto *PtrSCEV = SE.getSCEVAtScope(V, Scope);
502     if (isa<SCEVConstant>(PtrSCEV))
503       continue;
504 
505     auto *BasePtr = dyn_cast<SCEVUnknown>(SE.getPointerBase(PtrSCEV));
506     if (!BasePtr)
507       return true;
508 
509     auto *BasePtrVal = BasePtr->getValue();
510     if (PtrVals.insert(BasePtrVal).second) {
511       for (auto *PtrVal : PtrVals)
512         if (PtrVal != BasePtrVal && !AA.isNoAlias(PtrVal, BasePtrVal))
513           return true;
514     }
515   }
516 
517   return false;
518 }
519 
isAffine(const SCEV * S,Loop * Scope,DetectionContext & Context) const520 bool ScopDetection::isAffine(const SCEV *S, Loop *Scope,
521                              DetectionContext &Context) const {
522   InvariantLoadsSetTy AccessILS;
523   if (!isAffineExpr(&Context.CurRegion, Scope, S, SE, &AccessILS))
524     return false;
525 
526   if (!onlyValidRequiredInvariantLoads(AccessILS, Context))
527     return false;
528 
529   return true;
530 }
531 
isValidSwitch(BasicBlock & BB,SwitchInst * SI,Value * Condition,bool IsLoopBranch,DetectionContext & Context) const532 bool ScopDetection::isValidSwitch(BasicBlock &BB, SwitchInst *SI,
533                                   Value *Condition, bool IsLoopBranch,
534                                   DetectionContext &Context) const {
535   Loop *L = LI.getLoopFor(&BB);
536   const SCEV *ConditionSCEV = SE.getSCEVAtScope(Condition, L);
537 
538   if (IsLoopBranch && L->isLoopLatch(&BB))
539     return false;
540 
541   // Check for invalid usage of different pointers in one expression.
542   if (involvesMultiplePtrs(ConditionSCEV, nullptr, L))
543     return false;
544 
545   if (isAffine(ConditionSCEV, L, Context))
546     return true;
547 
548   if (AllowNonAffineSubRegions &&
549       addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
550     return true;
551 
552   return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB,
553                                      ConditionSCEV, ConditionSCEV, SI);
554 }
555 
isValidBranch(BasicBlock & BB,BranchInst * BI,Value * Condition,bool IsLoopBranch,DetectionContext & Context) const556 bool ScopDetection::isValidBranch(BasicBlock &BB, BranchInst *BI,
557                                   Value *Condition, bool IsLoopBranch,
558                                   DetectionContext &Context) const {
559   // Constant integer conditions are always affine.
560   if (isa<ConstantInt>(Condition))
561     return true;
562 
563   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
564     auto Opcode = BinOp->getOpcode();
565     if (Opcode == Instruction::And || Opcode == Instruction::Or) {
566       Value *Op0 = BinOp->getOperand(0);
567       Value *Op1 = BinOp->getOperand(1);
568       return isValidBranch(BB, BI, Op0, IsLoopBranch, Context) &&
569              isValidBranch(BB, BI, Op1, IsLoopBranch, Context);
570     }
571   }
572 
573   if (auto PHI = dyn_cast<PHINode>(Condition)) {
574     auto *Unique = dyn_cast_or_null<ConstantInt>(
575         getUniqueNonErrorValue(PHI, &Context.CurRegion, LI, DT));
576     if (Unique && (Unique->isZero() || Unique->isOne()))
577       return true;
578   }
579 
580   if (auto Load = dyn_cast<LoadInst>(Condition))
581     if (!IsLoopBranch && Context.CurRegion.contains(Load)) {
582       Context.RequiredILS.insert(Load);
583       return true;
584     }
585 
586   // Non constant conditions of branches need to be ICmpInst.
587   if (!isa<ICmpInst>(Condition)) {
588     if (!IsLoopBranch && AllowNonAffineSubRegions &&
589         addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
590       return true;
591     return invalid<ReportInvalidCond>(Context, /*Assert=*/true, BI, &BB);
592   }
593 
594   ICmpInst *ICmp = cast<ICmpInst>(Condition);
595 
596   // Are both operands of the ICmp affine?
597   if (isa<UndefValue>(ICmp->getOperand(0)) ||
598       isa<UndefValue>(ICmp->getOperand(1)))
599     return invalid<ReportUndefOperand>(Context, /*Assert=*/true, &BB, ICmp);
600 
601   Loop *L = LI.getLoopFor(&BB);
602   const SCEV *LHS = SE.getSCEVAtScope(ICmp->getOperand(0), L);
603   const SCEV *RHS = SE.getSCEVAtScope(ICmp->getOperand(1), L);
604 
605   LHS = tryForwardThroughPHI(LHS, Context.CurRegion, SE, LI, DT);
606   RHS = tryForwardThroughPHI(RHS, Context.CurRegion, SE, LI, DT);
607 
608   // If unsigned operations are not allowed try to approximate the region.
609   if (ICmp->isUnsigned() && !PollyAllowUnsignedOperations)
610     return !IsLoopBranch && AllowNonAffineSubRegions &&
611            addOverApproximatedRegion(RI.getRegionFor(&BB), Context);
612 
613   // Check for invalid usage of different pointers in one expression.
614   if (ICmp->isEquality() && involvesMultiplePtrs(LHS, nullptr, L) &&
615       involvesMultiplePtrs(RHS, nullptr, L))
616     return false;
617 
618   // Check for invalid usage of different pointers in a relational comparison.
619   if (ICmp->isRelational() && involvesMultiplePtrs(LHS, RHS, L))
620     return false;
621 
622   if (isAffine(LHS, L, Context) && isAffine(RHS, L, Context))
623     return true;
624 
625   if (!IsLoopBranch && AllowNonAffineSubRegions &&
626       addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
627     return true;
628 
629   if (IsLoopBranch)
630     return false;
631 
632   return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB, LHS, RHS,
633                                      ICmp);
634 }
635 
isValidCFG(BasicBlock & BB,bool IsLoopBranch,bool AllowUnreachable,DetectionContext & Context) const636 bool ScopDetection::isValidCFG(BasicBlock &BB, bool IsLoopBranch,
637                                bool AllowUnreachable,
638                                DetectionContext &Context) const {
639   Region &CurRegion = Context.CurRegion;
640 
641   Instruction *TI = BB.getTerminator();
642 
643   if (AllowUnreachable && isa<UnreachableInst>(TI))
644     return true;
645 
646   // Return instructions are only valid if the region is the top level region.
647   if (isa<ReturnInst>(TI) && CurRegion.isTopLevelRegion())
648     return true;
649 
650   Value *Condition = getConditionFromTerminator(TI);
651 
652   if (!Condition)
653     return invalid<ReportInvalidTerminator>(Context, /*Assert=*/true, &BB);
654 
655   // UndefValue is not allowed as condition.
656   if (isa<UndefValue>(Condition))
657     return invalid<ReportUndefCond>(Context, /*Assert=*/true, TI, &BB);
658 
659   if (BranchInst *BI = dyn_cast<BranchInst>(TI))
660     return isValidBranch(BB, BI, Condition, IsLoopBranch, Context);
661 
662   SwitchInst *SI = dyn_cast<SwitchInst>(TI);
663   assert(SI && "Terminator was neither branch nor switch");
664 
665   return isValidSwitch(BB, SI, Condition, IsLoopBranch, Context);
666 }
667 
isValidCallInst(CallInst & CI,DetectionContext & Context) const668 bool ScopDetection::isValidCallInst(CallInst &CI,
669                                     DetectionContext &Context) const {
670   if (CI.doesNotReturn())
671     return false;
672 
673   if (CI.doesNotAccessMemory())
674     return true;
675 
676   if (auto *II = dyn_cast<IntrinsicInst>(&CI))
677     if (isValidIntrinsicInst(*II, Context))
678       return true;
679 
680   Function *CalledFunction = CI.getCalledFunction();
681 
682   // Indirect calls are not supported.
683   if (CalledFunction == nullptr)
684     return false;
685 
686   if (isDebugCall(&CI)) {
687     LLVM_DEBUG(dbgs() << "Allow call to debug function: "
688                       << CalledFunction->getName() << '\n');
689     return true;
690   }
691 
692   if (AllowModrefCall) {
693     switch (AA.getModRefBehavior(CalledFunction)) {
694     case FMRB_UnknownModRefBehavior:
695       return false;
696     case FMRB_DoesNotAccessMemory:
697     case FMRB_OnlyReadsMemory:
698     case FMRB_OnlyReadsInaccessibleMem:
699     case FMRB_OnlyReadsInaccessibleOrArgMem:
700       // Implicitly disable delinearization since we have an unknown
701       // accesses with an unknown access function.
702       Context.HasUnknownAccess = true;
703       // Explicitly use addUnknown so we don't put a loop-variant
704       // pointer into the alias set.
705       Context.AST.addUnknown(&CI);
706       return true;
707     case FMRB_OnlyReadsArgumentPointees:
708     case FMRB_OnlyAccessesArgumentPointees:
709     case FMRB_OnlyWritesArgumentPointees:
710       for (const auto &Arg : CI.arg_operands()) {
711         if (!Arg->getType()->isPointerTy())
712           continue;
713 
714         // Bail if a pointer argument has a base address not known to
715         // ScalarEvolution. Note that a zero pointer is acceptable.
716         auto *ArgSCEV = SE.getSCEVAtScope(Arg, LI.getLoopFor(CI.getParent()));
717         if (ArgSCEV->isZero())
718           continue;
719 
720         auto *BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
721         if (!BP)
722           return false;
723 
724         // Implicitly disable delinearization since we have an unknown
725         // accesses with an unknown access function.
726         Context.HasUnknownAccess = true;
727       }
728 
729       // Explicitly use addUnknown so we don't put a loop-variant
730       // pointer into the alias set.
731       Context.AST.addUnknown(&CI);
732       return true;
733     case FMRB_OnlyWritesMemory:
734     case FMRB_OnlyWritesInaccessibleMem:
735     case FMRB_OnlyWritesInaccessibleOrArgMem:
736     case FMRB_OnlyAccessesInaccessibleMem:
737     case FMRB_OnlyAccessesInaccessibleOrArgMem:
738       return false;
739     }
740   }
741 
742   return false;
743 }
744 
isValidIntrinsicInst(IntrinsicInst & II,DetectionContext & Context) const745 bool ScopDetection::isValidIntrinsicInst(IntrinsicInst &II,
746                                          DetectionContext &Context) const {
747   if (isIgnoredIntrinsic(&II))
748     return true;
749 
750   // The closest loop surrounding the call instruction.
751   Loop *L = LI.getLoopFor(II.getParent());
752 
753   // The access function and base pointer for memory intrinsics.
754   const SCEV *AF;
755   const SCEVUnknown *BP;
756 
757   switch (II.getIntrinsicID()) {
758   // Memory intrinsics that can be represented are supported.
759   case Intrinsic::memmove:
760   case Intrinsic::memcpy:
761     AF = SE.getSCEVAtScope(cast<MemTransferInst>(II).getSource(), L);
762     if (!AF->isZero()) {
763       BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
764       // Bail if the source pointer is not valid.
765       if (!isValidAccess(&II, AF, BP, Context))
766         return false;
767     }
768     LLVM_FALLTHROUGH;
769   case Intrinsic::memset:
770     AF = SE.getSCEVAtScope(cast<MemIntrinsic>(II).getDest(), L);
771     if (!AF->isZero()) {
772       BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
773       // Bail if the destination pointer is not valid.
774       if (!isValidAccess(&II, AF, BP, Context))
775         return false;
776     }
777 
778     // Bail if the length is not affine.
779     if (!isAffine(SE.getSCEVAtScope(cast<MemIntrinsic>(II).getLength(), L), L,
780                   Context))
781       return false;
782 
783     return true;
784   default:
785     break;
786   }
787 
788   return false;
789 }
790 
isInvariant(Value & Val,const Region & Reg,DetectionContext & Ctx) const791 bool ScopDetection::isInvariant(Value &Val, const Region &Reg,
792                                 DetectionContext &Ctx) const {
793   // A reference to function argument or constant value is invariant.
794   if (isa<Argument>(Val) || isa<Constant>(Val))
795     return true;
796 
797   Instruction *I = dyn_cast<Instruction>(&Val);
798   if (!I)
799     return false;
800 
801   if (!Reg.contains(I))
802     return true;
803 
804   // Loads within the SCoP may read arbitrary values, need to hoist them. If it
805   // is not hoistable, it will be rejected later, but here we assume it is and
806   // that makes the value invariant.
807   if (auto LI = dyn_cast<LoadInst>(I)) {
808     Ctx.RequiredILS.insert(LI);
809     return true;
810   }
811 
812   return false;
813 }
814 
815 namespace {
816 
817 /// Remove smax of smax(0, size) expressions from a SCEV expression and
818 /// register the '...' components.
819 ///
820 /// Array access expressions as they are generated by GFortran contain smax(0,
821 /// size) expressions that confuse the 'normal' delinearization algorithm.
822 /// However, if we extract such expressions before the normal delinearization
823 /// takes place they can actually help to identify array size expressions in
824 /// Fortran accesses. For the subsequently following delinearization the smax(0,
825 /// size) component can be replaced by just 'size'. This is correct as we will
826 /// always add and verify the assumption that for all subscript expressions
827 /// 'exp' the inequality 0 <= exp < size holds. Hence, we will also verify
828 /// that 0 <= size, which means smax(0, size) == size.
829 class SCEVRemoveMax : public SCEVRewriteVisitor<SCEVRemoveMax> {
830 public:
SCEVRemoveMax(ScalarEvolution & SE,std::vector<const SCEV * > * Terms)831   SCEVRemoveMax(ScalarEvolution &SE, std::vector<const SCEV *> *Terms)
832       : SCEVRewriteVisitor(SE), Terms(Terms) {}
833 
rewrite(const SCEV * Scev,ScalarEvolution & SE,std::vector<const SCEV * > * Terms=nullptr)834   static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
835                              std::vector<const SCEV *> *Terms = nullptr) {
836     SCEVRemoveMax Rewriter(SE, Terms);
837     return Rewriter.visit(Scev);
838   }
839 
visitSMaxExpr(const SCEVSMaxExpr * Expr)840   const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
841     if ((Expr->getNumOperands() == 2) && Expr->getOperand(0)->isZero()) {
842       auto Res = visit(Expr->getOperand(1));
843       if (Terms)
844         (*Terms).push_back(Res);
845       return Res;
846     }
847 
848     return Expr;
849   }
850 
851 private:
852   std::vector<const SCEV *> *Terms;
853 };
854 } // namespace
855 
856 SmallVector<const SCEV *, 4>
getDelinearizationTerms(DetectionContext & Context,const SCEVUnknown * BasePointer) const857 ScopDetection::getDelinearizationTerms(DetectionContext &Context,
858                                        const SCEVUnknown *BasePointer) const {
859   SmallVector<const SCEV *, 4> Terms;
860   for (const auto &Pair : Context.Accesses[BasePointer]) {
861     std::vector<const SCEV *> MaxTerms;
862     SCEVRemoveMax::rewrite(Pair.second, SE, &MaxTerms);
863     if (!MaxTerms.empty()) {
864       Terms.insert(Terms.begin(), MaxTerms.begin(), MaxTerms.end());
865       continue;
866     }
867     // In case the outermost expression is a plain add, we check if any of its
868     // terms has the form 4 * %inst * %param * %param ..., aka a term that
869     // contains a product between a parameter and an instruction that is
870     // inside the scop. Such instructions, if allowed at all, are instructions
871     // SCEV can not represent, but Polly is still looking through. As a
872     // result, these instructions can depend on induction variables and are
873     // most likely no array sizes. However, terms that are multiplied with
874     // them are likely candidates for array sizes.
875     if (auto *AF = dyn_cast<SCEVAddExpr>(Pair.second)) {
876       for (auto Op : AF->operands()) {
877         if (auto *AF2 = dyn_cast<SCEVAddRecExpr>(Op))
878           SE.collectParametricTerms(AF2, Terms);
879         if (auto *AF2 = dyn_cast<SCEVMulExpr>(Op)) {
880           SmallVector<const SCEV *, 0> Operands;
881 
882           for (auto *MulOp : AF2->operands()) {
883             if (auto *Const = dyn_cast<SCEVConstant>(MulOp))
884               Operands.push_back(Const);
885             if (auto *Unknown = dyn_cast<SCEVUnknown>(MulOp)) {
886               if (auto *Inst = dyn_cast<Instruction>(Unknown->getValue())) {
887                 if (!Context.CurRegion.contains(Inst))
888                   Operands.push_back(MulOp);
889 
890               } else {
891                 Operands.push_back(MulOp);
892               }
893             }
894           }
895           if (Operands.size())
896             Terms.push_back(SE.getMulExpr(Operands));
897         }
898       }
899     }
900     if (Terms.empty())
901       SE.collectParametricTerms(Pair.second, Terms);
902   }
903   return Terms;
904 }
905 
hasValidArraySizes(DetectionContext & Context,SmallVectorImpl<const SCEV * > & Sizes,const SCEVUnknown * BasePointer,Loop * Scope) const906 bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
907                                        SmallVectorImpl<const SCEV *> &Sizes,
908                                        const SCEVUnknown *BasePointer,
909                                        Loop *Scope) const {
910   // If no sizes were found, all sizes are trivially valid. We allow this case
911   // to make it possible to pass known-affine accesses to the delinearization to
912   // try to recover some interesting multi-dimensional accesses, but to still
913   // allow the already known to be affine access in case the delinearization
914   // fails. In such situations, the delinearization will just return a Sizes
915   // array of size zero.
916   if (Sizes.size() == 0)
917     return true;
918 
919   Value *BaseValue = BasePointer->getValue();
920   Region &CurRegion = Context.CurRegion;
921   for (const SCEV *DelinearizedSize : Sizes) {
922     // Don't pass down the scope to isAfffine; array dimensions must be
923     // invariant across the entire scop.
924     if (!isAffine(DelinearizedSize, nullptr, Context)) {
925       Sizes.clear();
926       break;
927     }
928     if (auto *Unknown = dyn_cast<SCEVUnknown>(DelinearizedSize)) {
929       auto *V = dyn_cast<Value>(Unknown->getValue());
930       if (auto *Load = dyn_cast<LoadInst>(V)) {
931         if (Context.CurRegion.contains(Load) &&
932             isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
933           Context.RequiredILS.insert(Load);
934         continue;
935       }
936     }
937     if (hasScalarDepsInsideRegion(DelinearizedSize, &CurRegion, Scope, false,
938                                   Context.RequiredILS))
939       return invalid<ReportNonAffineAccess>(
940           Context, /*Assert=*/true, DelinearizedSize,
941           Context.Accesses[BasePointer].front().first, BaseValue);
942   }
943 
944   // No array shape derived.
945   if (Sizes.empty()) {
946     if (AllowNonAffine)
947       return true;
948 
949     for (const auto &Pair : Context.Accesses[BasePointer]) {
950       const Instruction *Insn = Pair.first;
951       const SCEV *AF = Pair.second;
952 
953       if (!isAffine(AF, Scope, Context)) {
954         invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn,
955                                        BaseValue);
956         if (!KeepGoing)
957           return false;
958       }
959     }
960     return false;
961   }
962   return true;
963 }
964 
965 // We first store the resulting memory accesses in TempMemoryAccesses. Only
966 // if the access functions for all memory accesses have been successfully
967 // delinearized we continue. Otherwise, we either report a failure or, if
968 // non-affine accesses are allowed, we drop the information. In case the
969 // information is dropped the memory accesses need to be overapproximated
970 // when translated to a polyhedral representation.
computeAccessFunctions(DetectionContext & Context,const SCEVUnknown * BasePointer,std::shared_ptr<ArrayShape> Shape) const971 bool ScopDetection::computeAccessFunctions(
972     DetectionContext &Context, const SCEVUnknown *BasePointer,
973     std::shared_ptr<ArrayShape> Shape) const {
974   Value *BaseValue = BasePointer->getValue();
975   bool BasePtrHasNonAffine = false;
976   MapInsnToMemAcc TempMemoryAccesses;
977   for (const auto &Pair : Context.Accesses[BasePointer]) {
978     const Instruction *Insn = Pair.first;
979     auto *AF = Pair.second;
980     AF = SCEVRemoveMax::rewrite(AF, SE);
981     bool IsNonAffine = false;
982     TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape)));
983     MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second;
984     auto *Scope = LI.getLoopFor(Insn->getParent());
985 
986     if (!AF) {
987       if (isAffine(Pair.second, Scope, Context))
988         Acc->DelinearizedSubscripts.push_back(Pair.second);
989       else
990         IsNonAffine = true;
991     } else {
992       if (Shape->DelinearizedSizes.size() == 0) {
993         Acc->DelinearizedSubscripts.push_back(AF);
994       } else {
995         SE.computeAccessFunctions(AF, Acc->DelinearizedSubscripts,
996                                   Shape->DelinearizedSizes);
997         if (Acc->DelinearizedSubscripts.size() == 0)
998           IsNonAffine = true;
999       }
1000       for (const SCEV *S : Acc->DelinearizedSubscripts)
1001         if (!isAffine(S, Scope, Context))
1002           IsNonAffine = true;
1003     }
1004 
1005     // (Possibly) report non affine access
1006     if (IsNonAffine) {
1007       BasePtrHasNonAffine = true;
1008       if (!AllowNonAffine)
1009         invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, Pair.second,
1010                                        Insn, BaseValue);
1011       if (!KeepGoing && !AllowNonAffine)
1012         return false;
1013     }
1014   }
1015 
1016   if (!BasePtrHasNonAffine)
1017     Context.InsnToMemAcc.insert(TempMemoryAccesses.begin(),
1018                                 TempMemoryAccesses.end());
1019 
1020   return true;
1021 }
1022 
hasBaseAffineAccesses(DetectionContext & Context,const SCEVUnknown * BasePointer,Loop * Scope) const1023 bool ScopDetection::hasBaseAffineAccesses(DetectionContext &Context,
1024                                           const SCEVUnknown *BasePointer,
1025                                           Loop *Scope) const {
1026   auto Shape = std::shared_ptr<ArrayShape>(new ArrayShape(BasePointer));
1027 
1028   auto Terms = getDelinearizationTerms(Context, BasePointer);
1029 
1030   SE.findArrayDimensions(Terms, Shape->DelinearizedSizes,
1031                          Context.ElementSize[BasePointer]);
1032 
1033   if (!hasValidArraySizes(Context, Shape->DelinearizedSizes, BasePointer,
1034                           Scope))
1035     return false;
1036 
1037   return computeAccessFunctions(Context, BasePointer, Shape);
1038 }
1039 
hasAffineMemoryAccesses(DetectionContext & Context) const1040 bool ScopDetection::hasAffineMemoryAccesses(DetectionContext &Context) const {
1041   // TODO: If we have an unknown access and other non-affine accesses we do
1042   //       not try to delinearize them for now.
1043   if (Context.HasUnknownAccess && !Context.NonAffineAccesses.empty())
1044     return AllowNonAffine;
1045 
1046   for (auto &Pair : Context.NonAffineAccesses) {
1047     auto *BasePointer = Pair.first;
1048     auto *Scope = Pair.second;
1049     if (!hasBaseAffineAccesses(Context, BasePointer, Scope)) {
1050       if (KeepGoing)
1051         continue;
1052       else
1053         return false;
1054     }
1055   }
1056   return true;
1057 }
1058 
isValidAccess(Instruction * Inst,const SCEV * AF,const SCEVUnknown * BP,DetectionContext & Context) const1059 bool ScopDetection::isValidAccess(Instruction *Inst, const SCEV *AF,
1060                                   const SCEVUnknown *BP,
1061                                   DetectionContext &Context) const {
1062 
1063   if (!BP)
1064     return invalid<ReportNoBasePtr>(Context, /*Assert=*/true, Inst);
1065 
1066   auto *BV = BP->getValue();
1067   if (isa<UndefValue>(BV))
1068     return invalid<ReportUndefBasePtr>(Context, /*Assert=*/true, Inst);
1069 
1070   // FIXME: Think about allowing IntToPtrInst
1071   if (IntToPtrInst *Inst = dyn_cast<IntToPtrInst>(BV))
1072     return invalid<ReportIntToPtr>(Context, /*Assert=*/true, Inst);
1073 
1074   // Check that the base address of the access is invariant in the current
1075   // region.
1076   if (!isInvariant(*BV, Context.CurRegion, Context))
1077     return invalid<ReportVariantBasePtr>(Context, /*Assert=*/true, BV, Inst);
1078 
1079   AF = SE.getMinusSCEV(AF, BP);
1080 
1081   const SCEV *Size;
1082   if (!isa<MemIntrinsic>(Inst)) {
1083     Size = SE.getElementSize(Inst);
1084   } else {
1085     auto *SizeTy =
1086         SE.getEffectiveSCEVType(PointerType::getInt8PtrTy(SE.getContext()));
1087     Size = SE.getConstant(SizeTy, 8);
1088   }
1089 
1090   if (Context.ElementSize[BP]) {
1091     if (!AllowDifferentTypes && Context.ElementSize[BP] != Size)
1092       return invalid<ReportDifferentArrayElementSize>(Context, /*Assert=*/true,
1093                                                       Inst, BV);
1094 
1095     Context.ElementSize[BP] = SE.getSMinExpr(Size, Context.ElementSize[BP]);
1096   } else {
1097     Context.ElementSize[BP] = Size;
1098   }
1099 
1100   bool IsVariantInNonAffineLoop = false;
1101   SetVector<const Loop *> Loops;
1102   findLoops(AF, Loops);
1103   for (const Loop *L : Loops)
1104     if (Context.BoxedLoopsSet.count(L))
1105       IsVariantInNonAffineLoop = true;
1106 
1107   auto *Scope = LI.getLoopFor(Inst->getParent());
1108   bool IsAffine = !IsVariantInNonAffineLoop && isAffine(AF, Scope, Context);
1109   // Do not try to delinearize memory intrinsics and force them to be affine.
1110   if (isa<MemIntrinsic>(Inst) && !IsAffine) {
1111     return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
1112                                           BV);
1113   } else if (PollyDelinearize && !IsVariantInNonAffineLoop) {
1114     Context.Accesses[BP].push_back({Inst, AF});
1115 
1116     if (!IsAffine || hasIVParams(AF))
1117       Context.NonAffineAccesses.insert(
1118           std::make_pair(BP, LI.getLoopFor(Inst->getParent())));
1119   } else if (!AllowNonAffine && !IsAffine) {
1120     return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
1121                                           BV);
1122   }
1123 
1124   if (IgnoreAliasing)
1125     return true;
1126 
1127   // Check if the base pointer of the memory access does alias with
1128   // any other pointer. This cannot be handled at the moment.
1129   AAMDNodes AATags;
1130   Inst->getAAMetadata(AATags);
1131   AliasSet &AS = Context.AST.getAliasSetFor(
1132       MemoryLocation::getBeforeOrAfter(BP->getValue(), AATags));
1133 
1134   if (!AS.isMustAlias()) {
1135     if (PollyUseRuntimeAliasChecks) {
1136       bool CanBuildRunTimeCheck = true;
1137       // The run-time alias check places code that involves the base pointer at
1138       // the beginning of the SCoP. This breaks if the base pointer is defined
1139       // inside the scop. Hence, we can only create a run-time check if we are
1140       // sure the base pointer is not an instruction defined inside the scop.
1141       // However, we can ignore loads that will be hoisted.
1142 
1143       InvariantLoadsSetTy VariantLS, InvariantLS;
1144       // In order to detect loads which are dependent on other invariant loads
1145       // as invariant, we use fixed-point iteration method here i.e we iterate
1146       // over the alias set for arbitrary number of times until it is safe to
1147       // assume that all the invariant loads have been detected
1148       while (1) {
1149         const unsigned int VariantSize = VariantLS.size(),
1150                            InvariantSize = InvariantLS.size();
1151 
1152         for (const auto &Ptr : AS) {
1153           Instruction *Inst = dyn_cast<Instruction>(Ptr.getValue());
1154           if (Inst && Context.CurRegion.contains(Inst)) {
1155             auto *Load = dyn_cast<LoadInst>(Inst);
1156             if (Load && InvariantLS.count(Load))
1157               continue;
1158             if (Load && isHoistableLoad(Load, Context.CurRegion, LI, SE, DT,
1159                                         InvariantLS)) {
1160               if (VariantLS.count(Load))
1161                 VariantLS.remove(Load);
1162               Context.RequiredILS.insert(Load);
1163               InvariantLS.insert(Load);
1164             } else {
1165               CanBuildRunTimeCheck = false;
1166               VariantLS.insert(Load);
1167             }
1168           }
1169         }
1170 
1171         if (InvariantSize == InvariantLS.size() &&
1172             VariantSize == VariantLS.size())
1173           break;
1174       }
1175 
1176       if (CanBuildRunTimeCheck)
1177         return true;
1178     }
1179     return invalid<ReportAlias>(Context, /*Assert=*/true, Inst, AS);
1180   }
1181 
1182   return true;
1183 }
1184 
isValidMemoryAccess(MemAccInst Inst,DetectionContext & Context) const1185 bool ScopDetection::isValidMemoryAccess(MemAccInst Inst,
1186                                         DetectionContext &Context) const {
1187   Value *Ptr = Inst.getPointerOperand();
1188   Loop *L = LI.getLoopFor(Inst->getParent());
1189   const SCEV *AccessFunction = SE.getSCEVAtScope(Ptr, L);
1190   const SCEVUnknown *BasePointer;
1191 
1192   BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
1193 
1194   return isValidAccess(Inst, AccessFunction, BasePointer, Context);
1195 }
1196 
isValidInstruction(Instruction & Inst,DetectionContext & Context) const1197 bool ScopDetection::isValidInstruction(Instruction &Inst,
1198                                        DetectionContext &Context) const {
1199   for (auto &Op : Inst.operands()) {
1200     auto *OpInst = dyn_cast<Instruction>(&Op);
1201 
1202     if (!OpInst)
1203       continue;
1204 
1205     if (isErrorBlock(*OpInst->getParent(), Context.CurRegion, LI, DT)) {
1206       auto *PHI = dyn_cast<PHINode>(OpInst);
1207       if (PHI) {
1208         for (User *U : PHI->users()) {
1209           auto *UI = dyn_cast<Instruction>(U);
1210           if (!UI || !UI->isTerminator())
1211             return false;
1212         }
1213       } else {
1214         return false;
1215       }
1216     }
1217   }
1218 
1219   if (isa<LandingPadInst>(&Inst) || isa<ResumeInst>(&Inst))
1220     return false;
1221 
1222   // We only check the call instruction but not invoke instruction.
1223   if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
1224     if (isValidCallInst(*CI, Context))
1225       return true;
1226 
1227     return invalid<ReportFuncCall>(Context, /*Assert=*/true, &Inst);
1228   }
1229 
1230   if (!Inst.mayReadOrWriteMemory()) {
1231     if (!isa<AllocaInst>(Inst))
1232       return true;
1233 
1234     return invalid<ReportAlloca>(Context, /*Assert=*/true, &Inst);
1235   }
1236 
1237   // Check the access function.
1238   if (auto MemInst = MemAccInst::dyn_cast(Inst)) {
1239     Context.hasStores |= isa<StoreInst>(MemInst);
1240     Context.hasLoads |= isa<LoadInst>(MemInst);
1241     if (!MemInst.isSimple())
1242       return invalid<ReportNonSimpleMemoryAccess>(Context, /*Assert=*/true,
1243                                                   &Inst);
1244 
1245     return isValidMemoryAccess(MemInst, Context);
1246   }
1247 
1248   // We do not know this instruction, therefore we assume it is invalid.
1249   return invalid<ReportUnknownInst>(Context, /*Assert=*/true, &Inst);
1250 }
1251 
1252 /// Check whether @p L has exiting blocks.
1253 ///
1254 /// @param L The loop of interest
1255 ///
1256 /// @return True if the loop has exiting blocks, false otherwise.
hasExitingBlocks(Loop * L)1257 static bool hasExitingBlocks(Loop *L) {
1258   SmallVector<BasicBlock *, 4> ExitingBlocks;
1259   L->getExitingBlocks(ExitingBlocks);
1260   return !ExitingBlocks.empty();
1261 }
1262 
canUseISLTripCount(Loop * L,DetectionContext & Context) const1263 bool ScopDetection::canUseISLTripCount(Loop *L,
1264                                        DetectionContext &Context) const {
1265   // Ensure the loop has valid exiting blocks as well as latches, otherwise we
1266   // need to overapproximate it as a boxed loop.
1267   SmallVector<BasicBlock *, 4> LoopControlBlocks;
1268   L->getExitingBlocks(LoopControlBlocks);
1269   L->getLoopLatches(LoopControlBlocks);
1270   for (BasicBlock *ControlBB : LoopControlBlocks) {
1271     if (!isValidCFG(*ControlBB, true, false, Context))
1272       return false;
1273   }
1274 
1275   // We can use ISL to compute the trip count of L.
1276   return true;
1277 }
1278 
isValidLoop(Loop * L,DetectionContext & Context) const1279 bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const {
1280   // Loops that contain part but not all of the blocks of a region cannot be
1281   // handled by the schedule generation. Such loop constructs can happen
1282   // because a region can contain BBs that have no path to the exit block
1283   // (Infinite loops, UnreachableInst), but such blocks are never part of a
1284   // loop.
1285   //
1286   // _______________
1287   // | Loop Header | <-----------.
1288   // ---------------             |
1289   //        |                    |
1290   // _______________       ______________
1291   // | RegionEntry |-----> | RegionExit |----->
1292   // ---------------       --------------
1293   //        |
1294   // _______________
1295   // | EndlessLoop | <--.
1296   // ---------------    |
1297   //       |            |
1298   //       \------------/
1299   //
1300   // In the example above, the loop (LoopHeader,RegionEntry,RegionExit) is
1301   // neither entirely contained in the region RegionEntry->RegionExit
1302   // (containing RegionEntry,EndlessLoop) nor is the region entirely contained
1303   // in the loop.
1304   // The block EndlessLoop is contained in the region because Region::contains
1305   // tests whether it is not dominated by RegionExit. This is probably to not
1306   // having to query the PostdominatorTree. Instead of an endless loop, a dead
1307   // end can also be formed by an UnreachableInst. This case is already caught
1308   // by isErrorBlock(). We hence only have to reject endless loops here.
1309   if (!hasExitingBlocks(L))
1310     return invalid<ReportLoopHasNoExit>(Context, /*Assert=*/true, L);
1311 
1312   // The algorithm for domain construction assumes that loops has only a single
1313   // exit block (and hence corresponds to a subregion). Note that we cannot use
1314   // L->getExitBlock() because it does not check whether all exiting edges point
1315   // to the same BB.
1316   SmallVector<BasicBlock *, 4> ExitBlocks;
1317   L->getExitBlocks(ExitBlocks);
1318   BasicBlock *TheExitBlock = ExitBlocks[0];
1319   for (BasicBlock *ExitBB : ExitBlocks) {
1320     if (TheExitBlock != ExitBB)
1321       return invalid<ReportLoopHasMultipleExits>(Context, /*Assert=*/true, L);
1322   }
1323 
1324   if (canUseISLTripCount(L, Context))
1325     return true;
1326 
1327   if (AllowNonAffineSubLoops && AllowNonAffineSubRegions) {
1328     Region *R = RI.getRegionFor(L->getHeader());
1329     while (R != &Context.CurRegion && !R->contains(L))
1330       R = R->getParent();
1331 
1332     if (addOverApproximatedRegion(R, Context))
1333       return true;
1334   }
1335 
1336   const SCEV *LoopCount = SE.getBackedgeTakenCount(L);
1337   return invalid<ReportLoopBound>(Context, /*Assert=*/true, L, LoopCount);
1338 }
1339 
1340 /// Return the number of loops in @p L (incl. @p L) that have a trip
1341 ///        count that is not known to be less than @MinProfitableTrips.
1342 ScopDetection::LoopStats
countBeneficialSubLoops(Loop * L,ScalarEvolution & SE,unsigned MinProfitableTrips)1343 ScopDetection::countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
1344                                        unsigned MinProfitableTrips) {
1345   auto *TripCount = SE.getBackedgeTakenCount(L);
1346 
1347   int NumLoops = 1;
1348   int MaxLoopDepth = 1;
1349   if (MinProfitableTrips > 0)
1350     if (auto *TripCountC = dyn_cast<SCEVConstant>(TripCount))
1351       if (TripCountC->getType()->getScalarSizeInBits() <= 64)
1352         if (TripCountC->getValue()->getZExtValue() <= MinProfitableTrips)
1353           NumLoops -= 1;
1354 
1355   for (auto &SubLoop : *L) {
1356     LoopStats Stats = countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
1357     NumLoops += Stats.NumLoops;
1358     MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth + 1);
1359   }
1360 
1361   return {NumLoops, MaxLoopDepth};
1362 }
1363 
1364 ScopDetection::LoopStats
countBeneficialLoops(Region * R,ScalarEvolution & SE,LoopInfo & LI,unsigned MinProfitableTrips)1365 ScopDetection::countBeneficialLoops(Region *R, ScalarEvolution &SE,
1366                                     LoopInfo &LI, unsigned MinProfitableTrips) {
1367   int LoopNum = 0;
1368   int MaxLoopDepth = 0;
1369 
1370   auto L = LI.getLoopFor(R->getEntry());
1371 
1372   // If L is fully contained in R, move to first loop surrounding R. Otherwise,
1373   // L is either nullptr or already surrounding R.
1374   if (L && R->contains(L)) {
1375     L = R->outermostLoopInRegion(L);
1376     L = L->getParentLoop();
1377   }
1378 
1379   auto SubLoops =
1380       L ? L->getSubLoopsVector() : std::vector<Loop *>(LI.begin(), LI.end());
1381 
1382   for (auto &SubLoop : SubLoops)
1383     if (R->contains(SubLoop)) {
1384       LoopStats Stats =
1385           countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
1386       LoopNum += Stats.NumLoops;
1387       MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth);
1388     }
1389 
1390   return {LoopNum, MaxLoopDepth};
1391 }
1392 
expandRegion(Region & R)1393 Region *ScopDetection::expandRegion(Region &R) {
1394   // Initial no valid region was found (greater than R)
1395   std::unique_ptr<Region> LastValidRegion;
1396   auto ExpandedRegion = std::unique_ptr<Region>(R.getExpandedRegion());
1397 
1398   LLVM_DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");
1399 
1400   while (ExpandedRegion) {
1401     const auto &It = DetectionContextMap.insert(std::make_pair(
1402         getBBPairForRegion(ExpandedRegion.get()),
1403         DetectionContext(*ExpandedRegion, AA, false /*verifying*/)));
1404     DetectionContext &Context = It.first->second;
1405     LLVM_DEBUG(dbgs() << "\t\tTrying " << ExpandedRegion->getNameStr() << "\n");
1406     // Only expand when we did not collect errors.
1407 
1408     if (!Context.Log.hasErrors()) {
1409       // If the exit is valid check all blocks
1410       //  - if true, a valid region was found => store it + keep expanding
1411       //  - if false, .tbd. => stop  (should this really end the loop?)
1412       if (!allBlocksValid(Context) || Context.Log.hasErrors()) {
1413         removeCachedResults(*ExpandedRegion);
1414         DetectionContextMap.erase(It.first);
1415         break;
1416       }
1417 
1418       // Store this region, because it is the greatest valid (encountered so
1419       // far).
1420       if (LastValidRegion) {
1421         removeCachedResults(*LastValidRegion);
1422         DetectionContextMap.erase(getBBPairForRegion(LastValidRegion.get()));
1423       }
1424       LastValidRegion = std::move(ExpandedRegion);
1425 
1426       // Create and test the next greater region (if any)
1427       ExpandedRegion =
1428           std::unique_ptr<Region>(LastValidRegion->getExpandedRegion());
1429 
1430     } else {
1431       // Create and test the next greater region (if any)
1432       removeCachedResults(*ExpandedRegion);
1433       DetectionContextMap.erase(It.first);
1434       ExpandedRegion =
1435           std::unique_ptr<Region>(ExpandedRegion->getExpandedRegion());
1436     }
1437   }
1438 
1439   LLVM_DEBUG({
1440     if (LastValidRegion)
1441       dbgs() << "\tto " << LastValidRegion->getNameStr() << "\n";
1442     else
1443       dbgs() << "\tExpanding " << R.getNameStr() << " failed\n";
1444   });
1445 
1446   return LastValidRegion.release();
1447 }
1448 
regionWithoutLoops(Region & R,LoopInfo & LI)1449 static bool regionWithoutLoops(Region &R, LoopInfo &LI) {
1450   for (const BasicBlock *BB : R.blocks())
1451     if (R.contains(LI.getLoopFor(BB)))
1452       return false;
1453 
1454   return true;
1455 }
1456 
removeCachedResultsRecursively(const Region & R)1457 void ScopDetection::removeCachedResultsRecursively(const Region &R) {
1458   for (auto &SubRegion : R) {
1459     if (ValidRegions.count(SubRegion.get())) {
1460       removeCachedResults(*SubRegion.get());
1461     } else
1462       removeCachedResultsRecursively(*SubRegion);
1463   }
1464 }
1465 
removeCachedResults(const Region & R)1466 void ScopDetection::removeCachedResults(const Region &R) {
1467   ValidRegions.remove(&R);
1468 }
1469 
findScops(Region & R)1470 void ScopDetection::findScops(Region &R) {
1471   const auto &It = DetectionContextMap.insert(std::make_pair(
1472       getBBPairForRegion(&R), DetectionContext(R, AA, false /*verifying*/)));
1473   DetectionContext &Context = It.first->second;
1474 
1475   bool RegionIsValid = false;
1476   if (!PollyProcessUnprofitable && regionWithoutLoops(R, LI))
1477     invalid<ReportUnprofitable>(Context, /*Assert=*/true, &R);
1478   else
1479     RegionIsValid = isValidRegion(Context);
1480 
1481   bool HasErrors = !RegionIsValid || Context.Log.size() > 0;
1482 
1483   if (HasErrors) {
1484     removeCachedResults(R);
1485   } else {
1486     ValidRegions.insert(&R);
1487     return;
1488   }
1489 
1490   for (auto &SubRegion : R)
1491     findScops(*SubRegion);
1492 
1493   // Try to expand regions.
1494   //
1495   // As the region tree normally only contains canonical regions, non canonical
1496   // regions that form a Scop are not found. Therefore, those non canonical
1497   // regions are checked by expanding the canonical ones.
1498 
1499   std::vector<Region *> ToExpand;
1500 
1501   for (auto &SubRegion : R)
1502     ToExpand.push_back(SubRegion.get());
1503 
1504   for (Region *CurrentRegion : ToExpand) {
1505     // Skip invalid regions. Regions may become invalid, if they are element of
1506     // an already expanded region.
1507     if (!ValidRegions.count(CurrentRegion))
1508       continue;
1509 
1510     // Skip regions that had errors.
1511     bool HadErrors = lookupRejectionLog(CurrentRegion)->hasErrors();
1512     if (HadErrors)
1513       continue;
1514 
1515     Region *ExpandedR = expandRegion(*CurrentRegion);
1516 
1517     if (!ExpandedR)
1518       continue;
1519 
1520     R.addSubRegion(ExpandedR, true);
1521     ValidRegions.insert(ExpandedR);
1522     removeCachedResults(*CurrentRegion);
1523     removeCachedResultsRecursively(*ExpandedR);
1524   }
1525 }
1526 
allBlocksValid(DetectionContext & Context) const1527 bool ScopDetection::allBlocksValid(DetectionContext &Context) const {
1528   Region &CurRegion = Context.CurRegion;
1529 
1530   for (const BasicBlock *BB : CurRegion.blocks()) {
1531     Loop *L = LI.getLoopFor(BB);
1532     if (L && L->getHeader() == BB) {
1533       if (CurRegion.contains(L)) {
1534         if (!isValidLoop(L, Context) && !KeepGoing)
1535           return false;
1536       } else {
1537         SmallVector<BasicBlock *, 1> Latches;
1538         L->getLoopLatches(Latches);
1539         for (BasicBlock *Latch : Latches)
1540           if (CurRegion.contains(Latch))
1541             return invalid<ReportLoopOnlySomeLatches>(Context, /*Assert=*/true,
1542                                                       L);
1543       }
1544     }
1545   }
1546 
1547   for (BasicBlock *BB : CurRegion.blocks()) {
1548     bool IsErrorBlock = isErrorBlock(*BB, CurRegion, LI, DT);
1549 
1550     // Also check exception blocks (and possibly register them as non-affine
1551     // regions). Even though exception blocks are not modeled, we use them
1552     // to forward-propagate domain constraints during ScopInfo construction.
1553     if (!isValidCFG(*BB, false, IsErrorBlock, Context) && !KeepGoing)
1554       return false;
1555 
1556     if (IsErrorBlock)
1557       continue;
1558 
1559     for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I)
1560       if (!isValidInstruction(*I, Context) && !KeepGoing)
1561         return false;
1562   }
1563 
1564   if (!hasAffineMemoryAccesses(Context))
1565     return false;
1566 
1567   return true;
1568 }
1569 
hasSufficientCompute(DetectionContext & Context,int NumLoops) const1570 bool ScopDetection::hasSufficientCompute(DetectionContext &Context,
1571                                          int NumLoops) const {
1572   int InstCount = 0;
1573 
1574   if (NumLoops == 0)
1575     return false;
1576 
1577   for (auto *BB : Context.CurRegion.blocks())
1578     if (Context.CurRegion.contains(LI.getLoopFor(BB)))
1579       InstCount += BB->size();
1580 
1581   InstCount = InstCount / NumLoops;
1582 
1583   return InstCount >= ProfitabilityMinPerLoopInstructions;
1584 }
1585 
hasPossiblyDistributableLoop(DetectionContext & Context) const1586 bool ScopDetection::hasPossiblyDistributableLoop(
1587     DetectionContext &Context) const {
1588   for (auto *BB : Context.CurRegion.blocks()) {
1589     auto *L = LI.getLoopFor(BB);
1590     if (!Context.CurRegion.contains(L))
1591       continue;
1592     if (Context.BoxedLoopsSet.count(L))
1593       continue;
1594     unsigned StmtsWithStoresInLoops = 0;
1595     for (auto *LBB : L->blocks()) {
1596       bool MemStore = false;
1597       for (auto &I : *LBB)
1598         MemStore |= isa<StoreInst>(&I);
1599       StmtsWithStoresInLoops += MemStore;
1600     }
1601     return (StmtsWithStoresInLoops > 1);
1602   }
1603   return false;
1604 }
1605 
isProfitableRegion(DetectionContext & Context) const1606 bool ScopDetection::isProfitableRegion(DetectionContext &Context) const {
1607   Region &CurRegion = Context.CurRegion;
1608 
1609   if (PollyProcessUnprofitable)
1610     return true;
1611 
1612   // We can probably not do a lot on scops that only write or only read
1613   // data.
1614   if (!Context.hasStores || !Context.hasLoads)
1615     return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
1616 
1617   int NumLoops =
1618       countBeneficialLoops(&CurRegion, SE, LI, MIN_LOOP_TRIP_COUNT).NumLoops;
1619   int NumAffineLoops = NumLoops - Context.BoxedLoopsSet.size();
1620 
1621   // Scops with at least two loops may allow either loop fusion or tiling and
1622   // are consequently interesting to look at.
1623   if (NumAffineLoops >= 2)
1624     return true;
1625 
1626   // A loop with multiple non-trivial blocks might be amendable to distribution.
1627   if (NumAffineLoops == 1 && hasPossiblyDistributableLoop(Context))
1628     return true;
1629 
1630   // Scops that contain a loop with a non-trivial amount of computation per
1631   // loop-iteration are interesting as we may be able to parallelize such
1632   // loops. Individual loops that have only a small amount of computation
1633   // per-iteration are performance-wise very fragile as any change to the
1634   // loop induction variables may affect performance. To not cause spurious
1635   // performance regressions, we do not consider such loops.
1636   if (NumAffineLoops == 1 && hasSufficientCompute(Context, NumLoops))
1637     return true;
1638 
1639   return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
1640 }
1641 
isValidRegion(DetectionContext & Context) const1642 bool ScopDetection::isValidRegion(DetectionContext &Context) const {
1643   Region &CurRegion = Context.CurRegion;
1644 
1645   LLVM_DEBUG(dbgs() << "Checking region: " << CurRegion.getNameStr() << "\n\t");
1646 
1647   if (!PollyAllowFullFunction && CurRegion.isTopLevelRegion()) {
1648     LLVM_DEBUG(dbgs() << "Top level region is invalid\n");
1649     return false;
1650   }
1651 
1652   DebugLoc DbgLoc;
1653   if (CurRegion.getExit() &&
1654       isa<UnreachableInst>(CurRegion.getExit()->getTerminator())) {
1655     LLVM_DEBUG(dbgs() << "Unreachable in exit\n");
1656     return invalid<ReportUnreachableInExit>(Context, /*Assert=*/true,
1657                                             CurRegion.getExit(), DbgLoc);
1658   }
1659 
1660   if (!OnlyRegion.empty() &&
1661       !CurRegion.getEntry()->getName().count(OnlyRegion)) {
1662     LLVM_DEBUG({
1663       dbgs() << "Region entry does not match -polly-region-only";
1664       dbgs() << "\n";
1665     });
1666     return false;
1667   }
1668 
1669   // SCoP cannot contain the entry block of the function, because we need
1670   // to insert alloca instruction there when translate scalar to array.
1671   if (!PollyAllowFullFunction &&
1672       CurRegion.getEntry() ==
1673           &(CurRegion.getEntry()->getParent()->getEntryBlock()))
1674     return invalid<ReportEntry>(Context, /*Assert=*/true, CurRegion.getEntry());
1675 
1676   if (!allBlocksValid(Context))
1677     return false;
1678 
1679   if (!isReducibleRegion(CurRegion, DbgLoc))
1680     return invalid<ReportIrreducibleRegion>(Context, /*Assert=*/true,
1681                                             &CurRegion, DbgLoc);
1682 
1683   LLVM_DEBUG(dbgs() << "OK\n");
1684   return true;
1685 }
1686 
markFunctionAsInvalid(Function * F)1687 void ScopDetection::markFunctionAsInvalid(Function *F) {
1688   F->addFnAttr(PollySkipFnAttr);
1689 }
1690 
isValidFunction(Function & F)1691 bool ScopDetection::isValidFunction(Function &F) {
1692   return !F.hasFnAttribute(PollySkipFnAttr);
1693 }
1694 
printLocations(Function & F)1695 void ScopDetection::printLocations(Function &F) {
1696   for (const Region *R : *this) {
1697     unsigned LineEntry, LineExit;
1698     std::string FileName;
1699 
1700     getDebugLocation(R, LineEntry, LineExit, FileName);
1701     DiagnosticScopFound Diagnostic(F, FileName, LineEntry, LineExit);
1702     F.getContext().diagnose(Diagnostic);
1703   }
1704 }
1705 
emitMissedRemarks(const Function & F)1706 void ScopDetection::emitMissedRemarks(const Function &F) {
1707   for (auto &DIt : DetectionContextMap) {
1708     auto &DC = DIt.getSecond();
1709     if (DC.Log.hasErrors())
1710       emitRejectionRemarks(DIt.getFirst(), DC.Log, ORE);
1711   }
1712 }
1713 
isReducibleRegion(Region & R,DebugLoc & DbgLoc) const1714 bool ScopDetection::isReducibleRegion(Region &R, DebugLoc &DbgLoc) const {
1715   /// Enum for coloring BBs in Region.
1716   ///
1717   /// WHITE - Unvisited BB in DFS walk.
1718   /// GREY - BBs which are currently on the DFS stack for processing.
1719   /// BLACK - Visited and completely processed BB.
1720   enum Color { WHITE, GREY, BLACK };
1721 
1722   BasicBlock *REntry = R.getEntry();
1723   BasicBlock *RExit = R.getExit();
1724   // Map to match the color of a BasicBlock during the DFS walk.
1725   DenseMap<const BasicBlock *, Color> BBColorMap;
1726   // Stack keeping track of current BB and index of next child to be processed.
1727   std::stack<std::pair<BasicBlock *, unsigned>> DFSStack;
1728 
1729   unsigned AdjacentBlockIndex = 0;
1730   BasicBlock *CurrBB, *SuccBB;
1731   CurrBB = REntry;
1732 
1733   // Initialize the map for all BB with WHITE color.
1734   for (auto *BB : R.blocks())
1735     BBColorMap[BB] = WHITE;
1736 
1737   // Process the entry block of the Region.
1738   BBColorMap[CurrBB] = GREY;
1739   DFSStack.push(std::make_pair(CurrBB, 0));
1740 
1741   while (!DFSStack.empty()) {
1742     // Get next BB on stack to be processed.
1743     CurrBB = DFSStack.top().first;
1744     AdjacentBlockIndex = DFSStack.top().second;
1745     DFSStack.pop();
1746 
1747     // Loop to iterate over the successors of current BB.
1748     const Instruction *TInst = CurrBB->getTerminator();
1749     unsigned NSucc = TInst->getNumSuccessors();
1750     for (unsigned I = AdjacentBlockIndex; I < NSucc;
1751          ++I, ++AdjacentBlockIndex) {
1752       SuccBB = TInst->getSuccessor(I);
1753 
1754       // Checks for region exit block and self-loops in BB.
1755       if (SuccBB == RExit || SuccBB == CurrBB)
1756         continue;
1757 
1758       // WHITE indicates an unvisited BB in DFS walk.
1759       if (BBColorMap[SuccBB] == WHITE) {
1760         // Push the current BB and the index of the next child to be visited.
1761         DFSStack.push(std::make_pair(CurrBB, I + 1));
1762         // Push the next BB to be processed.
1763         DFSStack.push(std::make_pair(SuccBB, 0));
1764         // First time the BB is being processed.
1765         BBColorMap[SuccBB] = GREY;
1766         break;
1767       } else if (BBColorMap[SuccBB] == GREY) {
1768         // GREY indicates a loop in the control flow.
1769         // If the destination dominates the source, it is a natural loop
1770         // else, an irreducible control flow in the region is detected.
1771         if (!DT.dominates(SuccBB, CurrBB)) {
1772           // Get debug info of instruction which causes irregular control flow.
1773           DbgLoc = TInst->getDebugLoc();
1774           return false;
1775         }
1776       }
1777     }
1778 
1779     // If all children of current BB have been processed,
1780     // then mark that BB as fully processed.
1781     if (AdjacentBlockIndex == NSucc)
1782       BBColorMap[CurrBB] = BLACK;
1783   }
1784 
1785   return true;
1786 }
1787 
updateLoopCountStatistic(ScopDetection::LoopStats Stats,bool OnlyProfitable)1788 static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
1789                                      bool OnlyProfitable) {
1790   if (!OnlyProfitable) {
1791     NumLoopsInScop += Stats.NumLoops;
1792     MaxNumLoopsInScop =
1793         std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops);
1794     if (Stats.MaxDepth == 0)
1795       NumScopsDepthZero++;
1796     else if (Stats.MaxDepth == 1)
1797       NumScopsDepthOne++;
1798     else if (Stats.MaxDepth == 2)
1799       NumScopsDepthTwo++;
1800     else if (Stats.MaxDepth == 3)
1801       NumScopsDepthThree++;
1802     else if (Stats.MaxDepth == 4)
1803       NumScopsDepthFour++;
1804     else if (Stats.MaxDepth == 5)
1805       NumScopsDepthFive++;
1806     else
1807       NumScopsDepthLarger++;
1808   } else {
1809     NumLoopsInProfScop += Stats.NumLoops;
1810     MaxNumLoopsInProfScop =
1811         std::max(MaxNumLoopsInProfScop.getValue(), (unsigned)Stats.NumLoops);
1812     if (Stats.MaxDepth == 0)
1813       NumProfScopsDepthZero++;
1814     else if (Stats.MaxDepth == 1)
1815       NumProfScopsDepthOne++;
1816     else if (Stats.MaxDepth == 2)
1817       NumProfScopsDepthTwo++;
1818     else if (Stats.MaxDepth == 3)
1819       NumProfScopsDepthThree++;
1820     else if (Stats.MaxDepth == 4)
1821       NumProfScopsDepthFour++;
1822     else if (Stats.MaxDepth == 5)
1823       NumProfScopsDepthFive++;
1824     else
1825       NumProfScopsDepthLarger++;
1826   }
1827 }
1828 
1829 ScopDetection::DetectionContext *
getDetectionContext(const Region * R) const1830 ScopDetection::getDetectionContext(const Region *R) const {
1831   auto DCMIt = DetectionContextMap.find(getBBPairForRegion(R));
1832   if (DCMIt == DetectionContextMap.end())
1833     return nullptr;
1834   return &DCMIt->second;
1835 }
1836 
lookupRejectionLog(const Region * R) const1837 const RejectLog *ScopDetection::lookupRejectionLog(const Region *R) const {
1838   const DetectionContext *DC = getDetectionContext(R);
1839   return DC ? &DC->Log : nullptr;
1840 }
1841 
verifyRegion(const Region & R) const1842 void ScopDetection::verifyRegion(const Region &R) const {
1843   assert(isMaxRegionInScop(R) && "Expect R is a valid region.");
1844 
1845   DetectionContext Context(const_cast<Region &>(R), AA, true /*verifying*/);
1846   isValidRegion(Context);
1847 }
1848 
verifyAnalysis() const1849 void ScopDetection::verifyAnalysis() const {
1850   if (!VerifyScops)
1851     return;
1852 
1853   for (const Region *R : ValidRegions)
1854     verifyRegion(*R);
1855 }
1856 
runOnFunction(Function & F)1857 bool ScopDetectionWrapperPass::runOnFunction(Function &F) {
1858   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1859   auto &RI = getAnalysis<RegionInfoPass>().getRegionInfo();
1860   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1861   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1862   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1863   auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1864   Result.reset(new ScopDetection(F, DT, SE, LI, RI, AA, ORE));
1865   return false;
1866 }
1867 
getAnalysisUsage(AnalysisUsage & AU) const1868 void ScopDetectionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1869   AU.addRequired<LoopInfoWrapperPass>();
1870   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
1871   AU.addRequired<DominatorTreeWrapperPass>();
1872   AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1873   // We also need AA and RegionInfo when we are verifying analysis.
1874   AU.addRequiredTransitive<AAResultsWrapperPass>();
1875   AU.addRequiredTransitive<RegionInfoPass>();
1876   AU.setPreservesAll();
1877 }
1878 
print(raw_ostream & OS,const Module *) const1879 void ScopDetectionWrapperPass::print(raw_ostream &OS, const Module *) const {
1880   for (const Region *R : Result->ValidRegions)
1881     OS << "Valid Region for Scop: " << R->getNameStr() << '\n';
1882 
1883   OS << "\n";
1884 }
1885 
ScopDetectionWrapperPass()1886 ScopDetectionWrapperPass::ScopDetectionWrapperPass() : FunctionPass(ID) {
1887   // Disable runtime alias checks if we ignore aliasing all together.
1888   if (IgnoreAliasing)
1889     PollyUseRuntimeAliasChecks = false;
1890 }
1891 
ScopAnalysis()1892 ScopAnalysis::ScopAnalysis() {
1893   // Disable runtime alias checks if we ignore aliasing all together.
1894   if (IgnoreAliasing)
1895     PollyUseRuntimeAliasChecks = false;
1896 }
1897 
releaseMemory()1898 void ScopDetectionWrapperPass::releaseMemory() { Result.reset(); }
1899 
1900 char ScopDetectionWrapperPass::ID;
1901 
1902 AnalysisKey ScopAnalysis::Key;
1903 
run(Function & F,FunctionAnalysisManager & FAM)1904 ScopDetection ScopAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
1905   auto &LI = FAM.getResult<LoopAnalysis>(F);
1906   auto &RI = FAM.getResult<RegionInfoAnalysis>(F);
1907   auto &AA = FAM.getResult<AAManager>(F);
1908   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
1909   auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1910   auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1911   return {F, DT, SE, LI, RI, AA, ORE};
1912 }
1913 
run(Function & F,FunctionAnalysisManager & FAM)1914 PreservedAnalyses ScopAnalysisPrinterPass::run(Function &F,
1915                                                FunctionAnalysisManager &FAM) {
1916   OS << "Detected Scops in Function " << F.getName() << "\n";
1917   auto &SD = FAM.getResult<ScopAnalysis>(F);
1918   for (const Region *R : SD.ValidRegions)
1919     OS << "Valid Region for Scop: " << R->getNameStr() << '\n';
1920 
1921   OS << "\n";
1922   return PreservedAnalyses::all();
1923 }
1924 
createScopDetectionWrapperPassPass()1925 Pass *polly::createScopDetectionWrapperPassPass() {
1926   return new ScopDetectionWrapperPass();
1927 }
1928 
1929 INITIALIZE_PASS_BEGIN(ScopDetectionWrapperPass, "polly-detect",
1930                       "Polly - Detect static control parts (SCoPs)", false,
1931                       false);
1932 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
1933 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
1934 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
1935 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
1936 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
1937 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
1938 INITIALIZE_PASS_END(ScopDetectionWrapperPass, "polly-detect",
1939                     "Polly - Detect static control parts (SCoPs)", false, false)
1940