1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Macroblock analysis
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include <stdlib.h>
15 #include <string.h>
16 #include <assert.h>
17 
18 #include "src/enc/vp8i_enc.h"
19 #include "src/enc/cost_enc.h"
20 #include "src/utils/utils.h"
21 
22 #define MAX_ITERS_K_MEANS  6
23 
24 //------------------------------------------------------------------------------
25 // Smooth the segment map by replacing isolated block by the majority of its
26 // neighbours.
27 
SmoothSegmentMap(VP8Encoder * const enc)28 static void SmoothSegmentMap(VP8Encoder* const enc) {
29   int n, x, y;
30   const int w = enc->mb_w_;
31   const int h = enc->mb_h_;
32   const int majority_cnt_3_x_3_grid = 5;
33   uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
34   assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
35 
36   if (tmp == NULL) return;
37   for (y = 1; y < h - 1; ++y) {
38     for (x = 1; x < w - 1; ++x) {
39       int cnt[NUM_MB_SEGMENTS] = { 0 };
40       const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
41       int majority_seg = mb->segment_;
42       // Check the 8 neighbouring segment values.
43       cnt[mb[-w - 1].segment_]++;  // top-left
44       cnt[mb[-w + 0].segment_]++;  // top
45       cnt[mb[-w + 1].segment_]++;  // top-right
46       cnt[mb[   - 1].segment_]++;  // left
47       cnt[mb[   + 1].segment_]++;  // right
48       cnt[mb[ w - 1].segment_]++;  // bottom-left
49       cnt[mb[ w + 0].segment_]++;  // bottom
50       cnt[mb[ w + 1].segment_]++;  // bottom-right
51       for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
52         if (cnt[n] >= majority_cnt_3_x_3_grid) {
53           majority_seg = n;
54           break;
55         }
56       }
57       tmp[x + y * w] = majority_seg;
58     }
59   }
60   for (y = 1; y < h - 1; ++y) {
61     for (x = 1; x < w - 1; ++x) {
62       VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
63       mb->segment_ = tmp[x + y * w];
64     }
65   }
66   WebPSafeFree(tmp);
67 }
68 
69 //------------------------------------------------------------------------------
70 // set segment susceptibility alpha_ / beta_
71 
clip(int v,int m,int M)72 static WEBP_INLINE int clip(int v, int m, int M) {
73   return (v < m) ? m : (v > M) ? M : v;
74 }
75 
SetSegmentAlphas(VP8Encoder * const enc,const int centers[NUM_MB_SEGMENTS],int mid)76 static void SetSegmentAlphas(VP8Encoder* const enc,
77                              const int centers[NUM_MB_SEGMENTS],
78                              int mid) {
79   const int nb = enc->segment_hdr_.num_segments_;
80   int min = centers[0], max = centers[0];
81   int n;
82 
83   if (nb > 1) {
84     for (n = 0; n < nb; ++n) {
85       if (min > centers[n]) min = centers[n];
86       if (max < centers[n]) max = centers[n];
87     }
88   }
89   if (max == min) max = min + 1;
90   assert(mid <= max && mid >= min);
91   for (n = 0; n < nb; ++n) {
92     const int alpha = 255 * (centers[n] - mid) / (max - min);
93     const int beta = 255 * (centers[n] - min) / (max - min);
94     enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
95     enc->dqm_[n].beta_ = clip(beta, 0, 255);
96   }
97 }
98 
99 //------------------------------------------------------------------------------
100 // Compute susceptibility based on DCT-coeff histograms:
101 // the higher, the "easier" the macroblock is to compress.
102 
103 #define MAX_ALPHA 255                // 8b of precision for susceptibilities.
104 #define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
105 #define DEFAULT_ALPHA (-1)
106 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
107 
FinalAlphaValue(int alpha)108 static int FinalAlphaValue(int alpha) {
109   alpha = MAX_ALPHA - alpha;
110   return clip(alpha, 0, MAX_ALPHA);
111 }
112 
GetAlpha(const VP8Histogram * const histo)113 static int GetAlpha(const VP8Histogram* const histo) {
114   // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
115   // values which happen to be mostly noise. This leaves the maximum precision
116   // for handling the useful small values which contribute most.
117   const int max_value = histo->max_value;
118   const int last_non_zero = histo->last_non_zero;
119   const int alpha =
120       (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
121   return alpha;
122 }
123 
InitHistogram(VP8Histogram * const histo)124 static void InitHistogram(VP8Histogram* const histo) {
125   histo->max_value = 0;
126   histo->last_non_zero = 1;
127 }
128 
129 //------------------------------------------------------------------------------
130 // Simplified k-Means, to assign Nb segments based on alpha-histogram
131 
AssignSegments(VP8Encoder * const enc,const int alphas[MAX_ALPHA+1])132 static void AssignSegments(VP8Encoder* const enc,
133                            const int alphas[MAX_ALPHA + 1]) {
134   // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an
135   // explicit check is needed to avoid spurious warning about 'n + 1' exceeding
136   // array bounds of 'centers' with some compilers (noticed with gcc-4.9).
137   const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ?
138                  enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS;
139   int centers[NUM_MB_SEGMENTS];
140   int weighted_average = 0;
141   int map[MAX_ALPHA + 1];
142   int a, n, k;
143   int min_a = 0, max_a = MAX_ALPHA, range_a;
144   // 'int' type is ok for histo, and won't overflow
145   int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
146 
147   assert(nb >= 1);
148   assert(nb <= NUM_MB_SEGMENTS);
149 
150   // bracket the input
151   for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
152   min_a = n;
153   for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
154   max_a = n;
155   range_a = max_a - min_a;
156 
157   // Spread initial centers evenly
158   for (k = 0, n = 1; k < nb; ++k, n += 2) {
159     assert(n < 2 * nb);
160     centers[k] = min_a + (n * range_a) / (2 * nb);
161   }
162 
163   for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
164     int total_weight;
165     int displaced;
166     // Reset stats
167     for (n = 0; n < nb; ++n) {
168       accum[n] = 0;
169       dist_accum[n] = 0;
170     }
171     // Assign nearest center for each 'a'
172     n = 0;    // track the nearest center for current 'a'
173     for (a = min_a; a <= max_a; ++a) {
174       if (alphas[a]) {
175         while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
176           n++;
177         }
178         map[a] = n;
179         // accumulate contribution into best centroid
180         dist_accum[n] += a * alphas[a];
181         accum[n] += alphas[a];
182       }
183     }
184     // All point are classified. Move the centroids to the
185     // center of their respective cloud.
186     displaced = 0;
187     weighted_average = 0;
188     total_weight = 0;
189     for (n = 0; n < nb; ++n) {
190       if (accum[n]) {
191         const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
192         displaced += abs(centers[n] - new_center);
193         centers[n] = new_center;
194         weighted_average += new_center * accum[n];
195         total_weight += accum[n];
196       }
197     }
198     weighted_average = (weighted_average + total_weight / 2) / total_weight;
199     if (displaced < 5) break;   // no need to keep on looping...
200   }
201 
202   // Map each original value to the closest centroid
203   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
204     VP8MBInfo* const mb = &enc->mb_info_[n];
205     const int alpha = mb->alpha_;
206     mb->segment_ = map[alpha];
207     mb->alpha_ = centers[map[alpha]];  // for the record.
208   }
209 
210   if (nb > 1) {
211     const int smooth = (enc->config_->preprocessing & 1);
212     if (smooth) SmoothSegmentMap(enc);
213   }
214 
215   SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
216 }
217 
218 //------------------------------------------------------------------------------
219 // Macroblock analysis: collect histogram for each mode, deduce the maximal
220 // susceptibility and set best modes for this macroblock.
221 // Segment assignment is done later.
222 
223 // Number of modes to inspect for alpha_ evaluation. We don't need to test all
224 // the possible modes during the analysis phase: we risk falling into a local
225 // optimum, or be subject to boundary effect
226 #define MAX_INTRA16_MODE 2
227 #define MAX_INTRA4_MODE  2
228 #define MAX_UV_MODE      2
229 
MBAnalyzeBestIntra16Mode(VP8EncIterator * const it)230 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
231   const int max_mode = MAX_INTRA16_MODE;
232   int mode;
233   int best_alpha = DEFAULT_ALPHA;
234   int best_mode = 0;
235 
236   VP8MakeLuma16Preds(it);
237   for (mode = 0; mode < max_mode; ++mode) {
238     VP8Histogram histo;
239     int alpha;
240 
241     InitHistogram(&histo);
242     VP8CollectHistogram(it->yuv_in_ + Y_OFF_ENC,
243                         it->yuv_p_ + VP8I16ModeOffsets[mode],
244                         0, 16, &histo);
245     alpha = GetAlpha(&histo);
246     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
247       best_alpha = alpha;
248       best_mode = mode;
249     }
250   }
251   VP8SetIntra16Mode(it, best_mode);
252   return best_alpha;
253 }
254 
FastMBAnalyze(VP8EncIterator * const it)255 static int FastMBAnalyze(VP8EncIterator* const it) {
256   // Empirical cut-off value, should be around 16 (~=block size). We use the
257   // [8-17] range and favor intra4 at high quality, intra16 for low quality.
258   const int q = (int)it->enc_->config_->quality;
259   const uint32_t kThreshold = 8 + (17 - 8) * q / 100;
260   int k;
261   uint32_t dc[16], m, m2;
262   for (k = 0; k < 16; k += 4) {
263     VP8Mean16x4(it->yuv_in_ + Y_OFF_ENC + k * BPS, &dc[k]);
264   }
265   for (m = 0, m2 = 0, k = 0; k < 16; ++k) {
266     m += dc[k];
267     m2 += dc[k] * dc[k];
268   }
269   if (kThreshold * m2 < m * m) {
270     VP8SetIntra16Mode(it, 0);   // DC16
271   } else {
272     const uint8_t modes[16] = { 0 };  // DC4
273     VP8SetIntra4Mode(it, modes);
274   }
275   return 0;
276 }
277 
MBAnalyzeBestUVMode(VP8EncIterator * const it)278 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
279   int best_alpha = DEFAULT_ALPHA;
280   int smallest_alpha = 0;
281   int best_mode = 0;
282   const int max_mode = MAX_UV_MODE;
283   int mode;
284 
285   VP8MakeChroma8Preds(it);
286   for (mode = 0; mode < max_mode; ++mode) {
287     VP8Histogram histo;
288     int alpha;
289     InitHistogram(&histo);
290     VP8CollectHistogram(it->yuv_in_ + U_OFF_ENC,
291                         it->yuv_p_ + VP8UVModeOffsets[mode],
292                         16, 16 + 4 + 4, &histo);
293     alpha = GetAlpha(&histo);
294     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
295       best_alpha = alpha;
296     }
297     // The best prediction mode tends to be the one with the smallest alpha.
298     if (mode == 0 || alpha < smallest_alpha) {
299       smallest_alpha = alpha;
300       best_mode = mode;
301     }
302   }
303   VP8SetIntraUVMode(it, best_mode);
304   return best_alpha;
305 }
306 
MBAnalyze(VP8EncIterator * const it,int alphas[MAX_ALPHA+1],int * const alpha,int * const uv_alpha)307 static void MBAnalyze(VP8EncIterator* const it,
308                       int alphas[MAX_ALPHA + 1],
309                       int* const alpha, int* const uv_alpha) {
310   const VP8Encoder* const enc = it->enc_;
311   int best_alpha, best_uv_alpha;
312 
313   VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
314   VP8SetSkip(it, 0);         // not skipped
315   VP8SetSegment(it, 0);      // default segment, spec-wise.
316 
317   if (enc->method_ <= 1) {
318     best_alpha = FastMBAnalyze(it);
319   } else {
320     best_alpha = MBAnalyzeBestIntra16Mode(it);
321   }
322   best_uv_alpha = MBAnalyzeBestUVMode(it);
323 
324   // Final susceptibility mix
325   best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
326   best_alpha = FinalAlphaValue(best_alpha);
327   alphas[best_alpha]++;
328   it->mb_->alpha_ = best_alpha;   // for later remapping.
329 
330   // Accumulate for later complexity analysis.
331   *alpha += best_alpha;   // mixed susceptibility (not just luma)
332   *uv_alpha += best_uv_alpha;
333 }
334 
DefaultMBInfo(VP8MBInfo * const mb)335 static void DefaultMBInfo(VP8MBInfo* const mb) {
336   mb->type_ = 1;     // I16x16
337   mb->uv_mode_ = 0;
338   mb->skip_ = 0;     // not skipped
339   mb->segment_ = 0;  // default segment
340   mb->alpha_ = 0;
341 }
342 
343 //------------------------------------------------------------------------------
344 // Main analysis loop:
345 // Collect all susceptibilities for each macroblock and record their
346 // distribution in alphas[]. Segments is assigned a-posteriori, based on
347 // this histogram.
348 // We also pick an intra16 prediction mode, which shouldn't be considered
349 // final except for fast-encode settings. We can also pick some intra4 modes
350 // and decide intra4/intra16, but that's usually almost always a bad choice at
351 // this stage.
352 
ResetAllMBInfo(VP8Encoder * const enc)353 static void ResetAllMBInfo(VP8Encoder* const enc) {
354   int n;
355   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
356     DefaultMBInfo(&enc->mb_info_[n]);
357   }
358   // Default susceptibilities.
359   enc->dqm_[0].alpha_ = 0;
360   enc->dqm_[0].beta_ = 0;
361   // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
362   enc->alpha_ = 0;
363   enc->uv_alpha_ = 0;
364   WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
365 }
366 
367 // struct used to collect job result
368 typedef struct {
369   WebPWorker worker;
370   int alphas[MAX_ALPHA + 1];
371   int alpha, uv_alpha;
372   VP8EncIterator it;
373   int delta_progress;
374 } SegmentJob;
375 
376 // main work call
DoSegmentsJob(void * arg1,void * arg2)377 static int DoSegmentsJob(void* arg1, void* arg2) {
378   SegmentJob* const job = (SegmentJob*)arg1;
379   VP8EncIterator* const it = (VP8EncIterator*)arg2;
380   int ok = 1;
381   if (!VP8IteratorIsDone(it)) {
382     uint8_t tmp[32 + WEBP_ALIGN_CST];
383     uint8_t* const scratch = (uint8_t*)WEBP_ALIGN(tmp);
384     do {
385       // Let's pretend we have perfect lossless reconstruction.
386       VP8IteratorImport(it, scratch);
387       MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
388       ok = VP8IteratorProgress(it, job->delta_progress);
389     } while (ok && VP8IteratorNext(it));
390   }
391   return ok;
392 }
393 
MergeJobs(const SegmentJob * const src,SegmentJob * const dst)394 static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
395   int i;
396   for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
397   dst->alpha += src->alpha;
398   dst->uv_alpha += src->uv_alpha;
399 }
400 
401 // initialize the job struct with some tasks to perform
InitSegmentJob(VP8Encoder * const enc,SegmentJob * const job,int start_row,int end_row)402 static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
403                            int start_row, int end_row) {
404   WebPGetWorkerInterface()->Init(&job->worker);
405   job->worker.data1 = job;
406   job->worker.data2 = &job->it;
407   job->worker.hook = DoSegmentsJob;
408   VP8IteratorInit(enc, &job->it);
409   VP8IteratorSetRow(&job->it, start_row);
410   VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
411   memset(job->alphas, 0, sizeof(job->alphas));
412   job->alpha = 0;
413   job->uv_alpha = 0;
414   // only one of both jobs can record the progress, since we don't
415   // expect the user's hook to be multi-thread safe
416   job->delta_progress = (start_row == 0) ? 20 : 0;
417 }
418 
419 // main entry point
VP8EncAnalyze(VP8Encoder * const enc)420 int VP8EncAnalyze(VP8Encoder* const enc) {
421   int ok = 1;
422   const int do_segments =
423       enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
424       (enc->segment_hdr_.num_segments_ > 1) ||
425       (enc->method_ <= 1);  // for method 0 - 1, we need preds_[] to be filled.
426   if (do_segments) {
427     const int last_row = enc->mb_h_;
428     // We give a little more than a half work to the main thread.
429     const int split_row = (9 * last_row + 15) >> 4;
430     const int total_mb = last_row * enc->mb_w_;
431 #ifdef WEBP_USE_THREAD
432     const int kMinSplitRow = 2;  // minimal rows needed for mt to be worth it
433     const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
434 #else
435     const int do_mt = 0;
436 #endif
437     const WebPWorkerInterface* const worker_interface =
438         WebPGetWorkerInterface();
439     SegmentJob main_job;
440     if (do_mt) {
441       SegmentJob side_job;
442       // Note the use of '&' instead of '&&' because we must call the functions
443       // no matter what.
444       InitSegmentJob(enc, &main_job, 0, split_row);
445       InitSegmentJob(enc, &side_job, split_row, last_row);
446       // we don't need to call Reset() on main_job.worker, since we're calling
447       // WebPWorkerExecute() on it
448       ok &= worker_interface->Reset(&side_job.worker);
449       // launch the two jobs in parallel
450       if (ok) {
451         worker_interface->Launch(&side_job.worker);
452         worker_interface->Execute(&main_job.worker);
453         ok &= worker_interface->Sync(&side_job.worker);
454         ok &= worker_interface->Sync(&main_job.worker);
455       }
456       worker_interface->End(&side_job.worker);
457       if (ok) MergeJobs(&side_job, &main_job);  // merge results together
458     } else {
459       // Even for single-thread case, we use the generic Worker tools.
460       InitSegmentJob(enc, &main_job, 0, last_row);
461       worker_interface->Execute(&main_job.worker);
462       ok &= worker_interface->Sync(&main_job.worker);
463     }
464     worker_interface->End(&main_job.worker);
465     if (ok) {
466       enc->alpha_ = main_job.alpha / total_mb;
467       enc->uv_alpha_ = main_job.uv_alpha / total_mb;
468       AssignSegments(enc, main_job.alphas);
469     }
470   } else {   // Use only one default segment.
471     ResetAllMBInfo(enc);
472   }
473   return ok;
474 }
475 
476