1 //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for OpenMP runtime code generation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/OpenMPClause.h"
21 #include "clang/AST/StmtOpenMP.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/BitmaskEnum.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/OpenMPKinds.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/CodeGen/ConstantInitBuilder.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Bitcode/BitcodeReader.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Format.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cassert>
40 #include <numeric>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 using namespace llvm::omp;
45 
46 namespace {
47 /// Base class for handling code generation inside OpenMP regions.
48 class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
49 public:
50   /// Kinds of OpenMP regions used in codegen.
51   enum CGOpenMPRegionKind {
52     /// Region with outlined function for standalone 'parallel'
53     /// directive.
54     ParallelOutlinedRegion,
55     /// Region with outlined function for standalone 'task' directive.
56     TaskOutlinedRegion,
57     /// Region for constructs that do not require function outlining,
58     /// like 'for', 'sections', 'atomic' etc. directives.
59     InlinedRegion,
60     /// Region with outlined function for standalone 'target' directive.
61     TargetRegion,
62   };
63 
CGOpenMPRegionInfo(const CapturedStmt & CS,const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)64   CGOpenMPRegionInfo(const CapturedStmt &CS,
65                      const CGOpenMPRegionKind RegionKind,
66                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
67                      bool HasCancel)
68       : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
69         CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
70 
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)71   CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
72                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
73                      bool HasCancel)
74       : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
75         Kind(Kind), HasCancel(HasCancel) {}
76 
77   /// Get a variable or parameter for storing global thread id
78   /// inside OpenMP construct.
79   virtual const VarDecl *getThreadIDVariable() const = 0;
80 
81   /// Emit the captured statement body.
82   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
83 
84   /// Get an LValue for the current ThreadID variable.
85   /// \return LValue for thread id variable. This LValue always has type int32*.
86   virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
87 
emitUntiedSwitch(CodeGenFunction &)88   virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
89 
getRegionKind() const90   CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
91 
getDirectiveKind() const92   OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
93 
hasCancel() const94   bool hasCancel() const { return HasCancel; }
95 
classof(const CGCapturedStmtInfo * Info)96   static bool classof(const CGCapturedStmtInfo *Info) {
97     return Info->getKind() == CR_OpenMP;
98   }
99 
100   ~CGOpenMPRegionInfo() override = default;
101 
102 protected:
103   CGOpenMPRegionKind RegionKind;
104   RegionCodeGenTy CodeGen;
105   OpenMPDirectiveKind Kind;
106   bool HasCancel;
107 };
108 
109 /// API for captured statement code generation in OpenMP constructs.
110 class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
111 public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,StringRef HelperName)112   CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
113                              const RegionCodeGenTy &CodeGen,
114                              OpenMPDirectiveKind Kind, bool HasCancel,
115                              StringRef HelperName)
116       : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
117                            HasCancel),
118         ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
119     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
120   }
121 
122   /// Get a variable or parameter for storing global thread id
123   /// inside OpenMP construct.
getThreadIDVariable() const124   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
125 
126   /// Get the name of the capture helper.
getHelperName() const127   StringRef getHelperName() const override { return HelperName; }
128 
classof(const CGCapturedStmtInfo * Info)129   static bool classof(const CGCapturedStmtInfo *Info) {
130     return CGOpenMPRegionInfo::classof(Info) &&
131            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
132                ParallelOutlinedRegion;
133   }
134 
135 private:
136   /// A variable or parameter storing global thread id for OpenMP
137   /// constructs.
138   const VarDecl *ThreadIDVar;
139   StringRef HelperName;
140 };
141 
142 /// API for captured statement code generation in OpenMP constructs.
143 class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
144 public:
145   class UntiedTaskActionTy final : public PrePostActionTy {
146     bool Untied;
147     const VarDecl *PartIDVar;
148     const RegionCodeGenTy UntiedCodeGen;
149     llvm::SwitchInst *UntiedSwitch = nullptr;
150 
151   public:
UntiedTaskActionTy(bool Tied,const VarDecl * PartIDVar,const RegionCodeGenTy & UntiedCodeGen)152     UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
153                        const RegionCodeGenTy &UntiedCodeGen)
154         : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
Enter(CodeGenFunction & CGF)155     void Enter(CodeGenFunction &CGF) override {
156       if (Untied) {
157         // Emit task switching point.
158         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
159             CGF.GetAddrOfLocalVar(PartIDVar),
160             PartIDVar->getType()->castAs<PointerType>());
161         llvm::Value *Res =
162             CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
163         llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
164         UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
165         CGF.EmitBlock(DoneBB);
166         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
167         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
168         UntiedSwitch->addCase(CGF.Builder.getInt32(0),
169                               CGF.Builder.GetInsertBlock());
170         emitUntiedSwitch(CGF);
171       }
172     }
emitUntiedSwitch(CodeGenFunction & CGF) const173     void emitUntiedSwitch(CodeGenFunction &CGF) const {
174       if (Untied) {
175         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
176             CGF.GetAddrOfLocalVar(PartIDVar),
177             PartIDVar->getType()->castAs<PointerType>());
178         CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
179                               PartIdLVal);
180         UntiedCodeGen(CGF);
181         CodeGenFunction::JumpDest CurPoint =
182             CGF.getJumpDestInCurrentScope(".untied.next.");
183         CGF.EmitBranch(CGF.ReturnBlock.getBlock());
184         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
185         UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
186                               CGF.Builder.GetInsertBlock());
187         CGF.EmitBranchThroughCleanup(CurPoint);
188         CGF.EmitBlock(CurPoint.getBlock());
189       }
190     }
getNumberOfParts() const191     unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
192   };
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,const UntiedTaskActionTy & Action)193   CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
194                                  const VarDecl *ThreadIDVar,
195                                  const RegionCodeGenTy &CodeGen,
196                                  OpenMPDirectiveKind Kind, bool HasCancel,
197                                  const UntiedTaskActionTy &Action)
198       : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
199         ThreadIDVar(ThreadIDVar), Action(Action) {
200     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
201   }
202 
203   /// Get a variable or parameter for storing global thread id
204   /// inside OpenMP construct.
getThreadIDVariable() const205   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
206 
207   /// Get an LValue for the current ThreadID variable.
208   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
209 
210   /// Get the name of the capture helper.
getHelperName() const211   StringRef getHelperName() const override { return ".omp_outlined."; }
212 
emitUntiedSwitch(CodeGenFunction & CGF)213   void emitUntiedSwitch(CodeGenFunction &CGF) override {
214     Action.emitUntiedSwitch(CGF);
215   }
216 
classof(const CGCapturedStmtInfo * Info)217   static bool classof(const CGCapturedStmtInfo *Info) {
218     return CGOpenMPRegionInfo::classof(Info) &&
219            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
220                TaskOutlinedRegion;
221   }
222 
223 private:
224   /// A variable or parameter storing global thread id for OpenMP
225   /// constructs.
226   const VarDecl *ThreadIDVar;
227   /// Action for emitting code for untied tasks.
228   const UntiedTaskActionTy &Action;
229 };
230 
231 /// API for inlined captured statement code generation in OpenMP
232 /// constructs.
233 class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
234 public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo * OldCSI,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)235   CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
236                             const RegionCodeGenTy &CodeGen,
237                             OpenMPDirectiveKind Kind, bool HasCancel)
238       : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
239         OldCSI(OldCSI),
240         OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
241 
242   // Retrieve the value of the context parameter.
getContextValue() const243   llvm::Value *getContextValue() const override {
244     if (OuterRegionInfo)
245       return OuterRegionInfo->getContextValue();
246     llvm_unreachable("No context value for inlined OpenMP region");
247   }
248 
setContextValue(llvm::Value * V)249   void setContextValue(llvm::Value *V) override {
250     if (OuterRegionInfo) {
251       OuterRegionInfo->setContextValue(V);
252       return;
253     }
254     llvm_unreachable("No context value for inlined OpenMP region");
255   }
256 
257   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const258   const FieldDecl *lookup(const VarDecl *VD) const override {
259     if (OuterRegionInfo)
260       return OuterRegionInfo->lookup(VD);
261     // If there is no outer outlined region,no need to lookup in a list of
262     // captured variables, we can use the original one.
263     return nullptr;
264   }
265 
getThisFieldDecl() const266   FieldDecl *getThisFieldDecl() const override {
267     if (OuterRegionInfo)
268       return OuterRegionInfo->getThisFieldDecl();
269     return nullptr;
270   }
271 
272   /// Get a variable or parameter for storing global thread id
273   /// inside OpenMP construct.
getThreadIDVariable() const274   const VarDecl *getThreadIDVariable() const override {
275     if (OuterRegionInfo)
276       return OuterRegionInfo->getThreadIDVariable();
277     return nullptr;
278   }
279 
280   /// Get an LValue for the current ThreadID variable.
getThreadIDVariableLValue(CodeGenFunction & CGF)281   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
282     if (OuterRegionInfo)
283       return OuterRegionInfo->getThreadIDVariableLValue(CGF);
284     llvm_unreachable("No LValue for inlined OpenMP construct");
285   }
286 
287   /// Get the name of the capture helper.
getHelperName() const288   StringRef getHelperName() const override {
289     if (auto *OuterRegionInfo = getOldCSI())
290       return OuterRegionInfo->getHelperName();
291     llvm_unreachable("No helper name for inlined OpenMP construct");
292   }
293 
emitUntiedSwitch(CodeGenFunction & CGF)294   void emitUntiedSwitch(CodeGenFunction &CGF) override {
295     if (OuterRegionInfo)
296       OuterRegionInfo->emitUntiedSwitch(CGF);
297   }
298 
getOldCSI() const299   CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
300 
classof(const CGCapturedStmtInfo * Info)301   static bool classof(const CGCapturedStmtInfo *Info) {
302     return CGOpenMPRegionInfo::classof(Info) &&
303            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
304   }
305 
306   ~CGOpenMPInlinedRegionInfo() override = default;
307 
308 private:
309   /// CodeGen info about outer OpenMP region.
310   CodeGenFunction::CGCapturedStmtInfo *OldCSI;
311   CGOpenMPRegionInfo *OuterRegionInfo;
312 };
313 
314 /// API for captured statement code generation in OpenMP target
315 /// constructs. For this captures, implicit parameters are used instead of the
316 /// captured fields. The name of the target region has to be unique in a given
317 /// application so it is provided by the client, because only the client has
318 /// the information to generate that.
319 class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
320 public:
CGOpenMPTargetRegionInfo(const CapturedStmt & CS,const RegionCodeGenTy & CodeGen,StringRef HelperName)321   CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
322                            const RegionCodeGenTy &CodeGen, StringRef HelperName)
323       : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
324                            /*HasCancel=*/false),
325         HelperName(HelperName) {}
326 
327   /// This is unused for target regions because each starts executing
328   /// with a single thread.
getThreadIDVariable() const329   const VarDecl *getThreadIDVariable() const override { return nullptr; }
330 
331   /// Get the name of the capture helper.
getHelperName() const332   StringRef getHelperName() const override { return HelperName; }
333 
classof(const CGCapturedStmtInfo * Info)334   static bool classof(const CGCapturedStmtInfo *Info) {
335     return CGOpenMPRegionInfo::classof(Info) &&
336            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
337   }
338 
339 private:
340   StringRef HelperName;
341 };
342 
EmptyCodeGen(CodeGenFunction &,PrePostActionTy &)343 static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
344   llvm_unreachable("No codegen for expressions");
345 }
346 /// API for generation of expressions captured in a innermost OpenMP
347 /// region.
348 class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
349 public:
CGOpenMPInnerExprInfo(CodeGenFunction & CGF,const CapturedStmt & CS)350   CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
351       : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
352                                   OMPD_unknown,
353                                   /*HasCancel=*/false),
354         PrivScope(CGF) {
355     // Make sure the globals captured in the provided statement are local by
356     // using the privatization logic. We assume the same variable is not
357     // captured more than once.
358     for (const auto &C : CS.captures()) {
359       if (!C.capturesVariable() && !C.capturesVariableByCopy())
360         continue;
361 
362       const VarDecl *VD = C.getCapturedVar();
363       if (VD->isLocalVarDeclOrParm())
364         continue;
365 
366       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
367                       /*RefersToEnclosingVariableOrCapture=*/false,
368                       VD->getType().getNonReferenceType(), VK_LValue,
369                       C.getLocation());
370       PrivScope.addPrivate(
371           VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(CGF); });
372     }
373     (void)PrivScope.Privatize();
374   }
375 
376   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const377   const FieldDecl *lookup(const VarDecl *VD) const override {
378     if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
379       return FD;
380     return nullptr;
381   }
382 
383   /// Emit the captured statement body.
EmitBody(CodeGenFunction & CGF,const Stmt * S)384   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
385     llvm_unreachable("No body for expressions");
386   }
387 
388   /// Get a variable or parameter for storing global thread id
389   /// inside OpenMP construct.
getThreadIDVariable() const390   const VarDecl *getThreadIDVariable() const override {
391     llvm_unreachable("No thread id for expressions");
392   }
393 
394   /// Get the name of the capture helper.
getHelperName() const395   StringRef getHelperName() const override {
396     llvm_unreachable("No helper name for expressions");
397   }
398 
classof(const CGCapturedStmtInfo * Info)399   static bool classof(const CGCapturedStmtInfo *Info) { return false; }
400 
401 private:
402   /// Private scope to capture global variables.
403   CodeGenFunction::OMPPrivateScope PrivScope;
404 };
405 
406 /// RAII for emitting code of OpenMP constructs.
407 class InlinedOpenMPRegionRAII {
408   CodeGenFunction &CGF;
409   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
410   FieldDecl *LambdaThisCaptureField = nullptr;
411   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
412 
413 public:
414   /// Constructs region for combined constructs.
415   /// \param CodeGen Code generation sequence for combined directives. Includes
416   /// a list of functions used for code generation of implicitly inlined
417   /// regions.
InlinedOpenMPRegionRAII(CodeGenFunction & CGF,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)418   InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
419                           OpenMPDirectiveKind Kind, bool HasCancel)
420       : CGF(CGF) {
421     // Start emission for the construct.
422     CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
423         CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
424     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
425     LambdaThisCaptureField = CGF.LambdaThisCaptureField;
426     CGF.LambdaThisCaptureField = nullptr;
427     BlockInfo = CGF.BlockInfo;
428     CGF.BlockInfo = nullptr;
429   }
430 
~InlinedOpenMPRegionRAII()431   ~InlinedOpenMPRegionRAII() {
432     // Restore original CapturedStmtInfo only if we're done with code emission.
433     auto *OldCSI =
434         cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
435     delete CGF.CapturedStmtInfo;
436     CGF.CapturedStmtInfo = OldCSI;
437     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
438     CGF.LambdaThisCaptureField = LambdaThisCaptureField;
439     CGF.BlockInfo = BlockInfo;
440   }
441 };
442 
443 /// Values for bit flags used in the ident_t to describe the fields.
444 /// All enumeric elements are named and described in accordance with the code
445 /// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
446 enum OpenMPLocationFlags : unsigned {
447   /// Use trampoline for internal microtask.
448   OMP_IDENT_IMD = 0x01,
449   /// Use c-style ident structure.
450   OMP_IDENT_KMPC = 0x02,
451   /// Atomic reduction option for kmpc_reduce.
452   OMP_ATOMIC_REDUCE = 0x10,
453   /// Explicit 'barrier' directive.
454   OMP_IDENT_BARRIER_EXPL = 0x20,
455   /// Implicit barrier in code.
456   OMP_IDENT_BARRIER_IMPL = 0x40,
457   /// Implicit barrier in 'for' directive.
458   OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
459   /// Implicit barrier in 'sections' directive.
460   OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
461   /// Implicit barrier in 'single' directive.
462   OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
463   /// Call of __kmp_for_static_init for static loop.
464   OMP_IDENT_WORK_LOOP = 0x200,
465   /// Call of __kmp_for_static_init for sections.
466   OMP_IDENT_WORK_SECTIONS = 0x400,
467   /// Call of __kmp_for_static_init for distribute.
468   OMP_IDENT_WORK_DISTRIBUTE = 0x800,
469   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
470 };
471 
472 namespace {
473 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
474 /// Values for bit flags for marking which requires clauses have been used.
475 enum OpenMPOffloadingRequiresDirFlags : int64_t {
476   /// flag undefined.
477   OMP_REQ_UNDEFINED               = 0x000,
478   /// no requires clause present.
479   OMP_REQ_NONE                    = 0x001,
480   /// reverse_offload clause.
481   OMP_REQ_REVERSE_OFFLOAD         = 0x002,
482   /// unified_address clause.
483   OMP_REQ_UNIFIED_ADDRESS         = 0x004,
484   /// unified_shared_memory clause.
485   OMP_REQ_UNIFIED_SHARED_MEMORY   = 0x008,
486   /// dynamic_allocators clause.
487   OMP_REQ_DYNAMIC_ALLOCATORS      = 0x010,
488   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
489 };
490 
491 enum OpenMPOffloadingReservedDeviceIDs {
492   /// Device ID if the device was not defined, runtime should get it
493   /// from environment variables in the spec.
494   OMP_DEVICEID_UNDEF = -1,
495 };
496 } // anonymous namespace
497 
498 /// Describes ident structure that describes a source location.
499 /// All descriptions are taken from
500 /// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
501 /// Original structure:
502 /// typedef struct ident {
503 ///    kmp_int32 reserved_1;   /**<  might be used in Fortran;
504 ///                                  see above  */
505 ///    kmp_int32 flags;        /**<  also f.flags; KMP_IDENT_xxx flags;
506 ///                                  KMP_IDENT_KMPC identifies this union
507 ///                                  member  */
508 ///    kmp_int32 reserved_2;   /**<  not really used in Fortran any more;
509 ///                                  see above */
510 ///#if USE_ITT_BUILD
511 ///                            /*  but currently used for storing
512 ///                                region-specific ITT */
513 ///                            /*  contextual information. */
514 ///#endif /* USE_ITT_BUILD */
515 ///    kmp_int32 reserved_3;   /**< source[4] in Fortran, do not use for
516 ///                                 C++  */
517 ///    char const *psource;    /**< String describing the source location.
518 ///                            The string is composed of semi-colon separated
519 //                             fields which describe the source file,
520 ///                            the function and a pair of line numbers that
521 ///                            delimit the construct.
522 ///                             */
523 /// } ident_t;
524 enum IdentFieldIndex {
525   /// might be used in Fortran
526   IdentField_Reserved_1,
527   /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
528   IdentField_Flags,
529   /// Not really used in Fortran any more
530   IdentField_Reserved_2,
531   /// Source[4] in Fortran, do not use for C++
532   IdentField_Reserved_3,
533   /// String describing the source location. The string is composed of
534   /// semi-colon separated fields which describe the source file, the function
535   /// and a pair of line numbers that delimit the construct.
536   IdentField_PSource
537 };
538 
539 /// Schedule types for 'omp for' loops (these enumerators are taken from
540 /// the enum sched_type in kmp.h).
541 enum OpenMPSchedType {
542   /// Lower bound for default (unordered) versions.
543   OMP_sch_lower = 32,
544   OMP_sch_static_chunked = 33,
545   OMP_sch_static = 34,
546   OMP_sch_dynamic_chunked = 35,
547   OMP_sch_guided_chunked = 36,
548   OMP_sch_runtime = 37,
549   OMP_sch_auto = 38,
550   /// static with chunk adjustment (e.g., simd)
551   OMP_sch_static_balanced_chunked = 45,
552   /// Lower bound for 'ordered' versions.
553   OMP_ord_lower = 64,
554   OMP_ord_static_chunked = 65,
555   OMP_ord_static = 66,
556   OMP_ord_dynamic_chunked = 67,
557   OMP_ord_guided_chunked = 68,
558   OMP_ord_runtime = 69,
559   OMP_ord_auto = 70,
560   OMP_sch_default = OMP_sch_static,
561   /// dist_schedule types
562   OMP_dist_sch_static_chunked = 91,
563   OMP_dist_sch_static = 92,
564   /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
565   /// Set if the monotonic schedule modifier was present.
566   OMP_sch_modifier_monotonic = (1 << 29),
567   /// Set if the nonmonotonic schedule modifier was present.
568   OMP_sch_modifier_nonmonotonic = (1 << 30),
569 };
570 
571 /// A basic class for pre|post-action for advanced codegen sequence for OpenMP
572 /// region.
573 class CleanupTy final : public EHScopeStack::Cleanup {
574   PrePostActionTy *Action;
575 
576 public:
CleanupTy(PrePostActionTy * Action)577   explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
Emit(CodeGenFunction & CGF,Flags)578   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
579     if (!CGF.HaveInsertPoint())
580       return;
581     Action->Exit(CGF);
582   }
583 };
584 
585 } // anonymous namespace
586 
operator ()(CodeGenFunction & CGF) const587 void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
588   CodeGenFunction::RunCleanupsScope Scope(CGF);
589   if (PrePostAction) {
590     CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
591     Callback(CodeGen, CGF, *PrePostAction);
592   } else {
593     PrePostActionTy Action;
594     Callback(CodeGen, CGF, Action);
595   }
596 }
597 
598 /// Check if the combiner is a call to UDR combiner and if it is so return the
599 /// UDR decl used for reduction.
600 static const OMPDeclareReductionDecl *
getReductionInit(const Expr * ReductionOp)601 getReductionInit(const Expr *ReductionOp) {
602   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
603     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
604       if (const auto *DRE =
605               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
606         if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
607           return DRD;
608   return nullptr;
609 }
610 
emitInitWithReductionInitializer(CodeGenFunction & CGF,const OMPDeclareReductionDecl * DRD,const Expr * InitOp,Address Private,Address Original,QualType Ty)611 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
612                                              const OMPDeclareReductionDecl *DRD,
613                                              const Expr *InitOp,
614                                              Address Private, Address Original,
615                                              QualType Ty) {
616   if (DRD->getInitializer()) {
617     std::pair<llvm::Function *, llvm::Function *> Reduction =
618         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
619     const auto *CE = cast<CallExpr>(InitOp);
620     const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
621     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
622     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
623     const auto *LHSDRE =
624         cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
625     const auto *RHSDRE =
626         cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
627     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
628     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
629                             [=]() { return Private; });
630     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
631                             [=]() { return Original; });
632     (void)PrivateScope.Privatize();
633     RValue Func = RValue::get(Reduction.second);
634     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
635     CGF.EmitIgnoredExpr(InitOp);
636   } else {
637     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
638     std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
639     auto *GV = new llvm::GlobalVariable(
640         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
641         llvm::GlobalValue::PrivateLinkage, Init, Name);
642     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
643     RValue InitRVal;
644     switch (CGF.getEvaluationKind(Ty)) {
645     case TEK_Scalar:
646       InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
647       break;
648     case TEK_Complex:
649       InitRVal =
650           RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
651       break;
652     case TEK_Aggregate:
653       InitRVal = RValue::getAggregate(LV.getAddress(CGF));
654       break;
655     }
656     OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
657     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
658     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
659                          /*IsInitializer=*/false);
660   }
661 }
662 
663 /// Emit initialization of arrays of complex types.
664 /// \param DestAddr Address of the array.
665 /// \param Type Type of array.
666 /// \param Init Initial expression of array.
667 /// \param SrcAddr Address of the original array.
EmitOMPAggregateInit(CodeGenFunction & CGF,Address DestAddr,QualType Type,bool EmitDeclareReductionInit,const Expr * Init,const OMPDeclareReductionDecl * DRD,Address SrcAddr=Address::invalid ())668 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
669                                  QualType Type, bool EmitDeclareReductionInit,
670                                  const Expr *Init,
671                                  const OMPDeclareReductionDecl *DRD,
672                                  Address SrcAddr = Address::invalid()) {
673   // Perform element-by-element initialization.
674   QualType ElementTy;
675 
676   // Drill down to the base element type on both arrays.
677   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
678   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
679   DestAddr =
680       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
681   if (DRD)
682     SrcAddr =
683         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
684 
685   llvm::Value *SrcBegin = nullptr;
686   if (DRD)
687     SrcBegin = SrcAddr.getPointer();
688   llvm::Value *DestBegin = DestAddr.getPointer();
689   // Cast from pointer to array type to pointer to single element.
690   llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
691   // The basic structure here is a while-do loop.
692   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
693   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
694   llvm::Value *IsEmpty =
695       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
696   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
697 
698   // Enter the loop body, making that address the current address.
699   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
700   CGF.EmitBlock(BodyBB);
701 
702   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
703 
704   llvm::PHINode *SrcElementPHI = nullptr;
705   Address SrcElementCurrent = Address::invalid();
706   if (DRD) {
707     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
708                                           "omp.arraycpy.srcElementPast");
709     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
710     SrcElementCurrent =
711         Address(SrcElementPHI,
712                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
713   }
714   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
715       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
716   DestElementPHI->addIncoming(DestBegin, EntryBB);
717   Address DestElementCurrent =
718       Address(DestElementPHI,
719               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
720 
721   // Emit copy.
722   {
723     CodeGenFunction::RunCleanupsScope InitScope(CGF);
724     if (EmitDeclareReductionInit) {
725       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
726                                        SrcElementCurrent, ElementTy);
727     } else
728       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
729                            /*IsInitializer=*/false);
730   }
731 
732   if (DRD) {
733     // Shift the address forward by one element.
734     llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
735         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
736     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
737   }
738 
739   // Shift the address forward by one element.
740   llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
741       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
742   // Check whether we've reached the end.
743   llvm::Value *Done =
744       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
745   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
746   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
747 
748   // Done.
749   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
750 }
751 
emitSharedLValue(CodeGenFunction & CGF,const Expr * E)752 LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
753   return CGF.EmitOMPSharedLValue(E);
754 }
755 
emitSharedLValueUB(CodeGenFunction & CGF,const Expr * E)756 LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
757                                             const Expr *E) {
758   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
759     return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
760   return LValue();
761 }
762 
emitAggregateInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,const OMPDeclareReductionDecl * DRD)763 void ReductionCodeGen::emitAggregateInitialization(
764     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
765     const OMPDeclareReductionDecl *DRD) {
766   // Emit VarDecl with copy init for arrays.
767   // Get the address of the original variable captured in current
768   // captured region.
769   const auto *PrivateVD =
770       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
771   bool EmitDeclareReductionInit =
772       DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
773   EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
774                        EmitDeclareReductionInit,
775                        EmitDeclareReductionInit ? ClausesData[N].ReductionOp
776                                                 : PrivateVD->getInit(),
777                        DRD, SharedLVal.getAddress(CGF));
778 }
779 
ReductionCodeGen(ArrayRef<const Expr * > Shareds,ArrayRef<const Expr * > Origs,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > ReductionOps)780 ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
781                                    ArrayRef<const Expr *> Origs,
782                                    ArrayRef<const Expr *> Privates,
783                                    ArrayRef<const Expr *> ReductionOps) {
784   ClausesData.reserve(Shareds.size());
785   SharedAddresses.reserve(Shareds.size());
786   Sizes.reserve(Shareds.size());
787   BaseDecls.reserve(Shareds.size());
788   const auto *IOrig = Origs.begin();
789   const auto *IPriv = Privates.begin();
790   const auto *IRed = ReductionOps.begin();
791   for (const Expr *Ref : Shareds) {
792     ClausesData.emplace_back(Ref, *IOrig, *IPriv, *IRed);
793     std::advance(IOrig, 1);
794     std::advance(IPriv, 1);
795     std::advance(IRed, 1);
796   }
797 }
798 
emitSharedOrigLValue(CodeGenFunction & CGF,unsigned N)799 void ReductionCodeGen::emitSharedOrigLValue(CodeGenFunction &CGF, unsigned N) {
800   assert(SharedAddresses.size() == N && OrigAddresses.size() == N &&
801          "Number of generated lvalues must be exactly N.");
802   LValue First = emitSharedLValue(CGF, ClausesData[N].Shared);
803   LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Shared);
804   SharedAddresses.emplace_back(First, Second);
805   if (ClausesData[N].Shared == ClausesData[N].Ref) {
806     OrigAddresses.emplace_back(First, Second);
807   } else {
808     LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
809     LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
810     OrigAddresses.emplace_back(First, Second);
811   }
812 }
813 
emitAggregateType(CodeGenFunction & CGF,unsigned N)814 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
815   const auto *PrivateVD =
816       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
817   QualType PrivateType = PrivateVD->getType();
818   bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
819   if (!PrivateType->isVariablyModifiedType()) {
820     Sizes.emplace_back(
821         CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType()),
822         nullptr);
823     return;
824   }
825   llvm::Value *Size;
826   llvm::Value *SizeInChars;
827   auto *ElemType =
828       cast<llvm::PointerType>(OrigAddresses[N].first.getPointer(CGF)->getType())
829           ->getElementType();
830   auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
831   if (AsArraySection) {
832     Size = CGF.Builder.CreatePtrDiff(OrigAddresses[N].second.getPointer(CGF),
833                                      OrigAddresses[N].first.getPointer(CGF));
834     Size = CGF.Builder.CreateNUWAdd(
835         Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
836     SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
837   } else {
838     SizeInChars =
839         CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType());
840     Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
841   }
842   Sizes.emplace_back(SizeInChars, Size);
843   CodeGenFunction::OpaqueValueMapping OpaqueMap(
844       CGF,
845       cast<OpaqueValueExpr>(
846           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
847       RValue::get(Size));
848   CGF.EmitVariablyModifiedType(PrivateType);
849 }
850 
emitAggregateType(CodeGenFunction & CGF,unsigned N,llvm::Value * Size)851 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
852                                          llvm::Value *Size) {
853   const auto *PrivateVD =
854       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
855   QualType PrivateType = PrivateVD->getType();
856   if (!PrivateType->isVariablyModifiedType()) {
857     assert(!Size && !Sizes[N].second &&
858            "Size should be nullptr for non-variably modified reduction "
859            "items.");
860     return;
861   }
862   CodeGenFunction::OpaqueValueMapping OpaqueMap(
863       CGF,
864       cast<OpaqueValueExpr>(
865           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
866       RValue::get(Size));
867   CGF.EmitVariablyModifiedType(PrivateType);
868 }
869 
emitInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,llvm::function_ref<bool (CodeGenFunction &)> DefaultInit)870 void ReductionCodeGen::emitInitialization(
871     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
872     llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
873   assert(SharedAddresses.size() > N && "No variable was generated");
874   const auto *PrivateVD =
875       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
876   const OMPDeclareReductionDecl *DRD =
877       getReductionInit(ClausesData[N].ReductionOp);
878   QualType PrivateType = PrivateVD->getType();
879   PrivateAddr = CGF.Builder.CreateElementBitCast(
880       PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
881   QualType SharedType = SharedAddresses[N].first.getType();
882   SharedLVal = CGF.MakeAddrLValue(
883       CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(CGF),
884                                        CGF.ConvertTypeForMem(SharedType)),
885       SharedType, SharedAddresses[N].first.getBaseInfo(),
886       CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
887   if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
888     if (DRD && DRD->getInitializer())
889       (void)DefaultInit(CGF);
890     emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
891   } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
892     (void)DefaultInit(CGF);
893     emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
894                                      PrivateAddr, SharedLVal.getAddress(CGF),
895                                      SharedLVal.getType());
896   } else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
897              !CGF.isTrivialInitializer(PrivateVD->getInit())) {
898     CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
899                          PrivateVD->getType().getQualifiers(),
900                          /*IsInitializer=*/false);
901   }
902 }
903 
needCleanups(unsigned N)904 bool ReductionCodeGen::needCleanups(unsigned N) {
905   const auto *PrivateVD =
906       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
907   QualType PrivateType = PrivateVD->getType();
908   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
909   return DTorKind != QualType::DK_none;
910 }
911 
emitCleanups(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)912 void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
913                                     Address PrivateAddr) {
914   const auto *PrivateVD =
915       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
916   QualType PrivateType = PrivateVD->getType();
917   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
918   if (needCleanups(N)) {
919     PrivateAddr = CGF.Builder.CreateElementBitCast(
920         PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
921     CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
922   }
923 }
924 
loadToBegin(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,LValue BaseLV)925 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
926                           LValue BaseLV) {
927   BaseTy = BaseTy.getNonReferenceType();
928   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
929          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
930     if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
931       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(CGF), PtrTy);
932     } else {
933       LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(CGF), BaseTy);
934       BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
935     }
936     BaseTy = BaseTy->getPointeeType();
937   }
938   return CGF.MakeAddrLValue(
939       CGF.Builder.CreateElementBitCast(BaseLV.getAddress(CGF),
940                                        CGF.ConvertTypeForMem(ElTy)),
941       BaseLV.getType(), BaseLV.getBaseInfo(),
942       CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
943 }
944 
castToBase(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,llvm::Type * BaseLVType,CharUnits BaseLVAlignment,llvm::Value * Addr)945 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
946                           llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
947                           llvm::Value *Addr) {
948   Address Tmp = Address::invalid();
949   Address TopTmp = Address::invalid();
950   Address MostTopTmp = Address::invalid();
951   BaseTy = BaseTy.getNonReferenceType();
952   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
953          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
954     Tmp = CGF.CreateMemTemp(BaseTy);
955     if (TopTmp.isValid())
956       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
957     else
958       MostTopTmp = Tmp;
959     TopTmp = Tmp;
960     BaseTy = BaseTy->getPointeeType();
961   }
962   llvm::Type *Ty = BaseLVType;
963   if (Tmp.isValid())
964     Ty = Tmp.getElementType();
965   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
966   if (Tmp.isValid()) {
967     CGF.Builder.CreateStore(Addr, Tmp);
968     return MostTopTmp;
969   }
970   return Address(Addr, BaseLVAlignment);
971 }
972 
getBaseDecl(const Expr * Ref,const DeclRefExpr * & DE)973 static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
974   const VarDecl *OrigVD = nullptr;
975   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
976     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
977     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
978       Base = TempOASE->getBase()->IgnoreParenImpCasts();
979     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
980       Base = TempASE->getBase()->IgnoreParenImpCasts();
981     DE = cast<DeclRefExpr>(Base);
982     OrigVD = cast<VarDecl>(DE->getDecl());
983   } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
984     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
985     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
986       Base = TempASE->getBase()->IgnoreParenImpCasts();
987     DE = cast<DeclRefExpr>(Base);
988     OrigVD = cast<VarDecl>(DE->getDecl());
989   }
990   return OrigVD;
991 }
992 
adjustPrivateAddress(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)993 Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
994                                                Address PrivateAddr) {
995   const DeclRefExpr *DE;
996   if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
997     BaseDecls.emplace_back(OrigVD);
998     LValue OriginalBaseLValue = CGF.EmitLValue(DE);
999     LValue BaseLValue =
1000         loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
1001                     OriginalBaseLValue);
1002     llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
1003         BaseLValue.getPointer(CGF), SharedAddresses[N].first.getPointer(CGF));
1004     llvm::Value *PrivatePointer =
1005         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1006             PrivateAddr.getPointer(),
1007             SharedAddresses[N].first.getAddress(CGF).getType());
1008     llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
1009     return castToBase(CGF, OrigVD->getType(),
1010                       SharedAddresses[N].first.getType(),
1011                       OriginalBaseLValue.getAddress(CGF).getType(),
1012                       OriginalBaseLValue.getAlignment(), Ptr);
1013   }
1014   BaseDecls.emplace_back(
1015       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
1016   return PrivateAddr;
1017 }
1018 
usesReductionInitializer(unsigned N) const1019 bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
1020   const OMPDeclareReductionDecl *DRD =
1021       getReductionInit(ClausesData[N].ReductionOp);
1022   return DRD && DRD->getInitializer();
1023 }
1024 
getThreadIDVariableLValue(CodeGenFunction & CGF)1025 LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
1026   return CGF.EmitLoadOfPointerLValue(
1027       CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1028       getThreadIDVariable()->getType()->castAs<PointerType>());
1029 }
1030 
EmitBody(CodeGenFunction & CGF,const Stmt *)1031 void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
1032   if (!CGF.HaveInsertPoint())
1033     return;
1034   // 1.2.2 OpenMP Language Terminology
1035   // Structured block - An executable statement with a single entry at the
1036   // top and a single exit at the bottom.
1037   // The point of exit cannot be a branch out of the structured block.
1038   // longjmp() and throw() must not violate the entry/exit criteria.
1039   CGF.EHStack.pushTerminate();
1040   CodeGen(CGF);
1041   CGF.EHStack.popTerminate();
1042 }
1043 
getThreadIDVariableLValue(CodeGenFunction & CGF)1044 LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
1045     CodeGenFunction &CGF) {
1046   return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1047                             getThreadIDVariable()->getType(),
1048                             AlignmentSource::Decl);
1049 }
1050 
addFieldToRecordDecl(ASTContext & C,DeclContext * DC,QualType FieldTy)1051 static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
1052                                        QualType FieldTy) {
1053   auto *Field = FieldDecl::Create(
1054       C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
1055       C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
1056       /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
1057   Field->setAccess(AS_public);
1058   DC->addDecl(Field);
1059   return Field;
1060 }
1061 
CGOpenMPRuntime(CodeGenModule & CGM,StringRef FirstSeparator,StringRef Separator)1062 CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
1063                                  StringRef Separator)
1064     : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
1065       OMPBuilder(CGM.getModule()), OffloadEntriesInfoManager(CGM) {
1066   KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
1067 
1068   // Initialize Types used in OpenMPIRBuilder from OMPKinds.def
1069   OMPBuilder.initialize();
1070   loadOffloadInfoMetadata();
1071 }
1072 
clear()1073 void CGOpenMPRuntime::clear() {
1074   InternalVars.clear();
1075   // Clean non-target variable declarations possibly used only in debug info.
1076   for (const auto &Data : EmittedNonTargetVariables) {
1077     if (!Data.getValue().pointsToAliveValue())
1078       continue;
1079     auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
1080     if (!GV)
1081       continue;
1082     if (!GV->isDeclaration() || GV->getNumUses() > 0)
1083       continue;
1084     GV->eraseFromParent();
1085   }
1086 }
1087 
getName(ArrayRef<StringRef> Parts) const1088 std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
1089   SmallString<128> Buffer;
1090   llvm::raw_svector_ostream OS(Buffer);
1091   StringRef Sep = FirstSeparator;
1092   for (StringRef Part : Parts) {
1093     OS << Sep << Part;
1094     Sep = Separator;
1095   }
1096   return std::string(OS.str());
1097 }
1098 
1099 static llvm::Function *
emitCombinerOrInitializer(CodeGenModule & CGM,QualType Ty,const Expr * CombinerInitializer,const VarDecl * In,const VarDecl * Out,bool IsCombiner)1100 emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
1101                           const Expr *CombinerInitializer, const VarDecl *In,
1102                           const VarDecl *Out, bool IsCombiner) {
1103   // void .omp_combiner.(Ty *in, Ty *out);
1104   ASTContext &C = CGM.getContext();
1105   QualType PtrTy = C.getPointerType(Ty).withRestrict();
1106   FunctionArgList Args;
1107   ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
1108                                /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1109   ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
1110                               /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1111   Args.push_back(&OmpOutParm);
1112   Args.push_back(&OmpInParm);
1113   const CGFunctionInfo &FnInfo =
1114       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1115   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
1116   std::string Name = CGM.getOpenMPRuntime().getName(
1117       {IsCombiner ? "omp_combiner" : "omp_initializer", ""});
1118   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
1119                                     Name, &CGM.getModule());
1120   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
1121   if (CGM.getLangOpts().Optimize) {
1122     Fn->removeFnAttr(llvm::Attribute::NoInline);
1123     Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
1124     Fn->addFnAttr(llvm::Attribute::AlwaysInline);
1125   }
1126   CodeGenFunction CGF(CGM);
1127   // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
1128   // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
1129   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
1130                     Out->getLocation());
1131   CodeGenFunction::OMPPrivateScope Scope(CGF);
1132   Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
1133   Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
1134     return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
1135         .getAddress(CGF);
1136   });
1137   Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
1138   Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
1139     return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
1140         .getAddress(CGF);
1141   });
1142   (void)Scope.Privatize();
1143   if (!IsCombiner && Out->hasInit() &&
1144       !CGF.isTrivialInitializer(Out->getInit())) {
1145     CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
1146                          Out->getType().getQualifiers(),
1147                          /*IsInitializer=*/true);
1148   }
1149   if (CombinerInitializer)
1150     CGF.EmitIgnoredExpr(CombinerInitializer);
1151   Scope.ForceCleanup();
1152   CGF.FinishFunction();
1153   return Fn;
1154 }
1155 
emitUserDefinedReduction(CodeGenFunction * CGF,const OMPDeclareReductionDecl * D)1156 void CGOpenMPRuntime::emitUserDefinedReduction(
1157     CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
1158   if (UDRMap.count(D) > 0)
1159     return;
1160   llvm::Function *Combiner = emitCombinerOrInitializer(
1161       CGM, D->getType(), D->getCombiner(),
1162       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
1163       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
1164       /*IsCombiner=*/true);
1165   llvm::Function *Initializer = nullptr;
1166   if (const Expr *Init = D->getInitializer()) {
1167     Initializer = emitCombinerOrInitializer(
1168         CGM, D->getType(),
1169         D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
1170                                                                      : nullptr,
1171         cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
1172         cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
1173         /*IsCombiner=*/false);
1174   }
1175   UDRMap.try_emplace(D, Combiner, Initializer);
1176   if (CGF) {
1177     auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
1178     Decls.second.push_back(D);
1179   }
1180 }
1181 
1182 std::pair<llvm::Function *, llvm::Function *>
getUserDefinedReduction(const OMPDeclareReductionDecl * D)1183 CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
1184   auto I = UDRMap.find(D);
1185   if (I != UDRMap.end())
1186     return I->second;
1187   emitUserDefinedReduction(/*CGF=*/nullptr, D);
1188   return UDRMap.lookup(D);
1189 }
1190 
1191 namespace {
1192 // Temporary RAII solution to perform a push/pop stack event on the OpenMP IR
1193 // Builder if one is present.
1194 struct PushAndPopStackRAII {
PushAndPopStackRAII__anonbe229beb0811::PushAndPopStackRAII1195   PushAndPopStackRAII(llvm::OpenMPIRBuilder *OMPBuilder, CodeGenFunction &CGF,
1196                       bool HasCancel)
1197       : OMPBuilder(OMPBuilder) {
1198     if (!OMPBuilder)
1199       return;
1200 
1201     // The following callback is the crucial part of clangs cleanup process.
1202     //
1203     // NOTE:
1204     // Once the OpenMPIRBuilder is used to create parallel regions (and
1205     // similar), the cancellation destination (Dest below) is determined via
1206     // IP. That means if we have variables to finalize we split the block at IP,
1207     // use the new block (=BB) as destination to build a JumpDest (via
1208     // getJumpDestInCurrentScope(BB)) which then is fed to
1209     // EmitBranchThroughCleanup. Furthermore, there will not be the need
1210     // to push & pop an FinalizationInfo object.
1211     // The FiniCB will still be needed but at the point where the
1212     // OpenMPIRBuilder is asked to construct a parallel (or similar) construct.
1213     auto FiniCB = [&CGF](llvm::OpenMPIRBuilder::InsertPointTy IP) {
1214       assert(IP.getBlock()->end() == IP.getPoint() &&
1215              "Clang CG should cause non-terminated block!");
1216       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1217       CGF.Builder.restoreIP(IP);
1218       CodeGenFunction::JumpDest Dest =
1219           CGF.getOMPCancelDestination(OMPD_parallel);
1220       CGF.EmitBranchThroughCleanup(Dest);
1221     };
1222 
1223     // TODO: Remove this once we emit parallel regions through the
1224     //       OpenMPIRBuilder as it can do this setup internally.
1225     llvm::OpenMPIRBuilder::FinalizationInfo FI(
1226         {FiniCB, OMPD_parallel, HasCancel});
1227     OMPBuilder->pushFinalizationCB(std::move(FI));
1228   }
~PushAndPopStackRAII__anonbe229beb0811::PushAndPopStackRAII1229   ~PushAndPopStackRAII() {
1230     if (OMPBuilder)
1231       OMPBuilder->popFinalizationCB();
1232   }
1233   llvm::OpenMPIRBuilder *OMPBuilder;
1234 };
1235 } // namespace
1236 
emitParallelOrTeamsOutlinedFunction(CodeGenModule & CGM,const OMPExecutableDirective & D,const CapturedStmt * CS,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const StringRef OutlinedHelperName,const RegionCodeGenTy & CodeGen)1237 static llvm::Function *emitParallelOrTeamsOutlinedFunction(
1238     CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
1239     const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
1240     const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
1241   assert(ThreadIDVar->getType()->isPointerType() &&
1242          "thread id variable must be of type kmp_int32 *");
1243   CodeGenFunction CGF(CGM, true);
1244   bool HasCancel = false;
1245   if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
1246     HasCancel = OPD->hasCancel();
1247   else if (const auto *OPD = dyn_cast<OMPTargetParallelDirective>(&D))
1248     HasCancel = OPD->hasCancel();
1249   else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
1250     HasCancel = OPSD->hasCancel();
1251   else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
1252     HasCancel = OPFD->hasCancel();
1253   else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
1254     HasCancel = OPFD->hasCancel();
1255   else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
1256     HasCancel = OPFD->hasCancel();
1257   else if (const auto *OPFD =
1258                dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
1259     HasCancel = OPFD->hasCancel();
1260   else if (const auto *OPFD =
1261                dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
1262     HasCancel = OPFD->hasCancel();
1263 
1264   // TODO: Temporarily inform the OpenMPIRBuilder, if any, about the new
1265   //       parallel region to make cancellation barriers work properly.
1266   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1267   PushAndPopStackRAII PSR(&OMPBuilder, CGF, HasCancel);
1268   CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
1269                                     HasCancel, OutlinedHelperName);
1270   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1271   return CGF.GenerateOpenMPCapturedStmtFunction(*CS, D.getBeginLoc());
1272 }
1273 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1274 llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
1275     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1276     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1277   const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
1278   return emitParallelOrTeamsOutlinedFunction(
1279       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1280 }
1281 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1282 llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
1283     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1284     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1285   const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
1286   return emitParallelOrTeamsOutlinedFunction(
1287       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1288 }
1289 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)1290 llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
1291     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1292     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
1293     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1294     bool Tied, unsigned &NumberOfParts) {
1295   auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
1296                                               PrePostActionTy &) {
1297     llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
1298     llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
1299     llvm::Value *TaskArgs[] = {
1300         UpLoc, ThreadID,
1301         CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
1302                                     TaskTVar->getType()->castAs<PointerType>())
1303             .getPointer(CGF)};
1304     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1305                             CGM.getModule(), OMPRTL___kmpc_omp_task),
1306                         TaskArgs);
1307   };
1308   CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
1309                                                             UntiedCodeGen);
1310   CodeGen.setAction(Action);
1311   assert(!ThreadIDVar->getType()->isPointerType() &&
1312          "thread id variable must be of type kmp_int32 for tasks");
1313   const OpenMPDirectiveKind Region =
1314       isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
1315                                                       : OMPD_task;
1316   const CapturedStmt *CS = D.getCapturedStmt(Region);
1317   bool HasCancel = false;
1318   if (const auto *TD = dyn_cast<OMPTaskDirective>(&D))
1319     HasCancel = TD->hasCancel();
1320   else if (const auto *TD = dyn_cast<OMPTaskLoopDirective>(&D))
1321     HasCancel = TD->hasCancel();
1322   else if (const auto *TD = dyn_cast<OMPMasterTaskLoopDirective>(&D))
1323     HasCancel = TD->hasCancel();
1324   else if (const auto *TD = dyn_cast<OMPParallelMasterTaskLoopDirective>(&D))
1325     HasCancel = TD->hasCancel();
1326 
1327   CodeGenFunction CGF(CGM, true);
1328   CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
1329                                         InnermostKind, HasCancel, Action);
1330   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1331   llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
1332   if (!Tied)
1333     NumberOfParts = Action.getNumberOfParts();
1334   return Res;
1335 }
1336 
buildStructValue(ConstantStructBuilder & Fields,CodeGenModule & CGM,const RecordDecl * RD,const CGRecordLayout & RL,ArrayRef<llvm::Constant * > Data)1337 static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
1338                              const RecordDecl *RD, const CGRecordLayout &RL,
1339                              ArrayRef<llvm::Constant *> Data) {
1340   llvm::StructType *StructTy = RL.getLLVMType();
1341   unsigned PrevIdx = 0;
1342   ConstantInitBuilder CIBuilder(CGM);
1343   auto DI = Data.begin();
1344   for (const FieldDecl *FD : RD->fields()) {
1345     unsigned Idx = RL.getLLVMFieldNo(FD);
1346     // Fill the alignment.
1347     for (unsigned I = PrevIdx; I < Idx; ++I)
1348       Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
1349     PrevIdx = Idx + 1;
1350     Fields.add(*DI);
1351     ++DI;
1352   }
1353 }
1354 
1355 template <class... As>
1356 static llvm::GlobalVariable *
createGlobalStruct(CodeGenModule & CGM,QualType Ty,bool IsConstant,ArrayRef<llvm::Constant * > Data,const Twine & Name,As &&...Args)1357 createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
1358                    ArrayRef<llvm::Constant *> Data, const Twine &Name,
1359                    As &&... Args) {
1360   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1361   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1362   ConstantInitBuilder CIBuilder(CGM);
1363   ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
1364   buildStructValue(Fields, CGM, RD, RL, Data);
1365   return Fields.finishAndCreateGlobal(
1366       Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
1367       std::forward<As>(Args)...);
1368 }
1369 
1370 template <typename T>
1371 static void
createConstantGlobalStructAndAddToParent(CodeGenModule & CGM,QualType Ty,ArrayRef<llvm::Constant * > Data,T & Parent)1372 createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
1373                                          ArrayRef<llvm::Constant *> Data,
1374                                          T &Parent) {
1375   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1376   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1377   ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
1378   buildStructValue(Fields, CGM, RD, RL, Data);
1379   Fields.finishAndAddTo(Parent);
1380 }
1381 
setLocThreadIdInsertPt(CodeGenFunction & CGF,bool AtCurrentPoint)1382 void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
1383                                              bool AtCurrentPoint) {
1384   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1385   assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
1386 
1387   llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
1388   if (AtCurrentPoint) {
1389     Elem.second.ServiceInsertPt = new llvm::BitCastInst(
1390         Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
1391   } else {
1392     Elem.second.ServiceInsertPt =
1393         new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
1394     Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
1395   }
1396 }
1397 
clearLocThreadIdInsertPt(CodeGenFunction & CGF)1398 void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
1399   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1400   if (Elem.second.ServiceInsertPt) {
1401     llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
1402     Elem.second.ServiceInsertPt = nullptr;
1403     Ptr->eraseFromParent();
1404   }
1405 }
1406 
getIdentStringFromSourceLocation(CodeGenFunction & CGF,SourceLocation Loc,SmallString<128> & Buffer)1407 static StringRef getIdentStringFromSourceLocation(CodeGenFunction &CGF,
1408                                                   SourceLocation Loc,
1409                                                   SmallString<128> &Buffer) {
1410   llvm::raw_svector_ostream OS(Buffer);
1411   // Build debug location
1412   PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1413   OS << ";" << PLoc.getFilename() << ";";
1414   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1415     OS << FD->getQualifiedNameAsString();
1416   OS << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
1417   return OS.str();
1418 }
1419 
emitUpdateLocation(CodeGenFunction & CGF,SourceLocation Loc,unsigned Flags)1420 llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
1421                                                  SourceLocation Loc,
1422                                                  unsigned Flags) {
1423   llvm::Constant *SrcLocStr;
1424   if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
1425       Loc.isInvalid()) {
1426     SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr();
1427   } else {
1428     std::string FunctionName = "";
1429     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1430       FunctionName = FD->getQualifiedNameAsString();
1431     PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1432     const char *FileName = PLoc.getFilename();
1433     unsigned Line = PLoc.getLine();
1434     unsigned Column = PLoc.getColumn();
1435     SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FunctionName.c_str(), FileName,
1436                                                 Line, Column);
1437   }
1438   unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
1439   return OMPBuilder.getOrCreateIdent(SrcLocStr, llvm::omp::IdentFlag(Flags),
1440                                      Reserved2Flags);
1441 }
1442 
getThreadID(CodeGenFunction & CGF,SourceLocation Loc)1443 llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
1444                                           SourceLocation Loc) {
1445   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1446   // If the OpenMPIRBuilder is used we need to use it for all thread id calls as
1447   // the clang invariants used below might be broken.
1448   if (CGM.getLangOpts().OpenMPIRBuilder) {
1449     SmallString<128> Buffer;
1450     OMPBuilder.updateToLocation(CGF.Builder.saveIP());
1451     auto *SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(
1452         getIdentStringFromSourceLocation(CGF, Loc, Buffer));
1453     return OMPBuilder.getOrCreateThreadID(
1454         OMPBuilder.getOrCreateIdent(SrcLocStr));
1455   }
1456 
1457   llvm::Value *ThreadID = nullptr;
1458   // Check whether we've already cached a load of the thread id in this
1459   // function.
1460   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1461   if (I != OpenMPLocThreadIDMap.end()) {
1462     ThreadID = I->second.ThreadID;
1463     if (ThreadID != nullptr)
1464       return ThreadID;
1465   }
1466   // If exceptions are enabled, do not use parameter to avoid possible crash.
1467   if (auto *OMPRegionInfo =
1468           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
1469     if (OMPRegionInfo->getThreadIDVariable()) {
1470       // Check if this an outlined function with thread id passed as argument.
1471       LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
1472       llvm::BasicBlock *TopBlock = CGF.AllocaInsertPt->getParent();
1473       if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
1474           !CGF.getLangOpts().CXXExceptions ||
1475           CGF.Builder.GetInsertBlock() == TopBlock ||
1476           !isa<llvm::Instruction>(LVal.getPointer(CGF)) ||
1477           cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1478               TopBlock ||
1479           cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1480               CGF.Builder.GetInsertBlock()) {
1481         ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
1482         // If value loaded in entry block, cache it and use it everywhere in
1483         // function.
1484         if (CGF.Builder.GetInsertBlock() == TopBlock) {
1485           auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1486           Elem.second.ThreadID = ThreadID;
1487         }
1488         return ThreadID;
1489       }
1490     }
1491   }
1492 
1493   // This is not an outlined function region - need to call __kmpc_int32
1494   // kmpc_global_thread_num(ident_t *loc).
1495   // Generate thread id value and cache this value for use across the
1496   // function.
1497   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1498   if (!Elem.second.ServiceInsertPt)
1499     setLocThreadIdInsertPt(CGF);
1500   CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1501   CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1502   llvm::CallInst *Call = CGF.Builder.CreateCall(
1503       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
1504                                             OMPRTL___kmpc_global_thread_num),
1505       emitUpdateLocation(CGF, Loc));
1506   Call->setCallingConv(CGF.getRuntimeCC());
1507   Elem.second.ThreadID = Call;
1508   return Call;
1509 }
1510 
functionFinished(CodeGenFunction & CGF)1511 void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
1512   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1513   if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
1514     clearLocThreadIdInsertPt(CGF);
1515     OpenMPLocThreadIDMap.erase(CGF.CurFn);
1516   }
1517   if (FunctionUDRMap.count(CGF.CurFn) > 0) {
1518     for(const auto *D : FunctionUDRMap[CGF.CurFn])
1519       UDRMap.erase(D);
1520     FunctionUDRMap.erase(CGF.CurFn);
1521   }
1522   auto I = FunctionUDMMap.find(CGF.CurFn);
1523   if (I != FunctionUDMMap.end()) {
1524     for(const auto *D : I->second)
1525       UDMMap.erase(D);
1526     FunctionUDMMap.erase(I);
1527   }
1528   LastprivateConditionalToTypes.erase(CGF.CurFn);
1529   FunctionToUntiedTaskStackMap.erase(CGF.CurFn);
1530 }
1531 
getIdentTyPointerTy()1532 llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
1533   return OMPBuilder.IdentPtr;
1534 }
1535 
getKmpc_MicroPointerTy()1536 llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
1537   if (!Kmpc_MicroTy) {
1538     // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
1539     llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
1540                                  llvm::PointerType::getUnqual(CGM.Int32Ty)};
1541     Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
1542   }
1543   return llvm::PointerType::getUnqual(Kmpc_MicroTy);
1544 }
1545 
1546 llvm::FunctionCallee
createForStaticInitFunction(unsigned IVSize,bool IVSigned)1547 CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) {
1548   assert((IVSize == 32 || IVSize == 64) &&
1549          "IV size is not compatible with the omp runtime");
1550   StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
1551                                             : "__kmpc_for_static_init_4u")
1552                                 : (IVSigned ? "__kmpc_for_static_init_8"
1553                                             : "__kmpc_for_static_init_8u");
1554   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1555   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
1556   llvm::Type *TypeParams[] = {
1557     getIdentTyPointerTy(),                     // loc
1558     CGM.Int32Ty,                               // tid
1559     CGM.Int32Ty,                               // schedtype
1560     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1561     PtrTy,                                     // p_lower
1562     PtrTy,                                     // p_upper
1563     PtrTy,                                     // p_stride
1564     ITy,                                       // incr
1565     ITy                                        // chunk
1566   };
1567   auto *FnTy =
1568       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1569   return CGM.CreateRuntimeFunction(FnTy, Name);
1570 }
1571 
1572 llvm::FunctionCallee
createDispatchInitFunction(unsigned IVSize,bool IVSigned)1573 CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
1574   assert((IVSize == 32 || IVSize == 64) &&
1575          "IV size is not compatible with the omp runtime");
1576   StringRef Name =
1577       IVSize == 32
1578           ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
1579           : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
1580   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1581   llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
1582                                CGM.Int32Ty,           // tid
1583                                CGM.Int32Ty,           // schedtype
1584                                ITy,                   // lower
1585                                ITy,                   // upper
1586                                ITy,                   // stride
1587                                ITy                    // chunk
1588   };
1589   auto *FnTy =
1590       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1591   return CGM.CreateRuntimeFunction(FnTy, Name);
1592 }
1593 
1594 llvm::FunctionCallee
createDispatchFiniFunction(unsigned IVSize,bool IVSigned)1595 CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
1596   assert((IVSize == 32 || IVSize == 64) &&
1597          "IV size is not compatible with the omp runtime");
1598   StringRef Name =
1599       IVSize == 32
1600           ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
1601           : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
1602   llvm::Type *TypeParams[] = {
1603       getIdentTyPointerTy(), // loc
1604       CGM.Int32Ty,           // tid
1605   };
1606   auto *FnTy =
1607       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1608   return CGM.CreateRuntimeFunction(FnTy, Name);
1609 }
1610 
1611 llvm::FunctionCallee
createDispatchNextFunction(unsigned IVSize,bool IVSigned)1612 CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
1613   assert((IVSize == 32 || IVSize == 64) &&
1614          "IV size is not compatible with the omp runtime");
1615   StringRef Name =
1616       IVSize == 32
1617           ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
1618           : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
1619   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1620   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
1621   llvm::Type *TypeParams[] = {
1622     getIdentTyPointerTy(),                     // loc
1623     CGM.Int32Ty,                               // tid
1624     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1625     PtrTy,                                     // p_lower
1626     PtrTy,                                     // p_upper
1627     PtrTy                                      // p_stride
1628   };
1629   auto *FnTy =
1630       llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1631   return CGM.CreateRuntimeFunction(FnTy, Name);
1632 }
1633 
1634 /// Obtain information that uniquely identifies a target entry. This
1635 /// consists of the file and device IDs as well as line number associated with
1636 /// the relevant entry source location.
getTargetEntryUniqueInfo(ASTContext & C,SourceLocation Loc,unsigned & DeviceID,unsigned & FileID,unsigned & LineNum)1637 static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
1638                                      unsigned &DeviceID, unsigned &FileID,
1639                                      unsigned &LineNum) {
1640   SourceManager &SM = C.getSourceManager();
1641 
1642   // The loc should be always valid and have a file ID (the user cannot use
1643   // #pragma directives in macros)
1644 
1645   assert(Loc.isValid() && "Source location is expected to be always valid.");
1646 
1647   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1648   assert(PLoc.isValid() && "Source location is expected to be always valid.");
1649 
1650   llvm::sys::fs::UniqueID ID;
1651   if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
1652     SM.getDiagnostics().Report(diag::err_cannot_open_file)
1653         << PLoc.getFilename() << EC.message();
1654 
1655   DeviceID = ID.getDevice();
1656   FileID = ID.getFile();
1657   LineNum = PLoc.getLine();
1658 }
1659 
getAddrOfDeclareTargetVar(const VarDecl * VD)1660 Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
1661   if (CGM.getLangOpts().OpenMPSimd)
1662     return Address::invalid();
1663   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
1664       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
1665   if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link ||
1666               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
1667                HasRequiresUnifiedSharedMemory))) {
1668     SmallString<64> PtrName;
1669     {
1670       llvm::raw_svector_ostream OS(PtrName);
1671       OS << CGM.getMangledName(GlobalDecl(VD));
1672       if (!VD->isExternallyVisible()) {
1673         unsigned DeviceID, FileID, Line;
1674         getTargetEntryUniqueInfo(CGM.getContext(),
1675                                  VD->getCanonicalDecl()->getBeginLoc(),
1676                                  DeviceID, FileID, Line);
1677         OS << llvm::format("_%x", FileID);
1678       }
1679       OS << "_decl_tgt_ref_ptr";
1680     }
1681     llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
1682     if (!Ptr) {
1683       QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
1684       Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
1685                                         PtrName);
1686 
1687       auto *GV = cast<llvm::GlobalVariable>(Ptr);
1688       GV->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
1689 
1690       if (!CGM.getLangOpts().OpenMPIsDevice)
1691         GV->setInitializer(CGM.GetAddrOfGlobal(VD));
1692       registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
1693     }
1694     return Address(Ptr, CGM.getContext().getDeclAlign(VD));
1695   }
1696   return Address::invalid();
1697 }
1698 
1699 llvm::Constant *
getOrCreateThreadPrivateCache(const VarDecl * VD)1700 CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
1701   assert(!CGM.getLangOpts().OpenMPUseTLS ||
1702          !CGM.getContext().getTargetInfo().isTLSSupported());
1703   // Lookup the entry, lazily creating it if necessary.
1704   std::string Suffix = getName({"cache", ""});
1705   return getOrCreateInternalVariable(
1706       CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
1707 }
1708 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)1709 Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
1710                                                 const VarDecl *VD,
1711                                                 Address VDAddr,
1712                                                 SourceLocation Loc) {
1713   if (CGM.getLangOpts().OpenMPUseTLS &&
1714       CGM.getContext().getTargetInfo().isTLSSupported())
1715     return VDAddr;
1716 
1717   llvm::Type *VarTy = VDAddr.getElementType();
1718   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
1719                          CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
1720                                                        CGM.Int8PtrTy),
1721                          CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
1722                          getOrCreateThreadPrivateCache(VD)};
1723   return Address(CGF.EmitRuntimeCall(
1724                      OMPBuilder.getOrCreateRuntimeFunction(
1725                          CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
1726                      Args),
1727                  VDAddr.getAlignment());
1728 }
1729 
emitThreadPrivateVarInit(CodeGenFunction & CGF,Address VDAddr,llvm::Value * Ctor,llvm::Value * CopyCtor,llvm::Value * Dtor,SourceLocation Loc)1730 void CGOpenMPRuntime::emitThreadPrivateVarInit(
1731     CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
1732     llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
1733   // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
1734   // library.
1735   llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
1736   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1737                           CGM.getModule(), OMPRTL___kmpc_global_thread_num),
1738                       OMPLoc);
1739   // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
1740   // to register constructor/destructor for variable.
1741   llvm::Value *Args[] = {
1742       OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
1743       Ctor, CopyCtor, Dtor};
1744   CGF.EmitRuntimeCall(
1745       OMPBuilder.getOrCreateRuntimeFunction(
1746           CGM.getModule(), OMPRTL___kmpc_threadprivate_register),
1747       Args);
1748 }
1749 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)1750 llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
1751     const VarDecl *VD, Address VDAddr, SourceLocation Loc,
1752     bool PerformInit, CodeGenFunction *CGF) {
1753   if (CGM.getLangOpts().OpenMPUseTLS &&
1754       CGM.getContext().getTargetInfo().isTLSSupported())
1755     return nullptr;
1756 
1757   VD = VD->getDefinition(CGM.getContext());
1758   if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
1759     QualType ASTTy = VD->getType();
1760 
1761     llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
1762     const Expr *Init = VD->getAnyInitializer();
1763     if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1764       // Generate function that re-emits the declaration's initializer into the
1765       // threadprivate copy of the variable VD
1766       CodeGenFunction CtorCGF(CGM);
1767       FunctionArgList Args;
1768       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
1769                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
1770                             ImplicitParamDecl::Other);
1771       Args.push_back(&Dst);
1772 
1773       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1774           CGM.getContext().VoidPtrTy, Args);
1775       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1776       std::string Name = getName({"__kmpc_global_ctor_", ""});
1777       llvm::Function *Fn =
1778           CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
1779       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
1780                             Args, Loc, Loc);
1781       llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
1782           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1783           CGM.getContext().VoidPtrTy, Dst.getLocation());
1784       Address Arg = Address(ArgVal, VDAddr.getAlignment());
1785       Arg = CtorCGF.Builder.CreateElementBitCast(
1786           Arg, CtorCGF.ConvertTypeForMem(ASTTy));
1787       CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
1788                                /*IsInitializer=*/true);
1789       ArgVal = CtorCGF.EmitLoadOfScalar(
1790           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1791           CGM.getContext().VoidPtrTy, Dst.getLocation());
1792       CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
1793       CtorCGF.FinishFunction();
1794       Ctor = Fn;
1795     }
1796     if (VD->getType().isDestructedType() != QualType::DK_none) {
1797       // Generate function that emits destructor call for the threadprivate copy
1798       // of the variable VD
1799       CodeGenFunction DtorCGF(CGM);
1800       FunctionArgList Args;
1801       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
1802                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
1803                             ImplicitParamDecl::Other);
1804       Args.push_back(&Dst);
1805 
1806       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1807           CGM.getContext().VoidTy, Args);
1808       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1809       std::string Name = getName({"__kmpc_global_dtor_", ""});
1810       llvm::Function *Fn =
1811           CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
1812       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1813       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
1814                             Loc, Loc);
1815       // Create a scope with an artificial location for the body of this function.
1816       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1817       llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
1818           DtorCGF.GetAddrOfLocalVar(&Dst),
1819           /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
1820       DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
1821                           DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1822                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1823       DtorCGF.FinishFunction();
1824       Dtor = Fn;
1825     }
1826     // Do not emit init function if it is not required.
1827     if (!Ctor && !Dtor)
1828       return nullptr;
1829 
1830     llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1831     auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
1832                                                /*isVarArg=*/false)
1833                            ->getPointerTo();
1834     // Copying constructor for the threadprivate variable.
1835     // Must be NULL - reserved by runtime, but currently it requires that this
1836     // parameter is always NULL. Otherwise it fires assertion.
1837     CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
1838     if (Ctor == nullptr) {
1839       auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
1840                                              /*isVarArg=*/false)
1841                          ->getPointerTo();
1842       Ctor = llvm::Constant::getNullValue(CtorTy);
1843     }
1844     if (Dtor == nullptr) {
1845       auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
1846                                              /*isVarArg=*/false)
1847                          ->getPointerTo();
1848       Dtor = llvm::Constant::getNullValue(DtorTy);
1849     }
1850     if (!CGF) {
1851       auto *InitFunctionTy =
1852           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
1853       std::string Name = getName({"__omp_threadprivate_init_", ""});
1854       llvm::Function *InitFunction = CGM.CreateGlobalInitOrCleanUpFunction(
1855           InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
1856       CodeGenFunction InitCGF(CGM);
1857       FunctionArgList ArgList;
1858       InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
1859                             CGM.getTypes().arrangeNullaryFunction(), ArgList,
1860                             Loc, Loc);
1861       emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1862       InitCGF.FinishFunction();
1863       return InitFunction;
1864     }
1865     emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1866   }
1867   return nullptr;
1868 }
1869 
emitDeclareTargetVarDefinition(const VarDecl * VD,llvm::GlobalVariable * Addr,bool PerformInit)1870 bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
1871                                                      llvm::GlobalVariable *Addr,
1872                                                      bool PerformInit) {
1873   if (CGM.getLangOpts().OMPTargetTriples.empty() &&
1874       !CGM.getLangOpts().OpenMPIsDevice)
1875     return false;
1876   Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
1877       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
1878   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
1879       (*Res == OMPDeclareTargetDeclAttr::MT_To &&
1880        HasRequiresUnifiedSharedMemory))
1881     return CGM.getLangOpts().OpenMPIsDevice;
1882   VD = VD->getDefinition(CGM.getContext());
1883   assert(VD && "Unknown VarDecl");
1884 
1885   if (!DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
1886     return CGM.getLangOpts().OpenMPIsDevice;
1887 
1888   QualType ASTTy = VD->getType();
1889   SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
1890 
1891   // Produce the unique prefix to identify the new target regions. We use
1892   // the source location of the variable declaration which we know to not
1893   // conflict with any target region.
1894   unsigned DeviceID;
1895   unsigned FileID;
1896   unsigned Line;
1897   getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
1898   SmallString<128> Buffer, Out;
1899   {
1900     llvm::raw_svector_ostream OS(Buffer);
1901     OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
1902        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
1903   }
1904 
1905   const Expr *Init = VD->getAnyInitializer();
1906   if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1907     llvm::Constant *Ctor;
1908     llvm::Constant *ID;
1909     if (CGM.getLangOpts().OpenMPIsDevice) {
1910       // Generate function that re-emits the declaration's initializer into
1911       // the threadprivate copy of the variable VD
1912       CodeGenFunction CtorCGF(CGM);
1913 
1914       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
1915       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1916       llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(
1917           FTy, Twine(Buffer, "_ctor"), FI, Loc);
1918       auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
1919       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
1920                             FunctionArgList(), Loc, Loc);
1921       auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
1922       CtorCGF.EmitAnyExprToMem(Init,
1923                                Address(Addr, CGM.getContext().getDeclAlign(VD)),
1924                                Init->getType().getQualifiers(),
1925                                /*IsInitializer=*/true);
1926       CtorCGF.FinishFunction();
1927       Ctor = Fn;
1928       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
1929       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
1930     } else {
1931       Ctor = new llvm::GlobalVariable(
1932           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1933           llvm::GlobalValue::PrivateLinkage,
1934           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
1935       ID = Ctor;
1936     }
1937 
1938     // Register the information for the entry associated with the constructor.
1939     Out.clear();
1940     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
1941         DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
1942         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
1943   }
1944   if (VD->getType().isDestructedType() != QualType::DK_none) {
1945     llvm::Constant *Dtor;
1946     llvm::Constant *ID;
1947     if (CGM.getLangOpts().OpenMPIsDevice) {
1948       // Generate function that emits destructor call for the threadprivate
1949       // copy of the variable VD
1950       CodeGenFunction DtorCGF(CGM);
1951 
1952       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
1953       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1954       llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(
1955           FTy, Twine(Buffer, "_dtor"), FI, Loc);
1956       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1957       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
1958                             FunctionArgList(), Loc, Loc);
1959       // Create a scope with an artificial location for the body of this
1960       // function.
1961       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1962       DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
1963                           ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1964                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1965       DtorCGF.FinishFunction();
1966       Dtor = Fn;
1967       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
1968       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
1969     } else {
1970       Dtor = new llvm::GlobalVariable(
1971           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1972           llvm::GlobalValue::PrivateLinkage,
1973           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
1974       ID = Dtor;
1975     }
1976     // Register the information for the entry associated with the destructor.
1977     Out.clear();
1978     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
1979         DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
1980         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
1981   }
1982   return CGM.getLangOpts().OpenMPIsDevice;
1983 }
1984 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)1985 Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
1986                                                           QualType VarType,
1987                                                           StringRef Name) {
1988   std::string Suffix = getName({"artificial", ""});
1989   llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
1990   llvm::Value *GAddr =
1991       getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
1992   if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPUseTLS &&
1993       CGM.getTarget().isTLSSupported()) {
1994     cast<llvm::GlobalVariable>(GAddr)->setThreadLocal(/*Val=*/true);
1995     return Address(GAddr, CGM.getContext().getTypeAlignInChars(VarType));
1996   }
1997   std::string CacheSuffix = getName({"cache", ""});
1998   llvm::Value *Args[] = {
1999       emitUpdateLocation(CGF, SourceLocation()),
2000       getThreadID(CGF, SourceLocation()),
2001       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
2002       CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
2003                                 /*isSigned=*/false),
2004       getOrCreateInternalVariable(
2005           CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
2006   return Address(
2007       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2008           CGF.EmitRuntimeCall(
2009               OMPBuilder.getOrCreateRuntimeFunction(
2010                   CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
2011               Args),
2012           VarLVType->getPointerTo(/*AddrSpace=*/0)),
2013       CGM.getContext().getTypeAlignInChars(VarType));
2014 }
2015 
emitIfClause(CodeGenFunction & CGF,const Expr * Cond,const RegionCodeGenTy & ThenGen,const RegionCodeGenTy & ElseGen)2016 void CGOpenMPRuntime::emitIfClause(CodeGenFunction &CGF, const Expr *Cond,
2017                                    const RegionCodeGenTy &ThenGen,
2018                                    const RegionCodeGenTy &ElseGen) {
2019   CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
2020 
2021   // If the condition constant folds and can be elided, try to avoid emitting
2022   // the condition and the dead arm of the if/else.
2023   bool CondConstant;
2024   if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
2025     if (CondConstant)
2026       ThenGen(CGF);
2027     else
2028       ElseGen(CGF);
2029     return;
2030   }
2031 
2032   // Otherwise, the condition did not fold, or we couldn't elide it.  Just
2033   // emit the conditional branch.
2034   llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
2035   llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
2036   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
2037   CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
2038 
2039   // Emit the 'then' code.
2040   CGF.EmitBlock(ThenBlock);
2041   ThenGen(CGF);
2042   CGF.EmitBranch(ContBlock);
2043   // Emit the 'else' code if present.
2044   // There is no need to emit line number for unconditional branch.
2045   (void)ApplyDebugLocation::CreateEmpty(CGF);
2046   CGF.EmitBlock(ElseBlock);
2047   ElseGen(CGF);
2048   // There is no need to emit line number for unconditional branch.
2049   (void)ApplyDebugLocation::CreateEmpty(CGF);
2050   CGF.EmitBranch(ContBlock);
2051   // Emit the continuation block for code after the if.
2052   CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
2053 }
2054 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)2055 void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
2056                                        llvm::Function *OutlinedFn,
2057                                        ArrayRef<llvm::Value *> CapturedVars,
2058                                        const Expr *IfCond) {
2059   if (!CGF.HaveInsertPoint())
2060     return;
2061   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2062   auto &M = CGM.getModule();
2063   auto &&ThenGen = [&M, OutlinedFn, CapturedVars, RTLoc,
2064                     this](CodeGenFunction &CGF, PrePostActionTy &) {
2065     // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
2066     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2067     llvm::Value *Args[] = {
2068         RTLoc,
2069         CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
2070         CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
2071     llvm::SmallVector<llvm::Value *, 16> RealArgs;
2072     RealArgs.append(std::begin(Args), std::end(Args));
2073     RealArgs.append(CapturedVars.begin(), CapturedVars.end());
2074 
2075     llvm::FunctionCallee RTLFn =
2076         OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_fork_call);
2077     CGF.EmitRuntimeCall(RTLFn, RealArgs);
2078   };
2079   auto &&ElseGen = [&M, OutlinedFn, CapturedVars, RTLoc, Loc,
2080                     this](CodeGenFunction &CGF, PrePostActionTy &) {
2081     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2082     llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
2083     // Build calls:
2084     // __kmpc_serialized_parallel(&Loc, GTid);
2085     llvm::Value *Args[] = {RTLoc, ThreadID};
2086     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2087                             M, OMPRTL___kmpc_serialized_parallel),
2088                         Args);
2089 
2090     // OutlinedFn(&GTid, &zero_bound, CapturedStruct);
2091     Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
2092     Address ZeroAddrBound =
2093         CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2094                                          /*Name=*/".bound.zero.addr");
2095     CGF.InitTempAlloca(ZeroAddrBound, CGF.Builder.getInt32(/*C*/ 0));
2096     llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2097     // ThreadId for serialized parallels is 0.
2098     OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
2099     OutlinedFnArgs.push_back(ZeroAddrBound.getPointer());
2100     OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2101     RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2102 
2103     // __kmpc_end_serialized_parallel(&Loc, GTid);
2104     llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
2105     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2106                             M, OMPRTL___kmpc_end_serialized_parallel),
2107                         EndArgs);
2108   };
2109   if (IfCond) {
2110     emitIfClause(CGF, IfCond, ThenGen, ElseGen);
2111   } else {
2112     RegionCodeGenTy ThenRCG(ThenGen);
2113     ThenRCG(CGF);
2114   }
2115 }
2116 
2117 // If we're inside an (outlined) parallel region, use the region info's
2118 // thread-ID variable (it is passed in a first argument of the outlined function
2119 // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
2120 // regular serial code region, get thread ID by calling kmp_int32
2121 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
2122 // return the address of that temp.
emitThreadIDAddress(CodeGenFunction & CGF,SourceLocation Loc)2123 Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
2124                                              SourceLocation Loc) {
2125   if (auto *OMPRegionInfo =
2126           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2127     if (OMPRegionInfo->getThreadIDVariable())
2128       return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(CGF);
2129 
2130   llvm::Value *ThreadID = getThreadID(CGF, Loc);
2131   QualType Int32Ty =
2132       CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
2133   Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
2134   CGF.EmitStoreOfScalar(ThreadID,
2135                         CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
2136 
2137   return ThreadIDTemp;
2138 }
2139 
getOrCreateInternalVariable(llvm::Type * Ty,const llvm::Twine & Name,unsigned AddressSpace)2140 llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable(
2141     llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
2142   SmallString<256> Buffer;
2143   llvm::raw_svector_ostream Out(Buffer);
2144   Out << Name;
2145   StringRef RuntimeName = Out.str();
2146   auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
2147   if (Elem.second) {
2148     assert(Elem.second->getType()->getPointerElementType() == Ty &&
2149            "OMP internal variable has different type than requested");
2150     return &*Elem.second;
2151   }
2152 
2153   return Elem.second = new llvm::GlobalVariable(
2154              CGM.getModule(), Ty, /*IsConstant*/ false,
2155              llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
2156              Elem.first(), /*InsertBefore=*/nullptr,
2157              llvm::GlobalValue::NotThreadLocal, AddressSpace);
2158 }
2159 
getCriticalRegionLock(StringRef CriticalName)2160 llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
2161   std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
2162   std::string Name = getName({Prefix, "var"});
2163   return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
2164 }
2165 
2166 namespace {
2167 /// Common pre(post)-action for different OpenMP constructs.
2168 class CommonActionTy final : public PrePostActionTy {
2169   llvm::FunctionCallee EnterCallee;
2170   ArrayRef<llvm::Value *> EnterArgs;
2171   llvm::FunctionCallee ExitCallee;
2172   ArrayRef<llvm::Value *> ExitArgs;
2173   bool Conditional;
2174   llvm::BasicBlock *ContBlock = nullptr;
2175 
2176 public:
CommonActionTy(llvm::FunctionCallee EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::FunctionCallee ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)2177   CommonActionTy(llvm::FunctionCallee EnterCallee,
2178                  ArrayRef<llvm::Value *> EnterArgs,
2179                  llvm::FunctionCallee ExitCallee,
2180                  ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
2181       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
2182         ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)2183   void Enter(CodeGenFunction &CGF) override {
2184     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
2185     if (Conditional) {
2186       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
2187       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
2188       ContBlock = CGF.createBasicBlock("omp_if.end");
2189       // Generate the branch (If-stmt)
2190       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
2191       CGF.EmitBlock(ThenBlock);
2192     }
2193   }
Done(CodeGenFunction & CGF)2194   void Done(CodeGenFunction &CGF) {
2195     // Emit the rest of blocks/branches
2196     CGF.EmitBranch(ContBlock);
2197     CGF.EmitBlock(ContBlock, true);
2198   }
Exit(CodeGenFunction & CGF)2199   void Exit(CodeGenFunction &CGF) override {
2200     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
2201   }
2202 };
2203 } // anonymous namespace
2204 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)2205 void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
2206                                          StringRef CriticalName,
2207                                          const RegionCodeGenTy &CriticalOpGen,
2208                                          SourceLocation Loc, const Expr *Hint) {
2209   // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
2210   // CriticalOpGen();
2211   // __kmpc_end_critical(ident_t *, gtid, Lock);
2212   // Prepare arguments and build a call to __kmpc_critical
2213   if (!CGF.HaveInsertPoint())
2214     return;
2215   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2216                          getCriticalRegionLock(CriticalName)};
2217   llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
2218                                                 std::end(Args));
2219   if (Hint) {
2220     EnterArgs.push_back(CGF.Builder.CreateIntCast(
2221         CGF.EmitScalarExpr(Hint), CGM.Int32Ty, /*isSigned=*/false));
2222   }
2223   CommonActionTy Action(
2224       OMPBuilder.getOrCreateRuntimeFunction(
2225           CGM.getModule(),
2226           Hint ? OMPRTL___kmpc_critical_with_hint : OMPRTL___kmpc_critical),
2227       EnterArgs,
2228       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2229                                             OMPRTL___kmpc_end_critical),
2230       Args);
2231   CriticalOpGen.setAction(Action);
2232   emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
2233 }
2234 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)2235 void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
2236                                        const RegionCodeGenTy &MasterOpGen,
2237                                        SourceLocation Loc) {
2238   if (!CGF.HaveInsertPoint())
2239     return;
2240   // if(__kmpc_master(ident_t *, gtid)) {
2241   //   MasterOpGen();
2242   //   __kmpc_end_master(ident_t *, gtid);
2243   // }
2244   // Prepare arguments and build a call to __kmpc_master
2245   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2246   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2247                             CGM.getModule(), OMPRTL___kmpc_master),
2248                         Args,
2249                         OMPBuilder.getOrCreateRuntimeFunction(
2250                             CGM.getModule(), OMPRTL___kmpc_end_master),
2251                         Args,
2252                         /*Conditional=*/true);
2253   MasterOpGen.setAction(Action);
2254   emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
2255   Action.Done(CGF);
2256 }
2257 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)2258 void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
2259                                         SourceLocation Loc) {
2260   if (!CGF.HaveInsertPoint())
2261     return;
2262   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2263     OMPBuilder.createTaskyield(CGF.Builder);
2264   } else {
2265     // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
2266     llvm::Value *Args[] = {
2267         emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2268         llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
2269     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2270                             CGM.getModule(), OMPRTL___kmpc_omp_taskyield),
2271                         Args);
2272   }
2273 
2274   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2275     Region->emitUntiedSwitch(CGF);
2276 }
2277 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)2278 void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
2279                                           const RegionCodeGenTy &TaskgroupOpGen,
2280                                           SourceLocation Loc) {
2281   if (!CGF.HaveInsertPoint())
2282     return;
2283   // __kmpc_taskgroup(ident_t *, gtid);
2284   // TaskgroupOpGen();
2285   // __kmpc_end_taskgroup(ident_t *, gtid);
2286   // Prepare arguments and build a call to __kmpc_taskgroup
2287   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2288   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2289                             CGM.getModule(), OMPRTL___kmpc_taskgroup),
2290                         Args,
2291                         OMPBuilder.getOrCreateRuntimeFunction(
2292                             CGM.getModule(), OMPRTL___kmpc_end_taskgroup),
2293                         Args);
2294   TaskgroupOpGen.setAction(Action);
2295   emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
2296 }
2297 
2298 /// Given an array of pointers to variables, project the address of a
2299 /// given variable.
emitAddrOfVarFromArray(CodeGenFunction & CGF,Address Array,unsigned Index,const VarDecl * Var)2300 static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
2301                                       unsigned Index, const VarDecl *Var) {
2302   // Pull out the pointer to the variable.
2303   Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
2304   llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
2305 
2306   Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
2307   Addr = CGF.Builder.CreateElementBitCast(
2308       Addr, CGF.ConvertTypeForMem(Var->getType()));
2309   return Addr;
2310 }
2311 
emitCopyprivateCopyFunction(CodeGenModule & CGM,llvm::Type * ArgsType,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps,SourceLocation Loc)2312 static llvm::Value *emitCopyprivateCopyFunction(
2313     CodeGenModule &CGM, llvm::Type *ArgsType,
2314     ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
2315     ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
2316     SourceLocation Loc) {
2317   ASTContext &C = CGM.getContext();
2318   // void copy_func(void *LHSArg, void *RHSArg);
2319   FunctionArgList Args;
2320   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
2321                            ImplicitParamDecl::Other);
2322   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
2323                            ImplicitParamDecl::Other);
2324   Args.push_back(&LHSArg);
2325   Args.push_back(&RHSArg);
2326   const auto &CGFI =
2327       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2328   std::string Name =
2329       CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
2330   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2331                                     llvm::GlobalValue::InternalLinkage, Name,
2332                                     &CGM.getModule());
2333   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2334   Fn->setDoesNotRecurse();
2335   CodeGenFunction CGF(CGM);
2336   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2337   // Dest = (void*[n])(LHSArg);
2338   // Src = (void*[n])(RHSArg);
2339   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2340       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
2341       ArgsType), CGF.getPointerAlign());
2342   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2343       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
2344       ArgsType), CGF.getPointerAlign());
2345   // *(Type0*)Dst[0] = *(Type0*)Src[0];
2346   // *(Type1*)Dst[1] = *(Type1*)Src[1];
2347   // ...
2348   // *(Typen*)Dst[n] = *(Typen*)Src[n];
2349   for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
2350     const auto *DestVar =
2351         cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
2352     Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
2353 
2354     const auto *SrcVar =
2355         cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
2356     Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
2357 
2358     const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
2359     QualType Type = VD->getType();
2360     CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
2361   }
2362   CGF.FinishFunction();
2363   return Fn;
2364 }
2365 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > DstExprs,ArrayRef<const Expr * > AssignmentOps)2366 void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
2367                                        const RegionCodeGenTy &SingleOpGen,
2368                                        SourceLocation Loc,
2369                                        ArrayRef<const Expr *> CopyprivateVars,
2370                                        ArrayRef<const Expr *> SrcExprs,
2371                                        ArrayRef<const Expr *> DstExprs,
2372                                        ArrayRef<const Expr *> AssignmentOps) {
2373   if (!CGF.HaveInsertPoint())
2374     return;
2375   assert(CopyprivateVars.size() == SrcExprs.size() &&
2376          CopyprivateVars.size() == DstExprs.size() &&
2377          CopyprivateVars.size() == AssignmentOps.size());
2378   ASTContext &C = CGM.getContext();
2379   // int32 did_it = 0;
2380   // if(__kmpc_single(ident_t *, gtid)) {
2381   //   SingleOpGen();
2382   //   __kmpc_end_single(ident_t *, gtid);
2383   //   did_it = 1;
2384   // }
2385   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2386   // <copy_func>, did_it);
2387 
2388   Address DidIt = Address::invalid();
2389   if (!CopyprivateVars.empty()) {
2390     // int32 did_it = 0;
2391     QualType KmpInt32Ty =
2392         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2393     DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
2394     CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
2395   }
2396   // Prepare arguments and build a call to __kmpc_single
2397   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2398   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2399                             CGM.getModule(), OMPRTL___kmpc_single),
2400                         Args,
2401                         OMPBuilder.getOrCreateRuntimeFunction(
2402                             CGM.getModule(), OMPRTL___kmpc_end_single),
2403                         Args,
2404                         /*Conditional=*/true);
2405   SingleOpGen.setAction(Action);
2406   emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
2407   if (DidIt.isValid()) {
2408     // did_it = 1;
2409     CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
2410   }
2411   Action.Done(CGF);
2412   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2413   // <copy_func>, did_it);
2414   if (DidIt.isValid()) {
2415     llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
2416     QualType CopyprivateArrayTy = C.getConstantArrayType(
2417         C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
2418         /*IndexTypeQuals=*/0);
2419     // Create a list of all private variables for copyprivate.
2420     Address CopyprivateList =
2421         CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
2422     for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
2423       Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
2424       CGF.Builder.CreateStore(
2425           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2426               CGF.EmitLValue(CopyprivateVars[I]).getPointer(CGF),
2427               CGF.VoidPtrTy),
2428           Elem);
2429     }
2430     // Build function that copies private values from single region to all other
2431     // threads in the corresponding parallel region.
2432     llvm::Value *CpyFn = emitCopyprivateCopyFunction(
2433         CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
2434         CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
2435     llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
2436     Address CL =
2437       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
2438                                                       CGF.VoidPtrTy);
2439     llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
2440     llvm::Value *Args[] = {
2441         emitUpdateLocation(CGF, Loc), // ident_t *<loc>
2442         getThreadID(CGF, Loc),        // i32 <gtid>
2443         BufSize,                      // size_t <buf_size>
2444         CL.getPointer(),              // void *<copyprivate list>
2445         CpyFn,                        // void (*) (void *, void *) <copy_func>
2446         DidItVal                      // i32 did_it
2447     };
2448     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2449                             CGM.getModule(), OMPRTL___kmpc_copyprivate),
2450                         Args);
2451   }
2452 }
2453 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)2454 void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
2455                                         const RegionCodeGenTy &OrderedOpGen,
2456                                         SourceLocation Loc, bool IsThreads) {
2457   if (!CGF.HaveInsertPoint())
2458     return;
2459   // __kmpc_ordered(ident_t *, gtid);
2460   // OrderedOpGen();
2461   // __kmpc_end_ordered(ident_t *, gtid);
2462   // Prepare arguments and build a call to __kmpc_ordered
2463   if (IsThreads) {
2464     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2465     CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2466                               CGM.getModule(), OMPRTL___kmpc_ordered),
2467                           Args,
2468                           OMPBuilder.getOrCreateRuntimeFunction(
2469                               CGM.getModule(), OMPRTL___kmpc_end_ordered),
2470                           Args);
2471     OrderedOpGen.setAction(Action);
2472     emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2473     return;
2474   }
2475   emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2476 }
2477 
getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind)2478 unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
2479   unsigned Flags;
2480   if (Kind == OMPD_for)
2481     Flags = OMP_IDENT_BARRIER_IMPL_FOR;
2482   else if (Kind == OMPD_sections)
2483     Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
2484   else if (Kind == OMPD_single)
2485     Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
2486   else if (Kind == OMPD_barrier)
2487     Flags = OMP_IDENT_BARRIER_EXPL;
2488   else
2489     Flags = OMP_IDENT_BARRIER_IMPL;
2490   return Flags;
2491 }
2492 
getDefaultScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPScheduleClauseKind & ScheduleKind,const Expr * & ChunkExpr) const2493 void CGOpenMPRuntime::getDefaultScheduleAndChunk(
2494     CodeGenFunction &CGF, const OMPLoopDirective &S,
2495     OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
2496   // Check if the loop directive is actually a doacross loop directive. In this
2497   // case choose static, 1 schedule.
2498   if (llvm::any_of(
2499           S.getClausesOfKind<OMPOrderedClause>(),
2500           [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
2501     ScheduleKind = OMPC_SCHEDULE_static;
2502     // Chunk size is 1 in this case.
2503     llvm::APInt ChunkSize(32, 1);
2504     ChunkExpr = IntegerLiteral::Create(
2505         CGF.getContext(), ChunkSize,
2506         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
2507         SourceLocation());
2508   }
2509 }
2510 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)2511 void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
2512                                       OpenMPDirectiveKind Kind, bool EmitChecks,
2513                                       bool ForceSimpleCall) {
2514   // Check if we should use the OMPBuilder
2515   auto *OMPRegionInfo =
2516       dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo);
2517   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2518     CGF.Builder.restoreIP(OMPBuilder.createBarrier(
2519         CGF.Builder, Kind, ForceSimpleCall, EmitChecks));
2520     return;
2521   }
2522 
2523   if (!CGF.HaveInsertPoint())
2524     return;
2525   // Build call __kmpc_cancel_barrier(loc, thread_id);
2526   // Build call __kmpc_barrier(loc, thread_id);
2527   unsigned Flags = getDefaultFlagsForBarriers(Kind);
2528   // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
2529   // thread_id);
2530   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
2531                          getThreadID(CGF, Loc)};
2532   if (OMPRegionInfo) {
2533     if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
2534       llvm::Value *Result = CGF.EmitRuntimeCall(
2535           OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2536                                                 OMPRTL___kmpc_cancel_barrier),
2537           Args);
2538       if (EmitChecks) {
2539         // if (__kmpc_cancel_barrier()) {
2540         //   exit from construct;
2541         // }
2542         llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
2543         llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
2544         llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
2545         CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
2546         CGF.EmitBlock(ExitBB);
2547         //   exit from construct;
2548         CodeGenFunction::JumpDest CancelDestination =
2549             CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
2550         CGF.EmitBranchThroughCleanup(CancelDestination);
2551         CGF.EmitBlock(ContBB, /*IsFinished=*/true);
2552       }
2553       return;
2554     }
2555   }
2556   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2557                           CGM.getModule(), OMPRTL___kmpc_barrier),
2558                       Args);
2559 }
2560 
2561 /// Map the OpenMP loop schedule to the runtime enumeration.
getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,bool Chunked,bool Ordered)2562 static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
2563                                           bool Chunked, bool Ordered) {
2564   switch (ScheduleKind) {
2565   case OMPC_SCHEDULE_static:
2566     return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
2567                    : (Ordered ? OMP_ord_static : OMP_sch_static);
2568   case OMPC_SCHEDULE_dynamic:
2569     return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
2570   case OMPC_SCHEDULE_guided:
2571     return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
2572   case OMPC_SCHEDULE_runtime:
2573     return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
2574   case OMPC_SCHEDULE_auto:
2575     return Ordered ? OMP_ord_auto : OMP_sch_auto;
2576   case OMPC_SCHEDULE_unknown:
2577     assert(!Chunked && "chunk was specified but schedule kind not known");
2578     return Ordered ? OMP_ord_static : OMP_sch_static;
2579   }
2580   llvm_unreachable("Unexpected runtime schedule");
2581 }
2582 
2583 /// Map the OpenMP distribute schedule to the runtime enumeration.
2584 static OpenMPSchedType
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked)2585 getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
2586   // only static is allowed for dist_schedule
2587   return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
2588 }
2589 
isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2590 bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
2591                                          bool Chunked) const {
2592   OpenMPSchedType Schedule =
2593       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2594   return Schedule == OMP_sch_static;
2595 }
2596 
isStaticNonchunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2597 bool CGOpenMPRuntime::isStaticNonchunked(
2598     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2599   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2600   return Schedule == OMP_dist_sch_static;
2601 }
2602 
isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2603 bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
2604                                       bool Chunked) const {
2605   OpenMPSchedType Schedule =
2606       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2607   return Schedule == OMP_sch_static_chunked;
2608 }
2609 
isStaticChunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2610 bool CGOpenMPRuntime::isStaticChunked(
2611     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2612   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2613   return Schedule == OMP_dist_sch_static_chunked;
2614 }
2615 
isDynamic(OpenMPScheduleClauseKind ScheduleKind) const2616 bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
2617   OpenMPSchedType Schedule =
2618       getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
2619   assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
2620   return Schedule != OMP_sch_static;
2621 }
2622 
addMonoNonMonoModifier(CodeGenModule & CGM,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2)2623 static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule,
2624                                   OpenMPScheduleClauseModifier M1,
2625                                   OpenMPScheduleClauseModifier M2) {
2626   int Modifier = 0;
2627   switch (M1) {
2628   case OMPC_SCHEDULE_MODIFIER_monotonic:
2629     Modifier = OMP_sch_modifier_monotonic;
2630     break;
2631   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2632     Modifier = OMP_sch_modifier_nonmonotonic;
2633     break;
2634   case OMPC_SCHEDULE_MODIFIER_simd:
2635     if (Schedule == OMP_sch_static_chunked)
2636       Schedule = OMP_sch_static_balanced_chunked;
2637     break;
2638   case OMPC_SCHEDULE_MODIFIER_last:
2639   case OMPC_SCHEDULE_MODIFIER_unknown:
2640     break;
2641   }
2642   switch (M2) {
2643   case OMPC_SCHEDULE_MODIFIER_monotonic:
2644     Modifier = OMP_sch_modifier_monotonic;
2645     break;
2646   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2647     Modifier = OMP_sch_modifier_nonmonotonic;
2648     break;
2649   case OMPC_SCHEDULE_MODIFIER_simd:
2650     if (Schedule == OMP_sch_static_chunked)
2651       Schedule = OMP_sch_static_balanced_chunked;
2652     break;
2653   case OMPC_SCHEDULE_MODIFIER_last:
2654   case OMPC_SCHEDULE_MODIFIER_unknown:
2655     break;
2656   }
2657   // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription.
2658   // If the static schedule kind is specified or if the ordered clause is
2659   // specified, and if the nonmonotonic modifier is not specified, the effect is
2660   // as if the monotonic modifier is specified. Otherwise, unless the monotonic
2661   // modifier is specified, the effect is as if the nonmonotonic modifier is
2662   // specified.
2663   if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) {
2664     if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static ||
2665           Schedule == OMP_sch_static_balanced_chunked ||
2666           Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static ||
2667           Schedule == OMP_dist_sch_static_chunked ||
2668           Schedule == OMP_dist_sch_static))
2669       Modifier = OMP_sch_modifier_nonmonotonic;
2670   }
2671   return Schedule | Modifier;
2672 }
2673 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)2674 void CGOpenMPRuntime::emitForDispatchInit(
2675     CodeGenFunction &CGF, SourceLocation Loc,
2676     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
2677     bool Ordered, const DispatchRTInput &DispatchValues) {
2678   if (!CGF.HaveInsertPoint())
2679     return;
2680   OpenMPSchedType Schedule = getRuntimeSchedule(
2681       ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
2682   assert(Ordered ||
2683          (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
2684           Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
2685           Schedule != OMP_sch_static_balanced_chunked));
2686   // Call __kmpc_dispatch_init(
2687   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
2688   //          kmp_int[32|64] lower, kmp_int[32|64] upper,
2689   //          kmp_int[32|64] stride, kmp_int[32|64] chunk);
2690 
2691   // If the Chunk was not specified in the clause - use default value 1.
2692   llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
2693                                             : CGF.Builder.getIntN(IVSize, 1);
2694   llvm::Value *Args[] = {
2695       emitUpdateLocation(CGF, Loc),
2696       getThreadID(CGF, Loc),
2697       CGF.Builder.getInt32(addMonoNonMonoModifier(
2698           CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
2699       DispatchValues.LB,                                     // Lower
2700       DispatchValues.UB,                                     // Upper
2701       CGF.Builder.getIntN(IVSize, 1),                        // Stride
2702       Chunk                                                  // Chunk
2703   };
2704   CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
2705 }
2706 
emitForStaticInitCall(CodeGenFunction & CGF,llvm::Value * UpdateLocation,llvm::Value * ThreadId,llvm::FunctionCallee ForStaticInitFunction,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2,const CGOpenMPRuntime::StaticRTInput & Values)2707 static void emitForStaticInitCall(
2708     CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
2709     llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
2710     OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
2711     const CGOpenMPRuntime::StaticRTInput &Values) {
2712   if (!CGF.HaveInsertPoint())
2713     return;
2714 
2715   assert(!Values.Ordered);
2716   assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
2717          Schedule == OMP_sch_static_balanced_chunked ||
2718          Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
2719          Schedule == OMP_dist_sch_static ||
2720          Schedule == OMP_dist_sch_static_chunked);
2721 
2722   // Call __kmpc_for_static_init(
2723   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
2724   //          kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
2725   //          kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
2726   //          kmp_int[32|64] incr, kmp_int[32|64] chunk);
2727   llvm::Value *Chunk = Values.Chunk;
2728   if (Chunk == nullptr) {
2729     assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
2730             Schedule == OMP_dist_sch_static) &&
2731            "expected static non-chunked schedule");
2732     // If the Chunk was not specified in the clause - use default value 1.
2733     Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
2734   } else {
2735     assert((Schedule == OMP_sch_static_chunked ||
2736             Schedule == OMP_sch_static_balanced_chunked ||
2737             Schedule == OMP_ord_static_chunked ||
2738             Schedule == OMP_dist_sch_static_chunked) &&
2739            "expected static chunked schedule");
2740   }
2741   llvm::Value *Args[] = {
2742       UpdateLocation,
2743       ThreadId,
2744       CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1,
2745                                                   M2)), // Schedule type
2746       Values.IL.getPointer(),                           // &isLastIter
2747       Values.LB.getPointer(),                           // &LB
2748       Values.UB.getPointer(),                           // &UB
2749       Values.ST.getPointer(),                           // &Stride
2750       CGF.Builder.getIntN(Values.IVSize, 1),            // Incr
2751       Chunk                                             // Chunk
2752   };
2753   CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
2754 }
2755 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)2756 void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
2757                                         SourceLocation Loc,
2758                                         OpenMPDirectiveKind DKind,
2759                                         const OpenMPScheduleTy &ScheduleKind,
2760                                         const StaticRTInput &Values) {
2761   OpenMPSchedType ScheduleNum = getRuntimeSchedule(
2762       ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
2763   assert(isOpenMPWorksharingDirective(DKind) &&
2764          "Expected loop-based or sections-based directive.");
2765   llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
2766                                              isOpenMPLoopDirective(DKind)
2767                                                  ? OMP_IDENT_WORK_LOOP
2768                                                  : OMP_IDENT_WORK_SECTIONS);
2769   llvm::Value *ThreadId = getThreadID(CGF, Loc);
2770   llvm::FunctionCallee StaticInitFunction =
2771       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
2772   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
2773   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2774                         ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
2775 }
2776 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const CGOpenMPRuntime::StaticRTInput & Values)2777 void CGOpenMPRuntime::emitDistributeStaticInit(
2778     CodeGenFunction &CGF, SourceLocation Loc,
2779     OpenMPDistScheduleClauseKind SchedKind,
2780     const CGOpenMPRuntime::StaticRTInput &Values) {
2781   OpenMPSchedType ScheduleNum =
2782       getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
2783   llvm::Value *UpdatedLocation =
2784       emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
2785   llvm::Value *ThreadId = getThreadID(CGF, Loc);
2786   llvm::FunctionCallee StaticInitFunction =
2787       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
2788   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2789                         ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
2790                         OMPC_SCHEDULE_MODIFIER_unknown, Values);
2791 }
2792 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)2793 void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
2794                                           SourceLocation Loc,
2795                                           OpenMPDirectiveKind DKind) {
2796   if (!CGF.HaveInsertPoint())
2797     return;
2798   // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
2799   llvm::Value *Args[] = {
2800       emitUpdateLocation(CGF, Loc,
2801                          isOpenMPDistributeDirective(DKind)
2802                              ? OMP_IDENT_WORK_DISTRIBUTE
2803                              : isOpenMPLoopDirective(DKind)
2804                                    ? OMP_IDENT_WORK_LOOP
2805                                    : OMP_IDENT_WORK_SECTIONS),
2806       getThreadID(CGF, Loc)};
2807   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
2808   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2809                           CGM.getModule(), OMPRTL___kmpc_for_static_fini),
2810                       Args);
2811 }
2812 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)2813 void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
2814                                                  SourceLocation Loc,
2815                                                  unsigned IVSize,
2816                                                  bool IVSigned) {
2817   if (!CGF.HaveInsertPoint())
2818     return;
2819   // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
2820   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2821   CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
2822 }
2823 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)2824 llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
2825                                           SourceLocation Loc, unsigned IVSize,
2826                                           bool IVSigned, Address IL,
2827                                           Address LB, Address UB,
2828                                           Address ST) {
2829   // Call __kmpc_dispatch_next(
2830   //          ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
2831   //          kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
2832   //          kmp_int[32|64] *p_stride);
2833   llvm::Value *Args[] = {
2834       emitUpdateLocation(CGF, Loc),
2835       getThreadID(CGF, Loc),
2836       IL.getPointer(), // &isLastIter
2837       LB.getPointer(), // &Lower
2838       UB.getPointer(), // &Upper
2839       ST.getPointer()  // &Stride
2840   };
2841   llvm::Value *Call =
2842       CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
2843   return CGF.EmitScalarConversion(
2844       Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
2845       CGF.getContext().BoolTy, Loc);
2846 }
2847 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)2848 void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
2849                                            llvm::Value *NumThreads,
2850                                            SourceLocation Loc) {
2851   if (!CGF.HaveInsertPoint())
2852     return;
2853   // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
2854   llvm::Value *Args[] = {
2855       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2856       CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
2857   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2858                           CGM.getModule(), OMPRTL___kmpc_push_num_threads),
2859                       Args);
2860 }
2861 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)2862 void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
2863                                          ProcBindKind ProcBind,
2864                                          SourceLocation Loc) {
2865   if (!CGF.HaveInsertPoint())
2866     return;
2867   assert(ProcBind != OMP_PROC_BIND_unknown && "Unsupported proc_bind value.");
2868   // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
2869   llvm::Value *Args[] = {
2870       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2871       llvm::ConstantInt::get(CGM.IntTy, unsigned(ProcBind), /*isSigned=*/true)};
2872   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2873                           CGM.getModule(), OMPRTL___kmpc_push_proc_bind),
2874                       Args);
2875 }
2876 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * >,SourceLocation Loc,llvm::AtomicOrdering AO)2877 void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
2878                                 SourceLocation Loc, llvm::AtomicOrdering AO) {
2879   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2880     OMPBuilder.createFlush(CGF.Builder);
2881   } else {
2882     if (!CGF.HaveInsertPoint())
2883       return;
2884     // Build call void __kmpc_flush(ident_t *loc)
2885     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2886                             CGM.getModule(), OMPRTL___kmpc_flush),
2887                         emitUpdateLocation(CGF, Loc));
2888   }
2889 }
2890 
2891 namespace {
2892 /// Indexes of fields for type kmp_task_t.
2893 enum KmpTaskTFields {
2894   /// List of shared variables.
2895   KmpTaskTShareds,
2896   /// Task routine.
2897   KmpTaskTRoutine,
2898   /// Partition id for the untied tasks.
2899   KmpTaskTPartId,
2900   /// Function with call of destructors for private variables.
2901   Data1,
2902   /// Task priority.
2903   Data2,
2904   /// (Taskloops only) Lower bound.
2905   KmpTaskTLowerBound,
2906   /// (Taskloops only) Upper bound.
2907   KmpTaskTUpperBound,
2908   /// (Taskloops only) Stride.
2909   KmpTaskTStride,
2910   /// (Taskloops only) Is last iteration flag.
2911   KmpTaskTLastIter,
2912   /// (Taskloops only) Reduction data.
2913   KmpTaskTReductions,
2914 };
2915 } // anonymous namespace
2916 
empty() const2917 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
2918   return OffloadEntriesTargetRegion.empty() &&
2919          OffloadEntriesDeviceGlobalVar.empty();
2920 }
2921 
2922 /// Initialize target region entry.
2923 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,unsigned Order)2924     initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
2925                                     StringRef ParentName, unsigned LineNum,
2926                                     unsigned Order) {
2927   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
2928                                              "only required for the device "
2929                                              "code generation.");
2930   OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
2931       OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
2932                                    OMPTargetRegionEntryTargetRegion);
2933   ++OffloadingEntriesNum;
2934 }
2935 
2936 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,llvm::Constant * Addr,llvm::Constant * ID,OMPTargetRegionEntryKind Flags)2937     registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
2938                                   StringRef ParentName, unsigned LineNum,
2939                                   llvm::Constant *Addr, llvm::Constant *ID,
2940                                   OMPTargetRegionEntryKind Flags) {
2941   // If we are emitting code for a target, the entry is already initialized,
2942   // only has to be registered.
2943   if (CGM.getLangOpts().OpenMPIsDevice) {
2944     if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) {
2945       unsigned DiagID = CGM.getDiags().getCustomDiagID(
2946           DiagnosticsEngine::Error,
2947           "Unable to find target region on line '%0' in the device code.");
2948       CGM.getDiags().Report(DiagID) << LineNum;
2949       return;
2950     }
2951     auto &Entry =
2952         OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
2953     assert(Entry.isValid() && "Entry not initialized!");
2954     Entry.setAddress(Addr);
2955     Entry.setID(ID);
2956     Entry.setFlags(Flags);
2957   } else {
2958     if (Flags ==
2959             OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion &&
2960         hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum,
2961                                  /*IgnoreAddressId*/ true))
2962       return;
2963     assert(!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) &&
2964            "Target region entry already registered!");
2965     OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
2966     OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
2967     ++OffloadingEntriesNum;
2968   }
2969 }
2970 
hasTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,bool IgnoreAddressId) const2971 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
2972     unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned LineNum,
2973     bool IgnoreAddressId) const {
2974   auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
2975   if (PerDevice == OffloadEntriesTargetRegion.end())
2976     return false;
2977   auto PerFile = PerDevice->second.find(FileID);
2978   if (PerFile == PerDevice->second.end())
2979     return false;
2980   auto PerParentName = PerFile->second.find(ParentName);
2981   if (PerParentName == PerFile->second.end())
2982     return false;
2983   auto PerLine = PerParentName->second.find(LineNum);
2984   if (PerLine == PerParentName->second.end())
2985     return false;
2986   // Fail if this entry is already registered.
2987   if (!IgnoreAddressId &&
2988       (PerLine->second.getAddress() || PerLine->second.getID()))
2989     return false;
2990   return true;
2991 }
2992 
actOnTargetRegionEntriesInfo(const OffloadTargetRegionEntryInfoActTy & Action)2993 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
2994     const OffloadTargetRegionEntryInfoActTy &Action) {
2995   // Scan all target region entries and perform the provided action.
2996   for (const auto &D : OffloadEntriesTargetRegion)
2997     for (const auto &F : D.second)
2998       for (const auto &P : F.second)
2999         for (const auto &L : P.second)
3000           Action(D.first, F.first, P.first(), L.first, L.second);
3001 }
3002 
3003 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeDeviceGlobalVarEntryInfo(StringRef Name,OMPTargetGlobalVarEntryKind Flags,unsigned Order)3004     initializeDeviceGlobalVarEntryInfo(StringRef Name,
3005                                        OMPTargetGlobalVarEntryKind Flags,
3006                                        unsigned Order) {
3007   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
3008                                              "only required for the device "
3009                                              "code generation.");
3010   OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
3011   ++OffloadingEntriesNum;
3012 }
3013 
3014 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerDeviceGlobalVarEntryInfo(StringRef VarName,llvm::Constant * Addr,CharUnits VarSize,OMPTargetGlobalVarEntryKind Flags,llvm::GlobalValue::LinkageTypes Linkage)3015     registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
3016                                      CharUnits VarSize,
3017                                      OMPTargetGlobalVarEntryKind Flags,
3018                                      llvm::GlobalValue::LinkageTypes Linkage) {
3019   if (CGM.getLangOpts().OpenMPIsDevice) {
3020     auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3021     assert(Entry.isValid() && Entry.getFlags() == Flags &&
3022            "Entry not initialized!");
3023     assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
3024            "Resetting with the new address.");
3025     if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
3026       if (Entry.getVarSize().isZero()) {
3027         Entry.setVarSize(VarSize);
3028         Entry.setLinkage(Linkage);
3029       }
3030       return;
3031     }
3032     Entry.setVarSize(VarSize);
3033     Entry.setLinkage(Linkage);
3034     Entry.setAddress(Addr);
3035   } else {
3036     if (hasDeviceGlobalVarEntryInfo(VarName)) {
3037       auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3038       assert(Entry.isValid() && Entry.getFlags() == Flags &&
3039              "Entry not initialized!");
3040       assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
3041              "Resetting with the new address.");
3042       if (Entry.getVarSize().isZero()) {
3043         Entry.setVarSize(VarSize);
3044         Entry.setLinkage(Linkage);
3045       }
3046       return;
3047     }
3048     OffloadEntriesDeviceGlobalVar.try_emplace(
3049         VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
3050     ++OffloadingEntriesNum;
3051   }
3052 }
3053 
3054 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
actOnDeviceGlobalVarEntriesInfo(const OffloadDeviceGlobalVarEntryInfoActTy & Action)3055     actOnDeviceGlobalVarEntriesInfo(
3056         const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
3057   // Scan all target region entries and perform the provided action.
3058   for (const auto &E : OffloadEntriesDeviceGlobalVar)
3059     Action(E.getKey(), E.getValue());
3060 }
3061 
createOffloadEntry(llvm::Constant * ID,llvm::Constant * Addr,uint64_t Size,int32_t Flags,llvm::GlobalValue::LinkageTypes Linkage)3062 void CGOpenMPRuntime::createOffloadEntry(
3063     llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
3064     llvm::GlobalValue::LinkageTypes Linkage) {
3065   StringRef Name = Addr->getName();
3066   llvm::Module &M = CGM.getModule();
3067   llvm::LLVMContext &C = M.getContext();
3068 
3069   // Create constant string with the name.
3070   llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
3071 
3072   std::string StringName = getName({"omp_offloading", "entry_name"});
3073   auto *Str = new llvm::GlobalVariable(
3074       M, StrPtrInit->getType(), /*isConstant=*/true,
3075       llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
3076   Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3077 
3078   llvm::Constant *Data[] = {
3079       llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(ID, CGM.VoidPtrTy),
3080       llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(Str, CGM.Int8PtrTy),
3081       llvm::ConstantInt::get(CGM.SizeTy, Size),
3082       llvm::ConstantInt::get(CGM.Int32Ty, Flags),
3083       llvm::ConstantInt::get(CGM.Int32Ty, 0)};
3084   std::string EntryName = getName({"omp_offloading", "entry", ""});
3085   llvm::GlobalVariable *Entry = createGlobalStruct(
3086       CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
3087       Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
3088 
3089   // The entry has to be created in the section the linker expects it to be.
3090   Entry->setSection("omp_offloading_entries");
3091 }
3092 
createOffloadEntriesAndInfoMetadata()3093 void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
3094   // Emit the offloading entries and metadata so that the device codegen side
3095   // can easily figure out what to emit. The produced metadata looks like
3096   // this:
3097   //
3098   // !omp_offload.info = !{!1, ...}
3099   //
3100   // Right now we only generate metadata for function that contain target
3101   // regions.
3102 
3103   // If we are in simd mode or there are no entries, we don't need to do
3104   // anything.
3105   if (CGM.getLangOpts().OpenMPSimd || OffloadEntriesInfoManager.empty())
3106     return;
3107 
3108   llvm::Module &M = CGM.getModule();
3109   llvm::LLVMContext &C = M.getContext();
3110   SmallVector<std::tuple<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *,
3111                          SourceLocation, StringRef>,
3112               16>
3113       OrderedEntries(OffloadEntriesInfoManager.size());
3114   llvm::SmallVector<StringRef, 16> ParentFunctions(
3115       OffloadEntriesInfoManager.size());
3116 
3117   // Auxiliary methods to create metadata values and strings.
3118   auto &&GetMDInt = [this](unsigned V) {
3119     return llvm::ConstantAsMetadata::get(
3120         llvm::ConstantInt::get(CGM.Int32Ty, V));
3121   };
3122 
3123   auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
3124 
3125   // Create the offloading info metadata node.
3126   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
3127 
3128   // Create function that emits metadata for each target region entry;
3129   auto &&TargetRegionMetadataEmitter =
3130       [this, &C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt,
3131        &GetMDString](
3132           unsigned DeviceID, unsigned FileID, StringRef ParentName,
3133           unsigned Line,
3134           const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
3135         // Generate metadata for target regions. Each entry of this metadata
3136         // contains:
3137         // - Entry 0 -> Kind of this type of metadata (0).
3138         // - Entry 1 -> Device ID of the file where the entry was identified.
3139         // - Entry 2 -> File ID of the file where the entry was identified.
3140         // - Entry 3 -> Mangled name of the function where the entry was
3141         // identified.
3142         // - Entry 4 -> Line in the file where the entry was identified.
3143         // - Entry 5 -> Order the entry was created.
3144         // The first element of the metadata node is the kind.
3145         llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
3146                                  GetMDInt(FileID),      GetMDString(ParentName),
3147                                  GetMDInt(Line),        GetMDInt(E.getOrder())};
3148 
3149         SourceLocation Loc;
3150         for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(),
3151                   E = CGM.getContext().getSourceManager().fileinfo_end();
3152              I != E; ++I) {
3153           if (I->getFirst()->getUniqueID().getDevice() == DeviceID &&
3154               I->getFirst()->getUniqueID().getFile() == FileID) {
3155             Loc = CGM.getContext().getSourceManager().translateFileLineCol(
3156                 I->getFirst(), Line, 1);
3157             break;
3158           }
3159         }
3160         // Save this entry in the right position of the ordered entries array.
3161         OrderedEntries[E.getOrder()] = std::make_tuple(&E, Loc, ParentName);
3162         ParentFunctions[E.getOrder()] = ParentName;
3163 
3164         // Add metadata to the named metadata node.
3165         MD->addOperand(llvm::MDNode::get(C, Ops));
3166       };
3167 
3168   OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
3169       TargetRegionMetadataEmitter);
3170 
3171   // Create function that emits metadata for each device global variable entry;
3172   auto &&DeviceGlobalVarMetadataEmitter =
3173       [&C, &OrderedEntries, &GetMDInt, &GetMDString,
3174        MD](StringRef MangledName,
3175            const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
3176                &E) {
3177         // Generate metadata for global variables. Each entry of this metadata
3178         // contains:
3179         // - Entry 0 -> Kind of this type of metadata (1).
3180         // - Entry 1 -> Mangled name of the variable.
3181         // - Entry 2 -> Declare target kind.
3182         // - Entry 3 -> Order the entry was created.
3183         // The first element of the metadata node is the kind.
3184         llvm::Metadata *Ops[] = {
3185             GetMDInt(E.getKind()), GetMDString(MangledName),
3186             GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
3187 
3188         // Save this entry in the right position of the ordered entries array.
3189         OrderedEntries[E.getOrder()] =
3190             std::make_tuple(&E, SourceLocation(), MangledName);
3191 
3192         // Add metadata to the named metadata node.
3193         MD->addOperand(llvm::MDNode::get(C, Ops));
3194       };
3195 
3196   OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
3197       DeviceGlobalVarMetadataEmitter);
3198 
3199   for (const auto &E : OrderedEntries) {
3200     assert(std::get<0>(E) && "All ordered entries must exist!");
3201     if (const auto *CE =
3202             dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
3203                 std::get<0>(E))) {
3204       if (!CE->getID() || !CE->getAddress()) {
3205         // Do not blame the entry if the parent funtion is not emitted.
3206         StringRef FnName = ParentFunctions[CE->getOrder()];
3207         if (!CGM.GetGlobalValue(FnName))
3208           continue;
3209         unsigned DiagID = CGM.getDiags().getCustomDiagID(
3210             DiagnosticsEngine::Error,
3211             "Offloading entry for target region in %0 is incorrect: either the "
3212             "address or the ID is invalid.");
3213         CGM.getDiags().Report(std::get<1>(E), DiagID) << FnName;
3214         continue;
3215       }
3216       createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
3217                          CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
3218     } else if (const auto *CE = dyn_cast<OffloadEntriesInfoManagerTy::
3219                                              OffloadEntryInfoDeviceGlobalVar>(
3220                    std::get<0>(E))) {
3221       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
3222           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
3223               CE->getFlags());
3224       switch (Flags) {
3225       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
3226         if (CGM.getLangOpts().OpenMPIsDevice &&
3227             CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())
3228           continue;
3229         if (!CE->getAddress()) {
3230           unsigned DiagID = CGM.getDiags().getCustomDiagID(
3231               DiagnosticsEngine::Error, "Offloading entry for declare target "
3232                                         "variable %0 is incorrect: the "
3233                                         "address is invalid.");
3234           CGM.getDiags().Report(std::get<1>(E), DiagID) << std::get<2>(E);
3235           continue;
3236         }
3237         // The vaiable has no definition - no need to add the entry.
3238         if (CE->getVarSize().isZero())
3239           continue;
3240         break;
3241       }
3242       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
3243         assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||
3244                 (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&
3245                "Declaret target link address is set.");
3246         if (CGM.getLangOpts().OpenMPIsDevice)
3247           continue;
3248         if (!CE->getAddress()) {
3249           unsigned DiagID = CGM.getDiags().getCustomDiagID(
3250               DiagnosticsEngine::Error,
3251               "Offloading entry for declare target variable is incorrect: the "
3252               "address is invalid.");
3253           CGM.getDiags().Report(DiagID);
3254           continue;
3255         }
3256         break;
3257       }
3258       createOffloadEntry(CE->getAddress(), CE->getAddress(),
3259                          CE->getVarSize().getQuantity(), Flags,
3260                          CE->getLinkage());
3261     } else {
3262       llvm_unreachable("Unsupported entry kind.");
3263     }
3264   }
3265 }
3266 
3267 /// Loads all the offload entries information from the host IR
3268 /// metadata.
loadOffloadInfoMetadata()3269 void CGOpenMPRuntime::loadOffloadInfoMetadata() {
3270   // If we are in target mode, load the metadata from the host IR. This code has
3271   // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
3272 
3273   if (!CGM.getLangOpts().OpenMPIsDevice)
3274     return;
3275 
3276   if (CGM.getLangOpts().OMPHostIRFile.empty())
3277     return;
3278 
3279   auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
3280   if (auto EC = Buf.getError()) {
3281     CGM.getDiags().Report(diag::err_cannot_open_file)
3282         << CGM.getLangOpts().OMPHostIRFile << EC.message();
3283     return;
3284   }
3285 
3286   llvm::LLVMContext C;
3287   auto ME = expectedToErrorOrAndEmitErrors(
3288       C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
3289 
3290   if (auto EC = ME.getError()) {
3291     unsigned DiagID = CGM.getDiags().getCustomDiagID(
3292         DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
3293     CGM.getDiags().Report(DiagID)
3294         << CGM.getLangOpts().OMPHostIRFile << EC.message();
3295     return;
3296   }
3297 
3298   llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
3299   if (!MD)
3300     return;
3301 
3302   for (llvm::MDNode *MN : MD->operands()) {
3303     auto &&GetMDInt = [MN](unsigned Idx) {
3304       auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
3305       return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
3306     };
3307 
3308     auto &&GetMDString = [MN](unsigned Idx) {
3309       auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
3310       return V->getString();
3311     };
3312 
3313     switch (GetMDInt(0)) {
3314     default:
3315       llvm_unreachable("Unexpected metadata!");
3316       break;
3317     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
3318         OffloadingEntryInfoTargetRegion:
3319       OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
3320           /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
3321           /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
3322           /*Order=*/GetMDInt(5));
3323       break;
3324     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
3325         OffloadingEntryInfoDeviceGlobalVar:
3326       OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
3327           /*MangledName=*/GetMDString(1),
3328           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
3329               /*Flags=*/GetMDInt(2)),
3330           /*Order=*/GetMDInt(3));
3331       break;
3332     }
3333   }
3334 }
3335 
emitKmpRoutineEntryT(QualType KmpInt32Ty)3336 void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
3337   if (!KmpRoutineEntryPtrTy) {
3338     // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
3339     ASTContext &C = CGM.getContext();
3340     QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
3341     FunctionProtoType::ExtProtoInfo EPI;
3342     KmpRoutineEntryPtrQTy = C.getPointerType(
3343         C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
3344     KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
3345   }
3346 }
3347 
getTgtOffloadEntryQTy()3348 QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
3349   // Make sure the type of the entry is already created. This is the type we
3350   // have to create:
3351   // struct __tgt_offload_entry{
3352   //   void      *addr;       // Pointer to the offload entry info.
3353   //                          // (function or global)
3354   //   char      *name;       // Name of the function or global.
3355   //   size_t     size;       // Size of the entry info (0 if it a function).
3356   //   int32_t    flags;      // Flags associated with the entry, e.g. 'link'.
3357   //   int32_t    reserved;   // Reserved, to use by the runtime library.
3358   // };
3359   if (TgtOffloadEntryQTy.isNull()) {
3360     ASTContext &C = CGM.getContext();
3361     RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
3362     RD->startDefinition();
3363     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3364     addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
3365     addFieldToRecordDecl(C, RD, C.getSizeType());
3366     addFieldToRecordDecl(
3367         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
3368     addFieldToRecordDecl(
3369         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
3370     RD->completeDefinition();
3371     RD->addAttr(PackedAttr::CreateImplicit(C));
3372     TgtOffloadEntryQTy = C.getRecordType(RD);
3373   }
3374   return TgtOffloadEntryQTy;
3375 }
3376 
3377 namespace {
3378 struct PrivateHelpersTy {
PrivateHelpersTy__anonbe229beb1611::PrivateHelpersTy3379   PrivateHelpersTy(const Expr *OriginalRef, const VarDecl *Original,
3380                    const VarDecl *PrivateCopy, const VarDecl *PrivateElemInit)
3381       : OriginalRef(OriginalRef), Original(Original), PrivateCopy(PrivateCopy),
3382         PrivateElemInit(PrivateElemInit) {}
PrivateHelpersTy__anonbe229beb1611::PrivateHelpersTy3383   PrivateHelpersTy(const VarDecl *Original) : Original(Original) {}
3384   const Expr *OriginalRef = nullptr;
3385   const VarDecl *Original = nullptr;
3386   const VarDecl *PrivateCopy = nullptr;
3387   const VarDecl *PrivateElemInit = nullptr;
isLocalPrivate__anonbe229beb1611::PrivateHelpersTy3388   bool isLocalPrivate() const {
3389     return !OriginalRef && !PrivateCopy && !PrivateElemInit;
3390   }
3391 };
3392 typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
3393 } // anonymous namespace
3394 
isAllocatableDecl(const VarDecl * VD)3395 static bool isAllocatableDecl(const VarDecl *VD) {
3396   const VarDecl *CVD = VD->getCanonicalDecl();
3397   if (!CVD->hasAttr<OMPAllocateDeclAttr>())
3398     return false;
3399   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
3400   // Use the default allocation.
3401   return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc ||
3402             AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) &&
3403            !AA->getAllocator());
3404 }
3405 
3406 static RecordDecl *
createPrivatesRecordDecl(CodeGenModule & CGM,ArrayRef<PrivateDataTy> Privates)3407 createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
3408   if (!Privates.empty()) {
3409     ASTContext &C = CGM.getContext();
3410     // Build struct .kmp_privates_t. {
3411     //         /*  private vars  */
3412     //       };
3413     RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
3414     RD->startDefinition();
3415     for (const auto &Pair : Privates) {
3416       const VarDecl *VD = Pair.second.Original;
3417       QualType Type = VD->getType().getNonReferenceType();
3418       // If the private variable is a local variable with lvalue ref type,
3419       // allocate the pointer instead of the pointee type.
3420       if (Pair.second.isLocalPrivate()) {
3421         if (VD->getType()->isLValueReferenceType())
3422           Type = C.getPointerType(Type);
3423         if (isAllocatableDecl(VD))
3424           Type = C.getPointerType(Type);
3425       }
3426       FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
3427       if (VD->hasAttrs()) {
3428         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
3429              E(VD->getAttrs().end());
3430              I != E; ++I)
3431           FD->addAttr(*I);
3432       }
3433     }
3434     RD->completeDefinition();
3435     return RD;
3436   }
3437   return nullptr;
3438 }
3439 
3440 static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule & CGM,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpRoutineEntryPointerQTy)3441 createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
3442                          QualType KmpInt32Ty,
3443                          QualType KmpRoutineEntryPointerQTy) {
3444   ASTContext &C = CGM.getContext();
3445   // Build struct kmp_task_t {
3446   //         void *              shareds;
3447   //         kmp_routine_entry_t routine;
3448   //         kmp_int32           part_id;
3449   //         kmp_cmplrdata_t data1;
3450   //         kmp_cmplrdata_t data2;
3451   // For taskloops additional fields:
3452   //         kmp_uint64          lb;
3453   //         kmp_uint64          ub;
3454   //         kmp_int64           st;
3455   //         kmp_int32           liter;
3456   //         void *              reductions;
3457   //       };
3458   RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
3459   UD->startDefinition();
3460   addFieldToRecordDecl(C, UD, KmpInt32Ty);
3461   addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
3462   UD->completeDefinition();
3463   QualType KmpCmplrdataTy = C.getRecordType(UD);
3464   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
3465   RD->startDefinition();
3466   addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3467   addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
3468   addFieldToRecordDecl(C, RD, KmpInt32Ty);
3469   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3470   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3471   if (isOpenMPTaskLoopDirective(Kind)) {
3472     QualType KmpUInt64Ty =
3473         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
3474     QualType KmpInt64Ty =
3475         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
3476     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3477     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3478     addFieldToRecordDecl(C, RD, KmpInt64Ty);
3479     addFieldToRecordDecl(C, RD, KmpInt32Ty);
3480     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3481   }
3482   RD->completeDefinition();
3483   return RD;
3484 }
3485 
3486 static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule & CGM,QualType KmpTaskTQTy,ArrayRef<PrivateDataTy> Privates)3487 createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
3488                                      ArrayRef<PrivateDataTy> Privates) {
3489   ASTContext &C = CGM.getContext();
3490   // Build struct kmp_task_t_with_privates {
3491   //         kmp_task_t task_data;
3492   //         .kmp_privates_t. privates;
3493   //       };
3494   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
3495   RD->startDefinition();
3496   addFieldToRecordDecl(C, RD, KmpTaskTQTy);
3497   if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
3498     addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
3499   RD->completeDefinition();
3500   return RD;
3501 }
3502 
3503 /// Emit a proxy function which accepts kmp_task_t as the second
3504 /// argument.
3505 /// \code
3506 /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
3507 ///   TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
3508 ///   For taskloops:
3509 ///   tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3510 ///   tt->reductions, tt->shareds);
3511 ///   return 0;
3512 /// }
3513 /// \endcode
3514 static llvm::Function *
emitProxyTaskFunction(CodeGenModule & CGM,SourceLocation Loc,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy,QualType KmpTaskTQTy,QualType SharedsPtrTy,llvm::Function * TaskFunction,llvm::Value * TaskPrivatesMap)3515 emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
3516                       OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
3517                       QualType KmpTaskTWithPrivatesPtrQTy,
3518                       QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
3519                       QualType SharedsPtrTy, llvm::Function *TaskFunction,
3520                       llvm::Value *TaskPrivatesMap) {
3521   ASTContext &C = CGM.getContext();
3522   FunctionArgList Args;
3523   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
3524                             ImplicitParamDecl::Other);
3525   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3526                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
3527                                 ImplicitParamDecl::Other);
3528   Args.push_back(&GtidArg);
3529   Args.push_back(&TaskTypeArg);
3530   const auto &TaskEntryFnInfo =
3531       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3532   llvm::FunctionType *TaskEntryTy =
3533       CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
3534   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
3535   auto *TaskEntry = llvm::Function::Create(
3536       TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
3537   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
3538   TaskEntry->setDoesNotRecurse();
3539   CodeGenFunction CGF(CGM);
3540   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
3541                     Loc, Loc);
3542 
3543   // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
3544   // tt,
3545   // For taskloops:
3546   // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3547   // tt->task_data.shareds);
3548   llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
3549       CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
3550   LValue TDBase = CGF.EmitLoadOfPointerLValue(
3551       CGF.GetAddrOfLocalVar(&TaskTypeArg),
3552       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3553   const auto *KmpTaskTWithPrivatesQTyRD =
3554       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3555   LValue Base =
3556       CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3557   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
3558   auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
3559   LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
3560   llvm::Value *PartidParam = PartIdLVal.getPointer(CGF);
3561 
3562   auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
3563   LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
3564   llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3565       CGF.EmitLoadOfScalar(SharedsLVal, Loc),
3566       CGF.ConvertTypeForMem(SharedsPtrTy));
3567 
3568   auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
3569   llvm::Value *PrivatesParam;
3570   if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
3571     LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
3572     PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3573         PrivatesLVal.getPointer(CGF), CGF.VoidPtrTy);
3574   } else {
3575     PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
3576   }
3577 
3578   llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
3579                                TaskPrivatesMap,
3580                                CGF.Builder
3581                                    .CreatePointerBitCastOrAddrSpaceCast(
3582                                        TDBase.getAddress(CGF), CGF.VoidPtrTy)
3583                                    .getPointer()};
3584   SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
3585                                           std::end(CommonArgs));
3586   if (isOpenMPTaskLoopDirective(Kind)) {
3587     auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
3588     LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
3589     llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
3590     auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
3591     LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
3592     llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
3593     auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
3594     LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
3595     llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
3596     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3597     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
3598     llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
3599     auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
3600     LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
3601     llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
3602     CallArgs.push_back(LBParam);
3603     CallArgs.push_back(UBParam);
3604     CallArgs.push_back(StParam);
3605     CallArgs.push_back(LIParam);
3606     CallArgs.push_back(RParam);
3607   }
3608   CallArgs.push_back(SharedsParam);
3609 
3610   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
3611                                                   CallArgs);
3612   CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
3613                              CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
3614   CGF.FinishFunction();
3615   return TaskEntry;
3616 }
3617 
emitDestructorsFunction(CodeGenModule & CGM,SourceLocation Loc,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy)3618 static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
3619                                             SourceLocation Loc,
3620                                             QualType KmpInt32Ty,
3621                                             QualType KmpTaskTWithPrivatesPtrQTy,
3622                                             QualType KmpTaskTWithPrivatesQTy) {
3623   ASTContext &C = CGM.getContext();
3624   FunctionArgList Args;
3625   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
3626                             ImplicitParamDecl::Other);
3627   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3628                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
3629                                 ImplicitParamDecl::Other);
3630   Args.push_back(&GtidArg);
3631   Args.push_back(&TaskTypeArg);
3632   const auto &DestructorFnInfo =
3633       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3634   llvm::FunctionType *DestructorFnTy =
3635       CGM.getTypes().GetFunctionType(DestructorFnInfo);
3636   std::string Name =
3637       CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
3638   auto *DestructorFn =
3639       llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
3640                              Name, &CGM.getModule());
3641   CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
3642                                     DestructorFnInfo);
3643   DestructorFn->setDoesNotRecurse();
3644   CodeGenFunction CGF(CGM);
3645   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
3646                     Args, Loc, Loc);
3647 
3648   LValue Base = CGF.EmitLoadOfPointerLValue(
3649       CGF.GetAddrOfLocalVar(&TaskTypeArg),
3650       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3651   const auto *KmpTaskTWithPrivatesQTyRD =
3652       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3653   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3654   Base = CGF.EmitLValueForField(Base, *FI);
3655   for (const auto *Field :
3656        cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
3657     if (QualType::DestructionKind DtorKind =
3658             Field->getType().isDestructedType()) {
3659       LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
3660       CGF.pushDestroy(DtorKind, FieldLValue.getAddress(CGF), Field->getType());
3661     }
3662   }
3663   CGF.FinishFunction();
3664   return DestructorFn;
3665 }
3666 
3667 /// Emit a privates mapping function for correct handling of private and
3668 /// firstprivate variables.
3669 /// \code
3670 /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
3671 /// **noalias priv1,...,  <tyn> **noalias privn) {
3672 ///   *priv1 = &.privates.priv1;
3673 ///   ...;
3674 ///   *privn = &.privates.privn;
3675 /// }
3676 /// \endcode
3677 static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPTaskDataTy & Data,QualType PrivatesQTy,ArrayRef<PrivateDataTy> Privates)3678 emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
3679                                const OMPTaskDataTy &Data, QualType PrivatesQTy,
3680                                ArrayRef<PrivateDataTy> Privates) {
3681   ASTContext &C = CGM.getContext();
3682   FunctionArgList Args;
3683   ImplicitParamDecl TaskPrivatesArg(
3684       C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3685       C.getPointerType(PrivatesQTy).withConst().withRestrict(),
3686       ImplicitParamDecl::Other);
3687   Args.push_back(&TaskPrivatesArg);
3688   llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, unsigned> PrivateVarsPos;
3689   unsigned Counter = 1;
3690   for (const Expr *E : Data.PrivateVars) {
3691     Args.push_back(ImplicitParamDecl::Create(
3692         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3693         C.getPointerType(C.getPointerType(E->getType()))
3694             .withConst()
3695             .withRestrict(),
3696         ImplicitParamDecl::Other));
3697     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3698     PrivateVarsPos[VD] = Counter;
3699     ++Counter;
3700   }
3701   for (const Expr *E : Data.FirstprivateVars) {
3702     Args.push_back(ImplicitParamDecl::Create(
3703         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3704         C.getPointerType(C.getPointerType(E->getType()))
3705             .withConst()
3706             .withRestrict(),
3707         ImplicitParamDecl::Other));
3708     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3709     PrivateVarsPos[VD] = Counter;
3710     ++Counter;
3711   }
3712   for (const Expr *E : Data.LastprivateVars) {
3713     Args.push_back(ImplicitParamDecl::Create(
3714         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3715         C.getPointerType(C.getPointerType(E->getType()))
3716             .withConst()
3717             .withRestrict(),
3718         ImplicitParamDecl::Other));
3719     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3720     PrivateVarsPos[VD] = Counter;
3721     ++Counter;
3722   }
3723   for (const VarDecl *VD : Data.PrivateLocals) {
3724     QualType Ty = VD->getType().getNonReferenceType();
3725     if (VD->getType()->isLValueReferenceType())
3726       Ty = C.getPointerType(Ty);
3727     if (isAllocatableDecl(VD))
3728       Ty = C.getPointerType(Ty);
3729     Args.push_back(ImplicitParamDecl::Create(
3730         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3731         C.getPointerType(C.getPointerType(Ty)).withConst().withRestrict(),
3732         ImplicitParamDecl::Other));
3733     PrivateVarsPos[VD] = Counter;
3734     ++Counter;
3735   }
3736   const auto &TaskPrivatesMapFnInfo =
3737       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3738   llvm::FunctionType *TaskPrivatesMapTy =
3739       CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
3740   std::string Name =
3741       CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
3742   auto *TaskPrivatesMap = llvm::Function::Create(
3743       TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
3744       &CGM.getModule());
3745   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
3746                                     TaskPrivatesMapFnInfo);
3747   if (CGM.getLangOpts().Optimize) {
3748     TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
3749     TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
3750     TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
3751   }
3752   CodeGenFunction CGF(CGM);
3753   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
3754                     TaskPrivatesMapFnInfo, Args, Loc, Loc);
3755 
3756   // *privi = &.privates.privi;
3757   LValue Base = CGF.EmitLoadOfPointerLValue(
3758       CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
3759       TaskPrivatesArg.getType()->castAs<PointerType>());
3760   const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
3761   Counter = 0;
3762   for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
3763     LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
3764     const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
3765     LValue RefLVal =
3766         CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
3767     LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
3768         RefLVal.getAddress(CGF), RefLVal.getType()->castAs<PointerType>());
3769     CGF.EmitStoreOfScalar(FieldLVal.getPointer(CGF), RefLoadLVal);
3770     ++Counter;
3771   }
3772   CGF.FinishFunction();
3773   return TaskPrivatesMap;
3774 }
3775 
3776 /// Emit initialization for private variables in task-based directives.
emitPrivatesInit(CodeGenFunction & CGF,const OMPExecutableDirective & D,Address KmpTaskSharedsPtr,LValue TDBase,const RecordDecl * KmpTaskTWithPrivatesQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool ForDup)3777 static void emitPrivatesInit(CodeGenFunction &CGF,
3778                              const OMPExecutableDirective &D,
3779                              Address KmpTaskSharedsPtr, LValue TDBase,
3780                              const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3781                              QualType SharedsTy, QualType SharedsPtrTy,
3782                              const OMPTaskDataTy &Data,
3783                              ArrayRef<PrivateDataTy> Privates, bool ForDup) {
3784   ASTContext &C = CGF.getContext();
3785   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3786   LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
3787   OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
3788                                  ? OMPD_taskloop
3789                                  : OMPD_task;
3790   const CapturedStmt &CS = *D.getCapturedStmt(Kind);
3791   CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
3792   LValue SrcBase;
3793   bool IsTargetTask =
3794       isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
3795       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
3796   // For target-based directives skip 4 firstprivate arrays BasePointersArray,
3797   // PointersArray, SizesArray, and MappersArray. The original variables for
3798   // these arrays are not captured and we get their addresses explicitly.
3799   if ((!IsTargetTask && !Data.FirstprivateVars.empty() && ForDup) ||
3800       (IsTargetTask && KmpTaskSharedsPtr.isValid())) {
3801     SrcBase = CGF.MakeAddrLValue(
3802         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3803             KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
3804         SharedsTy);
3805   }
3806   FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
3807   for (const PrivateDataTy &Pair : Privates) {
3808     // Do not initialize private locals.
3809     if (Pair.second.isLocalPrivate()) {
3810       ++FI;
3811       continue;
3812     }
3813     const VarDecl *VD = Pair.second.PrivateCopy;
3814     const Expr *Init = VD->getAnyInitializer();
3815     if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
3816                              !CGF.isTrivialInitializer(Init)))) {
3817       LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
3818       if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
3819         const VarDecl *OriginalVD = Pair.second.Original;
3820         // Check if the variable is the target-based BasePointersArray,
3821         // PointersArray, SizesArray, or MappersArray.
3822         LValue SharedRefLValue;
3823         QualType Type = PrivateLValue.getType();
3824         const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
3825         if (IsTargetTask && !SharedField) {
3826           assert(isa<ImplicitParamDecl>(OriginalVD) &&
3827                  isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
3828                  cast<CapturedDecl>(OriginalVD->getDeclContext())
3829                          ->getNumParams() == 0 &&
3830                  isa<TranslationUnitDecl>(
3831                      cast<CapturedDecl>(OriginalVD->getDeclContext())
3832                          ->getDeclContext()) &&
3833                  "Expected artificial target data variable.");
3834           SharedRefLValue =
3835               CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
3836         } else if (ForDup) {
3837           SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
3838           SharedRefLValue = CGF.MakeAddrLValue(
3839               Address(SharedRefLValue.getPointer(CGF),
3840                       C.getDeclAlign(OriginalVD)),
3841               SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
3842               SharedRefLValue.getTBAAInfo());
3843         } else if (CGF.LambdaCaptureFields.count(
3844                        Pair.second.Original->getCanonicalDecl()) > 0 ||
3845                    dyn_cast_or_null<BlockDecl>(CGF.CurCodeDecl)) {
3846           SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
3847         } else {
3848           // Processing for implicitly captured variables.
3849           InlinedOpenMPRegionRAII Region(
3850               CGF, [](CodeGenFunction &, PrePostActionTy &) {}, OMPD_unknown,
3851               /*HasCancel=*/false);
3852           SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
3853         }
3854         if (Type->isArrayType()) {
3855           // Initialize firstprivate array.
3856           if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
3857             // Perform simple memcpy.
3858             CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
3859           } else {
3860             // Initialize firstprivate array using element-by-element
3861             // initialization.
3862             CGF.EmitOMPAggregateAssign(
3863                 PrivateLValue.getAddress(CGF), SharedRefLValue.getAddress(CGF),
3864                 Type,
3865                 [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
3866                                                   Address SrcElement) {
3867                   // Clean up any temporaries needed by the initialization.
3868                   CodeGenFunction::OMPPrivateScope InitScope(CGF);
3869                   InitScope.addPrivate(
3870                       Elem, [SrcElement]() -> Address { return SrcElement; });
3871                   (void)InitScope.Privatize();
3872                   // Emit initialization for single element.
3873                   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
3874                       CGF, &CapturesInfo);
3875                   CGF.EmitAnyExprToMem(Init, DestElement,
3876                                        Init->getType().getQualifiers(),
3877                                        /*IsInitializer=*/false);
3878                 });
3879           }
3880         } else {
3881           CodeGenFunction::OMPPrivateScope InitScope(CGF);
3882           InitScope.addPrivate(Elem, [SharedRefLValue, &CGF]() -> Address {
3883             return SharedRefLValue.getAddress(CGF);
3884           });
3885           (void)InitScope.Privatize();
3886           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
3887           CGF.EmitExprAsInit(Init, VD, PrivateLValue,
3888                              /*capturedByInit=*/false);
3889         }
3890       } else {
3891         CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
3892       }
3893     }
3894     ++FI;
3895   }
3896 }
3897 
3898 /// Check if duplication function is required for taskloops.
checkInitIsRequired(CodeGenFunction & CGF,ArrayRef<PrivateDataTy> Privates)3899 static bool checkInitIsRequired(CodeGenFunction &CGF,
3900                                 ArrayRef<PrivateDataTy> Privates) {
3901   bool InitRequired = false;
3902   for (const PrivateDataTy &Pair : Privates) {
3903     if (Pair.second.isLocalPrivate())
3904       continue;
3905     const VarDecl *VD = Pair.second.PrivateCopy;
3906     const Expr *Init = VD->getAnyInitializer();
3907     InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
3908                                     !CGF.isTrivialInitializer(Init));
3909     if (InitRequired)
3910       break;
3911   }
3912   return InitRequired;
3913 }
3914 
3915 
3916 /// Emit task_dup function (for initialization of
3917 /// private/firstprivate/lastprivate vars and last_iter flag)
3918 /// \code
3919 /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
3920 /// lastpriv) {
3921 /// // setup lastprivate flag
3922 ///    task_dst->last = lastpriv;
3923 /// // could be constructor calls here...
3924 /// }
3925 /// \endcode
3926 static llvm::Value *
emitTaskDupFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPExecutableDirective & D,QualType KmpTaskTWithPrivatesPtrQTy,const RecordDecl * KmpTaskTWithPrivatesQTyRD,const RecordDecl * KmpTaskTQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool WithLastIter)3927 emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
3928                     const OMPExecutableDirective &D,
3929                     QualType KmpTaskTWithPrivatesPtrQTy,
3930                     const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3931                     const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
3932                     QualType SharedsPtrTy, const OMPTaskDataTy &Data,
3933                     ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
3934   ASTContext &C = CGM.getContext();
3935   FunctionArgList Args;
3936   ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3937                            KmpTaskTWithPrivatesPtrQTy,
3938                            ImplicitParamDecl::Other);
3939   ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3940                            KmpTaskTWithPrivatesPtrQTy,
3941                            ImplicitParamDecl::Other);
3942   ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3943                                 ImplicitParamDecl::Other);
3944   Args.push_back(&DstArg);
3945   Args.push_back(&SrcArg);
3946   Args.push_back(&LastprivArg);
3947   const auto &TaskDupFnInfo =
3948       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3949   llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
3950   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
3951   auto *TaskDup = llvm::Function::Create(
3952       TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
3953   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
3954   TaskDup->setDoesNotRecurse();
3955   CodeGenFunction CGF(CGM);
3956   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
3957                     Loc);
3958 
3959   LValue TDBase = CGF.EmitLoadOfPointerLValue(
3960       CGF.GetAddrOfLocalVar(&DstArg),
3961       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3962   // task_dst->liter = lastpriv;
3963   if (WithLastIter) {
3964     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3965     LValue Base = CGF.EmitLValueForField(
3966         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3967     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
3968     llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
3969         CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
3970     CGF.EmitStoreOfScalar(Lastpriv, LILVal);
3971   }
3972 
3973   // Emit initial values for private copies (if any).
3974   assert(!Privates.empty());
3975   Address KmpTaskSharedsPtr = Address::invalid();
3976   if (!Data.FirstprivateVars.empty()) {
3977     LValue TDBase = CGF.EmitLoadOfPointerLValue(
3978         CGF.GetAddrOfLocalVar(&SrcArg),
3979         KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3980     LValue Base = CGF.EmitLValueForField(
3981         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3982     KmpTaskSharedsPtr = Address(
3983         CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
3984                                  Base, *std::next(KmpTaskTQTyRD->field_begin(),
3985                                                   KmpTaskTShareds)),
3986                              Loc),
3987         CGM.getNaturalTypeAlignment(SharedsTy));
3988   }
3989   emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
3990                    SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
3991   CGF.FinishFunction();
3992   return TaskDup;
3993 }
3994 
3995 /// Checks if destructor function is required to be generated.
3996 /// \return true if cleanups are required, false otherwise.
3997 static bool
checkDestructorsRequired(const RecordDecl * KmpTaskTWithPrivatesQTyRD,ArrayRef<PrivateDataTy> Privates)3998 checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3999                          ArrayRef<PrivateDataTy> Privates) {
4000   for (const PrivateDataTy &P : Privates) {
4001     if (P.second.isLocalPrivate())
4002       continue;
4003     QualType Ty = P.second.Original->getType().getNonReferenceType();
4004     if (Ty.isDestructedType())
4005       return true;
4006   }
4007   return false;
4008 }
4009 
4010 namespace {
4011 /// Loop generator for OpenMP iterator expression.
4012 class OMPIteratorGeneratorScope final
4013     : public CodeGenFunction::OMPPrivateScope {
4014   CodeGenFunction &CGF;
4015   const OMPIteratorExpr *E = nullptr;
4016   SmallVector<CodeGenFunction::JumpDest, 4> ContDests;
4017   SmallVector<CodeGenFunction::JumpDest, 4> ExitDests;
4018   OMPIteratorGeneratorScope() = delete;
4019   OMPIteratorGeneratorScope(OMPIteratorGeneratorScope &) = delete;
4020 
4021 public:
OMPIteratorGeneratorScope(CodeGenFunction & CGF,const OMPIteratorExpr * E)4022   OMPIteratorGeneratorScope(CodeGenFunction &CGF, const OMPIteratorExpr *E)
4023       : CodeGenFunction::OMPPrivateScope(CGF), CGF(CGF), E(E) {
4024     if (!E)
4025       return;
4026     SmallVector<llvm::Value *, 4> Uppers;
4027     for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
4028       Uppers.push_back(CGF.EmitScalarExpr(E->getHelper(I).Upper));
4029       const auto *VD = cast<VarDecl>(E->getIteratorDecl(I));
4030       addPrivate(VD, [&CGF, VD]() {
4031         return CGF.CreateMemTemp(VD->getType(), VD->getName());
4032       });
4033       const OMPIteratorHelperData &HelperData = E->getHelper(I);
4034       addPrivate(HelperData.CounterVD, [&CGF, &HelperData]() {
4035         return CGF.CreateMemTemp(HelperData.CounterVD->getType(),
4036                                  "counter.addr");
4037       });
4038     }
4039     Privatize();
4040 
4041     for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
4042       const OMPIteratorHelperData &HelperData = E->getHelper(I);
4043       LValue CLVal =
4044           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(HelperData.CounterVD),
4045                              HelperData.CounterVD->getType());
4046       // Counter = 0;
4047       CGF.EmitStoreOfScalar(
4048           llvm::ConstantInt::get(CLVal.getAddress(CGF).getElementType(), 0),
4049           CLVal);
4050       CodeGenFunction::JumpDest &ContDest =
4051           ContDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.cont"));
4052       CodeGenFunction::JumpDest &ExitDest =
4053           ExitDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.exit"));
4054       // N = <number-of_iterations>;
4055       llvm::Value *N = Uppers[I];
4056       // cont:
4057       // if (Counter < N) goto body; else goto exit;
4058       CGF.EmitBlock(ContDest.getBlock());
4059       auto *CVal =
4060           CGF.EmitLoadOfScalar(CLVal, HelperData.CounterVD->getLocation());
4061       llvm::Value *Cmp =
4062           HelperData.CounterVD->getType()->isSignedIntegerOrEnumerationType()
4063               ? CGF.Builder.CreateICmpSLT(CVal, N)
4064               : CGF.Builder.CreateICmpULT(CVal, N);
4065       llvm::BasicBlock *BodyBB = CGF.createBasicBlock("iter.body");
4066       CGF.Builder.CreateCondBr(Cmp, BodyBB, ExitDest.getBlock());
4067       // body:
4068       CGF.EmitBlock(BodyBB);
4069       // Iteri = Begini + Counter * Stepi;
4070       CGF.EmitIgnoredExpr(HelperData.Update);
4071     }
4072   }
~OMPIteratorGeneratorScope()4073   ~OMPIteratorGeneratorScope() {
4074     if (!E)
4075       return;
4076     for (unsigned I = E->numOfIterators(); I > 0; --I) {
4077       // Counter = Counter + 1;
4078       const OMPIteratorHelperData &HelperData = E->getHelper(I - 1);
4079       CGF.EmitIgnoredExpr(HelperData.CounterUpdate);
4080       // goto cont;
4081       CGF.EmitBranchThroughCleanup(ContDests[I - 1]);
4082       // exit:
4083       CGF.EmitBlock(ExitDests[I - 1].getBlock(), /*IsFinished=*/I == 1);
4084     }
4085   }
4086 };
4087 } // namespace
4088 
4089 static std::pair<llvm::Value *, llvm::Value *>
getPointerAndSize(CodeGenFunction & CGF,const Expr * E)4090 getPointerAndSize(CodeGenFunction &CGF, const Expr *E) {
4091   const auto *OASE = dyn_cast<OMPArrayShapingExpr>(E);
4092   llvm::Value *Addr;
4093   if (OASE) {
4094     const Expr *Base = OASE->getBase();
4095     Addr = CGF.EmitScalarExpr(Base);
4096   } else {
4097     Addr = CGF.EmitLValue(E).getPointer(CGF);
4098   }
4099   llvm::Value *SizeVal;
4100   QualType Ty = E->getType();
4101   if (OASE) {
4102     SizeVal = CGF.getTypeSize(OASE->getBase()->getType()->getPointeeType());
4103     for (const Expr *SE : OASE->getDimensions()) {
4104       llvm::Value *Sz = CGF.EmitScalarExpr(SE);
4105       Sz = CGF.EmitScalarConversion(
4106           Sz, SE->getType(), CGF.getContext().getSizeType(), SE->getExprLoc());
4107       SizeVal = CGF.Builder.CreateNUWMul(SizeVal, Sz);
4108     }
4109   } else if (const auto *ASE =
4110                  dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
4111     LValue UpAddrLVal =
4112         CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false);
4113     llvm::Value *UpAddr =
4114         CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(CGF), /*Idx0=*/1);
4115     llvm::Value *LowIntPtr = CGF.Builder.CreatePtrToInt(Addr, CGF.SizeTy);
4116     llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGF.SizeTy);
4117     SizeVal = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
4118   } else {
4119     SizeVal = CGF.getTypeSize(Ty);
4120   }
4121   return std::make_pair(Addr, SizeVal);
4122 }
4123 
4124 /// Builds kmp_depend_info, if it is not built yet, and builds flags type.
getKmpAffinityType(ASTContext & C,QualType & KmpTaskAffinityInfoTy)4125 static void getKmpAffinityType(ASTContext &C, QualType &KmpTaskAffinityInfoTy) {
4126   QualType FlagsTy = C.getIntTypeForBitwidth(32, /*Signed=*/false);
4127   if (KmpTaskAffinityInfoTy.isNull()) {
4128     RecordDecl *KmpAffinityInfoRD =
4129         C.buildImplicitRecord("kmp_task_affinity_info_t");
4130     KmpAffinityInfoRD->startDefinition();
4131     addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getIntPtrType());
4132     addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getSizeType());
4133     addFieldToRecordDecl(C, KmpAffinityInfoRD, FlagsTy);
4134     KmpAffinityInfoRD->completeDefinition();
4135     KmpTaskAffinityInfoTy = C.getRecordType(KmpAffinityInfoRD);
4136   }
4137 }
4138 
4139 CGOpenMPRuntime::TaskResultTy
emitTaskInit(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const OMPTaskDataTy & Data)4140 CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
4141                               const OMPExecutableDirective &D,
4142                               llvm::Function *TaskFunction, QualType SharedsTy,
4143                               Address Shareds, const OMPTaskDataTy &Data) {
4144   ASTContext &C = CGM.getContext();
4145   llvm::SmallVector<PrivateDataTy, 4> Privates;
4146   // Aggregate privates and sort them by the alignment.
4147   const auto *I = Data.PrivateCopies.begin();
4148   for (const Expr *E : Data.PrivateVars) {
4149     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4150     Privates.emplace_back(
4151         C.getDeclAlign(VD),
4152         PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4153                          /*PrivateElemInit=*/nullptr));
4154     ++I;
4155   }
4156   I = Data.FirstprivateCopies.begin();
4157   const auto *IElemInitRef = Data.FirstprivateInits.begin();
4158   for (const Expr *E : Data.FirstprivateVars) {
4159     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4160     Privates.emplace_back(
4161         C.getDeclAlign(VD),
4162         PrivateHelpersTy(
4163             E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4164             cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
4165     ++I;
4166     ++IElemInitRef;
4167   }
4168   I = Data.LastprivateCopies.begin();
4169   for (const Expr *E : Data.LastprivateVars) {
4170     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4171     Privates.emplace_back(
4172         C.getDeclAlign(VD),
4173         PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4174                          /*PrivateElemInit=*/nullptr));
4175     ++I;
4176   }
4177   for (const VarDecl *VD : Data.PrivateLocals) {
4178     if (isAllocatableDecl(VD))
4179       Privates.emplace_back(CGM.getPointerAlign(), PrivateHelpersTy(VD));
4180     else
4181       Privates.emplace_back(C.getDeclAlign(VD), PrivateHelpersTy(VD));
4182   }
4183   llvm::stable_sort(Privates,
4184                     [](const PrivateDataTy &L, const PrivateDataTy &R) {
4185                       return L.first > R.first;
4186                     });
4187   QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
4188   // Build type kmp_routine_entry_t (if not built yet).
4189   emitKmpRoutineEntryT(KmpInt32Ty);
4190   // Build type kmp_task_t (if not built yet).
4191   if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
4192     if (SavedKmpTaskloopTQTy.isNull()) {
4193       SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4194           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4195     }
4196     KmpTaskTQTy = SavedKmpTaskloopTQTy;
4197   } else {
4198     assert((D.getDirectiveKind() == OMPD_task ||
4199             isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
4200             isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
4201            "Expected taskloop, task or target directive");
4202     if (SavedKmpTaskTQTy.isNull()) {
4203       SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4204           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4205     }
4206     KmpTaskTQTy = SavedKmpTaskTQTy;
4207   }
4208   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
4209   // Build particular struct kmp_task_t for the given task.
4210   const RecordDecl *KmpTaskTWithPrivatesQTyRD =
4211       createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
4212   QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
4213   QualType KmpTaskTWithPrivatesPtrQTy =
4214       C.getPointerType(KmpTaskTWithPrivatesQTy);
4215   llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
4216   llvm::Type *KmpTaskTWithPrivatesPtrTy =
4217       KmpTaskTWithPrivatesTy->getPointerTo();
4218   llvm::Value *KmpTaskTWithPrivatesTySize =
4219       CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
4220   QualType SharedsPtrTy = C.getPointerType(SharedsTy);
4221 
4222   // Emit initial values for private copies (if any).
4223   llvm::Value *TaskPrivatesMap = nullptr;
4224   llvm::Type *TaskPrivatesMapTy =
4225       std::next(TaskFunction->arg_begin(), 3)->getType();
4226   if (!Privates.empty()) {
4227     auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4228     TaskPrivatesMap =
4229         emitTaskPrivateMappingFunction(CGM, Loc, Data, FI->getType(), Privates);
4230     TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4231         TaskPrivatesMap, TaskPrivatesMapTy);
4232   } else {
4233     TaskPrivatesMap = llvm::ConstantPointerNull::get(
4234         cast<llvm::PointerType>(TaskPrivatesMapTy));
4235   }
4236   // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
4237   // kmp_task_t *tt);
4238   llvm::Function *TaskEntry = emitProxyTaskFunction(
4239       CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
4240       KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
4241       TaskPrivatesMap);
4242 
4243   // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
4244   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
4245   // kmp_routine_entry_t *task_entry);
4246   // Task flags. Format is taken from
4247   // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h,
4248   // description of kmp_tasking_flags struct.
4249   enum {
4250     TiedFlag = 0x1,
4251     FinalFlag = 0x2,
4252     DestructorsFlag = 0x8,
4253     PriorityFlag = 0x20,
4254     DetachableFlag = 0x40,
4255   };
4256   unsigned Flags = Data.Tied ? TiedFlag : 0;
4257   bool NeedsCleanup = false;
4258   if (!Privates.empty()) {
4259     NeedsCleanup =
4260         checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD, Privates);
4261     if (NeedsCleanup)
4262       Flags = Flags | DestructorsFlag;
4263   }
4264   if (Data.Priority.getInt())
4265     Flags = Flags | PriorityFlag;
4266   if (D.hasClausesOfKind<OMPDetachClause>())
4267     Flags = Flags | DetachableFlag;
4268   llvm::Value *TaskFlags =
4269       Data.Final.getPointer()
4270           ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
4271                                      CGF.Builder.getInt32(FinalFlag),
4272                                      CGF.Builder.getInt32(/*C=*/0))
4273           : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
4274   TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
4275   llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
4276   SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
4277       getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
4278       SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4279           TaskEntry, KmpRoutineEntryPtrTy)};
4280   llvm::Value *NewTask;
4281   if (D.hasClausesOfKind<OMPNowaitClause>()) {
4282     // Check if we have any device clause associated with the directive.
4283     const Expr *Device = nullptr;
4284     if (auto *C = D.getSingleClause<OMPDeviceClause>())
4285       Device = C->getDevice();
4286     // Emit device ID if any otherwise use default value.
4287     llvm::Value *DeviceID;
4288     if (Device)
4289       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
4290                                            CGF.Int64Ty, /*isSigned=*/true);
4291     else
4292       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
4293     AllocArgs.push_back(DeviceID);
4294     NewTask = CGF.EmitRuntimeCall(
4295         OMPBuilder.getOrCreateRuntimeFunction(
4296             CGM.getModule(), OMPRTL___kmpc_omp_target_task_alloc),
4297         AllocArgs);
4298   } else {
4299     NewTask =
4300         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4301                                 CGM.getModule(), OMPRTL___kmpc_omp_task_alloc),
4302                             AllocArgs);
4303   }
4304   // Emit detach clause initialization.
4305   // evt = (typeof(evt))__kmpc_task_allow_completion_event(loc, tid,
4306   // task_descriptor);
4307   if (const auto *DC = D.getSingleClause<OMPDetachClause>()) {
4308     const Expr *Evt = DC->getEventHandler()->IgnoreParenImpCasts();
4309     LValue EvtLVal = CGF.EmitLValue(Evt);
4310 
4311     // Build kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4312     // int gtid, kmp_task_t *task);
4313     llvm::Value *Loc = emitUpdateLocation(CGF, DC->getBeginLoc());
4314     llvm::Value *Tid = getThreadID(CGF, DC->getBeginLoc());
4315     Tid = CGF.Builder.CreateIntCast(Tid, CGF.IntTy, /*isSigned=*/false);
4316     llvm::Value *EvtVal = CGF.EmitRuntimeCall(
4317         OMPBuilder.getOrCreateRuntimeFunction(
4318             CGM.getModule(), OMPRTL___kmpc_task_allow_completion_event),
4319         {Loc, Tid, NewTask});
4320     EvtVal = CGF.EmitScalarConversion(EvtVal, C.VoidPtrTy, Evt->getType(),
4321                                       Evt->getExprLoc());
4322     CGF.EmitStoreOfScalar(EvtVal, EvtLVal);
4323   }
4324   // Process affinity clauses.
4325   if (D.hasClausesOfKind<OMPAffinityClause>()) {
4326     // Process list of affinity data.
4327     ASTContext &C = CGM.getContext();
4328     Address AffinitiesArray = Address::invalid();
4329     // Calculate number of elements to form the array of affinity data.
4330     llvm::Value *NumOfElements = nullptr;
4331     unsigned NumAffinities = 0;
4332     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4333       if (const Expr *Modifier = C->getModifier()) {
4334         const auto *IE = cast<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts());
4335         for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4336           llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4337           Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
4338           NumOfElements =
4339               NumOfElements ? CGF.Builder.CreateNUWMul(NumOfElements, Sz) : Sz;
4340         }
4341       } else {
4342         NumAffinities += C->varlist_size();
4343       }
4344     }
4345     getKmpAffinityType(CGM.getContext(), KmpTaskAffinityInfoTy);
4346     // Fields ids in kmp_task_affinity_info record.
4347     enum RTLAffinityInfoFieldsTy { BaseAddr, Len, Flags };
4348 
4349     QualType KmpTaskAffinityInfoArrayTy;
4350     if (NumOfElements) {
4351       NumOfElements = CGF.Builder.CreateNUWAdd(
4352           llvm::ConstantInt::get(CGF.SizeTy, NumAffinities), NumOfElements);
4353       OpaqueValueExpr OVE(
4354           Loc,
4355           C.getIntTypeForBitwidth(C.getTypeSize(C.getSizeType()), /*Signed=*/0),
4356           VK_RValue);
4357       CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE,
4358                                                     RValue::get(NumOfElements));
4359       KmpTaskAffinityInfoArrayTy =
4360           C.getVariableArrayType(KmpTaskAffinityInfoTy, &OVE, ArrayType::Normal,
4361                                  /*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
4362       // Properly emit variable-sized array.
4363       auto *PD = ImplicitParamDecl::Create(C, KmpTaskAffinityInfoArrayTy,
4364                                            ImplicitParamDecl::Other);
4365       CGF.EmitVarDecl(*PD);
4366       AffinitiesArray = CGF.GetAddrOfLocalVar(PD);
4367       NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
4368                                                 /*isSigned=*/false);
4369     } else {
4370       KmpTaskAffinityInfoArrayTy = C.getConstantArrayType(
4371           KmpTaskAffinityInfoTy,
4372           llvm::APInt(C.getTypeSize(C.getSizeType()), NumAffinities), nullptr,
4373           ArrayType::Normal, /*IndexTypeQuals=*/0);
4374       AffinitiesArray =
4375           CGF.CreateMemTemp(KmpTaskAffinityInfoArrayTy, ".affs.arr.addr");
4376       AffinitiesArray = CGF.Builder.CreateConstArrayGEP(AffinitiesArray, 0);
4377       NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumAffinities,
4378                                              /*isSigned=*/false);
4379     }
4380 
4381     const auto *KmpAffinityInfoRD = KmpTaskAffinityInfoTy->getAsRecordDecl();
4382     // Fill array by elements without iterators.
4383     unsigned Pos = 0;
4384     bool HasIterator = false;
4385     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4386       if (C->getModifier()) {
4387         HasIterator = true;
4388         continue;
4389       }
4390       for (const Expr *E : C->varlists()) {
4391         llvm::Value *Addr;
4392         llvm::Value *Size;
4393         std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4394         LValue Base =
4395             CGF.MakeAddrLValue(CGF.Builder.CreateConstGEP(AffinitiesArray, Pos),
4396                                KmpTaskAffinityInfoTy);
4397         // affs[i].base_addr = &<Affinities[i].second>;
4398         LValue BaseAddrLVal = CGF.EmitLValueForField(
4399             Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
4400         CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4401                               BaseAddrLVal);
4402         // affs[i].len = sizeof(<Affinities[i].second>);
4403         LValue LenLVal = CGF.EmitLValueForField(
4404             Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
4405         CGF.EmitStoreOfScalar(Size, LenLVal);
4406         ++Pos;
4407       }
4408     }
4409     LValue PosLVal;
4410     if (HasIterator) {
4411       PosLVal = CGF.MakeAddrLValue(
4412           CGF.CreateMemTemp(C.getSizeType(), "affs.counter.addr"),
4413           C.getSizeType());
4414       CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
4415     }
4416     // Process elements with iterators.
4417     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4418       const Expr *Modifier = C->getModifier();
4419       if (!Modifier)
4420         continue;
4421       OMPIteratorGeneratorScope IteratorScope(
4422           CGF, cast_or_null<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts()));
4423       for (const Expr *E : C->varlists()) {
4424         llvm::Value *Addr;
4425         llvm::Value *Size;
4426         std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4427         llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4428         LValue Base = CGF.MakeAddrLValue(
4429             Address(CGF.Builder.CreateGEP(AffinitiesArray.getPointer(), Idx),
4430                     AffinitiesArray.getAlignment()),
4431             KmpTaskAffinityInfoTy);
4432         // affs[i].base_addr = &<Affinities[i].second>;
4433         LValue BaseAddrLVal = CGF.EmitLValueForField(
4434             Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
4435         CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4436                               BaseAddrLVal);
4437         // affs[i].len = sizeof(<Affinities[i].second>);
4438         LValue LenLVal = CGF.EmitLValueForField(
4439             Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
4440         CGF.EmitStoreOfScalar(Size, LenLVal);
4441         Idx = CGF.Builder.CreateNUWAdd(
4442             Idx, llvm::ConstantInt::get(Idx->getType(), 1));
4443         CGF.EmitStoreOfScalar(Idx, PosLVal);
4444       }
4445     }
4446     // Call to kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref,
4447     // kmp_int32 gtid, kmp_task_t *new_task, kmp_int32
4448     // naffins, kmp_task_affinity_info_t *affin_list);
4449     llvm::Value *LocRef = emitUpdateLocation(CGF, Loc);
4450     llvm::Value *GTid = getThreadID(CGF, Loc);
4451     llvm::Value *AffinListPtr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4452         AffinitiesArray.getPointer(), CGM.VoidPtrTy);
4453     // FIXME: Emit the function and ignore its result for now unless the
4454     // runtime function is properly implemented.
4455     (void)CGF.EmitRuntimeCall(
4456         OMPBuilder.getOrCreateRuntimeFunction(
4457             CGM.getModule(), OMPRTL___kmpc_omp_reg_task_with_affinity),
4458         {LocRef, GTid, NewTask, NumOfElements, AffinListPtr});
4459   }
4460   llvm::Value *NewTaskNewTaskTTy =
4461       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4462           NewTask, KmpTaskTWithPrivatesPtrTy);
4463   LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
4464                                                KmpTaskTWithPrivatesQTy);
4465   LValue TDBase =
4466       CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
4467   // Fill the data in the resulting kmp_task_t record.
4468   // Copy shareds if there are any.
4469   Address KmpTaskSharedsPtr = Address::invalid();
4470   if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
4471     KmpTaskSharedsPtr =
4472         Address(CGF.EmitLoadOfScalar(
4473                     CGF.EmitLValueForField(
4474                         TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
4475                                            KmpTaskTShareds)),
4476                     Loc),
4477                 CGM.getNaturalTypeAlignment(SharedsTy));
4478     LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
4479     LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
4480     CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
4481   }
4482   // Emit initial values for private copies (if any).
4483   TaskResultTy Result;
4484   if (!Privates.empty()) {
4485     emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
4486                      SharedsTy, SharedsPtrTy, Data, Privates,
4487                      /*ForDup=*/false);
4488     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
4489         (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
4490       Result.TaskDupFn = emitTaskDupFunction(
4491           CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
4492           KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
4493           /*WithLastIter=*/!Data.LastprivateVars.empty());
4494     }
4495   }
4496   // Fields of union "kmp_cmplrdata_t" for destructors and priority.
4497   enum { Priority = 0, Destructors = 1 };
4498   // Provide pointer to function with destructors for privates.
4499   auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
4500   const RecordDecl *KmpCmplrdataUD =
4501       (*FI)->getType()->getAsUnionType()->getDecl();
4502   if (NeedsCleanup) {
4503     llvm::Value *DestructorFn = emitDestructorsFunction(
4504         CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
4505         KmpTaskTWithPrivatesQTy);
4506     LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
4507     LValue DestructorsLV = CGF.EmitLValueForField(
4508         Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
4509     CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4510                               DestructorFn, KmpRoutineEntryPtrTy),
4511                           DestructorsLV);
4512   }
4513   // Set priority.
4514   if (Data.Priority.getInt()) {
4515     LValue Data2LV = CGF.EmitLValueForField(
4516         TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
4517     LValue PriorityLV = CGF.EmitLValueForField(
4518         Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
4519     CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
4520   }
4521   Result.NewTask = NewTask;
4522   Result.TaskEntry = TaskEntry;
4523   Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
4524   Result.TDBase = TDBase;
4525   Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
4526   return Result;
4527 }
4528 
4529 namespace {
4530 /// Dependence kind for RTL.
4531 enum RTLDependenceKindTy {
4532   DepIn = 0x01,
4533   DepInOut = 0x3,
4534   DepMutexInOutSet = 0x4
4535 };
4536 /// Fields ids in kmp_depend_info record.
4537 enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
4538 } // namespace
4539 
4540 /// Translates internal dependency kind into the runtime kind.
translateDependencyKind(OpenMPDependClauseKind K)4541 static RTLDependenceKindTy translateDependencyKind(OpenMPDependClauseKind K) {
4542   RTLDependenceKindTy DepKind;
4543   switch (K) {
4544   case OMPC_DEPEND_in:
4545     DepKind = DepIn;
4546     break;
4547   // Out and InOut dependencies must use the same code.
4548   case OMPC_DEPEND_out:
4549   case OMPC_DEPEND_inout:
4550     DepKind = DepInOut;
4551     break;
4552   case OMPC_DEPEND_mutexinoutset:
4553     DepKind = DepMutexInOutSet;
4554     break;
4555   case OMPC_DEPEND_source:
4556   case OMPC_DEPEND_sink:
4557   case OMPC_DEPEND_depobj:
4558   case OMPC_DEPEND_unknown:
4559     llvm_unreachable("Unknown task dependence type");
4560   }
4561   return DepKind;
4562 }
4563 
4564 /// Builds kmp_depend_info, if it is not built yet, and builds flags type.
getDependTypes(ASTContext & C,QualType & KmpDependInfoTy,QualType & FlagsTy)4565 static void getDependTypes(ASTContext &C, QualType &KmpDependInfoTy,
4566                            QualType &FlagsTy) {
4567   FlagsTy = C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
4568   if (KmpDependInfoTy.isNull()) {
4569     RecordDecl *KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
4570     KmpDependInfoRD->startDefinition();
4571     addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
4572     addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
4573     addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
4574     KmpDependInfoRD->completeDefinition();
4575     KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
4576   }
4577 }
4578 
4579 std::pair<llvm::Value *, LValue>
getDepobjElements(CodeGenFunction & CGF,LValue DepobjLVal,SourceLocation Loc)4580 CGOpenMPRuntime::getDepobjElements(CodeGenFunction &CGF, LValue DepobjLVal,
4581                                    SourceLocation Loc) {
4582   ASTContext &C = CGM.getContext();
4583   QualType FlagsTy;
4584   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4585   RecordDecl *KmpDependInfoRD =
4586       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4587   LValue Base = CGF.EmitLoadOfPointerLValue(
4588       DepobjLVal.getAddress(CGF),
4589       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4590   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4591   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4592           Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy));
4593   Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4594                             Base.getTBAAInfo());
4595   llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4596       Addr.getPointer(),
4597       llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4598   LValue NumDepsBase = CGF.MakeAddrLValue(
4599       Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4600       Base.getBaseInfo(), Base.getTBAAInfo());
4601   // NumDeps = deps[i].base_addr;
4602   LValue BaseAddrLVal = CGF.EmitLValueForField(
4603       NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4604   llvm::Value *NumDeps = CGF.EmitLoadOfScalar(BaseAddrLVal, Loc);
4605   return std::make_pair(NumDeps, Base);
4606 }
4607 
emitDependData(CodeGenFunction & CGF,QualType & KmpDependInfoTy,llvm::PointerUnion<unsigned *,LValue * > Pos,const OMPTaskDataTy::DependData & Data,Address DependenciesArray)4608 static void emitDependData(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4609                            llvm::PointerUnion<unsigned *, LValue *> Pos,
4610                            const OMPTaskDataTy::DependData &Data,
4611                            Address DependenciesArray) {
4612   CodeGenModule &CGM = CGF.CGM;
4613   ASTContext &C = CGM.getContext();
4614   QualType FlagsTy;
4615   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4616   RecordDecl *KmpDependInfoRD =
4617       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4618   llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
4619 
4620   OMPIteratorGeneratorScope IteratorScope(
4621       CGF, cast_or_null<OMPIteratorExpr>(
4622                Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4623                                  : nullptr));
4624   for (const Expr *E : Data.DepExprs) {
4625     llvm::Value *Addr;
4626     llvm::Value *Size;
4627     std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4628     LValue Base;
4629     if (unsigned *P = Pos.dyn_cast<unsigned *>()) {
4630       Base = CGF.MakeAddrLValue(
4631           CGF.Builder.CreateConstGEP(DependenciesArray, *P), KmpDependInfoTy);
4632     } else {
4633       LValue &PosLVal = *Pos.get<LValue *>();
4634       llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4635       Base = CGF.MakeAddrLValue(
4636           Address(CGF.Builder.CreateGEP(DependenciesArray.getPointer(), Idx),
4637                   DependenciesArray.getAlignment()),
4638           KmpDependInfoTy);
4639     }
4640     // deps[i].base_addr = &<Dependencies[i].second>;
4641     LValue BaseAddrLVal = CGF.EmitLValueForField(
4642         Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4643     CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4644                           BaseAddrLVal);
4645     // deps[i].len = sizeof(<Dependencies[i].second>);
4646     LValue LenLVal = CGF.EmitLValueForField(
4647         Base, *std::next(KmpDependInfoRD->field_begin(), Len));
4648     CGF.EmitStoreOfScalar(Size, LenLVal);
4649     // deps[i].flags = <Dependencies[i].first>;
4650     RTLDependenceKindTy DepKind = translateDependencyKind(Data.DepKind);
4651     LValue FlagsLVal = CGF.EmitLValueForField(
4652         Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
4653     CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
4654                           FlagsLVal);
4655     if (unsigned *P = Pos.dyn_cast<unsigned *>()) {
4656       ++(*P);
4657     } else {
4658       LValue &PosLVal = *Pos.get<LValue *>();
4659       llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4660       Idx = CGF.Builder.CreateNUWAdd(Idx,
4661                                      llvm::ConstantInt::get(Idx->getType(), 1));
4662       CGF.EmitStoreOfScalar(Idx, PosLVal);
4663     }
4664   }
4665 }
4666 
4667 static SmallVector<llvm::Value *, 4>
emitDepobjElementsSizes(CodeGenFunction & CGF,QualType & KmpDependInfoTy,const OMPTaskDataTy::DependData & Data)4668 emitDepobjElementsSizes(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4669                         const OMPTaskDataTy::DependData &Data) {
4670   assert(Data.DepKind == OMPC_DEPEND_depobj &&
4671          "Expected depobj dependecy kind.");
4672   SmallVector<llvm::Value *, 4> Sizes;
4673   SmallVector<LValue, 4> SizeLVals;
4674   ASTContext &C = CGF.getContext();
4675   QualType FlagsTy;
4676   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4677   RecordDecl *KmpDependInfoRD =
4678       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4679   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4680   llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy);
4681   {
4682     OMPIteratorGeneratorScope IteratorScope(
4683         CGF, cast_or_null<OMPIteratorExpr>(
4684                  Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4685                                    : nullptr));
4686     for (const Expr *E : Data.DepExprs) {
4687       LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
4688       LValue Base = CGF.EmitLoadOfPointerLValue(
4689           DepobjLVal.getAddress(CGF),
4690           C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4691       Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4692           Base.getAddress(CGF), KmpDependInfoPtrT);
4693       Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4694                                 Base.getTBAAInfo());
4695       llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4696           Addr.getPointer(),
4697           llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4698       LValue NumDepsBase = CGF.MakeAddrLValue(
4699           Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4700           Base.getBaseInfo(), Base.getTBAAInfo());
4701       // NumDeps = deps[i].base_addr;
4702       LValue BaseAddrLVal = CGF.EmitLValueForField(
4703           NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4704       llvm::Value *NumDeps =
4705           CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc());
4706       LValue NumLVal = CGF.MakeAddrLValue(
4707           CGF.CreateMemTemp(C.getUIntPtrType(), "depobj.size.addr"),
4708           C.getUIntPtrType());
4709       CGF.InitTempAlloca(NumLVal.getAddress(CGF),
4710                          llvm::ConstantInt::get(CGF.IntPtrTy, 0));
4711       llvm::Value *PrevVal = CGF.EmitLoadOfScalar(NumLVal, E->getExprLoc());
4712       llvm::Value *Add = CGF.Builder.CreateNUWAdd(PrevVal, NumDeps);
4713       CGF.EmitStoreOfScalar(Add, NumLVal);
4714       SizeLVals.push_back(NumLVal);
4715     }
4716   }
4717   for (unsigned I = 0, E = SizeLVals.size(); I < E; ++I) {
4718     llvm::Value *Size =
4719         CGF.EmitLoadOfScalar(SizeLVals[I], Data.DepExprs[I]->getExprLoc());
4720     Sizes.push_back(Size);
4721   }
4722   return Sizes;
4723 }
4724 
emitDepobjElements(CodeGenFunction & CGF,QualType & KmpDependInfoTy,LValue PosLVal,const OMPTaskDataTy::DependData & Data,Address DependenciesArray)4725 static void emitDepobjElements(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4726                                LValue PosLVal,
4727                                const OMPTaskDataTy::DependData &Data,
4728                                Address DependenciesArray) {
4729   assert(Data.DepKind == OMPC_DEPEND_depobj &&
4730          "Expected depobj dependecy kind.");
4731   ASTContext &C = CGF.getContext();
4732   QualType FlagsTy;
4733   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4734   RecordDecl *KmpDependInfoRD =
4735       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4736   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4737   llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy);
4738   llvm::Value *ElSize = CGF.getTypeSize(KmpDependInfoTy);
4739   {
4740     OMPIteratorGeneratorScope IteratorScope(
4741         CGF, cast_or_null<OMPIteratorExpr>(
4742                  Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4743                                    : nullptr));
4744     for (unsigned I = 0, End = Data.DepExprs.size(); I < End; ++I) {
4745       const Expr *E = Data.DepExprs[I];
4746       LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
4747       LValue Base = CGF.EmitLoadOfPointerLValue(
4748           DepobjLVal.getAddress(CGF),
4749           C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4750       Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4751           Base.getAddress(CGF), KmpDependInfoPtrT);
4752       Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4753                                 Base.getTBAAInfo());
4754 
4755       // Get number of elements in a single depobj.
4756       llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4757           Addr.getPointer(),
4758           llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4759       LValue NumDepsBase = CGF.MakeAddrLValue(
4760           Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4761           Base.getBaseInfo(), Base.getTBAAInfo());
4762       // NumDeps = deps[i].base_addr;
4763       LValue BaseAddrLVal = CGF.EmitLValueForField(
4764           NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4765       llvm::Value *NumDeps =
4766           CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc());
4767 
4768       // memcopy dependency data.
4769       llvm::Value *Size = CGF.Builder.CreateNUWMul(
4770           ElSize,
4771           CGF.Builder.CreateIntCast(NumDeps, CGF.SizeTy, /*isSigned=*/false));
4772       llvm::Value *Pos = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4773       Address DepAddr =
4774           Address(CGF.Builder.CreateGEP(DependenciesArray.getPointer(), Pos),
4775                   DependenciesArray.getAlignment());
4776       CGF.Builder.CreateMemCpy(DepAddr, Base.getAddress(CGF), Size);
4777 
4778       // Increase pos.
4779       // pos += size;
4780       llvm::Value *Add = CGF.Builder.CreateNUWAdd(Pos, NumDeps);
4781       CGF.EmitStoreOfScalar(Add, PosLVal);
4782     }
4783   }
4784 }
4785 
emitDependClause(CodeGenFunction & CGF,ArrayRef<OMPTaskDataTy::DependData> Dependencies,SourceLocation Loc)4786 std::pair<llvm::Value *, Address> CGOpenMPRuntime::emitDependClause(
4787     CodeGenFunction &CGF, ArrayRef<OMPTaskDataTy::DependData> Dependencies,
4788     SourceLocation Loc) {
4789   if (llvm::all_of(Dependencies, [](const OMPTaskDataTy::DependData &D) {
4790         return D.DepExprs.empty();
4791       }))
4792     return std::make_pair(nullptr, Address::invalid());
4793   // Process list of dependencies.
4794   ASTContext &C = CGM.getContext();
4795   Address DependenciesArray = Address::invalid();
4796   llvm::Value *NumOfElements = nullptr;
4797   unsigned NumDependencies = std::accumulate(
4798       Dependencies.begin(), Dependencies.end(), 0,
4799       [](unsigned V, const OMPTaskDataTy::DependData &D) {
4800         return D.DepKind == OMPC_DEPEND_depobj
4801                    ? V
4802                    : (V + (D.IteratorExpr ? 0 : D.DepExprs.size()));
4803       });
4804   QualType FlagsTy;
4805   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4806   bool HasDepobjDeps = false;
4807   bool HasRegularWithIterators = false;
4808   llvm::Value *NumOfDepobjElements = llvm::ConstantInt::get(CGF.IntPtrTy, 0);
4809   llvm::Value *NumOfRegularWithIterators =
4810       llvm::ConstantInt::get(CGF.IntPtrTy, 1);
4811   // Calculate number of depobj dependecies and regular deps with the iterators.
4812   for (const OMPTaskDataTy::DependData &D : Dependencies) {
4813     if (D.DepKind == OMPC_DEPEND_depobj) {
4814       SmallVector<llvm::Value *, 4> Sizes =
4815           emitDepobjElementsSizes(CGF, KmpDependInfoTy, D);
4816       for (llvm::Value *Size : Sizes) {
4817         NumOfDepobjElements =
4818             CGF.Builder.CreateNUWAdd(NumOfDepobjElements, Size);
4819       }
4820       HasDepobjDeps = true;
4821       continue;
4822     }
4823     // Include number of iterations, if any.
4824     if (const auto *IE = cast_or_null<OMPIteratorExpr>(D.IteratorExpr)) {
4825       for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4826         llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4827         Sz = CGF.Builder.CreateIntCast(Sz, CGF.IntPtrTy, /*isSigned=*/false);
4828         NumOfRegularWithIterators =
4829             CGF.Builder.CreateNUWMul(NumOfRegularWithIterators, Sz);
4830       }
4831       HasRegularWithIterators = true;
4832       continue;
4833     }
4834   }
4835 
4836   QualType KmpDependInfoArrayTy;
4837   if (HasDepobjDeps || HasRegularWithIterators) {
4838     NumOfElements = llvm::ConstantInt::get(CGM.IntPtrTy, NumDependencies,
4839                                            /*isSigned=*/false);
4840     if (HasDepobjDeps) {
4841       NumOfElements =
4842           CGF.Builder.CreateNUWAdd(NumOfDepobjElements, NumOfElements);
4843     }
4844     if (HasRegularWithIterators) {
4845       NumOfElements =
4846           CGF.Builder.CreateNUWAdd(NumOfRegularWithIterators, NumOfElements);
4847     }
4848     OpaqueValueExpr OVE(Loc,
4849                         C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0),
4850                         VK_RValue);
4851     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE,
4852                                                   RValue::get(NumOfElements));
4853     KmpDependInfoArrayTy =
4854         C.getVariableArrayType(KmpDependInfoTy, &OVE, ArrayType::Normal,
4855                                /*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
4856     // CGF.EmitVariablyModifiedType(KmpDependInfoArrayTy);
4857     // Properly emit variable-sized array.
4858     auto *PD = ImplicitParamDecl::Create(C, KmpDependInfoArrayTy,
4859                                          ImplicitParamDecl::Other);
4860     CGF.EmitVarDecl(*PD);
4861     DependenciesArray = CGF.GetAddrOfLocalVar(PD);
4862     NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
4863                                               /*isSigned=*/false);
4864   } else {
4865     KmpDependInfoArrayTy = C.getConstantArrayType(
4866         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), nullptr,
4867         ArrayType::Normal, /*IndexTypeQuals=*/0);
4868     DependenciesArray =
4869         CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
4870     DependenciesArray = CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0);
4871     NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumDependencies,
4872                                            /*isSigned=*/false);
4873   }
4874   unsigned Pos = 0;
4875   for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4876     if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
4877         Dependencies[I].IteratorExpr)
4878       continue;
4879     emitDependData(CGF, KmpDependInfoTy, &Pos, Dependencies[I],
4880                    DependenciesArray);
4881   }
4882   // Copy regular dependecies with iterators.
4883   LValue PosLVal = CGF.MakeAddrLValue(
4884       CGF.CreateMemTemp(C.getSizeType(), "dep.counter.addr"), C.getSizeType());
4885   CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
4886   for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4887     if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
4888         !Dependencies[I].IteratorExpr)
4889       continue;
4890     emitDependData(CGF, KmpDependInfoTy, &PosLVal, Dependencies[I],
4891                    DependenciesArray);
4892   }
4893   // Copy final depobj arrays without iterators.
4894   if (HasDepobjDeps) {
4895     for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4896       if (Dependencies[I].DepKind != OMPC_DEPEND_depobj)
4897         continue;
4898       emitDepobjElements(CGF, KmpDependInfoTy, PosLVal, Dependencies[I],
4899                          DependenciesArray);
4900     }
4901   }
4902   DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4903       DependenciesArray, CGF.VoidPtrTy);
4904   return std::make_pair(NumOfElements, DependenciesArray);
4905 }
4906 
emitDepobjDependClause(CodeGenFunction & CGF,const OMPTaskDataTy::DependData & Dependencies,SourceLocation Loc)4907 Address CGOpenMPRuntime::emitDepobjDependClause(
4908     CodeGenFunction &CGF, const OMPTaskDataTy::DependData &Dependencies,
4909     SourceLocation Loc) {
4910   if (Dependencies.DepExprs.empty())
4911     return Address::invalid();
4912   // Process list of dependencies.
4913   ASTContext &C = CGM.getContext();
4914   Address DependenciesArray = Address::invalid();
4915   unsigned NumDependencies = Dependencies.DepExprs.size();
4916   QualType FlagsTy;
4917   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4918   RecordDecl *KmpDependInfoRD =
4919       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4920 
4921   llvm::Value *Size;
4922   // Define type kmp_depend_info[<Dependencies.size()>];
4923   // For depobj reserve one extra element to store the number of elements.
4924   // It is required to handle depobj(x) update(in) construct.
4925   // kmp_depend_info[<Dependencies.size()>] deps;
4926   llvm::Value *NumDepsVal;
4927   CharUnits Align = C.getTypeAlignInChars(KmpDependInfoTy);
4928   if (const auto *IE =
4929           cast_or_null<OMPIteratorExpr>(Dependencies.IteratorExpr)) {
4930     NumDepsVal = llvm::ConstantInt::get(CGF.SizeTy, 1);
4931     for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4932       llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4933       Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
4934       NumDepsVal = CGF.Builder.CreateNUWMul(NumDepsVal, Sz);
4935     }
4936     Size = CGF.Builder.CreateNUWAdd(llvm::ConstantInt::get(CGF.SizeTy, 1),
4937                                     NumDepsVal);
4938     CharUnits SizeInBytes =
4939         C.getTypeSizeInChars(KmpDependInfoTy).alignTo(Align);
4940     llvm::Value *RecSize = CGM.getSize(SizeInBytes);
4941     Size = CGF.Builder.CreateNUWMul(Size, RecSize);
4942     NumDepsVal =
4943         CGF.Builder.CreateIntCast(NumDepsVal, CGF.IntPtrTy, /*isSigned=*/false);
4944   } else {
4945     QualType KmpDependInfoArrayTy = C.getConstantArrayType(
4946         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies + 1),
4947         nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
4948     CharUnits Sz = C.getTypeSizeInChars(KmpDependInfoArrayTy);
4949     Size = CGM.getSize(Sz.alignTo(Align));
4950     NumDepsVal = llvm::ConstantInt::get(CGF.IntPtrTy, NumDependencies);
4951   }
4952   // Need to allocate on the dynamic memory.
4953   llvm::Value *ThreadID = getThreadID(CGF, Loc);
4954   // Use default allocator.
4955   llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4956   llvm::Value *Args[] = {ThreadID, Size, Allocator};
4957 
4958   llvm::Value *Addr =
4959       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4960                               CGM.getModule(), OMPRTL___kmpc_alloc),
4961                           Args, ".dep.arr.addr");
4962   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4963       Addr, CGF.ConvertTypeForMem(KmpDependInfoTy)->getPointerTo());
4964   DependenciesArray = Address(Addr, Align);
4965   // Write number of elements in the first element of array for depobj.
4966   LValue Base = CGF.MakeAddrLValue(DependenciesArray, KmpDependInfoTy);
4967   // deps[i].base_addr = NumDependencies;
4968   LValue BaseAddrLVal = CGF.EmitLValueForField(
4969       Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4970   CGF.EmitStoreOfScalar(NumDepsVal, BaseAddrLVal);
4971   llvm::PointerUnion<unsigned *, LValue *> Pos;
4972   unsigned Idx = 1;
4973   LValue PosLVal;
4974   if (Dependencies.IteratorExpr) {
4975     PosLVal = CGF.MakeAddrLValue(
4976         CGF.CreateMemTemp(C.getSizeType(), "iterator.counter.addr"),
4977         C.getSizeType());
4978     CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Idx), PosLVal,
4979                           /*IsInit=*/true);
4980     Pos = &PosLVal;
4981   } else {
4982     Pos = &Idx;
4983   }
4984   emitDependData(CGF, KmpDependInfoTy, Pos, Dependencies, DependenciesArray);
4985   DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4986       CGF.Builder.CreateConstGEP(DependenciesArray, 1), CGF.VoidPtrTy);
4987   return DependenciesArray;
4988 }
4989 
emitDestroyClause(CodeGenFunction & CGF,LValue DepobjLVal,SourceLocation Loc)4990 void CGOpenMPRuntime::emitDestroyClause(CodeGenFunction &CGF, LValue DepobjLVal,
4991                                         SourceLocation Loc) {
4992   ASTContext &C = CGM.getContext();
4993   QualType FlagsTy;
4994   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4995   LValue Base = CGF.EmitLoadOfPointerLValue(
4996       DepobjLVal.getAddress(CGF),
4997       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4998   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4999   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5000       Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy));
5001   llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
5002       Addr.getPointer(),
5003       llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
5004   DepObjAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(DepObjAddr,
5005                                                                CGF.VoidPtrTy);
5006   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5007   // Use default allocator.
5008   llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5009   llvm::Value *Args[] = {ThreadID, DepObjAddr, Allocator};
5010 
5011   // _kmpc_free(gtid, addr, nullptr);
5012   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5013                                 CGM.getModule(), OMPRTL___kmpc_free),
5014                             Args);
5015 }
5016 
emitUpdateClause(CodeGenFunction & CGF,LValue DepobjLVal,OpenMPDependClauseKind NewDepKind,SourceLocation Loc)5017 void CGOpenMPRuntime::emitUpdateClause(CodeGenFunction &CGF, LValue DepobjLVal,
5018                                        OpenMPDependClauseKind NewDepKind,
5019                                        SourceLocation Loc) {
5020   ASTContext &C = CGM.getContext();
5021   QualType FlagsTy;
5022   getDependTypes(C, KmpDependInfoTy, FlagsTy);
5023   RecordDecl *KmpDependInfoRD =
5024       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
5025   llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
5026   llvm::Value *NumDeps;
5027   LValue Base;
5028   std::tie(NumDeps, Base) = getDepobjElements(CGF, DepobjLVal, Loc);
5029 
5030   Address Begin = Base.getAddress(CGF);
5031   // Cast from pointer to array type to pointer to single element.
5032   llvm::Value *End = CGF.Builder.CreateGEP(Begin.getPointer(), NumDeps);
5033   // The basic structure here is a while-do loop.
5034   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.body");
5035   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.done");
5036   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5037   CGF.EmitBlock(BodyBB);
5038   llvm::PHINode *ElementPHI =
5039       CGF.Builder.CreatePHI(Begin.getType(), 2, "omp.elementPast");
5040   ElementPHI->addIncoming(Begin.getPointer(), EntryBB);
5041   Begin = Address(ElementPHI, Begin.getAlignment());
5042   Base = CGF.MakeAddrLValue(Begin, KmpDependInfoTy, Base.getBaseInfo(),
5043                             Base.getTBAAInfo());
5044   // deps[i].flags = NewDepKind;
5045   RTLDependenceKindTy DepKind = translateDependencyKind(NewDepKind);
5046   LValue FlagsLVal = CGF.EmitLValueForField(
5047       Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
5048   CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
5049                         FlagsLVal);
5050 
5051   // Shift the address forward by one element.
5052   Address ElementNext =
5053       CGF.Builder.CreateConstGEP(Begin, /*Index=*/1, "omp.elementNext");
5054   ElementPHI->addIncoming(ElementNext.getPointer(),
5055                           CGF.Builder.GetInsertBlock());
5056   llvm::Value *IsEmpty =
5057       CGF.Builder.CreateICmpEQ(ElementNext.getPointer(), End, "omp.isempty");
5058   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5059   // Done.
5060   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5061 }
5062 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5063 void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
5064                                    const OMPExecutableDirective &D,
5065                                    llvm::Function *TaskFunction,
5066                                    QualType SharedsTy, Address Shareds,
5067                                    const Expr *IfCond,
5068                                    const OMPTaskDataTy &Data) {
5069   if (!CGF.HaveInsertPoint())
5070     return;
5071 
5072   TaskResultTy Result =
5073       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5074   llvm::Value *NewTask = Result.NewTask;
5075   llvm::Function *TaskEntry = Result.TaskEntry;
5076   llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
5077   LValue TDBase = Result.TDBase;
5078   const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
5079   // Process list of dependences.
5080   Address DependenciesArray = Address::invalid();
5081   llvm::Value *NumOfElements;
5082   std::tie(NumOfElements, DependenciesArray) =
5083       emitDependClause(CGF, Data.Dependences, Loc);
5084 
5085   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5086   // libcall.
5087   // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
5088   // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
5089   // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
5090   // list is not empty
5091   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5092   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5093   llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
5094   llvm::Value *DepTaskArgs[7];
5095   if (!Data.Dependences.empty()) {
5096     DepTaskArgs[0] = UpLoc;
5097     DepTaskArgs[1] = ThreadID;
5098     DepTaskArgs[2] = NewTask;
5099     DepTaskArgs[3] = NumOfElements;
5100     DepTaskArgs[4] = DependenciesArray.getPointer();
5101     DepTaskArgs[5] = CGF.Builder.getInt32(0);
5102     DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5103   }
5104   auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, &TaskArgs,
5105                         &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
5106     if (!Data.Tied) {
5107       auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
5108       LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
5109       CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
5110     }
5111     if (!Data.Dependences.empty()) {
5112       CGF.EmitRuntimeCall(
5113           OMPBuilder.getOrCreateRuntimeFunction(
5114               CGM.getModule(), OMPRTL___kmpc_omp_task_with_deps),
5115           DepTaskArgs);
5116     } else {
5117       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5118                               CGM.getModule(), OMPRTL___kmpc_omp_task),
5119                           TaskArgs);
5120     }
5121     // Check if parent region is untied and build return for untied task;
5122     if (auto *Region =
5123             dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
5124       Region->emitUntiedSwitch(CGF);
5125   };
5126 
5127   llvm::Value *DepWaitTaskArgs[6];
5128   if (!Data.Dependences.empty()) {
5129     DepWaitTaskArgs[0] = UpLoc;
5130     DepWaitTaskArgs[1] = ThreadID;
5131     DepWaitTaskArgs[2] = NumOfElements;
5132     DepWaitTaskArgs[3] = DependenciesArray.getPointer();
5133     DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
5134     DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5135   }
5136   auto &M = CGM.getModule();
5137   auto &&ElseCodeGen = [this, &M, &TaskArgs, ThreadID, NewTaskNewTaskTTy,
5138                         TaskEntry, &Data, &DepWaitTaskArgs,
5139                         Loc](CodeGenFunction &CGF, PrePostActionTy &) {
5140     CodeGenFunction::RunCleanupsScope LocalScope(CGF);
5141     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
5142     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
5143     // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
5144     // is specified.
5145     if (!Data.Dependences.empty())
5146       CGF.EmitRuntimeCall(
5147           OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_omp_wait_deps),
5148           DepWaitTaskArgs);
5149     // Call proxy_task_entry(gtid, new_task);
5150     auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
5151                       Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
5152       Action.Enter(CGF);
5153       llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
5154       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
5155                                                           OutlinedFnArgs);
5156     };
5157 
5158     // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
5159     // kmp_task_t *new_task);
5160     // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
5161     // kmp_task_t *new_task);
5162     RegionCodeGenTy RCG(CodeGen);
5163     CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
5164                               M, OMPRTL___kmpc_omp_task_begin_if0),
5165                           TaskArgs,
5166                           OMPBuilder.getOrCreateRuntimeFunction(
5167                               M, OMPRTL___kmpc_omp_task_complete_if0),
5168                           TaskArgs);
5169     RCG.setAction(Action);
5170     RCG(CGF);
5171   };
5172 
5173   if (IfCond) {
5174     emitIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
5175   } else {
5176     RegionCodeGenTy ThenRCG(ThenCodeGen);
5177     ThenRCG(CGF);
5178   }
5179 }
5180 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5181 void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
5182                                        const OMPLoopDirective &D,
5183                                        llvm::Function *TaskFunction,
5184                                        QualType SharedsTy, Address Shareds,
5185                                        const Expr *IfCond,
5186                                        const OMPTaskDataTy &Data) {
5187   if (!CGF.HaveInsertPoint())
5188     return;
5189   TaskResultTy Result =
5190       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5191   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5192   // libcall.
5193   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
5194   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
5195   // sched, kmp_uint64 grainsize, void *task_dup);
5196   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5197   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5198   llvm::Value *IfVal;
5199   if (IfCond) {
5200     IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
5201                                       /*isSigned=*/true);
5202   } else {
5203     IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
5204   }
5205 
5206   LValue LBLVal = CGF.EmitLValueForField(
5207       Result.TDBase,
5208       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
5209   const auto *LBVar =
5210       cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
5211   CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(CGF),
5212                        LBLVal.getQuals(),
5213                        /*IsInitializer=*/true);
5214   LValue UBLVal = CGF.EmitLValueForField(
5215       Result.TDBase,
5216       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
5217   const auto *UBVar =
5218       cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
5219   CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(CGF),
5220                        UBLVal.getQuals(),
5221                        /*IsInitializer=*/true);
5222   LValue StLVal = CGF.EmitLValueForField(
5223       Result.TDBase,
5224       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
5225   const auto *StVar =
5226       cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
5227   CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(CGF),
5228                        StLVal.getQuals(),
5229                        /*IsInitializer=*/true);
5230   // Store reductions address.
5231   LValue RedLVal = CGF.EmitLValueForField(
5232       Result.TDBase,
5233       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
5234   if (Data.Reductions) {
5235     CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
5236   } else {
5237     CGF.EmitNullInitialization(RedLVal.getAddress(CGF),
5238                                CGF.getContext().VoidPtrTy);
5239   }
5240   enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
5241   llvm::Value *TaskArgs[] = {
5242       UpLoc,
5243       ThreadID,
5244       Result.NewTask,
5245       IfVal,
5246       LBLVal.getPointer(CGF),
5247       UBLVal.getPointer(CGF),
5248       CGF.EmitLoadOfScalar(StLVal, Loc),
5249       llvm::ConstantInt::getSigned(
5250           CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
5251       llvm::ConstantInt::getSigned(
5252           CGF.IntTy, Data.Schedule.getPointer()
5253                          ? Data.Schedule.getInt() ? NumTasks : Grainsize
5254                          : NoSchedule),
5255       Data.Schedule.getPointer()
5256           ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
5257                                       /*isSigned=*/false)
5258           : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
5259       Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5260                              Result.TaskDupFn, CGF.VoidPtrTy)
5261                        : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
5262   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5263                           CGM.getModule(), OMPRTL___kmpc_taskloop),
5264                       TaskArgs);
5265 }
5266 
5267 /// Emit reduction operation for each element of array (required for
5268 /// array sections) LHS op = RHS.
5269 /// \param Type Type of array.
5270 /// \param LHSVar Variable on the left side of the reduction operation
5271 /// (references element of array in original variable).
5272 /// \param RHSVar Variable on the right side of the reduction operation
5273 /// (references element of array in original variable).
5274 /// \param RedOpGen Generator of reduction operation with use of LHSVar and
5275 /// RHSVar.
EmitOMPAggregateReduction(CodeGenFunction & CGF,QualType Type,const VarDecl * LHSVar,const VarDecl * RHSVar,const llvm::function_ref<void (CodeGenFunction & CGF,const Expr *,const Expr *,const Expr *)> & RedOpGen,const Expr * XExpr=nullptr,const Expr * EExpr=nullptr,const Expr * UpExpr=nullptr)5276 static void EmitOMPAggregateReduction(
5277     CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
5278     const VarDecl *RHSVar,
5279     const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
5280                                   const Expr *, const Expr *)> &RedOpGen,
5281     const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
5282     const Expr *UpExpr = nullptr) {
5283   // Perform element-by-element initialization.
5284   QualType ElementTy;
5285   Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
5286   Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
5287 
5288   // Drill down to the base element type on both arrays.
5289   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
5290   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
5291 
5292   llvm::Value *RHSBegin = RHSAddr.getPointer();
5293   llvm::Value *LHSBegin = LHSAddr.getPointer();
5294   // Cast from pointer to array type to pointer to single element.
5295   llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
5296   // The basic structure here is a while-do loop.
5297   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
5298   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
5299   llvm::Value *IsEmpty =
5300       CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
5301   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5302 
5303   // Enter the loop body, making that address the current address.
5304   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5305   CGF.EmitBlock(BodyBB);
5306 
5307   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
5308 
5309   llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
5310       RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
5311   RHSElementPHI->addIncoming(RHSBegin, EntryBB);
5312   Address RHSElementCurrent =
5313       Address(RHSElementPHI,
5314               RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5315 
5316   llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
5317       LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
5318   LHSElementPHI->addIncoming(LHSBegin, EntryBB);
5319   Address LHSElementCurrent =
5320       Address(LHSElementPHI,
5321               LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5322 
5323   // Emit copy.
5324   CodeGenFunction::OMPPrivateScope Scope(CGF);
5325   Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
5326   Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
5327   Scope.Privatize();
5328   RedOpGen(CGF, XExpr, EExpr, UpExpr);
5329   Scope.ForceCleanup();
5330 
5331   // Shift the address forward by one element.
5332   llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
5333       LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
5334   llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
5335       RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
5336   // Check whether we've reached the end.
5337   llvm::Value *Done =
5338       CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
5339   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
5340   LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
5341   RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
5342 
5343   // Done.
5344   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5345 }
5346 
5347 /// Emit reduction combiner. If the combiner is a simple expression emit it as
5348 /// is, otherwise consider it as combiner of UDR decl and emit it as a call of
5349 /// UDR combiner function.
emitReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp)5350 static void emitReductionCombiner(CodeGenFunction &CGF,
5351                                   const Expr *ReductionOp) {
5352   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
5353     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
5354       if (const auto *DRE =
5355               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
5356         if (const auto *DRD =
5357                 dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
5358           std::pair<llvm::Function *, llvm::Function *> Reduction =
5359               CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
5360           RValue Func = RValue::get(Reduction.first);
5361           CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
5362           CGF.EmitIgnoredExpr(ReductionOp);
5363           return;
5364         }
5365   CGF.EmitIgnoredExpr(ReductionOp);
5366 }
5367 
emitReductionFunction(SourceLocation Loc,llvm::Type * ArgsType,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps)5368 llvm::Function *CGOpenMPRuntime::emitReductionFunction(
5369     SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
5370     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
5371     ArrayRef<const Expr *> ReductionOps) {
5372   ASTContext &C = CGM.getContext();
5373 
5374   // void reduction_func(void *LHSArg, void *RHSArg);
5375   FunctionArgList Args;
5376   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5377                            ImplicitParamDecl::Other);
5378   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5379                            ImplicitParamDecl::Other);
5380   Args.push_back(&LHSArg);
5381   Args.push_back(&RHSArg);
5382   const auto &CGFI =
5383       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5384   std::string Name = getName({"omp", "reduction", "reduction_func"});
5385   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
5386                                     llvm::GlobalValue::InternalLinkage, Name,
5387                                     &CGM.getModule());
5388   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
5389   Fn->setDoesNotRecurse();
5390   CodeGenFunction CGF(CGM);
5391   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
5392 
5393   // Dst = (void*[n])(LHSArg);
5394   // Src = (void*[n])(RHSArg);
5395   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5396       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
5397       ArgsType), CGF.getPointerAlign());
5398   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5399       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
5400       ArgsType), CGF.getPointerAlign());
5401 
5402   //  ...
5403   //  *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
5404   //  ...
5405   CodeGenFunction::OMPPrivateScope Scope(CGF);
5406   auto IPriv = Privates.begin();
5407   unsigned Idx = 0;
5408   for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
5409     const auto *RHSVar =
5410         cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
5411     Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
5412       return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
5413     });
5414     const auto *LHSVar =
5415         cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
5416     Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
5417       return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
5418     });
5419     QualType PrivTy = (*IPriv)->getType();
5420     if (PrivTy->isVariablyModifiedType()) {
5421       // Get array size and emit VLA type.
5422       ++Idx;
5423       Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
5424       llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
5425       const VariableArrayType *VLA =
5426           CGF.getContext().getAsVariableArrayType(PrivTy);
5427       const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
5428       CodeGenFunction::OpaqueValueMapping OpaqueMap(
5429           CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
5430       CGF.EmitVariablyModifiedType(PrivTy);
5431     }
5432   }
5433   Scope.Privatize();
5434   IPriv = Privates.begin();
5435   auto ILHS = LHSExprs.begin();
5436   auto IRHS = RHSExprs.begin();
5437   for (const Expr *E : ReductionOps) {
5438     if ((*IPriv)->getType()->isArrayType()) {
5439       // Emit reduction for array section.
5440       const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5441       const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5442       EmitOMPAggregateReduction(
5443           CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5444           [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5445             emitReductionCombiner(CGF, E);
5446           });
5447     } else {
5448       // Emit reduction for array subscript or single variable.
5449       emitReductionCombiner(CGF, E);
5450     }
5451     ++IPriv;
5452     ++ILHS;
5453     ++IRHS;
5454   }
5455   Scope.ForceCleanup();
5456   CGF.FinishFunction();
5457   return Fn;
5458 }
5459 
emitSingleReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp,const Expr * PrivateRef,const DeclRefExpr * LHS,const DeclRefExpr * RHS)5460 void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
5461                                                   const Expr *ReductionOp,
5462                                                   const Expr *PrivateRef,
5463                                                   const DeclRefExpr *LHS,
5464                                                   const DeclRefExpr *RHS) {
5465   if (PrivateRef->getType()->isArrayType()) {
5466     // Emit reduction for array section.
5467     const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
5468     const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
5469     EmitOMPAggregateReduction(
5470         CGF, PrivateRef->getType(), LHSVar, RHSVar,
5471         [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5472           emitReductionCombiner(CGF, ReductionOp);
5473         });
5474   } else {
5475     // Emit reduction for array subscript or single variable.
5476     emitReductionCombiner(CGF, ReductionOp);
5477   }
5478 }
5479 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)5480 void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
5481                                     ArrayRef<const Expr *> Privates,
5482                                     ArrayRef<const Expr *> LHSExprs,
5483                                     ArrayRef<const Expr *> RHSExprs,
5484                                     ArrayRef<const Expr *> ReductionOps,
5485                                     ReductionOptionsTy Options) {
5486   if (!CGF.HaveInsertPoint())
5487     return;
5488 
5489   bool WithNowait = Options.WithNowait;
5490   bool SimpleReduction = Options.SimpleReduction;
5491 
5492   // Next code should be emitted for reduction:
5493   //
5494   // static kmp_critical_name lock = { 0 };
5495   //
5496   // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
5497   //  *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
5498   //  ...
5499   //  *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
5500   //  *(Type<n>-1*)rhs[<n>-1]);
5501   // }
5502   //
5503   // ...
5504   // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
5505   // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5506   // RedList, reduce_func, &<lock>)) {
5507   // case 1:
5508   //  ...
5509   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5510   //  ...
5511   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5512   // break;
5513   // case 2:
5514   //  ...
5515   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5516   //  ...
5517   // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
5518   // break;
5519   // default:;
5520   // }
5521   //
5522   // if SimpleReduction is true, only the next code is generated:
5523   //  ...
5524   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5525   //  ...
5526 
5527   ASTContext &C = CGM.getContext();
5528 
5529   if (SimpleReduction) {
5530     CodeGenFunction::RunCleanupsScope Scope(CGF);
5531     auto IPriv = Privates.begin();
5532     auto ILHS = LHSExprs.begin();
5533     auto IRHS = RHSExprs.begin();
5534     for (const Expr *E : ReductionOps) {
5535       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5536                                   cast<DeclRefExpr>(*IRHS));
5537       ++IPriv;
5538       ++ILHS;
5539       ++IRHS;
5540     }
5541     return;
5542   }
5543 
5544   // 1. Build a list of reduction variables.
5545   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
5546   auto Size = RHSExprs.size();
5547   for (const Expr *E : Privates) {
5548     if (E->getType()->isVariablyModifiedType())
5549       // Reserve place for array size.
5550       ++Size;
5551   }
5552   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
5553   QualType ReductionArrayTy =
5554       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
5555                              /*IndexTypeQuals=*/0);
5556   Address ReductionList =
5557       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
5558   auto IPriv = Privates.begin();
5559   unsigned Idx = 0;
5560   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
5561     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5562     CGF.Builder.CreateStore(
5563         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5564             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
5565         Elem);
5566     if ((*IPriv)->getType()->isVariablyModifiedType()) {
5567       // Store array size.
5568       ++Idx;
5569       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5570       llvm::Value *Size = CGF.Builder.CreateIntCast(
5571           CGF.getVLASize(
5572                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
5573               .NumElts,
5574           CGF.SizeTy, /*isSigned=*/false);
5575       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
5576                               Elem);
5577     }
5578   }
5579 
5580   // 2. Emit reduce_func().
5581   llvm::Function *ReductionFn = emitReductionFunction(
5582       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
5583       LHSExprs, RHSExprs, ReductionOps);
5584 
5585   // 3. Create static kmp_critical_name lock = { 0 };
5586   std::string Name = getName({"reduction"});
5587   llvm::Value *Lock = getCriticalRegionLock(Name);
5588 
5589   // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5590   // RedList, reduce_func, &<lock>);
5591   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
5592   llvm::Value *ThreadId = getThreadID(CGF, Loc);
5593   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
5594   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5595       ReductionList.getPointer(), CGF.VoidPtrTy);
5596   llvm::Value *Args[] = {
5597       IdentTLoc,                             // ident_t *<loc>
5598       ThreadId,                              // i32 <gtid>
5599       CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
5600       ReductionArrayTySize,                  // size_type sizeof(RedList)
5601       RL,                                    // void *RedList
5602       ReductionFn, // void (*) (void *, void *) <reduce_func>
5603       Lock         // kmp_critical_name *&<lock>
5604   };
5605   llvm::Value *Res = CGF.EmitRuntimeCall(
5606       OMPBuilder.getOrCreateRuntimeFunction(
5607           CGM.getModule(),
5608           WithNowait ? OMPRTL___kmpc_reduce_nowait : OMPRTL___kmpc_reduce),
5609       Args);
5610 
5611   // 5. Build switch(res)
5612   llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
5613   llvm::SwitchInst *SwInst =
5614       CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
5615 
5616   // 6. Build case 1:
5617   //  ...
5618   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5619   //  ...
5620   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5621   // break;
5622   llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
5623   SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
5624   CGF.EmitBlock(Case1BB);
5625 
5626   // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5627   llvm::Value *EndArgs[] = {
5628       IdentTLoc, // ident_t *<loc>
5629       ThreadId,  // i32 <gtid>
5630       Lock       // kmp_critical_name *&<lock>
5631   };
5632   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
5633                        CodeGenFunction &CGF, PrePostActionTy &Action) {
5634     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5635     auto IPriv = Privates.begin();
5636     auto ILHS = LHSExprs.begin();
5637     auto IRHS = RHSExprs.begin();
5638     for (const Expr *E : ReductionOps) {
5639       RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5640                                      cast<DeclRefExpr>(*IRHS));
5641       ++IPriv;
5642       ++ILHS;
5643       ++IRHS;
5644     }
5645   };
5646   RegionCodeGenTy RCG(CodeGen);
5647   CommonActionTy Action(
5648       nullptr, llvm::None,
5649       OMPBuilder.getOrCreateRuntimeFunction(
5650           CGM.getModule(), WithNowait ? OMPRTL___kmpc_end_reduce_nowait
5651                                       : OMPRTL___kmpc_end_reduce),
5652       EndArgs);
5653   RCG.setAction(Action);
5654   RCG(CGF);
5655 
5656   CGF.EmitBranch(DefaultBB);
5657 
5658   // 7. Build case 2:
5659   //  ...
5660   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5661   //  ...
5662   // break;
5663   llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
5664   SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
5665   CGF.EmitBlock(Case2BB);
5666 
5667   auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
5668                              CodeGenFunction &CGF, PrePostActionTy &Action) {
5669     auto ILHS = LHSExprs.begin();
5670     auto IRHS = RHSExprs.begin();
5671     auto IPriv = Privates.begin();
5672     for (const Expr *E : ReductionOps) {
5673       const Expr *XExpr = nullptr;
5674       const Expr *EExpr = nullptr;
5675       const Expr *UpExpr = nullptr;
5676       BinaryOperatorKind BO = BO_Comma;
5677       if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
5678         if (BO->getOpcode() == BO_Assign) {
5679           XExpr = BO->getLHS();
5680           UpExpr = BO->getRHS();
5681         }
5682       }
5683       // Try to emit update expression as a simple atomic.
5684       const Expr *RHSExpr = UpExpr;
5685       if (RHSExpr) {
5686         // Analyze RHS part of the whole expression.
5687         if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
5688                 RHSExpr->IgnoreParenImpCasts())) {
5689           // If this is a conditional operator, analyze its condition for
5690           // min/max reduction operator.
5691           RHSExpr = ACO->getCond();
5692         }
5693         if (const auto *BORHS =
5694                 dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
5695           EExpr = BORHS->getRHS();
5696           BO = BORHS->getOpcode();
5697         }
5698       }
5699       if (XExpr) {
5700         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5701         auto &&AtomicRedGen = [BO, VD,
5702                                Loc](CodeGenFunction &CGF, const Expr *XExpr,
5703                                     const Expr *EExpr, const Expr *UpExpr) {
5704           LValue X = CGF.EmitLValue(XExpr);
5705           RValue E;
5706           if (EExpr)
5707             E = CGF.EmitAnyExpr(EExpr);
5708           CGF.EmitOMPAtomicSimpleUpdateExpr(
5709               X, E, BO, /*IsXLHSInRHSPart=*/true,
5710               llvm::AtomicOrdering::Monotonic, Loc,
5711               [&CGF, UpExpr, VD, Loc](RValue XRValue) {
5712                 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5713                 PrivateScope.addPrivate(
5714                     VD, [&CGF, VD, XRValue, Loc]() {
5715                       Address LHSTemp = CGF.CreateMemTemp(VD->getType());
5716                       CGF.emitOMPSimpleStore(
5717                           CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
5718                           VD->getType().getNonReferenceType(), Loc);
5719                       return LHSTemp;
5720                     });
5721                 (void)PrivateScope.Privatize();
5722                 return CGF.EmitAnyExpr(UpExpr);
5723               });
5724         };
5725         if ((*IPriv)->getType()->isArrayType()) {
5726           // Emit atomic reduction for array section.
5727           const auto *RHSVar =
5728               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5729           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
5730                                     AtomicRedGen, XExpr, EExpr, UpExpr);
5731         } else {
5732           // Emit atomic reduction for array subscript or single variable.
5733           AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
5734         }
5735       } else {
5736         // Emit as a critical region.
5737         auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
5738                                            const Expr *, const Expr *) {
5739           CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5740           std::string Name = RT.getName({"atomic_reduction"});
5741           RT.emitCriticalRegion(
5742               CGF, Name,
5743               [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
5744                 Action.Enter(CGF);
5745                 emitReductionCombiner(CGF, E);
5746               },
5747               Loc);
5748         };
5749         if ((*IPriv)->getType()->isArrayType()) {
5750           const auto *LHSVar =
5751               cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5752           const auto *RHSVar =
5753               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5754           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5755                                     CritRedGen);
5756         } else {
5757           CritRedGen(CGF, nullptr, nullptr, nullptr);
5758         }
5759       }
5760       ++ILHS;
5761       ++IRHS;
5762       ++IPriv;
5763     }
5764   };
5765   RegionCodeGenTy AtomicRCG(AtomicCodeGen);
5766   if (!WithNowait) {
5767     // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
5768     llvm::Value *EndArgs[] = {
5769         IdentTLoc, // ident_t *<loc>
5770         ThreadId,  // i32 <gtid>
5771         Lock       // kmp_critical_name *&<lock>
5772     };
5773     CommonActionTy Action(nullptr, llvm::None,
5774                           OMPBuilder.getOrCreateRuntimeFunction(
5775                               CGM.getModule(), OMPRTL___kmpc_end_reduce),
5776                           EndArgs);
5777     AtomicRCG.setAction(Action);
5778     AtomicRCG(CGF);
5779   } else {
5780     AtomicRCG(CGF);
5781   }
5782 
5783   CGF.EmitBranch(DefaultBB);
5784   CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
5785 }
5786 
5787 /// Generates unique name for artificial threadprivate variables.
5788 /// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
generateUniqueName(CodeGenModule & CGM,StringRef Prefix,const Expr * Ref)5789 static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
5790                                       const Expr *Ref) {
5791   SmallString<256> Buffer;
5792   llvm::raw_svector_ostream Out(Buffer);
5793   const clang::DeclRefExpr *DE;
5794   const VarDecl *D = ::getBaseDecl(Ref, DE);
5795   if (!D)
5796     D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
5797   D = D->getCanonicalDecl();
5798   std::string Name = CGM.getOpenMPRuntime().getName(
5799       {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
5800   Out << Prefix << Name << "_"
5801       << D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
5802   return std::string(Out.str());
5803 }
5804 
5805 /// Emits reduction initializer function:
5806 /// \code
5807 /// void @.red_init(void* %arg, void* %orig) {
5808 /// %0 = bitcast void* %arg to <type>*
5809 /// store <type> <init>, <type>* %0
5810 /// ret void
5811 /// }
5812 /// \endcode
emitReduceInitFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5813 static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
5814                                            SourceLocation Loc,
5815                                            ReductionCodeGen &RCG, unsigned N) {
5816   ASTContext &C = CGM.getContext();
5817   QualType VoidPtrTy = C.VoidPtrTy;
5818   VoidPtrTy.addRestrict();
5819   FunctionArgList Args;
5820   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
5821                           ImplicitParamDecl::Other);
5822   ImplicitParamDecl ParamOrig(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
5823                               ImplicitParamDecl::Other);
5824   Args.emplace_back(&Param);
5825   Args.emplace_back(&ParamOrig);
5826   const auto &FnInfo =
5827       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5828   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5829   std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
5830   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5831                                     Name, &CGM.getModule());
5832   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5833   Fn->setDoesNotRecurse();
5834   CodeGenFunction CGF(CGM);
5835   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5836   Address PrivateAddr = CGF.EmitLoadOfPointer(
5837       CGF.GetAddrOfLocalVar(&Param),
5838       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5839   llvm::Value *Size = nullptr;
5840   // If the size of the reduction item is non-constant, load it from global
5841   // threadprivate variable.
5842   if (RCG.getSizes(N).second) {
5843     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5844         CGF, CGM.getContext().getSizeType(),
5845         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5846     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5847                                 CGM.getContext().getSizeType(), Loc);
5848   }
5849   RCG.emitAggregateType(CGF, N, Size);
5850   LValue OrigLVal;
5851   // If initializer uses initializer from declare reduction construct, emit a
5852   // pointer to the address of the original reduction item (reuired by reduction
5853   // initializer)
5854   if (RCG.usesReductionInitializer(N)) {
5855     Address SharedAddr = CGF.GetAddrOfLocalVar(&ParamOrig);
5856     SharedAddr = CGF.EmitLoadOfPointer(
5857         SharedAddr,
5858         CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
5859     OrigLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
5860   } else {
5861     OrigLVal = CGF.MakeNaturalAlignAddrLValue(
5862         llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
5863         CGM.getContext().VoidPtrTy);
5864   }
5865   // Emit the initializer:
5866   // %0 = bitcast void* %arg to <type>*
5867   // store <type> <init>, <type>* %0
5868   RCG.emitInitialization(CGF, N, PrivateAddr, OrigLVal,
5869                          [](CodeGenFunction &) { return false; });
5870   CGF.FinishFunction();
5871   return Fn;
5872 }
5873 
5874 /// Emits reduction combiner function:
5875 /// \code
5876 /// void @.red_comb(void* %arg0, void* %arg1) {
5877 /// %lhs = bitcast void* %arg0 to <type>*
5878 /// %rhs = bitcast void* %arg1 to <type>*
5879 /// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
5880 /// store <type> %2, <type>* %lhs
5881 /// ret void
5882 /// }
5883 /// \endcode
emitReduceCombFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N,const Expr * ReductionOp,const Expr * LHS,const Expr * RHS,const Expr * PrivateRef)5884 static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
5885                                            SourceLocation Loc,
5886                                            ReductionCodeGen &RCG, unsigned N,
5887                                            const Expr *ReductionOp,
5888                                            const Expr *LHS, const Expr *RHS,
5889                                            const Expr *PrivateRef) {
5890   ASTContext &C = CGM.getContext();
5891   const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
5892   const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
5893   FunctionArgList Args;
5894   ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
5895                                C.VoidPtrTy, ImplicitParamDecl::Other);
5896   ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5897                             ImplicitParamDecl::Other);
5898   Args.emplace_back(&ParamInOut);
5899   Args.emplace_back(&ParamIn);
5900   const auto &FnInfo =
5901       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5902   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5903   std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
5904   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5905                                     Name, &CGM.getModule());
5906   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5907   Fn->setDoesNotRecurse();
5908   CodeGenFunction CGF(CGM);
5909   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5910   llvm::Value *Size = nullptr;
5911   // If the size of the reduction item is non-constant, load it from global
5912   // threadprivate variable.
5913   if (RCG.getSizes(N).second) {
5914     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5915         CGF, CGM.getContext().getSizeType(),
5916         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5917     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5918                                 CGM.getContext().getSizeType(), Loc);
5919   }
5920   RCG.emitAggregateType(CGF, N, Size);
5921   // Remap lhs and rhs variables to the addresses of the function arguments.
5922   // %lhs = bitcast void* %arg0 to <type>*
5923   // %rhs = bitcast void* %arg1 to <type>*
5924   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5925   PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
5926     // Pull out the pointer to the variable.
5927     Address PtrAddr = CGF.EmitLoadOfPointer(
5928         CGF.GetAddrOfLocalVar(&ParamInOut),
5929         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5930     return CGF.Builder.CreateElementBitCast(
5931         PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
5932   });
5933   PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
5934     // Pull out the pointer to the variable.
5935     Address PtrAddr = CGF.EmitLoadOfPointer(
5936         CGF.GetAddrOfLocalVar(&ParamIn),
5937         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5938     return CGF.Builder.CreateElementBitCast(
5939         PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
5940   });
5941   PrivateScope.Privatize();
5942   // Emit the combiner body:
5943   // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
5944   // store <type> %2, <type>* %lhs
5945   CGM.getOpenMPRuntime().emitSingleReductionCombiner(
5946       CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
5947       cast<DeclRefExpr>(RHS));
5948   CGF.FinishFunction();
5949   return Fn;
5950 }
5951 
5952 /// Emits reduction finalizer function:
5953 /// \code
5954 /// void @.red_fini(void* %arg) {
5955 /// %0 = bitcast void* %arg to <type>*
5956 /// <destroy>(<type>* %0)
5957 /// ret void
5958 /// }
5959 /// \endcode
emitReduceFiniFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5960 static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
5961                                            SourceLocation Loc,
5962                                            ReductionCodeGen &RCG, unsigned N) {
5963   if (!RCG.needCleanups(N))
5964     return nullptr;
5965   ASTContext &C = CGM.getContext();
5966   FunctionArgList Args;
5967   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5968                           ImplicitParamDecl::Other);
5969   Args.emplace_back(&Param);
5970   const auto &FnInfo =
5971       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5972   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5973   std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
5974   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5975                                     Name, &CGM.getModule());
5976   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5977   Fn->setDoesNotRecurse();
5978   CodeGenFunction CGF(CGM);
5979   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5980   Address PrivateAddr = CGF.EmitLoadOfPointer(
5981       CGF.GetAddrOfLocalVar(&Param),
5982       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5983   llvm::Value *Size = nullptr;
5984   // If the size of the reduction item is non-constant, load it from global
5985   // threadprivate variable.
5986   if (RCG.getSizes(N).second) {
5987     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5988         CGF, CGM.getContext().getSizeType(),
5989         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5990     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5991                                 CGM.getContext().getSizeType(), Loc);
5992   }
5993   RCG.emitAggregateType(CGF, N, Size);
5994   // Emit the finalizer body:
5995   // <destroy>(<type>* %0)
5996   RCG.emitCleanups(CGF, N, PrivateAddr);
5997   CGF.FinishFunction(Loc);
5998   return Fn;
5999 }
6000 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)6001 llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
6002     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
6003     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
6004   if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
6005     return nullptr;
6006 
6007   // Build typedef struct:
6008   // kmp_taskred_input {
6009   //   void *reduce_shar; // shared reduction item
6010   //   void *reduce_orig; // original reduction item used for initialization
6011   //   size_t reduce_size; // size of data item
6012   //   void *reduce_init; // data initialization routine
6013   //   void *reduce_fini; // data finalization routine
6014   //   void *reduce_comb; // data combiner routine
6015   //   kmp_task_red_flags_t flags; // flags for additional info from compiler
6016   // } kmp_taskred_input_t;
6017   ASTContext &C = CGM.getContext();
6018   RecordDecl *RD = C.buildImplicitRecord("kmp_taskred_input_t");
6019   RD->startDefinition();
6020   const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6021   const FieldDecl *OrigFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6022   const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
6023   const FieldDecl *InitFD  = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6024   const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6025   const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6026   const FieldDecl *FlagsFD = addFieldToRecordDecl(
6027       C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
6028   RD->completeDefinition();
6029   QualType RDType = C.getRecordType(RD);
6030   unsigned Size = Data.ReductionVars.size();
6031   llvm::APInt ArraySize(/*numBits=*/64, Size);
6032   QualType ArrayRDType = C.getConstantArrayType(
6033       RDType, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
6034   // kmp_task_red_input_t .rd_input.[Size];
6035   Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
6036   ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionOrigs,
6037                        Data.ReductionCopies, Data.ReductionOps);
6038   for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
6039     // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
6040     llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
6041                            llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
6042     llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
6043         TaskRedInput.getPointer(), Idxs,
6044         /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
6045         ".rd_input.gep.");
6046     LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
6047     // ElemLVal.reduce_shar = &Shareds[Cnt];
6048     LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
6049     RCG.emitSharedOrigLValue(CGF, Cnt);
6050     llvm::Value *CastedShared =
6051         CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer(CGF));
6052     CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
6053     // ElemLVal.reduce_orig = &Origs[Cnt];
6054     LValue OrigLVal = CGF.EmitLValueForField(ElemLVal, OrigFD);
6055     llvm::Value *CastedOrig =
6056         CGF.EmitCastToVoidPtr(RCG.getOrigLValue(Cnt).getPointer(CGF));
6057     CGF.EmitStoreOfScalar(CastedOrig, OrigLVal);
6058     RCG.emitAggregateType(CGF, Cnt);
6059     llvm::Value *SizeValInChars;
6060     llvm::Value *SizeVal;
6061     std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
6062     // We use delayed creation/initialization for VLAs and array sections. It is
6063     // required because runtime does not provide the way to pass the sizes of
6064     // VLAs/array sections to initializer/combiner/finalizer functions. Instead
6065     // threadprivate global variables are used to store these values and use
6066     // them in the functions.
6067     bool DelayedCreation = !!SizeVal;
6068     SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
6069                                                /*isSigned=*/false);
6070     LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
6071     CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
6072     // ElemLVal.reduce_init = init;
6073     LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
6074     llvm::Value *InitAddr =
6075         CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
6076     CGF.EmitStoreOfScalar(InitAddr, InitLVal);
6077     // ElemLVal.reduce_fini = fini;
6078     LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
6079     llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
6080     llvm::Value *FiniAddr = Fini
6081                                 ? CGF.EmitCastToVoidPtr(Fini)
6082                                 : llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
6083     CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
6084     // ElemLVal.reduce_comb = comb;
6085     LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
6086     llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
6087         CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
6088         RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
6089     CGF.EmitStoreOfScalar(CombAddr, CombLVal);
6090     // ElemLVal.flags = 0;
6091     LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
6092     if (DelayedCreation) {
6093       CGF.EmitStoreOfScalar(
6094           llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
6095           FlagsLVal);
6096     } else
6097       CGF.EmitNullInitialization(FlagsLVal.getAddress(CGF),
6098                                  FlagsLVal.getType());
6099   }
6100   if (Data.IsReductionWithTaskMod) {
6101     // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
6102     // is_ws, int num, void *data);
6103     llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
6104     llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6105                                                   CGM.IntTy, /*isSigned=*/true);
6106     llvm::Value *Args[] = {
6107         IdentTLoc, GTid,
6108         llvm::ConstantInt::get(CGM.IntTy, Data.IsWorksharingReduction ? 1 : 0,
6109                                /*isSigned=*/true),
6110         llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6111         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6112             TaskRedInput.getPointer(), CGM.VoidPtrTy)};
6113     return CGF.EmitRuntimeCall(
6114         OMPBuilder.getOrCreateRuntimeFunction(
6115             CGM.getModule(), OMPRTL___kmpc_taskred_modifier_init),
6116         Args);
6117   }
6118   // Build call void *__kmpc_taskred_init(int gtid, int num_data, void *data);
6119   llvm::Value *Args[] = {
6120       CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
6121                                 /*isSigned=*/true),
6122       llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6123       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
6124                                                       CGM.VoidPtrTy)};
6125   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6126                                  CGM.getModule(), OMPRTL___kmpc_taskred_init),
6127                              Args);
6128 }
6129 
emitTaskReductionFini(CodeGenFunction & CGF,SourceLocation Loc,bool IsWorksharingReduction)6130 void CGOpenMPRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
6131                                             SourceLocation Loc,
6132                                             bool IsWorksharingReduction) {
6133   // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
6134   // is_ws, int num, void *data);
6135   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
6136   llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6137                                                 CGM.IntTy, /*isSigned=*/true);
6138   llvm::Value *Args[] = {IdentTLoc, GTid,
6139                          llvm::ConstantInt::get(CGM.IntTy,
6140                                                 IsWorksharingReduction ? 1 : 0,
6141                                                 /*isSigned=*/true)};
6142   (void)CGF.EmitRuntimeCall(
6143       OMPBuilder.getOrCreateRuntimeFunction(
6144           CGM.getModule(), OMPRTL___kmpc_task_reduction_modifier_fini),
6145       Args);
6146 }
6147 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)6148 void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
6149                                               SourceLocation Loc,
6150                                               ReductionCodeGen &RCG,
6151                                               unsigned N) {
6152   auto Sizes = RCG.getSizes(N);
6153   // Emit threadprivate global variable if the type is non-constant
6154   // (Sizes.second = nullptr).
6155   if (Sizes.second) {
6156     llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
6157                                                      /*isSigned=*/false);
6158     Address SizeAddr = getAddrOfArtificialThreadPrivate(
6159         CGF, CGM.getContext().getSizeType(),
6160         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6161     CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
6162   }
6163 }
6164 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)6165 Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
6166                                               SourceLocation Loc,
6167                                               llvm::Value *ReductionsPtr,
6168                                               LValue SharedLVal) {
6169   // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
6170   // *d);
6171   llvm::Value *Args[] = {CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6172                                                    CGM.IntTy,
6173                                                    /*isSigned=*/true),
6174                          ReductionsPtr,
6175                          CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6176                              SharedLVal.getPointer(CGF), CGM.VoidPtrTy)};
6177   return Address(
6178       CGF.EmitRuntimeCall(
6179           OMPBuilder.getOrCreateRuntimeFunction(
6180               CGM.getModule(), OMPRTL___kmpc_task_reduction_get_th_data),
6181           Args),
6182       SharedLVal.getAlignment());
6183 }
6184 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)6185 void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
6186                                        SourceLocation Loc) {
6187   if (!CGF.HaveInsertPoint())
6188     return;
6189 
6190   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
6191     OMPBuilder.createTaskwait(CGF.Builder);
6192   } else {
6193     // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
6194     // global_tid);
6195     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
6196     // Ignore return result until untied tasks are supported.
6197     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6198                             CGM.getModule(), OMPRTL___kmpc_omp_taskwait),
6199                         Args);
6200   }
6201 
6202   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
6203     Region->emitUntiedSwitch(CGF);
6204 }
6205 
emitInlinedDirective(CodeGenFunction & CGF,OpenMPDirectiveKind InnerKind,const RegionCodeGenTy & CodeGen,bool HasCancel)6206 void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
6207                                            OpenMPDirectiveKind InnerKind,
6208                                            const RegionCodeGenTy &CodeGen,
6209                                            bool HasCancel) {
6210   if (!CGF.HaveInsertPoint())
6211     return;
6212   InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
6213   CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
6214 }
6215 
6216 namespace {
6217 enum RTCancelKind {
6218   CancelNoreq = 0,
6219   CancelParallel = 1,
6220   CancelLoop = 2,
6221   CancelSections = 3,
6222   CancelTaskgroup = 4
6223 };
6224 } // anonymous namespace
6225 
getCancellationKind(OpenMPDirectiveKind CancelRegion)6226 static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
6227   RTCancelKind CancelKind = CancelNoreq;
6228   if (CancelRegion == OMPD_parallel)
6229     CancelKind = CancelParallel;
6230   else if (CancelRegion == OMPD_for)
6231     CancelKind = CancelLoop;
6232   else if (CancelRegion == OMPD_sections)
6233     CancelKind = CancelSections;
6234   else {
6235     assert(CancelRegion == OMPD_taskgroup);
6236     CancelKind = CancelTaskgroup;
6237   }
6238   return CancelKind;
6239 }
6240 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)6241 void CGOpenMPRuntime::emitCancellationPointCall(
6242     CodeGenFunction &CGF, SourceLocation Loc,
6243     OpenMPDirectiveKind CancelRegion) {
6244   if (!CGF.HaveInsertPoint())
6245     return;
6246   // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
6247   // global_tid, kmp_int32 cncl_kind);
6248   if (auto *OMPRegionInfo =
6249           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6250     // For 'cancellation point taskgroup', the task region info may not have a
6251     // cancel. This may instead happen in another adjacent task.
6252     if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
6253       llvm::Value *Args[] = {
6254           emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
6255           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6256       // Ignore return result until untied tasks are supported.
6257       llvm::Value *Result = CGF.EmitRuntimeCall(
6258           OMPBuilder.getOrCreateRuntimeFunction(
6259               CGM.getModule(), OMPRTL___kmpc_cancellationpoint),
6260           Args);
6261       // if (__kmpc_cancellationpoint()) {
6262       //   exit from construct;
6263       // }
6264       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6265       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6266       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6267       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6268       CGF.EmitBlock(ExitBB);
6269       // exit from construct;
6270       CodeGenFunction::JumpDest CancelDest =
6271           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6272       CGF.EmitBranchThroughCleanup(CancelDest);
6273       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6274     }
6275   }
6276 }
6277 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)6278 void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
6279                                      const Expr *IfCond,
6280                                      OpenMPDirectiveKind CancelRegion) {
6281   if (!CGF.HaveInsertPoint())
6282     return;
6283   // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
6284   // kmp_int32 cncl_kind);
6285   auto &M = CGM.getModule();
6286   if (auto *OMPRegionInfo =
6287           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6288     auto &&ThenGen = [this, &M, Loc, CancelRegion,
6289                       OMPRegionInfo](CodeGenFunction &CGF, PrePostActionTy &) {
6290       CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
6291       llvm::Value *Args[] = {
6292           RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
6293           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6294       // Ignore return result until untied tasks are supported.
6295       llvm::Value *Result = CGF.EmitRuntimeCall(
6296           OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_cancel), Args);
6297       // if (__kmpc_cancel()) {
6298       //   exit from construct;
6299       // }
6300       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6301       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6302       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6303       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6304       CGF.EmitBlock(ExitBB);
6305       // exit from construct;
6306       CodeGenFunction::JumpDest CancelDest =
6307           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6308       CGF.EmitBranchThroughCleanup(CancelDest);
6309       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6310     };
6311     if (IfCond) {
6312       emitIfClause(CGF, IfCond, ThenGen,
6313                    [](CodeGenFunction &, PrePostActionTy &) {});
6314     } else {
6315       RegionCodeGenTy ThenRCG(ThenGen);
6316       ThenRCG(CGF);
6317     }
6318   }
6319 }
6320 
6321 namespace {
6322 /// Cleanup action for uses_allocators support.
6323 class OMPUsesAllocatorsActionTy final : public PrePostActionTy {
6324   ArrayRef<std::pair<const Expr *, const Expr *>> Allocators;
6325 
6326 public:
OMPUsesAllocatorsActionTy(ArrayRef<std::pair<const Expr *,const Expr * >> Allocators)6327   OMPUsesAllocatorsActionTy(
6328       ArrayRef<std::pair<const Expr *, const Expr *>> Allocators)
6329       : Allocators(Allocators) {}
Enter(CodeGenFunction & CGF)6330   void Enter(CodeGenFunction &CGF) override {
6331     if (!CGF.HaveInsertPoint())
6332       return;
6333     for (const auto &AllocatorData : Allocators) {
6334       CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsInit(
6335           CGF, AllocatorData.first, AllocatorData.second);
6336     }
6337   }
Exit(CodeGenFunction & CGF)6338   void Exit(CodeGenFunction &CGF) override {
6339     if (!CGF.HaveInsertPoint())
6340       return;
6341     for (const auto &AllocatorData : Allocators) {
6342       CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsFini(CGF,
6343                                                         AllocatorData.first);
6344     }
6345   }
6346 };
6347 } // namespace
6348 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6349 void CGOpenMPRuntime::emitTargetOutlinedFunction(
6350     const OMPExecutableDirective &D, StringRef ParentName,
6351     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6352     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6353   assert(!ParentName.empty() && "Invalid target region parent name!");
6354   HasEmittedTargetRegion = true;
6355   SmallVector<std::pair<const Expr *, const Expr *>, 4> Allocators;
6356   for (const auto *C : D.getClausesOfKind<OMPUsesAllocatorsClause>()) {
6357     for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
6358       const OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
6359       if (!D.AllocatorTraits)
6360         continue;
6361       Allocators.emplace_back(D.Allocator, D.AllocatorTraits);
6362     }
6363   }
6364   OMPUsesAllocatorsActionTy UsesAllocatorAction(Allocators);
6365   CodeGen.setAction(UsesAllocatorAction);
6366   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
6367                                    IsOffloadEntry, CodeGen);
6368 }
6369 
emitUsesAllocatorsInit(CodeGenFunction & CGF,const Expr * Allocator,const Expr * AllocatorTraits)6370 void CGOpenMPRuntime::emitUsesAllocatorsInit(CodeGenFunction &CGF,
6371                                              const Expr *Allocator,
6372                                              const Expr *AllocatorTraits) {
6373   llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
6374   ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
6375   // Use default memspace handle.
6376   llvm::Value *MemSpaceHandle = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
6377   llvm::Value *NumTraits = llvm::ConstantInt::get(
6378       CGF.IntTy, cast<ConstantArrayType>(
6379                      AllocatorTraits->getType()->getAsArrayTypeUnsafe())
6380                      ->getSize()
6381                      .getLimitedValue());
6382   LValue AllocatorTraitsLVal = CGF.EmitLValue(AllocatorTraits);
6383   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6384       AllocatorTraitsLVal.getAddress(CGF), CGF.VoidPtrPtrTy);
6385   AllocatorTraitsLVal = CGF.MakeAddrLValue(Addr, CGF.getContext().VoidPtrTy,
6386                                            AllocatorTraitsLVal.getBaseInfo(),
6387                                            AllocatorTraitsLVal.getTBAAInfo());
6388   llvm::Value *Traits =
6389       CGF.EmitLoadOfScalar(AllocatorTraitsLVal, AllocatorTraits->getExprLoc());
6390 
6391   llvm::Value *AllocatorVal =
6392       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6393                               CGM.getModule(), OMPRTL___kmpc_init_allocator),
6394                           {ThreadId, MemSpaceHandle, NumTraits, Traits});
6395   // Store to allocator.
6396   CGF.EmitVarDecl(*cast<VarDecl>(
6397       cast<DeclRefExpr>(Allocator->IgnoreParenImpCasts())->getDecl()));
6398   LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
6399   AllocatorVal =
6400       CGF.EmitScalarConversion(AllocatorVal, CGF.getContext().VoidPtrTy,
6401                                Allocator->getType(), Allocator->getExprLoc());
6402   CGF.EmitStoreOfScalar(AllocatorVal, AllocatorLVal);
6403 }
6404 
emitUsesAllocatorsFini(CodeGenFunction & CGF,const Expr * Allocator)6405 void CGOpenMPRuntime::emitUsesAllocatorsFini(CodeGenFunction &CGF,
6406                                              const Expr *Allocator) {
6407   llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
6408   ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
6409   LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
6410   llvm::Value *AllocatorVal =
6411       CGF.EmitLoadOfScalar(AllocatorLVal, Allocator->getExprLoc());
6412   AllocatorVal = CGF.EmitScalarConversion(AllocatorVal, Allocator->getType(),
6413                                           CGF.getContext().VoidPtrTy,
6414                                           Allocator->getExprLoc());
6415   (void)CGF.EmitRuntimeCall(
6416       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
6417                                             OMPRTL___kmpc_destroy_allocator),
6418       {ThreadId, AllocatorVal});
6419 }
6420 
emitTargetOutlinedFunctionHelper(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6421 void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
6422     const OMPExecutableDirective &D, StringRef ParentName,
6423     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6424     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6425   // Create a unique name for the entry function using the source location
6426   // information of the current target region. The name will be something like:
6427   //
6428   // __omp_offloading_DD_FFFF_PP_lBB
6429   //
6430   // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
6431   // mangled name of the function that encloses the target region and BB is the
6432   // line number of the target region.
6433 
6434   unsigned DeviceID;
6435   unsigned FileID;
6436   unsigned Line;
6437   getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
6438                            Line);
6439   SmallString<64> EntryFnName;
6440   {
6441     llvm::raw_svector_ostream OS(EntryFnName);
6442     OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
6443        << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
6444   }
6445 
6446   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
6447 
6448   CodeGenFunction CGF(CGM, true);
6449   CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
6450   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6451 
6452   OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS, D.getBeginLoc());
6453 
6454   // If this target outline function is not an offload entry, we don't need to
6455   // register it.
6456   if (!IsOffloadEntry)
6457     return;
6458 
6459   // The target region ID is used by the runtime library to identify the current
6460   // target region, so it only has to be unique and not necessarily point to
6461   // anything. It could be the pointer to the outlined function that implements
6462   // the target region, but we aren't using that so that the compiler doesn't
6463   // need to keep that, and could therefore inline the host function if proven
6464   // worthwhile during optimization. In the other hand, if emitting code for the
6465   // device, the ID has to be the function address so that it can retrieved from
6466   // the offloading entry and launched by the runtime library. We also mark the
6467   // outlined function to have external linkage in case we are emitting code for
6468   // the device, because these functions will be entry points to the device.
6469 
6470   if (CGM.getLangOpts().OpenMPIsDevice) {
6471     OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
6472     OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6473     OutlinedFn->setDSOLocal(false);
6474   } else {
6475     std::string Name = getName({EntryFnName, "region_id"});
6476     OutlinedFnID = new llvm::GlobalVariable(
6477         CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
6478         llvm::GlobalValue::WeakAnyLinkage,
6479         llvm::Constant::getNullValue(CGM.Int8Ty), Name);
6480   }
6481 
6482   // Register the information for the entry associated with this target region.
6483   OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
6484       DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
6485       OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
6486 }
6487 
6488 /// Checks if the expression is constant or does not have non-trivial function
6489 /// calls.
isTrivial(ASTContext & Ctx,const Expr * E)6490 static bool isTrivial(ASTContext &Ctx, const Expr * E) {
6491   // We can skip constant expressions.
6492   // We can skip expressions with trivial calls or simple expressions.
6493   return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
6494           !E->hasNonTrivialCall(Ctx)) &&
6495          !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
6496 }
6497 
getSingleCompoundChild(ASTContext & Ctx,const Stmt * Body)6498 const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
6499                                                     const Stmt *Body) {
6500   const Stmt *Child = Body->IgnoreContainers();
6501   while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
6502     Child = nullptr;
6503     for (const Stmt *S : C->body()) {
6504       if (const auto *E = dyn_cast<Expr>(S)) {
6505         if (isTrivial(Ctx, E))
6506           continue;
6507       }
6508       // Some of the statements can be ignored.
6509       if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
6510           isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
6511         continue;
6512       // Analyze declarations.
6513       if (const auto *DS = dyn_cast<DeclStmt>(S)) {
6514         if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
6515               if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
6516                   isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
6517                   isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
6518                   isa<UsingDirectiveDecl>(D) ||
6519                   isa<OMPDeclareReductionDecl>(D) ||
6520                   isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
6521                 return true;
6522               const auto *VD = dyn_cast<VarDecl>(D);
6523               if (!VD)
6524                 return false;
6525               return VD->isConstexpr() ||
6526                      ((VD->getType().isTrivialType(Ctx) ||
6527                        VD->getType()->isReferenceType()) &&
6528                       (!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
6529             }))
6530           continue;
6531       }
6532       // Found multiple children - cannot get the one child only.
6533       if (Child)
6534         return nullptr;
6535       Child = S;
6536     }
6537     if (Child)
6538       Child = Child->IgnoreContainers();
6539   }
6540   return Child;
6541 }
6542 
6543 /// Emit the number of teams for a target directive.  Inspect the num_teams
6544 /// clause associated with a teams construct combined or closely nested
6545 /// with the target directive.
6546 ///
6547 /// Emit a team of size one for directives such as 'target parallel' that
6548 /// have no associated teams construct.
6549 ///
6550 /// Otherwise, return nullptr.
6551 static llvm::Value *
emitNumTeamsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6552 emitNumTeamsForTargetDirective(CodeGenFunction &CGF,
6553                                const OMPExecutableDirective &D) {
6554   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6555          "Clauses associated with the teams directive expected to be emitted "
6556          "only for the host!");
6557   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6558   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6559          "Expected target-based executable directive.");
6560   CGBuilderTy &Bld = CGF.Builder;
6561   switch (DirectiveKind) {
6562   case OMPD_target: {
6563     const auto *CS = D.getInnermostCapturedStmt();
6564     const auto *Body =
6565         CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
6566     const Stmt *ChildStmt =
6567         CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
6568     if (const auto *NestedDir =
6569             dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
6570       if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
6571         if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
6572           CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6573           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6574           const Expr *NumTeams =
6575               NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6576           llvm::Value *NumTeamsVal =
6577               CGF.EmitScalarExpr(NumTeams,
6578                                  /*IgnoreResultAssign*/ true);
6579           return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6580                                    /*isSigned=*/true);
6581         }
6582         return Bld.getInt32(0);
6583       }
6584       if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
6585           isOpenMPSimdDirective(NestedDir->getDirectiveKind()))
6586         return Bld.getInt32(1);
6587       return Bld.getInt32(0);
6588     }
6589     return nullptr;
6590   }
6591   case OMPD_target_teams:
6592   case OMPD_target_teams_distribute:
6593   case OMPD_target_teams_distribute_simd:
6594   case OMPD_target_teams_distribute_parallel_for:
6595   case OMPD_target_teams_distribute_parallel_for_simd: {
6596     if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
6597       CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
6598       const Expr *NumTeams =
6599           D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6600       llvm::Value *NumTeamsVal =
6601           CGF.EmitScalarExpr(NumTeams,
6602                              /*IgnoreResultAssign*/ true);
6603       return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6604                                /*isSigned=*/true);
6605     }
6606     return Bld.getInt32(0);
6607   }
6608   case OMPD_target_parallel:
6609   case OMPD_target_parallel_for:
6610   case OMPD_target_parallel_for_simd:
6611   case OMPD_target_simd:
6612     return Bld.getInt32(1);
6613   case OMPD_parallel:
6614   case OMPD_for:
6615   case OMPD_parallel_for:
6616   case OMPD_parallel_master:
6617   case OMPD_parallel_sections:
6618   case OMPD_for_simd:
6619   case OMPD_parallel_for_simd:
6620   case OMPD_cancel:
6621   case OMPD_cancellation_point:
6622   case OMPD_ordered:
6623   case OMPD_threadprivate:
6624   case OMPD_allocate:
6625   case OMPD_task:
6626   case OMPD_simd:
6627   case OMPD_sections:
6628   case OMPD_section:
6629   case OMPD_single:
6630   case OMPD_master:
6631   case OMPD_critical:
6632   case OMPD_taskyield:
6633   case OMPD_barrier:
6634   case OMPD_taskwait:
6635   case OMPD_taskgroup:
6636   case OMPD_atomic:
6637   case OMPD_flush:
6638   case OMPD_depobj:
6639   case OMPD_scan:
6640   case OMPD_teams:
6641   case OMPD_target_data:
6642   case OMPD_target_exit_data:
6643   case OMPD_target_enter_data:
6644   case OMPD_distribute:
6645   case OMPD_distribute_simd:
6646   case OMPD_distribute_parallel_for:
6647   case OMPD_distribute_parallel_for_simd:
6648   case OMPD_teams_distribute:
6649   case OMPD_teams_distribute_simd:
6650   case OMPD_teams_distribute_parallel_for:
6651   case OMPD_teams_distribute_parallel_for_simd:
6652   case OMPD_target_update:
6653   case OMPD_declare_simd:
6654   case OMPD_declare_variant:
6655   case OMPD_begin_declare_variant:
6656   case OMPD_end_declare_variant:
6657   case OMPD_declare_target:
6658   case OMPD_end_declare_target:
6659   case OMPD_declare_reduction:
6660   case OMPD_declare_mapper:
6661   case OMPD_taskloop:
6662   case OMPD_taskloop_simd:
6663   case OMPD_master_taskloop:
6664   case OMPD_master_taskloop_simd:
6665   case OMPD_parallel_master_taskloop:
6666   case OMPD_parallel_master_taskloop_simd:
6667   case OMPD_requires:
6668   case OMPD_unknown:
6669     break;
6670   default:
6671     break;
6672   }
6673   llvm_unreachable("Unexpected directive kind.");
6674 }
6675 
getNumThreads(CodeGenFunction & CGF,const CapturedStmt * CS,llvm::Value * DefaultThreadLimitVal)6676 static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
6677                                   llvm::Value *DefaultThreadLimitVal) {
6678   const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6679       CGF.getContext(), CS->getCapturedStmt());
6680   if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6681     if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
6682       llvm::Value *NumThreads = nullptr;
6683       llvm::Value *CondVal = nullptr;
6684       // Handle if clause. If if clause present, the number of threads is
6685       // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6686       if (Dir->hasClausesOfKind<OMPIfClause>()) {
6687         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6688         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6689         const OMPIfClause *IfClause = nullptr;
6690         for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
6691           if (C->getNameModifier() == OMPD_unknown ||
6692               C->getNameModifier() == OMPD_parallel) {
6693             IfClause = C;
6694             break;
6695           }
6696         }
6697         if (IfClause) {
6698           const Expr *Cond = IfClause->getCondition();
6699           bool Result;
6700           if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6701             if (!Result)
6702               return CGF.Builder.getInt32(1);
6703           } else {
6704             CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
6705             if (const auto *PreInit =
6706                     cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
6707               for (const auto *I : PreInit->decls()) {
6708                 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6709                   CGF.EmitVarDecl(cast<VarDecl>(*I));
6710                 } else {
6711                   CodeGenFunction::AutoVarEmission Emission =
6712                       CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6713                   CGF.EmitAutoVarCleanups(Emission);
6714                 }
6715               }
6716             }
6717             CondVal = CGF.EvaluateExprAsBool(Cond);
6718           }
6719         }
6720       }
6721       // Check the value of num_threads clause iff if clause was not specified
6722       // or is not evaluated to false.
6723       if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
6724         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6725         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6726         const auto *NumThreadsClause =
6727             Dir->getSingleClause<OMPNumThreadsClause>();
6728         CodeGenFunction::LexicalScope Scope(
6729             CGF, NumThreadsClause->getNumThreads()->getSourceRange());
6730         if (const auto *PreInit =
6731                 cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
6732           for (const auto *I : PreInit->decls()) {
6733             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6734               CGF.EmitVarDecl(cast<VarDecl>(*I));
6735             } else {
6736               CodeGenFunction::AutoVarEmission Emission =
6737                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6738               CGF.EmitAutoVarCleanups(Emission);
6739             }
6740           }
6741         }
6742         NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
6743         NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
6744                                                /*isSigned=*/false);
6745         if (DefaultThreadLimitVal)
6746           NumThreads = CGF.Builder.CreateSelect(
6747               CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
6748               DefaultThreadLimitVal, NumThreads);
6749       } else {
6750         NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
6751                                            : CGF.Builder.getInt32(0);
6752       }
6753       // Process condition of the if clause.
6754       if (CondVal) {
6755         NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
6756                                               CGF.Builder.getInt32(1));
6757       }
6758       return NumThreads;
6759     }
6760     if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
6761       return CGF.Builder.getInt32(1);
6762     return DefaultThreadLimitVal;
6763   }
6764   return DefaultThreadLimitVal ? DefaultThreadLimitVal
6765                                : CGF.Builder.getInt32(0);
6766 }
6767 
6768 /// Emit the number of threads for a target directive.  Inspect the
6769 /// thread_limit clause associated with a teams construct combined or closely
6770 /// nested with the target directive.
6771 ///
6772 /// Emit the num_threads clause for directives such as 'target parallel' that
6773 /// have no associated teams construct.
6774 ///
6775 /// Otherwise, return nullptr.
6776 static llvm::Value *
emitNumThreadsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6777 emitNumThreadsForTargetDirective(CodeGenFunction &CGF,
6778                                  const OMPExecutableDirective &D) {
6779   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6780          "Clauses associated with the teams directive expected to be emitted "
6781          "only for the host!");
6782   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6783   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6784          "Expected target-based executable directive.");
6785   CGBuilderTy &Bld = CGF.Builder;
6786   llvm::Value *ThreadLimitVal = nullptr;
6787   llvm::Value *NumThreadsVal = nullptr;
6788   switch (DirectiveKind) {
6789   case OMPD_target: {
6790     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6791     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6792       return NumThreads;
6793     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6794         CGF.getContext(), CS->getCapturedStmt());
6795     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6796       if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) {
6797         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6798         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6799         const auto *ThreadLimitClause =
6800             Dir->getSingleClause<OMPThreadLimitClause>();
6801         CodeGenFunction::LexicalScope Scope(
6802             CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
6803         if (const auto *PreInit =
6804                 cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
6805           for (const auto *I : PreInit->decls()) {
6806             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6807               CGF.EmitVarDecl(cast<VarDecl>(*I));
6808             } else {
6809               CodeGenFunction::AutoVarEmission Emission =
6810                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6811               CGF.EmitAutoVarCleanups(Emission);
6812             }
6813           }
6814         }
6815         llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6816             ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6817         ThreadLimitVal =
6818             Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6819       }
6820       if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
6821           !isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
6822         CS = Dir->getInnermostCapturedStmt();
6823         const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6824             CGF.getContext(), CS->getCapturedStmt());
6825         Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
6826       }
6827       if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
6828           !isOpenMPSimdDirective(Dir->getDirectiveKind())) {
6829         CS = Dir->getInnermostCapturedStmt();
6830         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6831           return NumThreads;
6832       }
6833       if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
6834         return Bld.getInt32(1);
6835     }
6836     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6837   }
6838   case OMPD_target_teams: {
6839     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6840       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6841       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6842       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6843           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6844       ThreadLimitVal =
6845           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6846     }
6847     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6848     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6849       return NumThreads;
6850     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6851         CGF.getContext(), CS->getCapturedStmt());
6852     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6853       if (Dir->getDirectiveKind() == OMPD_distribute) {
6854         CS = Dir->getInnermostCapturedStmt();
6855         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6856           return NumThreads;
6857       }
6858     }
6859     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6860   }
6861   case OMPD_target_teams_distribute:
6862     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6863       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6864       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6865       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6866           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6867       ThreadLimitVal =
6868           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6869     }
6870     return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal);
6871   case OMPD_target_parallel:
6872   case OMPD_target_parallel_for:
6873   case OMPD_target_parallel_for_simd:
6874   case OMPD_target_teams_distribute_parallel_for:
6875   case OMPD_target_teams_distribute_parallel_for_simd: {
6876     llvm::Value *CondVal = nullptr;
6877     // Handle if clause. If if clause present, the number of threads is
6878     // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6879     if (D.hasClausesOfKind<OMPIfClause>()) {
6880       const OMPIfClause *IfClause = nullptr;
6881       for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
6882         if (C->getNameModifier() == OMPD_unknown ||
6883             C->getNameModifier() == OMPD_parallel) {
6884           IfClause = C;
6885           break;
6886         }
6887       }
6888       if (IfClause) {
6889         const Expr *Cond = IfClause->getCondition();
6890         bool Result;
6891         if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6892           if (!Result)
6893             return Bld.getInt32(1);
6894         } else {
6895           CodeGenFunction::RunCleanupsScope Scope(CGF);
6896           CondVal = CGF.EvaluateExprAsBool(Cond);
6897         }
6898       }
6899     }
6900     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6901       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6902       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6903       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6904           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6905       ThreadLimitVal =
6906           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6907     }
6908     if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
6909       CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
6910       const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
6911       llvm::Value *NumThreads = CGF.EmitScalarExpr(
6912           NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
6913       NumThreadsVal =
6914           Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false);
6915       ThreadLimitVal = ThreadLimitVal
6916                            ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
6917                                                                 ThreadLimitVal),
6918                                               NumThreadsVal, ThreadLimitVal)
6919                            : NumThreadsVal;
6920     }
6921     if (!ThreadLimitVal)
6922       ThreadLimitVal = Bld.getInt32(0);
6923     if (CondVal)
6924       return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
6925     return ThreadLimitVal;
6926   }
6927   case OMPD_target_teams_distribute_simd:
6928   case OMPD_target_simd:
6929     return Bld.getInt32(1);
6930   case OMPD_parallel:
6931   case OMPD_for:
6932   case OMPD_parallel_for:
6933   case OMPD_parallel_master:
6934   case OMPD_parallel_sections:
6935   case OMPD_for_simd:
6936   case OMPD_parallel_for_simd:
6937   case OMPD_cancel:
6938   case OMPD_cancellation_point:
6939   case OMPD_ordered:
6940   case OMPD_threadprivate:
6941   case OMPD_allocate:
6942   case OMPD_task:
6943   case OMPD_simd:
6944   case OMPD_sections:
6945   case OMPD_section:
6946   case OMPD_single:
6947   case OMPD_master:
6948   case OMPD_critical:
6949   case OMPD_taskyield:
6950   case OMPD_barrier:
6951   case OMPD_taskwait:
6952   case OMPD_taskgroup:
6953   case OMPD_atomic:
6954   case OMPD_flush:
6955   case OMPD_depobj:
6956   case OMPD_scan:
6957   case OMPD_teams:
6958   case OMPD_target_data:
6959   case OMPD_target_exit_data:
6960   case OMPD_target_enter_data:
6961   case OMPD_distribute:
6962   case OMPD_distribute_simd:
6963   case OMPD_distribute_parallel_for:
6964   case OMPD_distribute_parallel_for_simd:
6965   case OMPD_teams_distribute:
6966   case OMPD_teams_distribute_simd:
6967   case OMPD_teams_distribute_parallel_for:
6968   case OMPD_teams_distribute_parallel_for_simd:
6969   case OMPD_target_update:
6970   case OMPD_declare_simd:
6971   case OMPD_declare_variant:
6972   case OMPD_begin_declare_variant:
6973   case OMPD_end_declare_variant:
6974   case OMPD_declare_target:
6975   case OMPD_end_declare_target:
6976   case OMPD_declare_reduction:
6977   case OMPD_declare_mapper:
6978   case OMPD_taskloop:
6979   case OMPD_taskloop_simd:
6980   case OMPD_master_taskloop:
6981   case OMPD_master_taskloop_simd:
6982   case OMPD_parallel_master_taskloop:
6983   case OMPD_parallel_master_taskloop_simd:
6984   case OMPD_requires:
6985   case OMPD_unknown:
6986     break;
6987   default:
6988     break;
6989   }
6990   llvm_unreachable("Unsupported directive kind.");
6991 }
6992 
6993 namespace {
6994 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
6995 
6996 // Utility to handle information from clauses associated with a given
6997 // construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
6998 // It provides a convenient interface to obtain the information and generate
6999 // code for that information.
7000 class MappableExprsHandler {
7001 public:
7002   /// Values for bit flags used to specify the mapping type for
7003   /// offloading.
7004   enum OpenMPOffloadMappingFlags : uint64_t {
7005     /// No flags
7006     OMP_MAP_NONE = 0x0,
7007     /// Allocate memory on the device and move data from host to device.
7008     OMP_MAP_TO = 0x01,
7009     /// Allocate memory on the device and move data from device to host.
7010     OMP_MAP_FROM = 0x02,
7011     /// Always perform the requested mapping action on the element, even
7012     /// if it was already mapped before.
7013     OMP_MAP_ALWAYS = 0x04,
7014     /// Delete the element from the device environment, ignoring the
7015     /// current reference count associated with the element.
7016     OMP_MAP_DELETE = 0x08,
7017     /// The element being mapped is a pointer-pointee pair; both the
7018     /// pointer and the pointee should be mapped.
7019     OMP_MAP_PTR_AND_OBJ = 0x10,
7020     /// This flags signals that the base address of an entry should be
7021     /// passed to the target kernel as an argument.
7022     OMP_MAP_TARGET_PARAM = 0x20,
7023     /// Signal that the runtime library has to return the device pointer
7024     /// in the current position for the data being mapped. Used when we have the
7025     /// use_device_ptr or use_device_addr clause.
7026     OMP_MAP_RETURN_PARAM = 0x40,
7027     /// This flag signals that the reference being passed is a pointer to
7028     /// private data.
7029     OMP_MAP_PRIVATE = 0x80,
7030     /// Pass the element to the device by value.
7031     OMP_MAP_LITERAL = 0x100,
7032     /// Implicit map
7033     OMP_MAP_IMPLICIT = 0x200,
7034     /// Close is a hint to the runtime to allocate memory close to
7035     /// the target device.
7036     OMP_MAP_CLOSE = 0x400,
7037     /// 0x800 is reserved for compatibility with XLC.
7038     /// Produce a runtime error if the data is not already allocated.
7039     OMP_MAP_PRESENT = 0x1000,
7040     /// Signal that the runtime library should use args as an array of
7041     /// descriptor_dim pointers and use args_size as dims. Used when we have
7042     /// non-contiguous list items in target update directive
7043     OMP_MAP_NON_CONTIG = 0x100000000000,
7044     /// The 16 MSBs of the flags indicate whether the entry is member of some
7045     /// struct/class.
7046     OMP_MAP_MEMBER_OF = 0xffff000000000000,
7047     LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF),
7048   };
7049 
7050   /// Get the offset of the OMP_MAP_MEMBER_OF field.
getFlagMemberOffset()7051   static unsigned getFlagMemberOffset() {
7052     unsigned Offset = 0;
7053     for (uint64_t Remain = OMP_MAP_MEMBER_OF; !(Remain & 1);
7054          Remain = Remain >> 1)
7055       Offset++;
7056     return Offset;
7057   }
7058 
7059   /// Class that holds debugging information for a data mapping to be passed to
7060   /// the runtime library.
7061   class MappingExprInfo {
7062     /// The variable declaration used for the data mapping.
7063     const ValueDecl *MapDecl = nullptr;
7064     /// The original expression used in the map clause, or null if there is
7065     /// none.
7066     const Expr *MapExpr = nullptr;
7067 
7068   public:
MappingExprInfo(const ValueDecl * MapDecl,const Expr * MapExpr=nullptr)7069     MappingExprInfo(const ValueDecl *MapDecl, const Expr *MapExpr = nullptr)
7070         : MapDecl(MapDecl), MapExpr(MapExpr) {}
7071 
getMapDecl() const7072     const ValueDecl *getMapDecl() const { return MapDecl; }
getMapExpr() const7073     const Expr *getMapExpr() const { return MapExpr; }
7074   };
7075 
7076   /// Class that associates information with a base pointer to be passed to the
7077   /// runtime library.
7078   class BasePointerInfo {
7079     /// The base pointer.
7080     llvm::Value *Ptr = nullptr;
7081     /// The base declaration that refers to this device pointer, or null if
7082     /// there is none.
7083     const ValueDecl *DevPtrDecl = nullptr;
7084 
7085   public:
BasePointerInfo(llvm::Value * Ptr,const ValueDecl * DevPtrDecl=nullptr)7086     BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
7087         : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
operator *() const7088     llvm::Value *operator*() const { return Ptr; }
getDevicePtrDecl() const7089     const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
setDevicePtrDecl(const ValueDecl * D)7090     void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
7091   };
7092 
7093   using MapExprsArrayTy = SmallVector<MappingExprInfo, 4>;
7094   using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
7095   using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
7096   using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
7097   using MapMappersArrayTy = SmallVector<const ValueDecl *, 4>;
7098   using MapDimArrayTy = SmallVector<uint64_t, 4>;
7099   using MapNonContiguousArrayTy = SmallVector<MapValuesArrayTy, 4>;
7100 
7101   /// This structure contains combined information generated for mappable
7102   /// clauses, including base pointers, pointers, sizes, map types, user-defined
7103   /// mappers, and non-contiguous information.
7104   struct MapCombinedInfoTy {
7105     struct StructNonContiguousInfo {
7106       bool IsNonContiguous = false;
7107       MapDimArrayTy Dims;
7108       MapNonContiguousArrayTy Offsets;
7109       MapNonContiguousArrayTy Counts;
7110       MapNonContiguousArrayTy Strides;
7111     };
7112     MapExprsArrayTy Exprs;
7113     MapBaseValuesArrayTy BasePointers;
7114     MapValuesArrayTy Pointers;
7115     MapValuesArrayTy Sizes;
7116     MapFlagsArrayTy Types;
7117     MapMappersArrayTy Mappers;
7118     StructNonContiguousInfo NonContigInfo;
7119 
7120     /// Append arrays in \a CurInfo.
append__anonbe229beb3d11::MappableExprsHandler::MapCombinedInfoTy7121     void append(MapCombinedInfoTy &CurInfo) {
7122       Exprs.append(CurInfo.Exprs.begin(), CurInfo.Exprs.end());
7123       BasePointers.append(CurInfo.BasePointers.begin(),
7124                           CurInfo.BasePointers.end());
7125       Pointers.append(CurInfo.Pointers.begin(), CurInfo.Pointers.end());
7126       Sizes.append(CurInfo.Sizes.begin(), CurInfo.Sizes.end());
7127       Types.append(CurInfo.Types.begin(), CurInfo.Types.end());
7128       Mappers.append(CurInfo.Mappers.begin(), CurInfo.Mappers.end());
7129       NonContigInfo.Dims.append(CurInfo.NonContigInfo.Dims.begin(),
7130                                  CurInfo.NonContigInfo.Dims.end());
7131       NonContigInfo.Offsets.append(CurInfo.NonContigInfo.Offsets.begin(),
7132                                     CurInfo.NonContigInfo.Offsets.end());
7133       NonContigInfo.Counts.append(CurInfo.NonContigInfo.Counts.begin(),
7134                                    CurInfo.NonContigInfo.Counts.end());
7135       NonContigInfo.Strides.append(CurInfo.NonContigInfo.Strides.begin(),
7136                                     CurInfo.NonContigInfo.Strides.end());
7137     }
7138   };
7139 
7140   /// Map between a struct and the its lowest & highest elements which have been
7141   /// mapped.
7142   /// [ValueDecl *] --> {LE(FieldIndex, Pointer),
7143   ///                    HE(FieldIndex, Pointer)}
7144   struct StructRangeInfoTy {
7145     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
7146         0, Address::invalid()};
7147     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
7148         0, Address::invalid()};
7149     Address Base = Address::invalid();
7150     bool IsArraySection = false;
7151   };
7152 
7153 private:
7154   /// Kind that defines how a device pointer has to be returned.
7155   struct MapInfo {
7156     OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
7157     OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
7158     ArrayRef<OpenMPMapModifierKind> MapModifiers;
7159     ArrayRef<OpenMPMotionModifierKind> MotionModifiers;
7160     bool ReturnDevicePointer = false;
7161     bool IsImplicit = false;
7162     const ValueDecl *Mapper = nullptr;
7163     const Expr *VarRef = nullptr;
7164     bool ForDeviceAddr = false;
7165 
7166     MapInfo() = default;
MapInfo__anonbe229beb3d11::MappableExprsHandler::MapInfo7167     MapInfo(
7168         OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7169         OpenMPMapClauseKind MapType,
7170         ArrayRef<OpenMPMapModifierKind> MapModifiers,
7171         ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
7172         bool ReturnDevicePointer, bool IsImplicit,
7173         const ValueDecl *Mapper = nullptr, const Expr *VarRef = nullptr,
7174         bool ForDeviceAddr = false)
7175         : Components(Components), MapType(MapType), MapModifiers(MapModifiers),
7176           MotionModifiers(MotionModifiers),
7177           ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit),
7178           Mapper(Mapper), VarRef(VarRef), ForDeviceAddr(ForDeviceAddr) {}
7179   };
7180 
7181   /// If use_device_ptr or use_device_addr is used on a decl which is a struct
7182   /// member and there is no map information about it, then emission of that
7183   /// entry is deferred until the whole struct has been processed.
7184   struct DeferredDevicePtrEntryTy {
7185     const Expr *IE = nullptr;
7186     const ValueDecl *VD = nullptr;
7187     bool ForDeviceAddr = false;
7188 
DeferredDevicePtrEntryTy__anonbe229beb3d11::MappableExprsHandler::DeferredDevicePtrEntryTy7189     DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD,
7190                              bool ForDeviceAddr)
7191         : IE(IE), VD(VD), ForDeviceAddr(ForDeviceAddr) {}
7192   };
7193 
7194   /// The target directive from where the mappable clauses were extracted. It
7195   /// is either a executable directive or a user-defined mapper directive.
7196   llvm::PointerUnion<const OMPExecutableDirective *,
7197                      const OMPDeclareMapperDecl *>
7198       CurDir;
7199 
7200   /// Function the directive is being generated for.
7201   CodeGenFunction &CGF;
7202 
7203   /// Set of all first private variables in the current directive.
7204   /// bool data is set to true if the variable is implicitly marked as
7205   /// firstprivate, false otherwise.
7206   llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
7207 
7208   /// Map between device pointer declarations and their expression components.
7209   /// The key value for declarations in 'this' is null.
7210   llvm::DenseMap<
7211       const ValueDecl *,
7212       SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
7213       DevPointersMap;
7214 
getExprTypeSize(const Expr * E) const7215   llvm::Value *getExprTypeSize(const Expr *E) const {
7216     QualType ExprTy = E->getType().getCanonicalType();
7217 
7218     // Calculate the size for array shaping expression.
7219     if (const auto *OAE = dyn_cast<OMPArrayShapingExpr>(E)) {
7220       llvm::Value *Size =
7221           CGF.getTypeSize(OAE->getBase()->getType()->getPointeeType());
7222       for (const Expr *SE : OAE->getDimensions()) {
7223         llvm::Value *Sz = CGF.EmitScalarExpr(SE);
7224         Sz = CGF.EmitScalarConversion(Sz, SE->getType(),
7225                                       CGF.getContext().getSizeType(),
7226                                       SE->getExprLoc());
7227         Size = CGF.Builder.CreateNUWMul(Size, Sz);
7228       }
7229       return Size;
7230     }
7231 
7232     // Reference types are ignored for mapping purposes.
7233     if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
7234       ExprTy = RefTy->getPointeeType().getCanonicalType();
7235 
7236     // Given that an array section is considered a built-in type, we need to
7237     // do the calculation based on the length of the section instead of relying
7238     // on CGF.getTypeSize(E->getType()).
7239     if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
7240       QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
7241                             OAE->getBase()->IgnoreParenImpCasts())
7242                             .getCanonicalType();
7243 
7244       // If there is no length associated with the expression and lower bound is
7245       // not specified too, that means we are using the whole length of the
7246       // base.
7247       if (!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
7248           !OAE->getLowerBound())
7249         return CGF.getTypeSize(BaseTy);
7250 
7251       llvm::Value *ElemSize;
7252       if (const auto *PTy = BaseTy->getAs<PointerType>()) {
7253         ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
7254       } else {
7255         const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
7256         assert(ATy && "Expecting array type if not a pointer type.");
7257         ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
7258       }
7259 
7260       // If we don't have a length at this point, that is because we have an
7261       // array section with a single element.
7262       if (!OAE->getLength() && OAE->getColonLocFirst().isInvalid())
7263         return ElemSize;
7264 
7265       if (const Expr *LenExpr = OAE->getLength()) {
7266         llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr);
7267         LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(),
7268                                              CGF.getContext().getSizeType(),
7269                                              LenExpr->getExprLoc());
7270         return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
7271       }
7272       assert(!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
7273              OAE->getLowerBound() && "expected array_section[lb:].");
7274       // Size = sizetype - lb * elemtype;
7275       llvm::Value *LengthVal = CGF.getTypeSize(BaseTy);
7276       llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound());
7277       LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(),
7278                                        CGF.getContext().getSizeType(),
7279                                        OAE->getLowerBound()->getExprLoc());
7280       LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize);
7281       llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal);
7282       llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal);
7283       LengthVal = CGF.Builder.CreateSelect(
7284           Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0));
7285       return LengthVal;
7286     }
7287     return CGF.getTypeSize(ExprTy);
7288   }
7289 
7290   /// Return the corresponding bits for a given map clause modifier. Add
7291   /// a flag marking the map as a pointer if requested. Add a flag marking the
7292   /// map as the first one of a series of maps that relate to the same map
7293   /// expression.
getMapTypeBits(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,ArrayRef<OpenMPMotionModifierKind> MotionModifiers,bool IsImplicit,bool AddPtrFlag,bool AddIsTargetParamFlag,bool IsNonContiguous) const7294   OpenMPOffloadMappingFlags getMapTypeBits(
7295       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7296       ArrayRef<OpenMPMotionModifierKind> MotionModifiers, bool IsImplicit,
7297       bool AddPtrFlag, bool AddIsTargetParamFlag, bool IsNonContiguous) const {
7298     OpenMPOffloadMappingFlags Bits =
7299         IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
7300     switch (MapType) {
7301     case OMPC_MAP_alloc:
7302     case OMPC_MAP_release:
7303       // alloc and release is the default behavior in the runtime library,  i.e.
7304       // if we don't pass any bits alloc/release that is what the runtime is
7305       // going to do. Therefore, we don't need to signal anything for these two
7306       // type modifiers.
7307       break;
7308     case OMPC_MAP_to:
7309       Bits |= OMP_MAP_TO;
7310       break;
7311     case OMPC_MAP_from:
7312       Bits |= OMP_MAP_FROM;
7313       break;
7314     case OMPC_MAP_tofrom:
7315       Bits |= OMP_MAP_TO | OMP_MAP_FROM;
7316       break;
7317     case OMPC_MAP_delete:
7318       Bits |= OMP_MAP_DELETE;
7319       break;
7320     case OMPC_MAP_unknown:
7321       llvm_unreachable("Unexpected map type!");
7322     }
7323     if (AddPtrFlag)
7324       Bits |= OMP_MAP_PTR_AND_OBJ;
7325     if (AddIsTargetParamFlag)
7326       Bits |= OMP_MAP_TARGET_PARAM;
7327     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
7328         != MapModifiers.end())
7329       Bits |= OMP_MAP_ALWAYS;
7330     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_close)
7331         != MapModifiers.end())
7332       Bits |= OMP_MAP_CLOSE;
7333     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_present)
7334         != MapModifiers.end())
7335       Bits |= OMP_MAP_PRESENT;
7336     if (llvm::find(MotionModifiers, OMPC_MOTION_MODIFIER_present)
7337         != MotionModifiers.end())
7338       Bits |= OMP_MAP_PRESENT;
7339     if (IsNonContiguous)
7340       Bits |= OMP_MAP_NON_CONTIG;
7341     return Bits;
7342   }
7343 
7344   /// Return true if the provided expression is a final array section. A
7345   /// final array section, is one whose length can't be proved to be one.
isFinalArraySectionExpression(const Expr * E) const7346   bool isFinalArraySectionExpression(const Expr *E) const {
7347     const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
7348 
7349     // It is not an array section and therefore not a unity-size one.
7350     if (!OASE)
7351       return false;
7352 
7353     // An array section with no colon always refer to a single element.
7354     if (OASE->getColonLocFirst().isInvalid())
7355       return false;
7356 
7357     const Expr *Length = OASE->getLength();
7358 
7359     // If we don't have a length we have to check if the array has size 1
7360     // for this dimension. Also, we should always expect a length if the
7361     // base type is pointer.
7362     if (!Length) {
7363       QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
7364                              OASE->getBase()->IgnoreParenImpCasts())
7365                              .getCanonicalType();
7366       if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
7367         return ATy->getSize().getSExtValue() != 1;
7368       // If we don't have a constant dimension length, we have to consider
7369       // the current section as having any size, so it is not necessarily
7370       // unitary. If it happen to be unity size, that's user fault.
7371       return true;
7372     }
7373 
7374     // Check if the length evaluates to 1.
7375     Expr::EvalResult Result;
7376     if (!Length->EvaluateAsInt(Result, CGF.getContext()))
7377       return true; // Can have more that size 1.
7378 
7379     llvm::APSInt ConstLength = Result.Val.getInt();
7380     return ConstLength.getSExtValue() != 1;
7381   }
7382 
7383   /// Generate the base pointers, section pointers, sizes, map type bits, and
7384   /// user-defined mappers (all included in \a CombinedInfo) for the provided
7385   /// map type, map or motion modifiers, and expression components.
7386   /// \a IsFirstComponent should be set to true if the provided set of
7387   /// components is the first associated with a capture.
generateInfoForComponentList(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,ArrayRef<OpenMPMotionModifierKind> MotionModifiers,OMPClauseMappableExprCommon::MappableExprComponentListRef Components,MapCombinedInfoTy & CombinedInfo,StructRangeInfoTy & PartialStruct,bool IsFirstComponentList,bool IsImplicit,const ValueDecl * Mapper=nullptr,bool ForDeviceAddr=false,const ValueDecl * BaseDecl=nullptr,const Expr * MapExpr=nullptr,ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> OverlappedElements=llvm::None) const7388   void generateInfoForComponentList(
7389       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7390       ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
7391       OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7392       MapCombinedInfoTy &CombinedInfo, StructRangeInfoTy &PartialStruct,
7393       bool IsFirstComponentList, bool IsImplicit,
7394       const ValueDecl *Mapper = nullptr, bool ForDeviceAddr = false,
7395       const ValueDecl *BaseDecl = nullptr, const Expr *MapExpr = nullptr,
7396       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
7397           OverlappedElements = llvm::None) const {
7398     // The following summarizes what has to be generated for each map and the
7399     // types below. The generated information is expressed in this order:
7400     // base pointer, section pointer, size, flags
7401     // (to add to the ones that come from the map type and modifier).
7402     //
7403     // double d;
7404     // int i[100];
7405     // float *p;
7406     //
7407     // struct S1 {
7408     //   int i;
7409     //   float f[50];
7410     // }
7411     // struct S2 {
7412     //   int i;
7413     //   float f[50];
7414     //   S1 s;
7415     //   double *p;
7416     //   struct S2 *ps;
7417     // }
7418     // S2 s;
7419     // S2 *ps;
7420     //
7421     // map(d)
7422     // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
7423     //
7424     // map(i)
7425     // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
7426     //
7427     // map(i[1:23])
7428     // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
7429     //
7430     // map(p)
7431     // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
7432     //
7433     // map(p[1:24])
7434     // &p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM | PTR_AND_OBJ
7435     // in unified shared memory mode or for local pointers
7436     // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
7437     //
7438     // map(s)
7439     // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
7440     //
7441     // map(s.i)
7442     // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
7443     //
7444     // map(s.s.f)
7445     // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7446     //
7447     // map(s.p)
7448     // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
7449     //
7450     // map(to: s.p[:22])
7451     // &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
7452     // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
7453     // &(s.p), &(s.p[0]), 22*sizeof(double),
7454     //   MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
7455     // (*) alloc space for struct members, only this is a target parameter
7456     // (**) map the pointer (nothing to be mapped in this example) (the compiler
7457     //      optimizes this entry out, same in the examples below)
7458     // (***) map the pointee (map: to)
7459     //
7460     // map(s.ps)
7461     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7462     //
7463     // map(from: s.ps->s.i)
7464     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7465     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7466     // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ  | FROM
7467     //
7468     // map(to: s.ps->ps)
7469     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7470     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7471     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ  | TO
7472     //
7473     // map(s.ps->ps->ps)
7474     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7475     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7476     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7477     // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7478     //
7479     // map(to: s.ps->ps->s.f[:22])
7480     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7481     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7482     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7483     // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7484     //
7485     // map(ps)
7486     // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
7487     //
7488     // map(ps->i)
7489     // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
7490     //
7491     // map(ps->s.f)
7492     // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7493     //
7494     // map(from: ps->p)
7495     // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
7496     //
7497     // map(to: ps->p[:22])
7498     // ps, &(ps->p), sizeof(double*), TARGET_PARAM
7499     // ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
7500     // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
7501     //
7502     // map(ps->ps)
7503     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7504     //
7505     // map(from: ps->ps->s.i)
7506     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7507     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7508     // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7509     //
7510     // map(from: ps->ps->ps)
7511     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7512     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7513     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7514     //
7515     // map(ps->ps->ps->ps)
7516     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7517     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7518     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7519     // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7520     //
7521     // map(to: ps->ps->ps->s.f[:22])
7522     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7523     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7524     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7525     // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7526     //
7527     // map(to: s.f[:22]) map(from: s.p[:33])
7528     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
7529     //     sizeof(double*) (**), TARGET_PARAM
7530     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
7531     // &s, &(s.p), sizeof(double*), MEMBER_OF(1)
7532     // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7533     // (*) allocate contiguous space needed to fit all mapped members even if
7534     //     we allocate space for members not mapped (in this example,
7535     //     s.f[22..49] and s.s are not mapped, yet we must allocate space for
7536     //     them as well because they fall between &s.f[0] and &s.p)
7537     //
7538     // map(from: s.f[:22]) map(to: ps->p[:33])
7539     // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
7540     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7541     // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
7542     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
7543     // (*) the struct this entry pertains to is the 2nd element in the list of
7544     //     arguments, hence MEMBER_OF(2)
7545     //
7546     // map(from: s.f[:22], s.s) map(to: ps->p[:33])
7547     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
7548     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
7549     // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
7550     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7551     // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
7552     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
7553     // (*) the struct this entry pertains to is the 4th element in the list
7554     //     of arguments, hence MEMBER_OF(4)
7555 
7556     // Track if the map information being generated is the first for a capture.
7557     bool IsCaptureFirstInfo = IsFirstComponentList;
7558     // When the variable is on a declare target link or in a to clause with
7559     // unified memory, a reference is needed to hold the host/device address
7560     // of the variable.
7561     bool RequiresReference = false;
7562 
7563     // Scan the components from the base to the complete expression.
7564     auto CI = Components.rbegin();
7565     auto CE = Components.rend();
7566     auto I = CI;
7567 
7568     // Track if the map information being generated is the first for a list of
7569     // components.
7570     bool IsExpressionFirstInfo = true;
7571     bool FirstPointerInComplexData = false;
7572     Address BP = Address::invalid();
7573     const Expr *AssocExpr = I->getAssociatedExpression();
7574     const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
7575     const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7576     const auto *OAShE = dyn_cast<OMPArrayShapingExpr>(AssocExpr);
7577 
7578     if (isa<MemberExpr>(AssocExpr)) {
7579       // The base is the 'this' pointer. The content of the pointer is going
7580       // to be the base of the field being mapped.
7581       BP = CGF.LoadCXXThisAddress();
7582     } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
7583                (OASE &&
7584                 isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
7585       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7586     } else if (OAShE &&
7587                isa<CXXThisExpr>(OAShE->getBase()->IgnoreParenCasts())) {
7588       BP = Address(
7589           CGF.EmitScalarExpr(OAShE->getBase()),
7590           CGF.getContext().getTypeAlignInChars(OAShE->getBase()->getType()));
7591     } else {
7592       // The base is the reference to the variable.
7593       // BP = &Var.
7594       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7595       if (const auto *VD =
7596               dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
7597         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
7598                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
7599           if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
7600               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
7601                CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
7602             RequiresReference = true;
7603             BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
7604           }
7605         }
7606       }
7607 
7608       // If the variable is a pointer and is being dereferenced (i.e. is not
7609       // the last component), the base has to be the pointer itself, not its
7610       // reference. References are ignored for mapping purposes.
7611       QualType Ty =
7612           I->getAssociatedDeclaration()->getType().getNonReferenceType();
7613       if (Ty->isAnyPointerType() && std::next(I) != CE) {
7614         // No need to generate individual map information for the pointer, it
7615         // can be associated with the combined storage if shared memory mode is
7616         // active or the base declaration is not global variable.
7617         const auto *VD = dyn_cast<VarDecl>(I->getAssociatedDeclaration());
7618         if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
7619             !VD || VD->hasLocalStorage())
7620           BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7621         else
7622           FirstPointerInComplexData = true;
7623         ++I;
7624       }
7625     }
7626 
7627     // Track whether a component of the list should be marked as MEMBER_OF some
7628     // combined entry (for partial structs). Only the first PTR_AND_OBJ entry
7629     // in a component list should be marked as MEMBER_OF, all subsequent entries
7630     // do not belong to the base struct. E.g.
7631     // struct S2 s;
7632     // s.ps->ps->ps->f[:]
7633     //   (1) (2) (3) (4)
7634     // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
7635     // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
7636     // is the pointee of ps(2) which is not member of struct s, so it should not
7637     // be marked as such (it is still PTR_AND_OBJ).
7638     // The variable is initialized to false so that PTR_AND_OBJ entries which
7639     // are not struct members are not considered (e.g. array of pointers to
7640     // data).
7641     bool ShouldBeMemberOf = false;
7642 
7643     // Variable keeping track of whether or not we have encountered a component
7644     // in the component list which is a member expression. Useful when we have a
7645     // pointer or a final array section, in which case it is the previous
7646     // component in the list which tells us whether we have a member expression.
7647     // E.g. X.f[:]
7648     // While processing the final array section "[:]" it is "f" which tells us
7649     // whether we are dealing with a member of a declared struct.
7650     const MemberExpr *EncounteredME = nullptr;
7651 
7652     // Track for the total number of dimension. Start from one for the dummy
7653     // dimension.
7654     uint64_t DimSize = 1;
7655 
7656     bool IsNonContiguous = CombinedInfo.NonContigInfo.IsNonContiguous;
7657 
7658     for (; I != CE; ++I) {
7659       // If the current component is member of a struct (parent struct) mark it.
7660       if (!EncounteredME) {
7661         EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
7662         // If we encounter a PTR_AND_OBJ entry from now on it should be marked
7663         // as MEMBER_OF the parent struct.
7664         if (EncounteredME) {
7665           ShouldBeMemberOf = true;
7666           // Do not emit as complex pointer if this is actually not array-like
7667           // expression.
7668           if (FirstPointerInComplexData) {
7669             QualType Ty = std::prev(I)
7670                               ->getAssociatedDeclaration()
7671                               ->getType()
7672                               .getNonReferenceType();
7673             BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7674             FirstPointerInComplexData = false;
7675           }
7676         }
7677       }
7678 
7679       auto Next = std::next(I);
7680 
7681       // We need to generate the addresses and sizes if this is the last
7682       // component, if the component is a pointer or if it is an array section
7683       // whose length can't be proved to be one. If this is a pointer, it
7684       // becomes the base address for the following components.
7685 
7686       // A final array section, is one whose length can't be proved to be one.
7687       // If the map item is non-contiguous then we don't treat any array section
7688       // as final array section.
7689       bool IsFinalArraySection =
7690           !IsNonContiguous &&
7691           isFinalArraySectionExpression(I->getAssociatedExpression());
7692 
7693       // If we have a declaration for the mapping use that, otherwise use
7694       // the base declaration of the map clause.
7695       const ValueDecl *MapDecl = (I->getAssociatedDeclaration())
7696                                      ? I->getAssociatedDeclaration()
7697                                      : BaseDecl;
7698 
7699       // Get information on whether the element is a pointer. Have to do a
7700       // special treatment for array sections given that they are built-in
7701       // types.
7702       const auto *OASE =
7703           dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
7704       const auto *OAShE =
7705           dyn_cast<OMPArrayShapingExpr>(I->getAssociatedExpression());
7706       const auto *UO = dyn_cast<UnaryOperator>(I->getAssociatedExpression());
7707       const auto *BO = dyn_cast<BinaryOperator>(I->getAssociatedExpression());
7708       bool IsPointer =
7709           OAShE ||
7710           (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
7711                        .getCanonicalType()
7712                        ->isAnyPointerType()) ||
7713           I->getAssociatedExpression()->getType()->isAnyPointerType();
7714       bool IsNonDerefPointer = IsPointer && !UO && !BO && !IsNonContiguous;
7715 
7716       if (OASE)
7717         ++DimSize;
7718 
7719       if (Next == CE || IsNonDerefPointer || IsFinalArraySection) {
7720         // If this is not the last component, we expect the pointer to be
7721         // associated with an array expression or member expression.
7722         assert((Next == CE ||
7723                 isa<MemberExpr>(Next->getAssociatedExpression()) ||
7724                 isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
7725                 isa<OMPArraySectionExpr>(Next->getAssociatedExpression()) ||
7726                 isa<OMPArrayShapingExpr>(Next->getAssociatedExpression()) ||
7727                 isa<UnaryOperator>(Next->getAssociatedExpression()) ||
7728                 isa<BinaryOperator>(Next->getAssociatedExpression())) &&
7729                "Unexpected expression");
7730 
7731         Address LB = Address::invalid();
7732         if (OAShE) {
7733           LB = Address(CGF.EmitScalarExpr(OAShE->getBase()),
7734                        CGF.getContext().getTypeAlignInChars(
7735                            OAShE->getBase()->getType()));
7736         } else {
7737           LB = CGF.EmitOMPSharedLValue(I->getAssociatedExpression())
7738                    .getAddress(CGF);
7739         }
7740 
7741         // If this component is a pointer inside the base struct then we don't
7742         // need to create any entry for it - it will be combined with the object
7743         // it is pointing to into a single PTR_AND_OBJ entry.
7744         bool IsMemberPointerOrAddr =
7745             (IsPointer || ForDeviceAddr) && EncounteredME &&
7746             (dyn_cast<MemberExpr>(I->getAssociatedExpression()) ==
7747              EncounteredME);
7748         if (!OverlappedElements.empty()) {
7749           // Handle base element with the info for overlapped elements.
7750           assert(!PartialStruct.Base.isValid() && "The base element is set.");
7751           assert(Next == CE &&
7752                  "Expected last element for the overlapped elements.");
7753           assert(!IsPointer &&
7754                  "Unexpected base element with the pointer type.");
7755           // Mark the whole struct as the struct that requires allocation on the
7756           // device.
7757           PartialStruct.LowestElem = {0, LB};
7758           CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
7759               I->getAssociatedExpression()->getType());
7760           Address HB = CGF.Builder.CreateConstGEP(
7761               CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB,
7762                                                               CGF.VoidPtrTy),
7763               TypeSize.getQuantity() - 1);
7764           PartialStruct.HighestElem = {
7765               std::numeric_limits<decltype(
7766                   PartialStruct.HighestElem.first)>::max(),
7767               HB};
7768           PartialStruct.Base = BP;
7769           // Emit data for non-overlapped data.
7770           OpenMPOffloadMappingFlags Flags =
7771               OMP_MAP_MEMBER_OF |
7772               getMapTypeBits(MapType, MapModifiers, MotionModifiers, IsImplicit,
7773                              /*AddPtrFlag=*/false,
7774                              /*AddIsTargetParamFlag=*/false, IsNonContiguous);
7775           LB = BP;
7776           llvm::Value *Size = nullptr;
7777           // Do bitcopy of all non-overlapped structure elements.
7778           for (OMPClauseMappableExprCommon::MappableExprComponentListRef
7779                    Component : OverlappedElements) {
7780             Address ComponentLB = Address::invalid();
7781             for (const OMPClauseMappableExprCommon::MappableComponent &MC :
7782                  Component) {
7783               if (MC.getAssociatedDeclaration()) {
7784                 ComponentLB =
7785                     CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
7786                         .getAddress(CGF);
7787                 Size = CGF.Builder.CreatePtrDiff(
7788                     CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
7789                     CGF.EmitCastToVoidPtr(LB.getPointer()));
7790                 break;
7791               }
7792             }
7793             assert(Size && "Failed to determine structure size");
7794             CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
7795             CombinedInfo.BasePointers.push_back(BP.getPointer());
7796             CombinedInfo.Pointers.push_back(LB.getPointer());
7797             CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
7798                 Size, CGF.Int64Ty, /*isSigned=*/true));
7799             CombinedInfo.Types.push_back(Flags);
7800             CombinedInfo.Mappers.push_back(nullptr);
7801             CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7802                                                                       : 1);
7803             LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
7804           }
7805           CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
7806           CombinedInfo.BasePointers.push_back(BP.getPointer());
7807           CombinedInfo.Pointers.push_back(LB.getPointer());
7808           Size = CGF.Builder.CreatePtrDiff(
7809               CGF.EmitCastToVoidPtr(
7810                   CGF.Builder.CreateConstGEP(HB, 1).getPointer()),
7811               CGF.EmitCastToVoidPtr(LB.getPointer()));
7812           CombinedInfo.Sizes.push_back(
7813               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7814           CombinedInfo.Types.push_back(Flags);
7815           CombinedInfo.Mappers.push_back(nullptr);
7816           CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7817                                                                     : 1);
7818           break;
7819         }
7820         llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
7821         if (!IsMemberPointerOrAddr ||
7822             (Next == CE && MapType != OMPC_MAP_unknown)) {
7823           CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
7824           CombinedInfo.BasePointers.push_back(BP.getPointer());
7825           CombinedInfo.Pointers.push_back(LB.getPointer());
7826           CombinedInfo.Sizes.push_back(
7827               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7828           CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7829                                                                     : 1);
7830 
7831           // If Mapper is valid, the last component inherits the mapper.
7832           bool HasMapper = Mapper && Next == CE;
7833           CombinedInfo.Mappers.push_back(HasMapper ? Mapper : nullptr);
7834 
7835           // We need to add a pointer flag for each map that comes from the
7836           // same expression except for the first one. We also need to signal
7837           // this map is the first one that relates with the current capture
7838           // (there is a set of entries for each capture).
7839           OpenMPOffloadMappingFlags Flags = getMapTypeBits(
7840               MapType, MapModifiers, MotionModifiers, IsImplicit,
7841               !IsExpressionFirstInfo || RequiresReference ||
7842                   FirstPointerInComplexData,
7843               IsCaptureFirstInfo && !RequiresReference, IsNonContiguous);
7844 
7845           if (!IsExpressionFirstInfo) {
7846             // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
7847             // then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags.
7848             if (IsPointer)
7849               Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
7850                          OMP_MAP_DELETE | OMP_MAP_CLOSE);
7851 
7852             if (ShouldBeMemberOf) {
7853               // Set placeholder value MEMBER_OF=FFFF to indicate that the flag
7854               // should be later updated with the correct value of MEMBER_OF.
7855               Flags |= OMP_MAP_MEMBER_OF;
7856               // From now on, all subsequent PTR_AND_OBJ entries should not be
7857               // marked as MEMBER_OF.
7858               ShouldBeMemberOf = false;
7859             }
7860           }
7861 
7862           CombinedInfo.Types.push_back(Flags);
7863         }
7864 
7865         // If we have encountered a member expression so far, keep track of the
7866         // mapped member. If the parent is "*this", then the value declaration
7867         // is nullptr.
7868         if (EncounteredME) {
7869           const auto *FD = cast<FieldDecl>(EncounteredME->getMemberDecl());
7870           unsigned FieldIndex = FD->getFieldIndex();
7871 
7872           // Update info about the lowest and highest elements for this struct
7873           if (!PartialStruct.Base.isValid()) {
7874             PartialStruct.LowestElem = {FieldIndex, LB};
7875             if (IsFinalArraySection) {
7876               Address HB =
7877                   CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false)
7878                       .getAddress(CGF);
7879               PartialStruct.HighestElem = {FieldIndex, HB};
7880             } else {
7881               PartialStruct.HighestElem = {FieldIndex, LB};
7882             }
7883             PartialStruct.Base = BP;
7884           } else if (FieldIndex < PartialStruct.LowestElem.first) {
7885             PartialStruct.LowestElem = {FieldIndex, LB};
7886           } else if (FieldIndex > PartialStruct.HighestElem.first) {
7887             PartialStruct.HighestElem = {FieldIndex, LB};
7888           }
7889         }
7890 
7891         // Need to emit combined struct for array sections.
7892         if (IsFinalArraySection || IsNonContiguous)
7893           PartialStruct.IsArraySection = true;
7894 
7895         // If we have a final array section, we are done with this expression.
7896         if (IsFinalArraySection)
7897           break;
7898 
7899         // The pointer becomes the base for the next element.
7900         if (Next != CE)
7901           BP = LB;
7902 
7903         IsExpressionFirstInfo = false;
7904         IsCaptureFirstInfo = false;
7905         FirstPointerInComplexData = false;
7906       } else if (FirstPointerInComplexData) {
7907         QualType Ty = Components.rbegin()
7908                           ->getAssociatedDeclaration()
7909                           ->getType()
7910                           .getNonReferenceType();
7911         BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7912         FirstPointerInComplexData = false;
7913       }
7914     }
7915 
7916     if (!IsNonContiguous)
7917       return;
7918 
7919     const ASTContext &Context = CGF.getContext();
7920 
7921     // For supporting stride in array section, we need to initialize the first
7922     // dimension size as 1, first offset as 0, and first count as 1
7923     MapValuesArrayTy CurOffsets = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 0)};
7924     MapValuesArrayTy CurCounts = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)};
7925     MapValuesArrayTy CurStrides;
7926     MapValuesArrayTy DimSizes{llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)};
7927     uint64_t ElementTypeSize;
7928 
7929     // Collect Size information for each dimension and get the element size as
7930     // the first Stride. For example, for `int arr[10][10]`, the DimSizes
7931     // should be [10, 10] and the first stride is 4 btyes.
7932     for (const OMPClauseMappableExprCommon::MappableComponent &Component :
7933          Components) {
7934       const Expr *AssocExpr = Component.getAssociatedExpression();
7935       const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7936 
7937       if (!OASE)
7938         continue;
7939 
7940       QualType Ty = OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
7941       auto *CAT = Context.getAsConstantArrayType(Ty);
7942       auto *VAT = Context.getAsVariableArrayType(Ty);
7943 
7944       // We need all the dimension size except for the last dimension.
7945       assert((VAT || CAT || &Component == &*Components.begin()) &&
7946              "Should be either ConstantArray or VariableArray if not the "
7947              "first Component");
7948 
7949       // Get element size if CurStrides is empty.
7950       if (CurStrides.empty()) {
7951         const Type *ElementType = nullptr;
7952         if (CAT)
7953           ElementType = CAT->getElementType().getTypePtr();
7954         else if (VAT)
7955           ElementType = VAT->getElementType().getTypePtr();
7956         else
7957           assert(&Component == &*Components.begin() &&
7958                  "Only expect pointer (non CAT or VAT) when this is the "
7959                  "first Component");
7960         // If ElementType is null, then it means the base is a pointer
7961         // (neither CAT nor VAT) and we'll attempt to get ElementType again
7962         // for next iteration.
7963         if (ElementType) {
7964           // For the case that having pointer as base, we need to remove one
7965           // level of indirection.
7966           if (&Component != &*Components.begin())
7967             ElementType = ElementType->getPointeeOrArrayElementType();
7968           ElementTypeSize =
7969               Context.getTypeSizeInChars(ElementType).getQuantity();
7970           CurStrides.push_back(
7971               llvm::ConstantInt::get(CGF.Int64Ty, ElementTypeSize));
7972         }
7973       }
7974       // Get dimension value except for the last dimension since we don't need
7975       // it.
7976       if (DimSizes.size() < Components.size() - 1) {
7977         if (CAT)
7978           DimSizes.push_back(llvm::ConstantInt::get(
7979               CGF.Int64Ty, CAT->getSize().getZExtValue()));
7980         else if (VAT)
7981           DimSizes.push_back(CGF.Builder.CreateIntCast(
7982               CGF.EmitScalarExpr(VAT->getSizeExpr()), CGF.Int64Ty,
7983               /*IsSigned=*/false));
7984       }
7985     }
7986 
7987     // Skip the dummy dimension since we have already have its information.
7988     auto DI = DimSizes.begin() + 1;
7989     // Product of dimension.
7990     llvm::Value *DimProd =
7991         llvm::ConstantInt::get(CGF.CGM.Int64Ty, ElementTypeSize);
7992 
7993     // Collect info for non-contiguous. Notice that offset, count, and stride
7994     // are only meaningful for array-section, so we insert a null for anything
7995     // other than array-section.
7996     // Also, the size of offset, count, and stride are not the same as
7997     // pointers, base_pointers, sizes, or dims. Instead, the size of offset,
7998     // count, and stride are the same as the number of non-contiguous
7999     // declaration in target update to/from clause.
8000     for (const OMPClauseMappableExprCommon::MappableComponent &Component :
8001          Components) {
8002       const Expr *AssocExpr = Component.getAssociatedExpression();
8003 
8004       if (const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr)) {
8005         llvm::Value *Offset = CGF.Builder.CreateIntCast(
8006             CGF.EmitScalarExpr(AE->getIdx()), CGF.Int64Ty,
8007             /*isSigned=*/false);
8008         CurOffsets.push_back(Offset);
8009         CurCounts.push_back(llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/1));
8010         CurStrides.push_back(CurStrides.back());
8011         continue;
8012       }
8013 
8014       const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
8015 
8016       if (!OASE)
8017         continue;
8018 
8019       // Offset
8020       const Expr *OffsetExpr = OASE->getLowerBound();
8021       llvm::Value *Offset = nullptr;
8022       if (!OffsetExpr) {
8023         // If offset is absent, then we just set it to zero.
8024         Offset = llvm::ConstantInt::get(CGF.Int64Ty, 0);
8025       } else {
8026         Offset = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(OffsetExpr),
8027                                            CGF.Int64Ty,
8028                                            /*isSigned=*/false);
8029       }
8030       CurOffsets.push_back(Offset);
8031 
8032       // Count
8033       const Expr *CountExpr = OASE->getLength();
8034       llvm::Value *Count = nullptr;
8035       if (!CountExpr) {
8036         // In Clang, once a high dimension is an array section, we construct all
8037         // the lower dimension as array section, however, for case like
8038         // arr[0:2][2], Clang construct the inner dimension as an array section
8039         // but it actually is not in an array section form according to spec.
8040         if (!OASE->getColonLocFirst().isValid() &&
8041             !OASE->getColonLocSecond().isValid()) {
8042           Count = llvm::ConstantInt::get(CGF.Int64Ty, 1);
8043         } else {
8044           // OpenMP 5.0, 2.1.5 Array Sections, Description.
8045           // When the length is absent it defaults to ⌈(size −
8046           // lower-bound)/stride⌉, where size is the size of the array
8047           // dimension.
8048           const Expr *StrideExpr = OASE->getStride();
8049           llvm::Value *Stride =
8050               StrideExpr
8051                   ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr),
8052                                               CGF.Int64Ty, /*isSigned=*/false)
8053                   : nullptr;
8054           if (Stride)
8055             Count = CGF.Builder.CreateUDiv(
8056                 CGF.Builder.CreateNUWSub(*DI, Offset), Stride);
8057           else
8058             Count = CGF.Builder.CreateNUWSub(*DI, Offset);
8059         }
8060       } else {
8061         Count = CGF.EmitScalarExpr(CountExpr);
8062       }
8063       Count = CGF.Builder.CreateIntCast(Count, CGF.Int64Ty, /*isSigned=*/false);
8064       CurCounts.push_back(Count);
8065 
8066       // Stride_n' = Stride_n * (D_0 * D_1 ... * D_n-1) * Unit size
8067       // Take `int arr[5][5][5]` and `arr[0:2:2][1:2:1][0:2:2]` as an example:
8068       //              Offset      Count     Stride
8069       //    D0          0           1         4    (int)    <- dummy dimension
8070       //    D1          0           2         8    (2 * (1) * 4)
8071       //    D2          1           2         20   (1 * (1 * 5) * 4)
8072       //    D3          0           2         200  (2 * (1 * 5 * 4) * 4)
8073       const Expr *StrideExpr = OASE->getStride();
8074       llvm::Value *Stride =
8075           StrideExpr
8076               ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr),
8077                                           CGF.Int64Ty, /*isSigned=*/false)
8078               : nullptr;
8079       DimProd = CGF.Builder.CreateNUWMul(DimProd, *(DI - 1));
8080       if (Stride)
8081         CurStrides.push_back(CGF.Builder.CreateNUWMul(DimProd, Stride));
8082       else
8083         CurStrides.push_back(DimProd);
8084       if (DI != DimSizes.end())
8085         ++DI;
8086     }
8087 
8088     CombinedInfo.NonContigInfo.Offsets.push_back(CurOffsets);
8089     CombinedInfo.NonContigInfo.Counts.push_back(CurCounts);
8090     CombinedInfo.NonContigInfo.Strides.push_back(CurStrides);
8091   }
8092 
8093   /// Return the adjusted map modifiers if the declaration a capture refers to
8094   /// appears in a first-private clause. This is expected to be used only with
8095   /// directives that start with 'target'.
8096   MappableExprsHandler::OpenMPOffloadMappingFlags
getMapModifiersForPrivateClauses(const CapturedStmt::Capture & Cap) const8097   getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
8098     assert(Cap.capturesVariable() && "Expected capture by reference only!");
8099 
8100     // A first private variable captured by reference will use only the
8101     // 'private ptr' and 'map to' flag. Return the right flags if the captured
8102     // declaration is known as first-private in this handler.
8103     if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
8104       if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) &&
8105           Cap.getCaptureKind() == CapturedStmt::VCK_ByRef)
8106         return MappableExprsHandler::OMP_MAP_ALWAYS |
8107                MappableExprsHandler::OMP_MAP_TO;
8108       if (Cap.getCapturedVar()->getType()->isAnyPointerType())
8109         return MappableExprsHandler::OMP_MAP_TO |
8110                MappableExprsHandler::OMP_MAP_PTR_AND_OBJ;
8111       return MappableExprsHandler::OMP_MAP_PRIVATE |
8112              MappableExprsHandler::OMP_MAP_TO;
8113     }
8114     return MappableExprsHandler::OMP_MAP_TO |
8115            MappableExprsHandler::OMP_MAP_FROM;
8116   }
8117 
getMemberOfFlag(unsigned Position)8118   static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
8119     // Rotate by getFlagMemberOffset() bits.
8120     return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
8121                                                   << getFlagMemberOffset());
8122   }
8123 
setCorrectMemberOfFlag(OpenMPOffloadMappingFlags & Flags,OpenMPOffloadMappingFlags MemberOfFlag)8124   static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
8125                                      OpenMPOffloadMappingFlags MemberOfFlag) {
8126     // If the entry is PTR_AND_OBJ but has not been marked with the special
8127     // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
8128     // marked as MEMBER_OF.
8129     if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
8130         ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
8131       return;
8132 
8133     // Reset the placeholder value to prepare the flag for the assignment of the
8134     // proper MEMBER_OF value.
8135     Flags &= ~OMP_MAP_MEMBER_OF;
8136     Flags |= MemberOfFlag;
8137   }
8138 
getPlainLayout(const CXXRecordDecl * RD,llvm::SmallVectorImpl<const FieldDecl * > & Layout,bool AsBase) const8139   void getPlainLayout(const CXXRecordDecl *RD,
8140                       llvm::SmallVectorImpl<const FieldDecl *> &Layout,
8141                       bool AsBase) const {
8142     const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
8143 
8144     llvm::StructType *St =
8145         AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
8146 
8147     unsigned NumElements = St->getNumElements();
8148     llvm::SmallVector<
8149         llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
8150         RecordLayout(NumElements);
8151 
8152     // Fill bases.
8153     for (const auto &I : RD->bases()) {
8154       if (I.isVirtual())
8155         continue;
8156       const auto *Base = I.getType()->getAsCXXRecordDecl();
8157       // Ignore empty bases.
8158       if (Base->isEmpty() || CGF.getContext()
8159                                  .getASTRecordLayout(Base)
8160                                  .getNonVirtualSize()
8161                                  .isZero())
8162         continue;
8163 
8164       unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
8165       RecordLayout[FieldIndex] = Base;
8166     }
8167     // Fill in virtual bases.
8168     for (const auto &I : RD->vbases()) {
8169       const auto *Base = I.getType()->getAsCXXRecordDecl();
8170       // Ignore empty bases.
8171       if (Base->isEmpty())
8172         continue;
8173       unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
8174       if (RecordLayout[FieldIndex])
8175         continue;
8176       RecordLayout[FieldIndex] = Base;
8177     }
8178     // Fill in all the fields.
8179     assert(!RD->isUnion() && "Unexpected union.");
8180     for (const auto *Field : RD->fields()) {
8181       // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
8182       // will fill in later.)
8183       if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) {
8184         unsigned FieldIndex = RL.getLLVMFieldNo(Field);
8185         RecordLayout[FieldIndex] = Field;
8186       }
8187     }
8188     for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
8189              &Data : RecordLayout) {
8190       if (Data.isNull())
8191         continue;
8192       if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
8193         getPlainLayout(Base, Layout, /*AsBase=*/true);
8194       else
8195         Layout.push_back(Data.get<const FieldDecl *>());
8196     }
8197   }
8198 
8199 public:
MappableExprsHandler(const OMPExecutableDirective & Dir,CodeGenFunction & CGF)8200   MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
8201       : CurDir(&Dir), CGF(CGF) {
8202     // Extract firstprivate clause information.
8203     for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
8204       for (const auto *D : C->varlists())
8205         FirstPrivateDecls.try_emplace(
8206             cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
8207     // Extract implicit firstprivates from uses_allocators clauses.
8208     for (const auto *C : Dir.getClausesOfKind<OMPUsesAllocatorsClause>()) {
8209       for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
8210         OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
8211         if (const auto *DRE = dyn_cast_or_null<DeclRefExpr>(D.AllocatorTraits))
8212           FirstPrivateDecls.try_emplace(cast<VarDecl>(DRE->getDecl()),
8213                                         /*Implicit=*/true);
8214         else if (const auto *VD = dyn_cast<VarDecl>(
8215                      cast<DeclRefExpr>(D.Allocator->IgnoreParenImpCasts())
8216                          ->getDecl()))
8217           FirstPrivateDecls.try_emplace(VD, /*Implicit=*/true);
8218       }
8219     }
8220     // Extract device pointer clause information.
8221     for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
8222       for (auto L : C->component_lists())
8223         DevPointersMap[std::get<0>(L)].push_back(std::get<1>(L));
8224   }
8225 
8226   /// Constructor for the declare mapper directive.
MappableExprsHandler(const OMPDeclareMapperDecl & Dir,CodeGenFunction & CGF)8227   MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF)
8228       : CurDir(&Dir), CGF(CGF) {}
8229 
8230   /// Generate code for the combined entry if we have a partially mapped struct
8231   /// and take care of the mapping flags of the arguments corresponding to
8232   /// individual struct members.
emitCombinedEntry(MapCombinedInfoTy & CombinedInfo,MapFlagsArrayTy & CurTypes,const StructRangeInfoTy & PartialStruct,const ValueDecl * VD=nullptr,bool NotTargetParams=false) const8233   void emitCombinedEntry(MapCombinedInfoTy &CombinedInfo,
8234                          MapFlagsArrayTy &CurTypes,
8235                          const StructRangeInfoTy &PartialStruct,
8236                          const ValueDecl *VD = nullptr,
8237                          bool NotTargetParams = false) const {
8238     if (CurTypes.size() == 1 &&
8239         ((CurTypes.back() & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF) &&
8240         !PartialStruct.IsArraySection)
8241       return;
8242     CombinedInfo.Exprs.push_back(VD);
8243     // Base is the base of the struct
8244     CombinedInfo.BasePointers.push_back(PartialStruct.Base.getPointer());
8245     // Pointer is the address of the lowest element
8246     llvm::Value *LB = PartialStruct.LowestElem.second.getPointer();
8247     CombinedInfo.Pointers.push_back(LB);
8248     // There should not be a mapper for a combined entry.
8249     CombinedInfo.Mappers.push_back(nullptr);
8250     // Size is (addr of {highest+1} element) - (addr of lowest element)
8251     llvm::Value *HB = PartialStruct.HighestElem.second.getPointer();
8252     llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
8253     llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
8254     llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
8255     llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
8256     llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
8257                                                   /*isSigned=*/false);
8258     CombinedInfo.Sizes.push_back(Size);
8259     // Map type is always TARGET_PARAM, if generate info for captures.
8260     CombinedInfo.Types.push_back(NotTargetParams ? OMP_MAP_NONE
8261                                                  : OMP_MAP_TARGET_PARAM);
8262     // If any element has the present modifier, then make sure the runtime
8263     // doesn't attempt to allocate the struct.
8264     if (CurTypes.end() !=
8265         llvm::find_if(CurTypes, [](OpenMPOffloadMappingFlags Type) {
8266           return Type & OMP_MAP_PRESENT;
8267         }))
8268       CombinedInfo.Types.back() |= OMP_MAP_PRESENT;
8269     // Remove TARGET_PARAM flag from the first element if any.
8270     if (!CurTypes.empty())
8271       CurTypes.front() &= ~OMP_MAP_TARGET_PARAM;
8272 
8273     // All other current entries will be MEMBER_OF the combined entry
8274     // (except for PTR_AND_OBJ entries which do not have a placeholder value
8275     // 0xFFFF in the MEMBER_OF field).
8276     OpenMPOffloadMappingFlags MemberOfFlag =
8277         getMemberOfFlag(CombinedInfo.BasePointers.size() - 1);
8278     for (auto &M : CurTypes)
8279       setCorrectMemberOfFlag(M, MemberOfFlag);
8280   }
8281 
8282   /// Generate all the base pointers, section pointers, sizes, map types, and
8283   /// mappers for the extracted mappable expressions (all included in \a
8284   /// CombinedInfo). Also, for each item that relates with a device pointer, a
8285   /// pair of the relevant declaration and index where it occurs is appended to
8286   /// the device pointers info array.
generateAllInfo(MapCombinedInfoTy & CombinedInfo,bool NotTargetParams=false,const llvm::DenseSet<CanonicalDeclPtr<const Decl>> & SkipVarSet=llvm::DenseSet<CanonicalDeclPtr<const Decl>> ()) const8287   void generateAllInfo(
8288       MapCombinedInfoTy &CombinedInfo, bool NotTargetParams = false,
8289       const llvm::DenseSet<CanonicalDeclPtr<const Decl>> &SkipVarSet =
8290           llvm::DenseSet<CanonicalDeclPtr<const Decl>>()) const {
8291     // We have to process the component lists that relate with the same
8292     // declaration in a single chunk so that we can generate the map flags
8293     // correctly. Therefore, we organize all lists in a map.
8294     llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
8295 
8296     // Helper function to fill the information map for the different supported
8297     // clauses.
8298     auto &&InfoGen =
8299         [&Info, &SkipVarSet](
8300             const ValueDecl *D,
8301             OMPClauseMappableExprCommon::MappableExprComponentListRef L,
8302             OpenMPMapClauseKind MapType,
8303             ArrayRef<OpenMPMapModifierKind> MapModifiers,
8304             ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
8305             bool ReturnDevicePointer, bool IsImplicit, const ValueDecl *Mapper,
8306             const Expr *VarRef = nullptr, bool ForDeviceAddr = false) {
8307           const ValueDecl *VD =
8308               D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
8309           if (SkipVarSet.count(VD))
8310             return;
8311           Info[VD].emplace_back(L, MapType, MapModifiers, MotionModifiers,
8312                                 ReturnDevicePointer, IsImplicit, Mapper, VarRef,
8313                                 ForDeviceAddr);
8314         };
8315 
8316     assert(CurDir.is<const OMPExecutableDirective *>() &&
8317            "Expect a executable directive");
8318     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8319     for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
8320       const auto *EI = C->getVarRefs().begin();
8321       for (const auto L : C->component_lists()) {
8322         // The Expression is not correct if the mapping is implicit
8323         const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr;
8324         InfoGen(std::get<0>(L), std::get<1>(L), C->getMapType(),
8325                 C->getMapTypeModifiers(), llvm::None,
8326                 /*ReturnDevicePointer=*/false, C->isImplicit(), std::get<2>(L),
8327                 E);
8328         ++EI;
8329       }
8330     }
8331     for (const auto *C : CurExecDir->getClausesOfKind<OMPToClause>()) {
8332       const auto *EI = C->getVarRefs().begin();
8333       for (const auto L : C->component_lists()) {
8334         InfoGen(std::get<0>(L), std::get<1>(L), OMPC_MAP_to, llvm::None,
8335                 C->getMotionModifiers(), /*ReturnDevicePointer=*/false,
8336                 C->isImplicit(), std::get<2>(L), *EI);
8337         ++EI;
8338       }
8339     }
8340     for (const auto *C : CurExecDir->getClausesOfKind<OMPFromClause>()) {
8341       const auto *EI = C->getVarRefs().begin();
8342       for (const auto L : C->component_lists()) {
8343         InfoGen(std::get<0>(L), std::get<1>(L), OMPC_MAP_from, llvm::None,
8344                 C->getMotionModifiers(), /*ReturnDevicePointer=*/false,
8345                 C->isImplicit(), std::get<2>(L), *EI);
8346         ++EI;
8347       }
8348     }
8349 
8350     // Look at the use_device_ptr clause information and mark the existing map
8351     // entries as such. If there is no map information for an entry in the
8352     // use_device_ptr list, we create one with map type 'alloc' and zero size
8353     // section. It is the user fault if that was not mapped before. If there is
8354     // no map information and the pointer is a struct member, then we defer the
8355     // emission of that entry until the whole struct has been processed.
8356     llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>>
8357         DeferredInfo;
8358     MapCombinedInfoTy UseDevicePtrCombinedInfo;
8359 
8360     for (const auto *C :
8361          CurExecDir->getClausesOfKind<OMPUseDevicePtrClause>()) {
8362       for (const auto L : C->component_lists()) {
8363         OMPClauseMappableExprCommon::MappableExprComponentListRef Components =
8364             std::get<1>(L);
8365         assert(!Components.empty() &&
8366                "Not expecting empty list of components!");
8367         const ValueDecl *VD = Components.back().getAssociatedDeclaration();
8368         VD = cast<ValueDecl>(VD->getCanonicalDecl());
8369         const Expr *IE = Components.back().getAssociatedExpression();
8370         // If the first component is a member expression, we have to look into
8371         // 'this', which maps to null in the map of map information. Otherwise
8372         // look directly for the information.
8373         auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
8374 
8375         // We potentially have map information for this declaration already.
8376         // Look for the first set of components that refer to it.
8377         if (It != Info.end()) {
8378           auto *CI = llvm::find_if(It->second, [VD](const MapInfo &MI) {
8379             return MI.Components.back().getAssociatedDeclaration() == VD;
8380           });
8381           // If we found a map entry, signal that the pointer has to be returned
8382           // and move on to the next declaration.
8383           // Exclude cases where the base pointer is mapped as array subscript,
8384           // array section or array shaping. The base address is passed as a
8385           // pointer to base in this case and cannot be used as a base for
8386           // use_device_ptr list item.
8387           if (CI != It->second.end()) {
8388             auto PrevCI = std::next(CI->Components.rbegin());
8389             const auto *VarD = dyn_cast<VarDecl>(VD);
8390             if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
8391                 isa<MemberExpr>(IE) ||
8392                 !VD->getType().getNonReferenceType()->isPointerType() ||
8393                 PrevCI == CI->Components.rend() ||
8394                 isa<MemberExpr>(PrevCI->getAssociatedExpression()) || !VarD ||
8395                 VarD->hasLocalStorage()) {
8396               CI->ReturnDevicePointer = true;
8397               continue;
8398             }
8399           }
8400         }
8401 
8402         // We didn't find any match in our map information - generate a zero
8403         // size array section - if the pointer is a struct member we defer this
8404         // action until the whole struct has been processed.
8405         if (isa<MemberExpr>(IE)) {
8406           // Insert the pointer into Info to be processed by
8407           // generateInfoForComponentList. Because it is a member pointer
8408           // without a pointee, no entry will be generated for it, therefore
8409           // we need to generate one after the whole struct has been processed.
8410           // Nonetheless, generateInfoForComponentList must be called to take
8411           // the pointer into account for the calculation of the range of the
8412           // partial struct.
8413           InfoGen(nullptr, Components, OMPC_MAP_unknown, llvm::None, llvm::None,
8414                   /*ReturnDevicePointer=*/false, C->isImplicit(), nullptr);
8415           DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/false);
8416         } else {
8417           llvm::Value *Ptr =
8418               CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc());
8419           UseDevicePtrCombinedInfo.Exprs.push_back(VD);
8420           UseDevicePtrCombinedInfo.BasePointers.emplace_back(Ptr, VD);
8421           UseDevicePtrCombinedInfo.Pointers.push_back(Ptr);
8422           UseDevicePtrCombinedInfo.Sizes.push_back(
8423               llvm::Constant::getNullValue(CGF.Int64Ty));
8424           UseDevicePtrCombinedInfo.Types.push_back(
8425               OMP_MAP_RETURN_PARAM |
8426               (NotTargetParams ? OMP_MAP_NONE : OMP_MAP_TARGET_PARAM));
8427           UseDevicePtrCombinedInfo.Mappers.push_back(nullptr);
8428         }
8429       }
8430     }
8431 
8432     // Look at the use_device_addr clause information and mark the existing map
8433     // entries as such. If there is no map information for an entry in the
8434     // use_device_addr list, we create one with map type 'alloc' and zero size
8435     // section. It is the user fault if that was not mapped before. If there is
8436     // no map information and the pointer is a struct member, then we defer the
8437     // emission of that entry until the whole struct has been processed.
8438     llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed;
8439     for (const auto *C :
8440          CurExecDir->getClausesOfKind<OMPUseDeviceAddrClause>()) {
8441       for (const auto L : C->component_lists()) {
8442         assert(!std::get<1>(L).empty() &&
8443                "Not expecting empty list of components!");
8444         const ValueDecl *VD = std::get<1>(L).back().getAssociatedDeclaration();
8445         if (!Processed.insert(VD).second)
8446           continue;
8447         VD = cast<ValueDecl>(VD->getCanonicalDecl());
8448         const Expr *IE = std::get<1>(L).back().getAssociatedExpression();
8449         // If the first component is a member expression, we have to look into
8450         // 'this', which maps to null in the map of map information. Otherwise
8451         // look directly for the information.
8452         auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
8453 
8454         // We potentially have map information for this declaration already.
8455         // Look for the first set of components that refer to it.
8456         if (It != Info.end()) {
8457           auto *CI = llvm::find_if(It->second, [VD](const MapInfo &MI) {
8458             return MI.Components.back().getAssociatedDeclaration() == VD;
8459           });
8460           // If we found a map entry, signal that the pointer has to be returned
8461           // and move on to the next declaration.
8462           if (CI != It->second.end()) {
8463             CI->ReturnDevicePointer = true;
8464             continue;
8465           }
8466         }
8467 
8468         // We didn't find any match in our map information - generate a zero
8469         // size array section - if the pointer is a struct member we defer this
8470         // action until the whole struct has been processed.
8471         if (isa<MemberExpr>(IE)) {
8472           // Insert the pointer into Info to be processed by
8473           // generateInfoForComponentList. Because it is a member pointer
8474           // without a pointee, no entry will be generated for it, therefore
8475           // we need to generate one after the whole struct has been processed.
8476           // Nonetheless, generateInfoForComponentList must be called to take
8477           // the pointer into account for the calculation of the range of the
8478           // partial struct.
8479           InfoGen(nullptr, std::get<1>(L), OMPC_MAP_unknown, llvm::None,
8480                   llvm::None, /*ReturnDevicePointer=*/false, C->isImplicit(),
8481                   nullptr, nullptr, /*ForDeviceAddr=*/true);
8482           DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/true);
8483         } else {
8484           llvm::Value *Ptr;
8485           if (IE->isGLValue())
8486             Ptr = CGF.EmitLValue(IE).getPointer(CGF);
8487           else
8488             Ptr = CGF.EmitScalarExpr(IE);
8489           CombinedInfo.Exprs.push_back(VD);
8490           CombinedInfo.BasePointers.emplace_back(Ptr, VD);
8491           CombinedInfo.Pointers.push_back(Ptr);
8492           CombinedInfo.Sizes.push_back(
8493               llvm::Constant::getNullValue(CGF.Int64Ty));
8494           CombinedInfo.Types.push_back(
8495               OMP_MAP_RETURN_PARAM |
8496               (NotTargetParams ? OMP_MAP_NONE : OMP_MAP_TARGET_PARAM));
8497           CombinedInfo.Mappers.push_back(nullptr);
8498         }
8499       }
8500     }
8501 
8502     for (const auto &M : Info) {
8503       // We need to know when we generate information for the first component
8504       // associated with a capture, because the mapping flags depend on it.
8505       bool IsFirstComponentList = !NotTargetParams;
8506 
8507       // Underlying variable declaration used in the map clause.
8508       const ValueDecl *VD = std::get<0>(M);
8509 
8510       // Temporary generated information.
8511       MapCombinedInfoTy CurInfo;
8512       StructRangeInfoTy PartialStruct;
8513 
8514       for (const MapInfo &L : M.second) {
8515         assert(!L.Components.empty() &&
8516                "Not expecting declaration with no component lists.");
8517 
8518         // Remember the current base pointer index.
8519         unsigned CurrentBasePointersIdx = CurInfo.BasePointers.size();
8520         CurInfo.NonContigInfo.IsNonContiguous =
8521             L.Components.back().isNonContiguous();
8522         generateInfoForComponentList(
8523             L.MapType, L.MapModifiers, L.MotionModifiers, L.Components, CurInfo,
8524             PartialStruct, IsFirstComponentList, L.IsImplicit, L.Mapper,
8525             L.ForDeviceAddr, VD, L.VarRef);
8526 
8527         // If this entry relates with a device pointer, set the relevant
8528         // declaration and add the 'return pointer' flag.
8529         if (L.ReturnDevicePointer) {
8530           assert(CurInfo.BasePointers.size() > CurrentBasePointersIdx &&
8531                  "Unexpected number of mapped base pointers.");
8532 
8533           const ValueDecl *RelevantVD =
8534               L.Components.back().getAssociatedDeclaration();
8535           assert(RelevantVD &&
8536                  "No relevant declaration related with device pointer??");
8537 
8538           CurInfo.BasePointers[CurrentBasePointersIdx].setDevicePtrDecl(
8539               RelevantVD);
8540           CurInfo.Types[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
8541         }
8542         IsFirstComponentList = false;
8543       }
8544 
8545       // Append any pending zero-length pointers which are struct members and
8546       // used with use_device_ptr or use_device_addr.
8547       auto CI = DeferredInfo.find(M.first);
8548       if (CI != DeferredInfo.end()) {
8549         for (const DeferredDevicePtrEntryTy &L : CI->second) {
8550           llvm::Value *BasePtr;
8551           llvm::Value *Ptr;
8552           if (L.ForDeviceAddr) {
8553             if (L.IE->isGLValue())
8554               Ptr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8555             else
8556               Ptr = this->CGF.EmitScalarExpr(L.IE);
8557             BasePtr = Ptr;
8558             // Entry is RETURN_PARAM. Also, set the placeholder value
8559             // MEMBER_OF=FFFF so that the entry is later updated with the
8560             // correct value of MEMBER_OF.
8561             CurInfo.Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_MEMBER_OF);
8562           } else {
8563             BasePtr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8564             Ptr = this->CGF.EmitLoadOfScalar(this->CGF.EmitLValue(L.IE),
8565                                              L.IE->getExprLoc());
8566             // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder
8567             // value MEMBER_OF=FFFF so that the entry is later updated with the
8568             // correct value of MEMBER_OF.
8569             CurInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
8570                                     OMP_MAP_MEMBER_OF);
8571           }
8572           CurInfo.Exprs.push_back(L.VD);
8573           CurInfo.BasePointers.emplace_back(BasePtr, L.VD);
8574           CurInfo.Pointers.push_back(Ptr);
8575           CurInfo.Sizes.push_back(
8576               llvm::Constant::getNullValue(this->CGF.Int64Ty));
8577           CurInfo.Mappers.push_back(nullptr);
8578         }
8579       }
8580 
8581       // If there is an entry in PartialStruct it means we have a struct with
8582       // individual members mapped. Emit an extra combined entry.
8583       if (PartialStruct.Base.isValid())
8584         emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct, VD,
8585                           NotTargetParams);
8586 
8587       // We need to append the results of this capture to what we already have.
8588       CombinedInfo.append(CurInfo);
8589     }
8590     // Append data for use_device_ptr clauses.
8591     CombinedInfo.append(UseDevicePtrCombinedInfo);
8592   }
8593 
8594   /// Generate all the base pointers, section pointers, sizes, map types, and
8595   /// mappers for the extracted map clauses of user-defined mapper (all included
8596   /// in \a CombinedInfo).
generateAllInfoForMapper(MapCombinedInfoTy & CombinedInfo) const8597   void generateAllInfoForMapper(MapCombinedInfoTy &CombinedInfo) const {
8598     assert(CurDir.is<const OMPDeclareMapperDecl *>() &&
8599            "Expect a declare mapper directive");
8600     const auto *CurMapperDir = CurDir.get<const OMPDeclareMapperDecl *>();
8601     // We have to process the component lists that relate with the same
8602     // declaration in a single chunk so that we can generate the map flags
8603     // correctly. Therefore, we organize all lists in a map.
8604     llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
8605 
8606     // Fill the information map for map clauses.
8607     for (const auto *C : CurMapperDir->clauselists()) {
8608       const auto *MC = cast<OMPMapClause>(C);
8609       const auto *EI = MC->getVarRefs().begin();
8610       for (const auto L : MC->component_lists()) {
8611         // The Expression is not correct if the mapping is implicit
8612         const Expr *E = (MC->getMapLoc().isValid()) ? *EI : nullptr;
8613         const ValueDecl *VD =
8614             std::get<0>(L) ? cast<ValueDecl>(std::get<0>(L)->getCanonicalDecl())
8615                            : nullptr;
8616         // Get the corresponding user-defined mapper.
8617         Info[VD].emplace_back(std::get<1>(L), MC->getMapType(),
8618                               MC->getMapTypeModifiers(), llvm::None,
8619                               /*ReturnDevicePointer=*/false, MC->isImplicit(),
8620                               std::get<2>(L), E);
8621         ++EI;
8622       }
8623     }
8624 
8625     for (const auto &M : Info) {
8626       // We need to know when we generate information for the first component
8627       // associated with a capture, because the mapping flags depend on it.
8628       bool IsFirstComponentList = true;
8629 
8630       // Underlying variable declaration used in the map clause.
8631       const ValueDecl *VD = std::get<0>(M);
8632 
8633       // Temporary generated information.
8634       MapCombinedInfoTy CurInfo;
8635       StructRangeInfoTy PartialStruct;
8636 
8637       for (const MapInfo &L : M.second) {
8638         assert(!L.Components.empty() &&
8639                "Not expecting declaration with no component lists.");
8640         generateInfoForComponentList(
8641             L.MapType, L.MapModifiers, L.MotionModifiers, L.Components, CurInfo,
8642             PartialStruct, IsFirstComponentList, L.IsImplicit, L.Mapper,
8643             L.ForDeviceAddr, VD, L.VarRef);
8644         IsFirstComponentList = false;
8645       }
8646 
8647       // If there is an entry in PartialStruct it means we have a struct with
8648       // individual members mapped. Emit an extra combined entry.
8649       if (PartialStruct.Base.isValid()) {
8650         CurInfo.NonContigInfo.Dims.push_back(0);
8651         emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct, VD);
8652       }
8653 
8654       // We need to append the results of this capture to what we already have.
8655       CombinedInfo.append(CurInfo);
8656     }
8657   }
8658 
8659   /// Emit capture info for lambdas for variables captured by reference.
generateInfoForLambdaCaptures(const ValueDecl * VD,llvm::Value * Arg,MapCombinedInfoTy & CombinedInfo,llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers) const8660   void generateInfoForLambdaCaptures(
8661       const ValueDecl *VD, llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo,
8662       llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
8663     const auto *RD = VD->getType()
8664                          .getCanonicalType()
8665                          .getNonReferenceType()
8666                          ->getAsCXXRecordDecl();
8667     if (!RD || !RD->isLambda())
8668       return;
8669     Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
8670     LValue VDLVal = CGF.MakeAddrLValue(
8671         VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
8672     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
8673     FieldDecl *ThisCapture = nullptr;
8674     RD->getCaptureFields(Captures, ThisCapture);
8675     if (ThisCapture) {
8676       LValue ThisLVal =
8677           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
8678       LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
8679       LambdaPointers.try_emplace(ThisLVal.getPointer(CGF),
8680                                  VDLVal.getPointer(CGF));
8681       CombinedInfo.Exprs.push_back(VD);
8682       CombinedInfo.BasePointers.push_back(ThisLVal.getPointer(CGF));
8683       CombinedInfo.Pointers.push_back(ThisLValVal.getPointer(CGF));
8684       CombinedInfo.Sizes.push_back(
8685           CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
8686                                     CGF.Int64Ty, /*isSigned=*/true));
8687       CombinedInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8688                                    OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8689       CombinedInfo.Mappers.push_back(nullptr);
8690     }
8691     for (const LambdaCapture &LC : RD->captures()) {
8692       if (!LC.capturesVariable())
8693         continue;
8694       const VarDecl *VD = LC.getCapturedVar();
8695       if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
8696         continue;
8697       auto It = Captures.find(VD);
8698       assert(It != Captures.end() && "Found lambda capture without field.");
8699       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
8700       if (LC.getCaptureKind() == LCK_ByRef) {
8701         LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
8702         LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8703                                    VDLVal.getPointer(CGF));
8704         CombinedInfo.Exprs.push_back(VD);
8705         CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF));
8706         CombinedInfo.Pointers.push_back(VarLValVal.getPointer(CGF));
8707         CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8708             CGF.getTypeSize(
8709                 VD->getType().getCanonicalType().getNonReferenceType()),
8710             CGF.Int64Ty, /*isSigned=*/true));
8711       } else {
8712         RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
8713         LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8714                                    VDLVal.getPointer(CGF));
8715         CombinedInfo.Exprs.push_back(VD);
8716         CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF));
8717         CombinedInfo.Pointers.push_back(VarRVal.getScalarVal());
8718         CombinedInfo.Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
8719       }
8720       CombinedInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8721                                    OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8722       CombinedInfo.Mappers.push_back(nullptr);
8723     }
8724   }
8725 
8726   /// Set correct indices for lambdas captures.
adjustMemberOfForLambdaCaptures(const llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapFlagsArrayTy & Types) const8727   void adjustMemberOfForLambdaCaptures(
8728       const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
8729       MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
8730       MapFlagsArrayTy &Types) const {
8731     for (unsigned I = 0, E = Types.size(); I < E; ++I) {
8732       // Set correct member_of idx for all implicit lambda captures.
8733       if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8734                        OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
8735         continue;
8736       llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
8737       assert(BasePtr && "Unable to find base lambda address.");
8738       int TgtIdx = -1;
8739       for (unsigned J = I; J > 0; --J) {
8740         unsigned Idx = J - 1;
8741         if (Pointers[Idx] != BasePtr)
8742           continue;
8743         TgtIdx = Idx;
8744         break;
8745       }
8746       assert(TgtIdx != -1 && "Unable to find parent lambda.");
8747       // All other current entries will be MEMBER_OF the combined entry
8748       // (except for PTR_AND_OBJ entries which do not have a placeholder value
8749       // 0xFFFF in the MEMBER_OF field).
8750       OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
8751       setCorrectMemberOfFlag(Types[I], MemberOfFlag);
8752     }
8753   }
8754 
8755   /// Generate the base pointers, section pointers, sizes, map types, and
8756   /// mappers associated to a given capture (all included in \a CombinedInfo).
generateInfoForCapture(const CapturedStmt::Capture * Cap,llvm::Value * Arg,MapCombinedInfoTy & CombinedInfo,StructRangeInfoTy & PartialStruct) const8757   void generateInfoForCapture(const CapturedStmt::Capture *Cap,
8758                               llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo,
8759                               StructRangeInfoTy &PartialStruct) const {
8760     assert(!Cap->capturesVariableArrayType() &&
8761            "Not expecting to generate map info for a variable array type!");
8762 
8763     // We need to know when we generating information for the first component
8764     const ValueDecl *VD = Cap->capturesThis()
8765                               ? nullptr
8766                               : Cap->getCapturedVar()->getCanonicalDecl();
8767 
8768     // If this declaration appears in a is_device_ptr clause we just have to
8769     // pass the pointer by value. If it is a reference to a declaration, we just
8770     // pass its value.
8771     if (DevPointersMap.count(VD)) {
8772       CombinedInfo.Exprs.push_back(VD);
8773       CombinedInfo.BasePointers.emplace_back(Arg, VD);
8774       CombinedInfo.Pointers.push_back(Arg);
8775       CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8776           CGF.getTypeSize(CGF.getContext().VoidPtrTy), CGF.Int64Ty,
8777           /*isSigned=*/true));
8778       CombinedInfo.Types.push_back(
8779           (Cap->capturesVariable() ? OMP_MAP_TO : OMP_MAP_LITERAL) |
8780           OMP_MAP_TARGET_PARAM);
8781       CombinedInfo.Mappers.push_back(nullptr);
8782       return;
8783     }
8784 
8785     using MapData =
8786         std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
8787                    OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool,
8788                    const ValueDecl *, const Expr *>;
8789     SmallVector<MapData, 4> DeclComponentLists;
8790     assert(CurDir.is<const OMPExecutableDirective *>() &&
8791            "Expect a executable directive");
8792     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8793     for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
8794       const auto *EI = C->getVarRefs().begin();
8795       for (const auto L : C->decl_component_lists(VD)) {
8796         const ValueDecl *VDecl, *Mapper;
8797         // The Expression is not correct if the mapping is implicit
8798         const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr;
8799         OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8800         std::tie(VDecl, Components, Mapper) = L;
8801         assert(VDecl == VD && "We got information for the wrong declaration??");
8802         assert(!Components.empty() &&
8803                "Not expecting declaration with no component lists.");
8804         DeclComponentLists.emplace_back(Components, C->getMapType(),
8805                                         C->getMapTypeModifiers(),
8806                                         C->isImplicit(), Mapper, E);
8807         ++EI;
8808       }
8809     }
8810 
8811     // Find overlapping elements (including the offset from the base element).
8812     llvm::SmallDenseMap<
8813         const MapData *,
8814         llvm::SmallVector<
8815             OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
8816         4>
8817         OverlappedData;
8818     size_t Count = 0;
8819     for (const MapData &L : DeclComponentLists) {
8820       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8821       OpenMPMapClauseKind MapType;
8822       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8823       bool IsImplicit;
8824       const ValueDecl *Mapper;
8825       const Expr *VarRef;
8826       std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
8827           L;
8828       ++Count;
8829       for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
8830         OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
8831         std::tie(Components1, MapType, MapModifiers, IsImplicit, Mapper,
8832                  VarRef) = L1;
8833         auto CI = Components.rbegin();
8834         auto CE = Components.rend();
8835         auto SI = Components1.rbegin();
8836         auto SE = Components1.rend();
8837         for (; CI != CE && SI != SE; ++CI, ++SI) {
8838           if (CI->getAssociatedExpression()->getStmtClass() !=
8839               SI->getAssociatedExpression()->getStmtClass())
8840             break;
8841           // Are we dealing with different variables/fields?
8842           if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
8843             break;
8844         }
8845         // Found overlapping if, at least for one component, reached the head of
8846         // the components list.
8847         if (CI == CE || SI == SE) {
8848           assert((CI != CE || SI != SE) &&
8849                  "Unexpected full match of the mapping components.");
8850           const MapData &BaseData = CI == CE ? L : L1;
8851           OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
8852               SI == SE ? Components : Components1;
8853           auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
8854           OverlappedElements.getSecond().push_back(SubData);
8855         }
8856       }
8857     }
8858     // Sort the overlapped elements for each item.
8859     llvm::SmallVector<const FieldDecl *, 4> Layout;
8860     if (!OverlappedData.empty()) {
8861       if (const auto *CRD =
8862               VD->getType().getCanonicalType()->getAsCXXRecordDecl())
8863         getPlainLayout(CRD, Layout, /*AsBase=*/false);
8864       else {
8865         const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl();
8866         Layout.append(RD->field_begin(), RD->field_end());
8867       }
8868     }
8869     for (auto &Pair : OverlappedData) {
8870       llvm::sort(
8871           Pair.getSecond(),
8872           [&Layout](
8873               OMPClauseMappableExprCommon::MappableExprComponentListRef First,
8874               OMPClauseMappableExprCommon::MappableExprComponentListRef
8875                   Second) {
8876             auto CI = First.rbegin();
8877             auto CE = First.rend();
8878             auto SI = Second.rbegin();
8879             auto SE = Second.rend();
8880             for (; CI != CE && SI != SE; ++CI, ++SI) {
8881               if (CI->getAssociatedExpression()->getStmtClass() !=
8882                   SI->getAssociatedExpression()->getStmtClass())
8883                 break;
8884               // Are we dealing with different variables/fields?
8885               if (CI->getAssociatedDeclaration() !=
8886                   SI->getAssociatedDeclaration())
8887                 break;
8888             }
8889 
8890             // Lists contain the same elements.
8891             if (CI == CE && SI == SE)
8892               return false;
8893 
8894             // List with less elements is less than list with more elements.
8895             if (CI == CE || SI == SE)
8896               return CI == CE;
8897 
8898             const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
8899             const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
8900             if (FD1->getParent() == FD2->getParent())
8901               return FD1->getFieldIndex() < FD2->getFieldIndex();
8902             const auto It =
8903                 llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
8904                   return FD == FD1 || FD == FD2;
8905                 });
8906             return *It == FD1;
8907           });
8908     }
8909 
8910     // Associated with a capture, because the mapping flags depend on it.
8911     // Go through all of the elements with the overlapped elements.
8912     for (const auto &Pair : OverlappedData) {
8913       const MapData &L = *Pair.getFirst();
8914       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8915       OpenMPMapClauseKind MapType;
8916       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8917       bool IsImplicit;
8918       const ValueDecl *Mapper;
8919       const Expr *VarRef;
8920       std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
8921           L;
8922       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
8923           OverlappedComponents = Pair.getSecond();
8924       bool IsFirstComponentList = true;
8925       generateInfoForComponentList(
8926           MapType, MapModifiers, llvm::None, Components, CombinedInfo,
8927           PartialStruct, IsFirstComponentList, IsImplicit, Mapper,
8928           /*ForDeviceAddr=*/false, VD, VarRef, OverlappedComponents);
8929     }
8930     // Go through other elements without overlapped elements.
8931     bool IsFirstComponentList = OverlappedData.empty();
8932     for (const MapData &L : DeclComponentLists) {
8933       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8934       OpenMPMapClauseKind MapType;
8935       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8936       bool IsImplicit;
8937       const ValueDecl *Mapper;
8938       const Expr *VarRef;
8939       std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
8940           L;
8941       auto It = OverlappedData.find(&L);
8942       if (It == OverlappedData.end())
8943         generateInfoForComponentList(MapType, MapModifiers, llvm::None,
8944                                      Components, CombinedInfo, PartialStruct,
8945                                      IsFirstComponentList, IsImplicit, Mapper,
8946                                      /*ForDeviceAddr=*/false, VD, VarRef);
8947       IsFirstComponentList = false;
8948     }
8949   }
8950 
8951   /// Generate the default map information for a given capture \a CI,
8952   /// record field declaration \a RI and captured value \a CV.
generateDefaultMapInfo(const CapturedStmt::Capture & CI,const FieldDecl & RI,llvm::Value * CV,MapCombinedInfoTy & CombinedInfo) const8953   void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
8954                               const FieldDecl &RI, llvm::Value *CV,
8955                               MapCombinedInfoTy &CombinedInfo) const {
8956     bool IsImplicit = true;
8957     // Do the default mapping.
8958     if (CI.capturesThis()) {
8959       CombinedInfo.Exprs.push_back(nullptr);
8960       CombinedInfo.BasePointers.push_back(CV);
8961       CombinedInfo.Pointers.push_back(CV);
8962       const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
8963       CombinedInfo.Sizes.push_back(
8964           CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
8965                                     CGF.Int64Ty, /*isSigned=*/true));
8966       // Default map type.
8967       CombinedInfo.Types.push_back(OMP_MAP_TO | OMP_MAP_FROM);
8968     } else if (CI.capturesVariableByCopy()) {
8969       const VarDecl *VD = CI.getCapturedVar();
8970       CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
8971       CombinedInfo.BasePointers.push_back(CV);
8972       CombinedInfo.Pointers.push_back(CV);
8973       if (!RI.getType()->isAnyPointerType()) {
8974         // We have to signal to the runtime captures passed by value that are
8975         // not pointers.
8976         CombinedInfo.Types.push_back(OMP_MAP_LITERAL);
8977         CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8978             CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
8979       } else {
8980         // Pointers are implicitly mapped with a zero size and no flags
8981         // (other than first map that is added for all implicit maps).
8982         CombinedInfo.Types.push_back(OMP_MAP_NONE);
8983         CombinedInfo.Sizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
8984       }
8985       auto I = FirstPrivateDecls.find(VD);
8986       if (I != FirstPrivateDecls.end())
8987         IsImplicit = I->getSecond();
8988     } else {
8989       assert(CI.capturesVariable() && "Expected captured reference.");
8990       const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
8991       QualType ElementType = PtrTy->getPointeeType();
8992       CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8993           CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
8994       // The default map type for a scalar/complex type is 'to' because by
8995       // default the value doesn't have to be retrieved. For an aggregate
8996       // type, the default is 'tofrom'.
8997       CombinedInfo.Types.push_back(getMapModifiersForPrivateClauses(CI));
8998       const VarDecl *VD = CI.getCapturedVar();
8999       auto I = FirstPrivateDecls.find(VD);
9000       if (I != FirstPrivateDecls.end() &&
9001           VD->getType().isConstant(CGF.getContext())) {
9002         llvm::Constant *Addr =
9003             CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD);
9004         // Copy the value of the original variable to the new global copy.
9005         CGF.Builder.CreateMemCpy(
9006             CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(CGF),
9007             Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)),
9008             CombinedInfo.Sizes.back(), /*IsVolatile=*/false);
9009         // Use new global variable as the base pointers.
9010         CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
9011         CombinedInfo.BasePointers.push_back(Addr);
9012         CombinedInfo.Pointers.push_back(Addr);
9013       } else {
9014         CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
9015         CombinedInfo.BasePointers.push_back(CV);
9016         if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
9017           Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
9018               CV, ElementType, CGF.getContext().getDeclAlign(VD),
9019               AlignmentSource::Decl));
9020           CombinedInfo.Pointers.push_back(PtrAddr.getPointer());
9021         } else {
9022           CombinedInfo.Pointers.push_back(CV);
9023         }
9024       }
9025       if (I != FirstPrivateDecls.end())
9026         IsImplicit = I->getSecond();
9027     }
9028     // Every default map produces a single argument which is a target parameter.
9029     CombinedInfo.Types.back() |= OMP_MAP_TARGET_PARAM;
9030 
9031     // Add flag stating this is an implicit map.
9032     if (IsImplicit)
9033       CombinedInfo.Types.back() |= OMP_MAP_IMPLICIT;
9034 
9035     // No user-defined mapper for default mapping.
9036     CombinedInfo.Mappers.push_back(nullptr);
9037   }
9038 };
9039 } // anonymous namespace
9040 
emitNonContiguousDescriptor(CodeGenFunction & CGF,MappableExprsHandler::MapCombinedInfoTy & CombinedInfo,CGOpenMPRuntime::TargetDataInfo & Info)9041 static void emitNonContiguousDescriptor(
9042     CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo,
9043     CGOpenMPRuntime::TargetDataInfo &Info) {
9044   CodeGenModule &CGM = CGF.CGM;
9045   MappableExprsHandler::MapCombinedInfoTy::StructNonContiguousInfo
9046       &NonContigInfo = CombinedInfo.NonContigInfo;
9047 
9048   // Build an array of struct descriptor_dim and then assign it to
9049   // offload_args.
9050   //
9051   // struct descriptor_dim {
9052   //  uint64_t offset;
9053   //  uint64_t count;
9054   //  uint64_t stride
9055   // };
9056   ASTContext &C = CGF.getContext();
9057   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
9058   RecordDecl *RD;
9059   RD = C.buildImplicitRecord("descriptor_dim");
9060   RD->startDefinition();
9061   addFieldToRecordDecl(C, RD, Int64Ty);
9062   addFieldToRecordDecl(C, RD, Int64Ty);
9063   addFieldToRecordDecl(C, RD, Int64Ty);
9064   RD->completeDefinition();
9065   QualType DimTy = C.getRecordType(RD);
9066 
9067   enum { OffsetFD = 0, CountFD, StrideFD };
9068   // We need two index variable here since the size of "Dims" is the same as the
9069   // size of Components, however, the size of offset, count, and stride is equal
9070   // to the size of base declaration that is non-contiguous.
9071   for (unsigned I = 0, L = 0, E = NonContigInfo.Dims.size(); I < E; ++I) {
9072     // Skip emitting ir if dimension size is 1 since it cannot be
9073     // non-contiguous.
9074     if (NonContigInfo.Dims[I] == 1)
9075       continue;
9076     llvm::APInt Size(/*numBits=*/32, NonContigInfo.Dims[I]);
9077     QualType ArrayTy =
9078         C.getConstantArrayType(DimTy, Size, nullptr, ArrayType::Normal, 0);
9079     Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
9080     for (unsigned II = 0, EE = NonContigInfo.Dims[I]; II < EE; ++II) {
9081       unsigned RevIdx = EE - II - 1;
9082       LValue DimsLVal = CGF.MakeAddrLValue(
9083           CGF.Builder.CreateConstArrayGEP(DimsAddr, II), DimTy);
9084       // Offset
9085       LValue OffsetLVal = CGF.EmitLValueForField(
9086           DimsLVal, *std::next(RD->field_begin(), OffsetFD));
9087       CGF.EmitStoreOfScalar(NonContigInfo.Offsets[L][RevIdx], OffsetLVal);
9088       // Count
9089       LValue CountLVal = CGF.EmitLValueForField(
9090           DimsLVal, *std::next(RD->field_begin(), CountFD));
9091       CGF.EmitStoreOfScalar(NonContigInfo.Counts[L][RevIdx], CountLVal);
9092       // Stride
9093       LValue StrideLVal = CGF.EmitLValueForField(
9094           DimsLVal, *std::next(RD->field_begin(), StrideFD));
9095       CGF.EmitStoreOfScalar(NonContigInfo.Strides[L][RevIdx], StrideLVal);
9096     }
9097     // args[I] = &dims
9098     Address DAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9099         DimsAddr, CGM.Int8PtrTy);
9100     llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
9101         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9102         Info.PointersArray, 0, I);
9103     Address PAddr(P, CGF.getPointerAlign());
9104     CGF.Builder.CreateStore(DAddr.getPointer(), PAddr);
9105     ++L;
9106   }
9107 }
9108 
9109 /// Emit a string constant containing the names of the values mapped to the
9110 /// offloading runtime library.
9111 llvm::Constant *
emitMappingInformation(CodeGenFunction & CGF,llvm::OpenMPIRBuilder & OMPBuilder,MappableExprsHandler::MappingExprInfo & MapExprs)9112 emitMappingInformation(CodeGenFunction &CGF, llvm::OpenMPIRBuilder &OMPBuilder,
9113                        MappableExprsHandler::MappingExprInfo &MapExprs) {
9114   llvm::Constant *SrcLocStr;
9115   if (!MapExprs.getMapDecl()) {
9116     SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr();
9117   } else {
9118     std::string ExprName = "";
9119     if (MapExprs.getMapExpr()) {
9120       PrintingPolicy P(CGF.getContext().getLangOpts());
9121       llvm::raw_string_ostream OS(ExprName);
9122       MapExprs.getMapExpr()->printPretty(OS, nullptr, P);
9123       OS.flush();
9124     } else {
9125       ExprName = MapExprs.getMapDecl()->getNameAsString();
9126     }
9127 
9128     SourceLocation Loc = MapExprs.getMapDecl()->getLocation();
9129     PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
9130     const char *FileName = PLoc.getFilename();
9131     unsigned Line = PLoc.getLine();
9132     unsigned Column = PLoc.getColumn();
9133     SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FileName, ExprName.c_str(),
9134                                                 Line, Column);
9135   }
9136 
9137   return SrcLocStr;
9138 }
9139 
9140 /// Emit the arrays used to pass the captures and map information to the
9141 /// offloading runtime library. If there is no map or capture information,
9142 /// return nullptr by reference.
emitOffloadingArrays(CodeGenFunction & CGF,MappableExprsHandler::MapCombinedInfoTy & CombinedInfo,CGOpenMPRuntime::TargetDataInfo & Info,llvm::OpenMPIRBuilder & OMPBuilder,bool IsNonContiguous=false)9143 static void emitOffloadingArrays(
9144     CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo,
9145     CGOpenMPRuntime::TargetDataInfo &Info, llvm::OpenMPIRBuilder &OMPBuilder,
9146     bool IsNonContiguous = false) {
9147   CodeGenModule &CGM = CGF.CGM;
9148   ASTContext &Ctx = CGF.getContext();
9149 
9150   // Reset the array information.
9151   Info.clearArrayInfo();
9152   Info.NumberOfPtrs = CombinedInfo.BasePointers.size();
9153 
9154   if (Info.NumberOfPtrs) {
9155     // Detect if we have any capture size requiring runtime evaluation of the
9156     // size so that a constant array could be eventually used.
9157     bool hasRuntimeEvaluationCaptureSize = false;
9158     for (llvm::Value *S : CombinedInfo.Sizes)
9159       if (!isa<llvm::Constant>(S)) {
9160         hasRuntimeEvaluationCaptureSize = true;
9161         break;
9162       }
9163 
9164     llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
9165     QualType PointerArrayType = Ctx.getConstantArrayType(
9166         Ctx.VoidPtrTy, PointerNumAP, nullptr, ArrayType::Normal,
9167         /*IndexTypeQuals=*/0);
9168 
9169     Info.BasePointersArray =
9170         CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
9171     Info.PointersArray =
9172         CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
9173     Address MappersArray =
9174         CGF.CreateMemTemp(PointerArrayType, ".offload_mappers");
9175     Info.MappersArray = MappersArray.getPointer();
9176 
9177     // If we don't have any VLA types or other types that require runtime
9178     // evaluation, we can use a constant array for the map sizes, otherwise we
9179     // need to fill up the arrays as we do for the pointers.
9180     QualType Int64Ty =
9181         Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
9182     if (hasRuntimeEvaluationCaptureSize) {
9183       QualType SizeArrayType = Ctx.getConstantArrayType(
9184           Int64Ty, PointerNumAP, nullptr, ArrayType::Normal,
9185           /*IndexTypeQuals=*/0);
9186       Info.SizesArray =
9187           CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
9188     } else {
9189       // We expect all the sizes to be constant, so we collect them to create
9190       // a constant array.
9191       SmallVector<llvm::Constant *, 16> ConstSizes;
9192       for (unsigned I = 0, E = CombinedInfo.Sizes.size(); I < E; ++I) {
9193         if (IsNonContiguous &&
9194             (CombinedInfo.Types[I] & MappableExprsHandler::OMP_MAP_NON_CONTIG)) {
9195           ConstSizes.push_back(llvm::ConstantInt::get(
9196               CGF.Int64Ty, CombinedInfo.NonContigInfo.Dims[I]));
9197         } else {
9198           ConstSizes.push_back(cast<llvm::Constant>(CombinedInfo.Sizes[I]));
9199         }
9200       }
9201 
9202       auto *SizesArrayInit = llvm::ConstantArray::get(
9203           llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes);
9204       std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
9205       auto *SizesArrayGbl = new llvm::GlobalVariable(
9206           CGM.getModule(), SizesArrayInit->getType(),
9207           /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
9208           SizesArrayInit, Name);
9209       SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
9210       Info.SizesArray = SizesArrayGbl;
9211     }
9212 
9213     // The map types are always constant so we don't need to generate code to
9214     // fill arrays. Instead, we create an array constant.
9215     SmallVector<uint64_t, 4> Mapping(CombinedInfo.Types.size(), 0);
9216     llvm::copy(CombinedInfo.Types, Mapping.begin());
9217     llvm::Constant *MapTypesArrayInit =
9218         llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
9219     std::string MaptypesName =
9220         CGM.getOpenMPRuntime().getName({"offload_maptypes"});
9221     auto *MapTypesArrayGbl = new llvm::GlobalVariable(
9222         CGM.getModule(), MapTypesArrayInit->getType(),
9223         /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
9224         MapTypesArrayInit, MaptypesName);
9225     MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
9226     Info.MapTypesArray = MapTypesArrayGbl;
9227 
9228     // The information types are only built if there is debug information
9229     // requested.
9230     if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo) {
9231       Info.MapNamesArray = llvm::Constant::getNullValue(
9232           llvm::Type::getInt8Ty(CGF.Builder.getContext())->getPointerTo());
9233     } else {
9234       auto fillInfoMap = [&](MappableExprsHandler::MappingExprInfo &MapExpr) {
9235         return emitMappingInformation(CGF, OMPBuilder, MapExpr);
9236       };
9237       SmallVector<llvm::Constant *, 4> InfoMap(CombinedInfo.Exprs.size());
9238       llvm::transform(CombinedInfo.Exprs, InfoMap.begin(), fillInfoMap);
9239 
9240       llvm::Constant *MapNamesArrayInit = llvm::ConstantArray::get(
9241           llvm::ArrayType::get(
9242               llvm::Type::getInt8Ty(CGF.Builder.getContext())->getPointerTo(),
9243               CombinedInfo.Exprs.size()),
9244           InfoMap);
9245       auto *MapNamesArrayGbl = new llvm::GlobalVariable(
9246           CGM.getModule(), MapNamesArrayInit->getType(),
9247           /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
9248           MapNamesArrayInit,
9249           CGM.getOpenMPRuntime().getName({"offload_mapnames"}));
9250       Info.MapNamesArray = MapNamesArrayGbl;
9251     }
9252 
9253     // If there's a present map type modifier, it must not be applied to the end
9254     // of a region, so generate a separate map type array in that case.
9255     if (Info.separateBeginEndCalls()) {
9256       bool EndMapTypesDiffer = false;
9257       for (uint64_t &Type : Mapping) {
9258         if (Type & MappableExprsHandler::OMP_MAP_PRESENT) {
9259           Type &= ~MappableExprsHandler::OMP_MAP_PRESENT;
9260           EndMapTypesDiffer = true;
9261         }
9262       }
9263       if (EndMapTypesDiffer) {
9264         MapTypesArrayInit =
9265             llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
9266         MaptypesName = CGM.getOpenMPRuntime().getName({"offload_maptypes"});
9267         MapTypesArrayGbl = new llvm::GlobalVariable(
9268             CGM.getModule(), MapTypesArrayInit->getType(),
9269             /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
9270             MapTypesArrayInit, MaptypesName);
9271         MapTypesArrayGbl->setUnnamedAddr(
9272             llvm::GlobalValue::UnnamedAddr::Global);
9273         Info.MapTypesArrayEnd = MapTypesArrayGbl;
9274       }
9275     }
9276 
9277     for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
9278       llvm::Value *BPVal = *CombinedInfo.BasePointers[I];
9279       llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
9280           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9281           Info.BasePointersArray, 0, I);
9282       BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9283           BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
9284       Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
9285       CGF.Builder.CreateStore(BPVal, BPAddr);
9286 
9287       if (Info.requiresDevicePointerInfo())
9288         if (const ValueDecl *DevVD =
9289                 CombinedInfo.BasePointers[I].getDevicePtrDecl())
9290           Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
9291 
9292       llvm::Value *PVal = CombinedInfo.Pointers[I];
9293       llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
9294           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9295           Info.PointersArray, 0, I);
9296       P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9297           P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
9298       Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
9299       CGF.Builder.CreateStore(PVal, PAddr);
9300 
9301       if (hasRuntimeEvaluationCaptureSize) {
9302         llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
9303             llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
9304             Info.SizesArray,
9305             /*Idx0=*/0,
9306             /*Idx1=*/I);
9307         Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty));
9308         CGF.Builder.CreateStore(CGF.Builder.CreateIntCast(CombinedInfo.Sizes[I],
9309                                                           CGM.Int64Ty,
9310                                                           /*isSigned=*/true),
9311                                 SAddr);
9312       }
9313 
9314       // Fill up the mapper array.
9315       llvm::Value *MFunc = llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
9316       if (CombinedInfo.Mappers[I]) {
9317         MFunc = CGM.getOpenMPRuntime().getOrCreateUserDefinedMapperFunc(
9318             cast<OMPDeclareMapperDecl>(CombinedInfo.Mappers[I]));
9319         MFunc = CGF.Builder.CreatePointerCast(MFunc, CGM.VoidPtrTy);
9320         Info.HasMapper = true;
9321       }
9322       Address MAddr = CGF.Builder.CreateConstArrayGEP(MappersArray, I);
9323       CGF.Builder.CreateStore(MFunc, MAddr);
9324     }
9325   }
9326 
9327   if (!IsNonContiguous || CombinedInfo.NonContigInfo.Offsets.empty() ||
9328       Info.NumberOfPtrs == 0)
9329     return;
9330 
9331   emitNonContiguousDescriptor(CGF, CombinedInfo, Info);
9332 }
9333 
9334 namespace {
9335 /// Additional arguments for emitOffloadingArraysArgument function.
9336 struct ArgumentsOptions {
9337   bool ForEndCall = false;
9338   ArgumentsOptions() = default;
ArgumentsOptions__anonbe229beb4611::ArgumentsOptions9339   ArgumentsOptions(bool ForEndCall) : ForEndCall(ForEndCall) {}
9340 };
9341 } // namespace
9342 
9343 /// Emit the arguments to be passed to the runtime library based on the
9344 /// arrays of base pointers, pointers, sizes, map types, and mappers.  If
9345 /// ForEndCall, emit map types to be passed for the end of the region instead of
9346 /// the beginning.
emitOffloadingArraysArgument(CodeGenFunction & CGF,llvm::Value * & BasePointersArrayArg,llvm::Value * & PointersArrayArg,llvm::Value * & SizesArrayArg,llvm::Value * & MapTypesArrayArg,llvm::Value * & MapNamesArrayArg,llvm::Value * & MappersArrayArg,CGOpenMPRuntime::TargetDataInfo & Info,const ArgumentsOptions & Options=ArgumentsOptions ())9347 static void emitOffloadingArraysArgument(
9348     CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
9349     llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
9350     llvm::Value *&MapTypesArrayArg, llvm::Value *&MapNamesArrayArg,
9351     llvm::Value *&MappersArrayArg, CGOpenMPRuntime::TargetDataInfo &Info,
9352     const ArgumentsOptions &Options = ArgumentsOptions()) {
9353   assert((!Options.ForEndCall || Info.separateBeginEndCalls()) &&
9354          "expected region end call to runtime only when end call is separate");
9355   CodeGenModule &CGM = CGF.CGM;
9356   if (Info.NumberOfPtrs) {
9357     BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9358         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9359         Info.BasePointersArray,
9360         /*Idx0=*/0, /*Idx1=*/0);
9361     PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9362         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9363         Info.PointersArray,
9364         /*Idx0=*/0,
9365         /*Idx1=*/0);
9366     SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9367         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray,
9368         /*Idx0=*/0, /*Idx1=*/0);
9369     MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9370         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
9371         Options.ForEndCall && Info.MapTypesArrayEnd ? Info.MapTypesArrayEnd
9372                                                     : Info.MapTypesArray,
9373         /*Idx0=*/0,
9374         /*Idx1=*/0);
9375 
9376     // Only emit the mapper information arrays if debug information is
9377     // requested.
9378     if (CGF.CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo)
9379       MapNamesArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9380     else
9381       MapNamesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9382           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9383           Info.MapNamesArray,
9384           /*Idx0=*/0,
9385           /*Idx1=*/0);
9386     // If there is no user-defined mapper, set the mapper array to nullptr to
9387     // avoid an unnecessary data privatization
9388     if (!Info.HasMapper)
9389       MappersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9390     else
9391       MappersArrayArg =
9392           CGF.Builder.CreatePointerCast(Info.MappersArray, CGM.VoidPtrPtrTy);
9393   } else {
9394     BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9395     PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9396     SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
9397     MapTypesArrayArg =
9398         llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
9399     MapNamesArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9400     MappersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9401   }
9402 }
9403 
9404 /// Check for inner distribute directive.
9405 static const OMPExecutableDirective *
getNestedDistributeDirective(ASTContext & Ctx,const OMPExecutableDirective & D)9406 getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
9407   const auto *CS = D.getInnermostCapturedStmt();
9408   const auto *Body =
9409       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
9410   const Stmt *ChildStmt =
9411       CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
9412 
9413   if (const auto *NestedDir =
9414           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
9415     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
9416     switch (D.getDirectiveKind()) {
9417     case OMPD_target:
9418       if (isOpenMPDistributeDirective(DKind))
9419         return NestedDir;
9420       if (DKind == OMPD_teams) {
9421         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
9422             /*IgnoreCaptured=*/true);
9423         if (!Body)
9424           return nullptr;
9425         ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
9426         if (const auto *NND =
9427                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
9428           DKind = NND->getDirectiveKind();
9429           if (isOpenMPDistributeDirective(DKind))
9430             return NND;
9431         }
9432       }
9433       return nullptr;
9434     case OMPD_target_teams:
9435       if (isOpenMPDistributeDirective(DKind))
9436         return NestedDir;
9437       return nullptr;
9438     case OMPD_target_parallel:
9439     case OMPD_target_simd:
9440     case OMPD_target_parallel_for:
9441     case OMPD_target_parallel_for_simd:
9442       return nullptr;
9443     case OMPD_target_teams_distribute:
9444     case OMPD_target_teams_distribute_simd:
9445     case OMPD_target_teams_distribute_parallel_for:
9446     case OMPD_target_teams_distribute_parallel_for_simd:
9447     case OMPD_parallel:
9448     case OMPD_for:
9449     case OMPD_parallel_for:
9450     case OMPD_parallel_master:
9451     case OMPD_parallel_sections:
9452     case OMPD_for_simd:
9453     case OMPD_parallel_for_simd:
9454     case OMPD_cancel:
9455     case OMPD_cancellation_point:
9456     case OMPD_ordered:
9457     case OMPD_threadprivate:
9458     case OMPD_allocate:
9459     case OMPD_task:
9460     case OMPD_simd:
9461     case OMPD_sections:
9462     case OMPD_section:
9463     case OMPD_single:
9464     case OMPD_master:
9465     case OMPD_critical:
9466     case OMPD_taskyield:
9467     case OMPD_barrier:
9468     case OMPD_taskwait:
9469     case OMPD_taskgroup:
9470     case OMPD_atomic:
9471     case OMPD_flush:
9472     case OMPD_depobj:
9473     case OMPD_scan:
9474     case OMPD_teams:
9475     case OMPD_target_data:
9476     case OMPD_target_exit_data:
9477     case OMPD_target_enter_data:
9478     case OMPD_distribute:
9479     case OMPD_distribute_simd:
9480     case OMPD_distribute_parallel_for:
9481     case OMPD_distribute_parallel_for_simd:
9482     case OMPD_teams_distribute:
9483     case OMPD_teams_distribute_simd:
9484     case OMPD_teams_distribute_parallel_for:
9485     case OMPD_teams_distribute_parallel_for_simd:
9486     case OMPD_target_update:
9487     case OMPD_declare_simd:
9488     case OMPD_declare_variant:
9489     case OMPD_begin_declare_variant:
9490     case OMPD_end_declare_variant:
9491     case OMPD_declare_target:
9492     case OMPD_end_declare_target:
9493     case OMPD_declare_reduction:
9494     case OMPD_declare_mapper:
9495     case OMPD_taskloop:
9496     case OMPD_taskloop_simd:
9497     case OMPD_master_taskloop:
9498     case OMPD_master_taskloop_simd:
9499     case OMPD_parallel_master_taskloop:
9500     case OMPD_parallel_master_taskloop_simd:
9501     case OMPD_requires:
9502     case OMPD_unknown:
9503     default:
9504       llvm_unreachable("Unexpected directive.");
9505     }
9506   }
9507 
9508   return nullptr;
9509 }
9510 
9511 /// Emit the user-defined mapper function. The code generation follows the
9512 /// pattern in the example below.
9513 /// \code
9514 /// void .omp_mapper.<type_name>.<mapper_id>.(void *rt_mapper_handle,
9515 ///                                           void *base, void *begin,
9516 ///                                           int64_t size, int64_t type) {
9517 ///   // Allocate space for an array section first.
9518 ///   if (size > 1 && !maptype.IsDelete)
9519 ///     __tgt_push_mapper_component(rt_mapper_handle, base, begin,
9520 ///                                 size*sizeof(Ty), clearToFrom(type));
9521 ///   // Map members.
9522 ///   for (unsigned i = 0; i < size; i++) {
9523 ///     // For each component specified by this mapper:
9524 ///     for (auto c : all_components) {
9525 ///       if (c.hasMapper())
9526 ///         (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size,
9527 ///                       c.arg_type);
9528 ///       else
9529 ///         __tgt_push_mapper_component(rt_mapper_handle, c.arg_base,
9530 ///                                     c.arg_begin, c.arg_size, c.arg_type);
9531 ///     }
9532 ///   }
9533 ///   // Delete the array section.
9534 ///   if (size > 1 && maptype.IsDelete)
9535 ///     __tgt_push_mapper_component(rt_mapper_handle, base, begin,
9536 ///                                 size*sizeof(Ty), clearToFrom(type));
9537 /// }
9538 /// \endcode
emitUserDefinedMapper(const OMPDeclareMapperDecl * D,CodeGenFunction * CGF)9539 void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D,
9540                                             CodeGenFunction *CGF) {
9541   if (UDMMap.count(D) > 0)
9542     return;
9543   ASTContext &C = CGM.getContext();
9544   QualType Ty = D->getType();
9545   QualType PtrTy = C.getPointerType(Ty).withRestrict();
9546   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
9547   auto *MapperVarDecl =
9548       cast<VarDecl>(cast<DeclRefExpr>(D->getMapperVarRef())->getDecl());
9549   SourceLocation Loc = D->getLocation();
9550   CharUnits ElementSize = C.getTypeSizeInChars(Ty);
9551 
9552   // Prepare mapper function arguments and attributes.
9553   ImplicitParamDecl HandleArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
9554                               C.VoidPtrTy, ImplicitParamDecl::Other);
9555   ImplicitParamDecl BaseArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
9556                             ImplicitParamDecl::Other);
9557   ImplicitParamDecl BeginArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
9558                              C.VoidPtrTy, ImplicitParamDecl::Other);
9559   ImplicitParamDecl SizeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
9560                             ImplicitParamDecl::Other);
9561   ImplicitParamDecl TypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
9562                             ImplicitParamDecl::Other);
9563   FunctionArgList Args;
9564   Args.push_back(&HandleArg);
9565   Args.push_back(&BaseArg);
9566   Args.push_back(&BeginArg);
9567   Args.push_back(&SizeArg);
9568   Args.push_back(&TypeArg);
9569   const CGFunctionInfo &FnInfo =
9570       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
9571   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
9572   SmallString<64> TyStr;
9573   llvm::raw_svector_ostream Out(TyStr);
9574   CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out);
9575   std::string Name = getName({"omp_mapper", TyStr, D->getName()});
9576   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
9577                                     Name, &CGM.getModule());
9578   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
9579   Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
9580   // Start the mapper function code generation.
9581   CodeGenFunction MapperCGF(CGM);
9582   MapperCGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
9583   // Compute the starting and end addreses of array elements.
9584   llvm::Value *Size = MapperCGF.EmitLoadOfScalar(
9585       MapperCGF.GetAddrOfLocalVar(&SizeArg), /*Volatile=*/false,
9586       C.getPointerType(Int64Ty), Loc);
9587   // Convert the size in bytes into the number of array elements.
9588   Size = MapperCGF.Builder.CreateExactUDiv(
9589       Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
9590   llvm::Value *PtrBegin = MapperCGF.Builder.CreateBitCast(
9591       MapperCGF.GetAddrOfLocalVar(&BeginArg).getPointer(),
9592       CGM.getTypes().ConvertTypeForMem(C.getPointerType(PtrTy)));
9593   llvm::Value *PtrEnd = MapperCGF.Builder.CreateGEP(PtrBegin, Size);
9594   llvm::Value *MapType = MapperCGF.EmitLoadOfScalar(
9595       MapperCGF.GetAddrOfLocalVar(&TypeArg), /*Volatile=*/false,
9596       C.getPointerType(Int64Ty), Loc);
9597   // Prepare common arguments for array initiation and deletion.
9598   llvm::Value *Handle = MapperCGF.EmitLoadOfScalar(
9599       MapperCGF.GetAddrOfLocalVar(&HandleArg),
9600       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9601   llvm::Value *BaseIn = MapperCGF.EmitLoadOfScalar(
9602       MapperCGF.GetAddrOfLocalVar(&BaseArg),
9603       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9604   llvm::Value *BeginIn = MapperCGF.EmitLoadOfScalar(
9605       MapperCGF.GetAddrOfLocalVar(&BeginArg),
9606       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9607 
9608   // Emit array initiation if this is an array section and \p MapType indicates
9609   // that memory allocation is required.
9610   llvm::BasicBlock *HeadBB = MapperCGF.createBasicBlock("omp.arraymap.head");
9611   emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
9612                              ElementSize, HeadBB, /*IsInit=*/true);
9613 
9614   // Emit a for loop to iterate through SizeArg of elements and map all of them.
9615 
9616   // Emit the loop header block.
9617   MapperCGF.EmitBlock(HeadBB);
9618   llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.arraymap.body");
9619   llvm::BasicBlock *DoneBB = MapperCGF.createBasicBlock("omp.done");
9620   // Evaluate whether the initial condition is satisfied.
9621   llvm::Value *IsEmpty =
9622       MapperCGF.Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty");
9623   MapperCGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
9624   llvm::BasicBlock *EntryBB = MapperCGF.Builder.GetInsertBlock();
9625 
9626   // Emit the loop body block.
9627   MapperCGF.EmitBlock(BodyBB);
9628   llvm::BasicBlock *LastBB = BodyBB;
9629   llvm::PHINode *PtrPHI = MapperCGF.Builder.CreatePHI(
9630       PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent");
9631   PtrPHI->addIncoming(PtrBegin, EntryBB);
9632   Address PtrCurrent =
9633       Address(PtrPHI, MapperCGF.GetAddrOfLocalVar(&BeginArg)
9634                           .getAlignment()
9635                           .alignmentOfArrayElement(ElementSize));
9636   // Privatize the declared variable of mapper to be the current array element.
9637   CodeGenFunction::OMPPrivateScope Scope(MapperCGF);
9638   Scope.addPrivate(MapperVarDecl, [&MapperCGF, PtrCurrent, PtrTy]() {
9639     return MapperCGF
9640         .EmitLoadOfPointerLValue(PtrCurrent, PtrTy->castAs<PointerType>())
9641         .getAddress(MapperCGF);
9642   });
9643   (void)Scope.Privatize();
9644 
9645   // Get map clause information. Fill up the arrays with all mapped variables.
9646   MappableExprsHandler::MapCombinedInfoTy Info;
9647   MappableExprsHandler MEHandler(*D, MapperCGF);
9648   MEHandler.generateAllInfoForMapper(Info);
9649 
9650   // Call the runtime API __tgt_mapper_num_components to get the number of
9651   // pre-existing components.
9652   llvm::Value *OffloadingArgs[] = {Handle};
9653   llvm::Value *PreviousSize = MapperCGF.EmitRuntimeCall(
9654       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
9655                                             OMPRTL___tgt_mapper_num_components),
9656       OffloadingArgs);
9657   llvm::Value *ShiftedPreviousSize = MapperCGF.Builder.CreateShl(
9658       PreviousSize,
9659       MapperCGF.Builder.getInt64(MappableExprsHandler::getFlagMemberOffset()));
9660 
9661   // Fill up the runtime mapper handle for all components.
9662   for (unsigned I = 0; I < Info.BasePointers.size(); ++I) {
9663     llvm::Value *CurBaseArg = MapperCGF.Builder.CreateBitCast(
9664         *Info.BasePointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
9665     llvm::Value *CurBeginArg = MapperCGF.Builder.CreateBitCast(
9666         Info.Pointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
9667     llvm::Value *CurSizeArg = Info.Sizes[I];
9668 
9669     // Extract the MEMBER_OF field from the map type.
9670     llvm::BasicBlock *MemberBB = MapperCGF.createBasicBlock("omp.member");
9671     MapperCGF.EmitBlock(MemberBB);
9672     llvm::Value *OriMapType = MapperCGF.Builder.getInt64(Info.Types[I]);
9673     llvm::Value *Member = MapperCGF.Builder.CreateAnd(
9674         OriMapType,
9675         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_MEMBER_OF));
9676     llvm::BasicBlock *MemberCombineBB =
9677         MapperCGF.createBasicBlock("omp.member.combine");
9678     llvm::BasicBlock *TypeBB = MapperCGF.createBasicBlock("omp.type");
9679     llvm::Value *IsMember = MapperCGF.Builder.CreateIsNull(Member);
9680     MapperCGF.Builder.CreateCondBr(IsMember, TypeBB, MemberCombineBB);
9681     // Add the number of pre-existing components to the MEMBER_OF field if it
9682     // is valid.
9683     MapperCGF.EmitBlock(MemberCombineBB);
9684     llvm::Value *CombinedMember =
9685         MapperCGF.Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize);
9686     // Do nothing if it is not a member of previous components.
9687     MapperCGF.EmitBlock(TypeBB);
9688     llvm::PHINode *MemberMapType =
9689         MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.membermaptype");
9690     MemberMapType->addIncoming(OriMapType, MemberBB);
9691     MemberMapType->addIncoming(CombinedMember, MemberCombineBB);
9692 
9693     // Combine the map type inherited from user-defined mapper with that
9694     // specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM
9695     // bits of the \a MapType, which is the input argument of the mapper
9696     // function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM
9697     // bits of MemberMapType.
9698     // [OpenMP 5.0], 1.2.6. map-type decay.
9699     //        | alloc |  to   | from  | tofrom | release | delete
9700     // ----------------------------------------------------------
9701     // alloc  | alloc | alloc | alloc | alloc  | release | delete
9702     // to     | alloc |  to   | alloc |   to   | release | delete
9703     // from   | alloc | alloc | from  |  from  | release | delete
9704     // tofrom | alloc |  to   | from  | tofrom | release | delete
9705     llvm::Value *LeftToFrom = MapperCGF.Builder.CreateAnd(
9706         MapType,
9707         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO |
9708                                    MappableExprsHandler::OMP_MAP_FROM));
9709     llvm::BasicBlock *AllocBB = MapperCGF.createBasicBlock("omp.type.alloc");
9710     llvm::BasicBlock *AllocElseBB =
9711         MapperCGF.createBasicBlock("omp.type.alloc.else");
9712     llvm::BasicBlock *ToBB = MapperCGF.createBasicBlock("omp.type.to");
9713     llvm::BasicBlock *ToElseBB = MapperCGF.createBasicBlock("omp.type.to.else");
9714     llvm::BasicBlock *FromBB = MapperCGF.createBasicBlock("omp.type.from");
9715     llvm::BasicBlock *EndBB = MapperCGF.createBasicBlock("omp.type.end");
9716     llvm::Value *IsAlloc = MapperCGF.Builder.CreateIsNull(LeftToFrom);
9717     MapperCGF.Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB);
9718     // In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM.
9719     MapperCGF.EmitBlock(AllocBB);
9720     llvm::Value *AllocMapType = MapperCGF.Builder.CreateAnd(
9721         MemberMapType,
9722         MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
9723                                      MappableExprsHandler::OMP_MAP_FROM)));
9724     MapperCGF.Builder.CreateBr(EndBB);
9725     MapperCGF.EmitBlock(AllocElseBB);
9726     llvm::Value *IsTo = MapperCGF.Builder.CreateICmpEQ(
9727         LeftToFrom,
9728         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO));
9729     MapperCGF.Builder.CreateCondBr(IsTo, ToBB, ToElseBB);
9730     // In case of to, clear OMP_MAP_FROM.
9731     MapperCGF.EmitBlock(ToBB);
9732     llvm::Value *ToMapType = MapperCGF.Builder.CreateAnd(
9733         MemberMapType,
9734         MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_FROM));
9735     MapperCGF.Builder.CreateBr(EndBB);
9736     MapperCGF.EmitBlock(ToElseBB);
9737     llvm::Value *IsFrom = MapperCGF.Builder.CreateICmpEQ(
9738         LeftToFrom,
9739         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_FROM));
9740     MapperCGF.Builder.CreateCondBr(IsFrom, FromBB, EndBB);
9741     // In case of from, clear OMP_MAP_TO.
9742     MapperCGF.EmitBlock(FromBB);
9743     llvm::Value *FromMapType = MapperCGF.Builder.CreateAnd(
9744         MemberMapType,
9745         MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_TO));
9746     // In case of tofrom, do nothing.
9747     MapperCGF.EmitBlock(EndBB);
9748     LastBB = EndBB;
9749     llvm::PHINode *CurMapType =
9750         MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.maptype");
9751     CurMapType->addIncoming(AllocMapType, AllocBB);
9752     CurMapType->addIncoming(ToMapType, ToBB);
9753     CurMapType->addIncoming(FromMapType, FromBB);
9754     CurMapType->addIncoming(MemberMapType, ToElseBB);
9755 
9756     llvm::Value *OffloadingArgs[] = {Handle, CurBaseArg, CurBeginArg,
9757                                      CurSizeArg, CurMapType};
9758     if (Info.Mappers[I]) {
9759       // Call the corresponding mapper function.
9760       llvm::Function *MapperFunc = getOrCreateUserDefinedMapperFunc(
9761           cast<OMPDeclareMapperDecl>(Info.Mappers[I]));
9762       assert(MapperFunc && "Expect a valid mapper function is available.");
9763       MapperCGF.EmitNounwindRuntimeCall(MapperFunc, OffloadingArgs);
9764     } else {
9765       // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9766       // data structure.
9767       MapperCGF.EmitRuntimeCall(
9768           OMPBuilder.getOrCreateRuntimeFunction(
9769               CGM.getModule(), OMPRTL___tgt_push_mapper_component),
9770           OffloadingArgs);
9771     }
9772   }
9773 
9774   // Update the pointer to point to the next element that needs to be mapped,
9775   // and check whether we have mapped all elements.
9776   llvm::Value *PtrNext = MapperCGF.Builder.CreateConstGEP1_32(
9777       PtrPHI, /*Idx0=*/1, "omp.arraymap.next");
9778   PtrPHI->addIncoming(PtrNext, LastBB);
9779   llvm::Value *IsDone =
9780       MapperCGF.Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone");
9781   llvm::BasicBlock *ExitBB = MapperCGF.createBasicBlock("omp.arraymap.exit");
9782   MapperCGF.Builder.CreateCondBr(IsDone, ExitBB, BodyBB);
9783 
9784   MapperCGF.EmitBlock(ExitBB);
9785   // Emit array deletion if this is an array section and \p MapType indicates
9786   // that deletion is required.
9787   emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
9788                              ElementSize, DoneBB, /*IsInit=*/false);
9789 
9790   // Emit the function exit block.
9791   MapperCGF.EmitBlock(DoneBB, /*IsFinished=*/true);
9792   MapperCGF.FinishFunction();
9793   UDMMap.try_emplace(D, Fn);
9794   if (CGF) {
9795     auto &Decls = FunctionUDMMap.FindAndConstruct(CGF->CurFn);
9796     Decls.second.push_back(D);
9797   }
9798 }
9799 
9800 /// Emit the array initialization or deletion portion for user-defined mapper
9801 /// code generation. First, it evaluates whether an array section is mapped and
9802 /// whether the \a MapType instructs to delete this section. If \a IsInit is
9803 /// true, and \a MapType indicates to not delete this array, array
9804 /// initialization code is generated. If \a IsInit is false, and \a MapType
9805 /// indicates to not this array, array deletion code is generated.
emitUDMapperArrayInitOrDel(CodeGenFunction & MapperCGF,llvm::Value * Handle,llvm::Value * Base,llvm::Value * Begin,llvm::Value * Size,llvm::Value * MapType,CharUnits ElementSize,llvm::BasicBlock * ExitBB,bool IsInit)9806 void CGOpenMPRuntime::emitUDMapperArrayInitOrDel(
9807     CodeGenFunction &MapperCGF, llvm::Value *Handle, llvm::Value *Base,
9808     llvm::Value *Begin, llvm::Value *Size, llvm::Value *MapType,
9809     CharUnits ElementSize, llvm::BasicBlock *ExitBB, bool IsInit) {
9810   StringRef Prefix = IsInit ? ".init" : ".del";
9811 
9812   // Evaluate if this is an array section.
9813   llvm::BasicBlock *IsDeleteBB =
9814       MapperCGF.createBasicBlock(getName({"omp.array", Prefix, ".evaldelete"}));
9815   llvm::BasicBlock *BodyBB =
9816       MapperCGF.createBasicBlock(getName({"omp.array", Prefix}));
9817   llvm::Value *IsArray = MapperCGF.Builder.CreateICmpSGE(
9818       Size, MapperCGF.Builder.getInt64(1), "omp.arrayinit.isarray");
9819   MapperCGF.Builder.CreateCondBr(IsArray, IsDeleteBB, ExitBB);
9820 
9821   // Evaluate if we are going to delete this section.
9822   MapperCGF.EmitBlock(IsDeleteBB);
9823   llvm::Value *DeleteBit = MapperCGF.Builder.CreateAnd(
9824       MapType,
9825       MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_DELETE));
9826   llvm::Value *DeleteCond;
9827   if (IsInit) {
9828     DeleteCond = MapperCGF.Builder.CreateIsNull(
9829         DeleteBit, getName({"omp.array", Prefix, ".delete"}));
9830   } else {
9831     DeleteCond = MapperCGF.Builder.CreateIsNotNull(
9832         DeleteBit, getName({"omp.array", Prefix, ".delete"}));
9833   }
9834   MapperCGF.Builder.CreateCondBr(DeleteCond, BodyBB, ExitBB);
9835 
9836   MapperCGF.EmitBlock(BodyBB);
9837   // Get the array size by multiplying element size and element number (i.e., \p
9838   // Size).
9839   llvm::Value *ArraySize = MapperCGF.Builder.CreateNUWMul(
9840       Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
9841   // Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves
9842   // memory allocation/deletion purpose only.
9843   llvm::Value *MapTypeArg = MapperCGF.Builder.CreateAnd(
9844       MapType,
9845       MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
9846                                    MappableExprsHandler::OMP_MAP_FROM)));
9847   // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9848   // data structure.
9849   llvm::Value *OffloadingArgs[] = {Handle, Base, Begin, ArraySize, MapTypeArg};
9850   MapperCGF.EmitRuntimeCall(
9851       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
9852                                             OMPRTL___tgt_push_mapper_component),
9853       OffloadingArgs);
9854 }
9855 
getOrCreateUserDefinedMapperFunc(const OMPDeclareMapperDecl * D)9856 llvm::Function *CGOpenMPRuntime::getOrCreateUserDefinedMapperFunc(
9857     const OMPDeclareMapperDecl *D) {
9858   auto I = UDMMap.find(D);
9859   if (I != UDMMap.end())
9860     return I->second;
9861   emitUserDefinedMapper(D);
9862   return UDMMap.lookup(D);
9863 }
9864 
emitTargetNumIterationsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Value * DeviceID,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)9865 void CGOpenMPRuntime::emitTargetNumIterationsCall(
9866     CodeGenFunction &CGF, const OMPExecutableDirective &D,
9867     llvm::Value *DeviceID,
9868     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
9869                                      const OMPLoopDirective &D)>
9870         SizeEmitter) {
9871   OpenMPDirectiveKind Kind = D.getDirectiveKind();
9872   const OMPExecutableDirective *TD = &D;
9873   // Get nested teams distribute kind directive, if any.
9874   if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
9875     TD = getNestedDistributeDirective(CGM.getContext(), D);
9876   if (!TD)
9877     return;
9878   const auto *LD = cast<OMPLoopDirective>(TD);
9879   auto &&CodeGen = [LD, DeviceID, SizeEmitter, &D, this](CodeGenFunction &CGF,
9880                                                          PrePostActionTy &) {
9881     if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD)) {
9882       llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
9883       llvm::Value *Args[] = {RTLoc, DeviceID, NumIterations};
9884       CGF.EmitRuntimeCall(
9885           OMPBuilder.getOrCreateRuntimeFunction(
9886               CGM.getModule(), OMPRTL___kmpc_push_target_tripcount),
9887           Args);
9888     }
9889   };
9890   emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
9891 }
9892 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,llvm::PointerIntPair<const Expr *,2,OpenMPDeviceClauseModifier> Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)9893 void CGOpenMPRuntime::emitTargetCall(
9894     CodeGenFunction &CGF, const OMPExecutableDirective &D,
9895     llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
9896     llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
9897     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
9898                                      const OMPLoopDirective &D)>
9899         SizeEmitter) {
9900   if (!CGF.HaveInsertPoint())
9901     return;
9902 
9903   assert(OutlinedFn && "Invalid outlined function!");
9904 
9905   const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() ||
9906                                  D.hasClausesOfKind<OMPNowaitClause>();
9907   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
9908   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
9909   auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
9910                                             PrePostActionTy &) {
9911     CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9912   };
9913   emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
9914 
9915   CodeGenFunction::OMPTargetDataInfo InputInfo;
9916   llvm::Value *MapTypesArray = nullptr;
9917   llvm::Value *MapNamesArray = nullptr;
9918   // Fill up the pointer arrays and transfer execution to the device.
9919   auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
9920                     &MapTypesArray, &MapNamesArray, &CS, RequiresOuterTask,
9921                     &CapturedVars,
9922                     SizeEmitter](CodeGenFunction &CGF, PrePostActionTy &) {
9923     if (Device.getInt() == OMPC_DEVICE_ancestor) {
9924       // Reverse offloading is not supported, so just execute on the host.
9925       if (RequiresOuterTask) {
9926         CapturedVars.clear();
9927         CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9928       }
9929       emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
9930       return;
9931     }
9932 
9933     // On top of the arrays that were filled up, the target offloading call
9934     // takes as arguments the device id as well as the host pointer. The host
9935     // pointer is used by the runtime library to identify the current target
9936     // region, so it only has to be unique and not necessarily point to
9937     // anything. It could be the pointer to the outlined function that
9938     // implements the target region, but we aren't using that so that the
9939     // compiler doesn't need to keep that, and could therefore inline the host
9940     // function if proven worthwhile during optimization.
9941 
9942     // From this point on, we need to have an ID of the target region defined.
9943     assert(OutlinedFnID && "Invalid outlined function ID!");
9944 
9945     // Emit device ID if any.
9946     llvm::Value *DeviceID;
9947     if (Device.getPointer()) {
9948       assert((Device.getInt() == OMPC_DEVICE_unknown ||
9949               Device.getInt() == OMPC_DEVICE_device_num) &&
9950              "Expected device_num modifier.");
9951       llvm::Value *DevVal = CGF.EmitScalarExpr(Device.getPointer());
9952       DeviceID =
9953           CGF.Builder.CreateIntCast(DevVal, CGF.Int64Ty, /*isSigned=*/true);
9954     } else {
9955       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9956     }
9957 
9958     // Emit the number of elements in the offloading arrays.
9959     llvm::Value *PointerNum =
9960         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
9961 
9962     // Return value of the runtime offloading call.
9963     llvm::Value *Return;
9964 
9965     llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
9966     llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
9967 
9968     // Source location for the ident struct
9969     llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
9970 
9971     // Emit tripcount for the target loop-based directive.
9972     emitTargetNumIterationsCall(CGF, D, DeviceID, SizeEmitter);
9973 
9974     bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
9975     // The target region is an outlined function launched by the runtime
9976     // via calls __tgt_target() or __tgt_target_teams().
9977     //
9978     // __tgt_target() launches a target region with one team and one thread,
9979     // executing a serial region.  This master thread may in turn launch
9980     // more threads within its team upon encountering a parallel region,
9981     // however, no additional teams can be launched on the device.
9982     //
9983     // __tgt_target_teams() launches a target region with one or more teams,
9984     // each with one or more threads.  This call is required for target
9985     // constructs such as:
9986     //  'target teams'
9987     //  'target' / 'teams'
9988     //  'target teams distribute parallel for'
9989     //  'target parallel'
9990     // and so on.
9991     //
9992     // Note that on the host and CPU targets, the runtime implementation of
9993     // these calls simply call the outlined function without forking threads.
9994     // The outlined functions themselves have runtime calls to
9995     // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
9996     // the compiler in emitTeamsCall() and emitParallelCall().
9997     //
9998     // In contrast, on the NVPTX target, the implementation of
9999     // __tgt_target_teams() launches a GPU kernel with the requested number
10000     // of teams and threads so no additional calls to the runtime are required.
10001     if (NumTeams) {
10002       // If we have NumTeams defined this means that we have an enclosed teams
10003       // region. Therefore we also expect to have NumThreads defined. These two
10004       // values should be defined in the presence of a teams directive,
10005       // regardless of having any clauses associated. If the user is using teams
10006       // but no clauses, these two values will be the default that should be
10007       // passed to the runtime library - a 32-bit integer with the value zero.
10008       assert(NumThreads && "Thread limit expression should be available along "
10009                            "with number of teams.");
10010       llvm::Value *OffloadingArgs[] = {RTLoc,
10011                                        DeviceID,
10012                                        OutlinedFnID,
10013                                        PointerNum,
10014                                        InputInfo.BasePointersArray.getPointer(),
10015                                        InputInfo.PointersArray.getPointer(),
10016                                        InputInfo.SizesArray.getPointer(),
10017                                        MapTypesArray,
10018                                        MapNamesArray,
10019                                        InputInfo.MappersArray.getPointer(),
10020                                        NumTeams,
10021                                        NumThreads};
10022       Return = CGF.EmitRuntimeCall(
10023           OMPBuilder.getOrCreateRuntimeFunction(
10024               CGM.getModule(), HasNowait
10025                                    ? OMPRTL___tgt_target_teams_nowait_mapper
10026                                    : OMPRTL___tgt_target_teams_mapper),
10027           OffloadingArgs);
10028     } else {
10029       llvm::Value *OffloadingArgs[] = {RTLoc,
10030                                        DeviceID,
10031                                        OutlinedFnID,
10032                                        PointerNum,
10033                                        InputInfo.BasePointersArray.getPointer(),
10034                                        InputInfo.PointersArray.getPointer(),
10035                                        InputInfo.SizesArray.getPointer(),
10036                                        MapTypesArray,
10037                                        MapNamesArray,
10038                                        InputInfo.MappersArray.getPointer()};
10039       Return = CGF.EmitRuntimeCall(
10040           OMPBuilder.getOrCreateRuntimeFunction(
10041               CGM.getModule(), HasNowait ? OMPRTL___tgt_target_nowait_mapper
10042                                          : OMPRTL___tgt_target_mapper),
10043           OffloadingArgs);
10044     }
10045 
10046     // Check the error code and execute the host version if required.
10047     llvm::BasicBlock *OffloadFailedBlock =
10048         CGF.createBasicBlock("omp_offload.failed");
10049     llvm::BasicBlock *OffloadContBlock =
10050         CGF.createBasicBlock("omp_offload.cont");
10051     llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
10052     CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
10053 
10054     CGF.EmitBlock(OffloadFailedBlock);
10055     if (RequiresOuterTask) {
10056       CapturedVars.clear();
10057       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
10058     }
10059     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
10060     CGF.EmitBranch(OffloadContBlock);
10061 
10062     CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
10063   };
10064 
10065   // Notify that the host version must be executed.
10066   auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
10067                     RequiresOuterTask](CodeGenFunction &CGF,
10068                                        PrePostActionTy &) {
10069     if (RequiresOuterTask) {
10070       CapturedVars.clear();
10071       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
10072     }
10073     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
10074   };
10075 
10076   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
10077                           &MapNamesArray, &CapturedVars, RequiresOuterTask,
10078                           &CS](CodeGenFunction &CGF, PrePostActionTy &) {
10079     // Fill up the arrays with all the captured variables.
10080     MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
10081 
10082     // Get mappable expression information.
10083     MappableExprsHandler MEHandler(D, CGF);
10084     llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
10085     llvm::DenseSet<CanonicalDeclPtr<const Decl>> MappedVarSet;
10086 
10087     auto RI = CS.getCapturedRecordDecl()->field_begin();
10088     auto CV = CapturedVars.begin();
10089     for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
10090                                               CE = CS.capture_end();
10091          CI != CE; ++CI, ++RI, ++CV) {
10092       MappableExprsHandler::MapCombinedInfoTy CurInfo;
10093       MappableExprsHandler::StructRangeInfoTy PartialStruct;
10094 
10095       // VLA sizes are passed to the outlined region by copy and do not have map
10096       // information associated.
10097       if (CI->capturesVariableArrayType()) {
10098         CurInfo.Exprs.push_back(nullptr);
10099         CurInfo.BasePointers.push_back(*CV);
10100         CurInfo.Pointers.push_back(*CV);
10101         CurInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
10102             CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
10103         // Copy to the device as an argument. No need to retrieve it.
10104         CurInfo.Types.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
10105                                 MappableExprsHandler::OMP_MAP_TARGET_PARAM |
10106                                 MappableExprsHandler::OMP_MAP_IMPLICIT);
10107         CurInfo.Mappers.push_back(nullptr);
10108       } else {
10109         // If we have any information in the map clause, we use it, otherwise we
10110         // just do a default mapping.
10111         MEHandler.generateInfoForCapture(CI, *CV, CurInfo, PartialStruct);
10112         if (!CI->capturesThis())
10113           MappedVarSet.insert(CI->getCapturedVar());
10114         else
10115           MappedVarSet.insert(nullptr);
10116         if (CurInfo.BasePointers.empty() && !PartialStruct.Base.isValid())
10117           MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurInfo);
10118         // Generate correct mapping for variables captured by reference in
10119         // lambdas.
10120         if (CI->capturesVariable())
10121           MEHandler.generateInfoForLambdaCaptures(CI->getCapturedVar(), *CV,
10122                                                   CurInfo, LambdaPointers);
10123       }
10124       // We expect to have at least an element of information for this capture.
10125       assert((!CurInfo.BasePointers.empty() || PartialStruct.Base.isValid()) &&
10126              "Non-existing map pointer for capture!");
10127       assert(CurInfo.BasePointers.size() == CurInfo.Pointers.size() &&
10128              CurInfo.BasePointers.size() == CurInfo.Sizes.size() &&
10129              CurInfo.BasePointers.size() == CurInfo.Types.size() &&
10130              CurInfo.BasePointers.size() == CurInfo.Mappers.size() &&
10131              "Inconsistent map information sizes!");
10132 
10133       // If there is an entry in PartialStruct it means we have a struct with
10134       // individual members mapped. Emit an extra combined entry.
10135       if (PartialStruct.Base.isValid())
10136         MEHandler.emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct);
10137 
10138       // We need to append the results of this capture to what we already have.
10139       CombinedInfo.append(CurInfo);
10140     }
10141     // Adjust MEMBER_OF flags for the lambdas captures.
10142     MEHandler.adjustMemberOfForLambdaCaptures(
10143         LambdaPointers, CombinedInfo.BasePointers, CombinedInfo.Pointers,
10144         CombinedInfo.Types);
10145     // Map any list items in a map clause that were not captures because they
10146     // weren't referenced within the construct.
10147     MEHandler.generateAllInfo(CombinedInfo, /*NotTargetParams=*/true,
10148                               MappedVarSet);
10149 
10150     TargetDataInfo Info;
10151     // Fill up the arrays and create the arguments.
10152     emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder);
10153     emitOffloadingArraysArgument(
10154         CGF, Info.BasePointersArray, Info.PointersArray, Info.SizesArray,
10155         Info.MapTypesArray, Info.MapNamesArray, Info.MappersArray, Info,
10156         {/*ForEndTask=*/false});
10157 
10158     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
10159     InputInfo.BasePointersArray =
10160         Address(Info.BasePointersArray, CGM.getPointerAlign());
10161     InputInfo.PointersArray =
10162         Address(Info.PointersArray, CGM.getPointerAlign());
10163     InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
10164     InputInfo.MappersArray = Address(Info.MappersArray, CGM.getPointerAlign());
10165     MapTypesArray = Info.MapTypesArray;
10166     MapNamesArray = Info.MapNamesArray;
10167     if (RequiresOuterTask)
10168       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
10169     else
10170       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
10171   };
10172 
10173   auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
10174                              CodeGenFunction &CGF, PrePostActionTy &) {
10175     if (RequiresOuterTask) {
10176       CodeGenFunction::OMPTargetDataInfo InputInfo;
10177       CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
10178     } else {
10179       emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
10180     }
10181   };
10182 
10183   // If we have a target function ID it means that we need to support
10184   // offloading, otherwise, just execute on the host. We need to execute on host
10185   // regardless of the conditional in the if clause if, e.g., the user do not
10186   // specify target triples.
10187   if (OutlinedFnID) {
10188     if (IfCond) {
10189       emitIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
10190     } else {
10191       RegionCodeGenTy ThenRCG(TargetThenGen);
10192       ThenRCG(CGF);
10193     }
10194   } else {
10195     RegionCodeGenTy ElseRCG(TargetElseGen);
10196     ElseRCG(CGF);
10197   }
10198 }
10199 
scanForTargetRegionsFunctions(const Stmt * S,StringRef ParentName)10200 void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
10201                                                     StringRef ParentName) {
10202   if (!S)
10203     return;
10204 
10205   // Codegen OMP target directives that offload compute to the device.
10206   bool RequiresDeviceCodegen =
10207       isa<OMPExecutableDirective>(S) &&
10208       isOpenMPTargetExecutionDirective(
10209           cast<OMPExecutableDirective>(S)->getDirectiveKind());
10210 
10211   if (RequiresDeviceCodegen) {
10212     const auto &E = *cast<OMPExecutableDirective>(S);
10213     unsigned DeviceID;
10214     unsigned FileID;
10215     unsigned Line;
10216     getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
10217                              FileID, Line);
10218 
10219     // Is this a target region that should not be emitted as an entry point? If
10220     // so just signal we are done with this target region.
10221     if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
10222                                                             ParentName, Line))
10223       return;
10224 
10225     switch (E.getDirectiveKind()) {
10226     case OMPD_target:
10227       CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
10228                                                    cast<OMPTargetDirective>(E));
10229       break;
10230     case OMPD_target_parallel:
10231       CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
10232           CGM, ParentName, cast<OMPTargetParallelDirective>(E));
10233       break;
10234     case OMPD_target_teams:
10235       CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
10236           CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
10237       break;
10238     case OMPD_target_teams_distribute:
10239       CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
10240           CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
10241       break;
10242     case OMPD_target_teams_distribute_simd:
10243       CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
10244           CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
10245       break;
10246     case OMPD_target_parallel_for:
10247       CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
10248           CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
10249       break;
10250     case OMPD_target_parallel_for_simd:
10251       CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
10252           CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
10253       break;
10254     case OMPD_target_simd:
10255       CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
10256           CGM, ParentName, cast<OMPTargetSimdDirective>(E));
10257       break;
10258     case OMPD_target_teams_distribute_parallel_for:
10259       CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
10260           CGM, ParentName,
10261           cast<OMPTargetTeamsDistributeParallelForDirective>(E));
10262       break;
10263     case OMPD_target_teams_distribute_parallel_for_simd:
10264       CodeGenFunction::
10265           EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
10266               CGM, ParentName,
10267               cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
10268       break;
10269     case OMPD_parallel:
10270     case OMPD_for:
10271     case OMPD_parallel_for:
10272     case OMPD_parallel_master:
10273     case OMPD_parallel_sections:
10274     case OMPD_for_simd:
10275     case OMPD_parallel_for_simd:
10276     case OMPD_cancel:
10277     case OMPD_cancellation_point:
10278     case OMPD_ordered:
10279     case OMPD_threadprivate:
10280     case OMPD_allocate:
10281     case OMPD_task:
10282     case OMPD_simd:
10283     case OMPD_sections:
10284     case OMPD_section:
10285     case OMPD_single:
10286     case OMPD_master:
10287     case OMPD_critical:
10288     case OMPD_taskyield:
10289     case OMPD_barrier:
10290     case OMPD_taskwait:
10291     case OMPD_taskgroup:
10292     case OMPD_atomic:
10293     case OMPD_flush:
10294     case OMPD_depobj:
10295     case OMPD_scan:
10296     case OMPD_teams:
10297     case OMPD_target_data:
10298     case OMPD_target_exit_data:
10299     case OMPD_target_enter_data:
10300     case OMPD_distribute:
10301     case OMPD_distribute_simd:
10302     case OMPD_distribute_parallel_for:
10303     case OMPD_distribute_parallel_for_simd:
10304     case OMPD_teams_distribute:
10305     case OMPD_teams_distribute_simd:
10306     case OMPD_teams_distribute_parallel_for:
10307     case OMPD_teams_distribute_parallel_for_simd:
10308     case OMPD_target_update:
10309     case OMPD_declare_simd:
10310     case OMPD_declare_variant:
10311     case OMPD_begin_declare_variant:
10312     case OMPD_end_declare_variant:
10313     case OMPD_declare_target:
10314     case OMPD_end_declare_target:
10315     case OMPD_declare_reduction:
10316     case OMPD_declare_mapper:
10317     case OMPD_taskloop:
10318     case OMPD_taskloop_simd:
10319     case OMPD_master_taskloop:
10320     case OMPD_master_taskloop_simd:
10321     case OMPD_parallel_master_taskloop:
10322     case OMPD_parallel_master_taskloop_simd:
10323     case OMPD_requires:
10324     case OMPD_unknown:
10325     default:
10326       llvm_unreachable("Unknown target directive for OpenMP device codegen.");
10327     }
10328     return;
10329   }
10330 
10331   if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
10332     if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
10333       return;
10334 
10335     scanForTargetRegionsFunctions(E->getRawStmt(), ParentName);
10336     return;
10337   }
10338 
10339   // If this is a lambda function, look into its body.
10340   if (const auto *L = dyn_cast<LambdaExpr>(S))
10341     S = L->getBody();
10342 
10343   // Keep looking for target regions recursively.
10344   for (const Stmt *II : S->children())
10345     scanForTargetRegionsFunctions(II, ParentName);
10346 }
10347 
emitTargetFunctions(GlobalDecl GD)10348 bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
10349   // If emitting code for the host, we do not process FD here. Instead we do
10350   // the normal code generation.
10351   if (!CGM.getLangOpts().OpenMPIsDevice) {
10352     if (const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) {
10353       Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
10354           OMPDeclareTargetDeclAttr::getDeviceType(FD);
10355       // Do not emit device_type(nohost) functions for the host.
10356       if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
10357         return true;
10358     }
10359     return false;
10360   }
10361 
10362   const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
10363   // Try to detect target regions in the function.
10364   if (const auto *FD = dyn_cast<FunctionDecl>(VD)) {
10365     StringRef Name = CGM.getMangledName(GD);
10366     scanForTargetRegionsFunctions(FD->getBody(), Name);
10367     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
10368         OMPDeclareTargetDeclAttr::getDeviceType(FD);
10369     // Do not emit device_type(nohost) functions for the host.
10370     if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_Host)
10371       return true;
10372   }
10373 
10374   // Do not to emit function if it is not marked as declare target.
10375   return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
10376          AlreadyEmittedTargetDecls.count(VD) == 0;
10377 }
10378 
emitTargetGlobalVariable(GlobalDecl GD)10379 bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
10380   if (!CGM.getLangOpts().OpenMPIsDevice)
10381     return false;
10382 
10383   // Check if there are Ctors/Dtors in this declaration and look for target
10384   // regions in it. We use the complete variant to produce the kernel name
10385   // mangling.
10386   QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
10387   if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
10388     for (const CXXConstructorDecl *Ctor : RD->ctors()) {
10389       StringRef ParentName =
10390           CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
10391       scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
10392     }
10393     if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
10394       StringRef ParentName =
10395           CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
10396       scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
10397     }
10398   }
10399 
10400   // Do not to emit variable if it is not marked as declare target.
10401   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10402       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
10403           cast<VarDecl>(GD.getDecl()));
10404   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
10405       (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10406        HasRequiresUnifiedSharedMemory)) {
10407     DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
10408     return true;
10409   }
10410   return false;
10411 }
10412 
10413 llvm::Constant *
registerTargetFirstprivateCopy(CodeGenFunction & CGF,const VarDecl * VD)10414 CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF,
10415                                                 const VarDecl *VD) {
10416   assert(VD->getType().isConstant(CGM.getContext()) &&
10417          "Expected constant variable.");
10418   StringRef VarName;
10419   llvm::Constant *Addr;
10420   llvm::GlobalValue::LinkageTypes Linkage;
10421   QualType Ty = VD->getType();
10422   SmallString<128> Buffer;
10423   {
10424     unsigned DeviceID;
10425     unsigned FileID;
10426     unsigned Line;
10427     getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID,
10428                              FileID, Line);
10429     llvm::raw_svector_ostream OS(Buffer);
10430     OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID)
10431        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
10432     VarName = OS.str();
10433   }
10434   Linkage = llvm::GlobalValue::InternalLinkage;
10435   Addr =
10436       getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName,
10437                                   getDefaultFirstprivateAddressSpace());
10438   cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage);
10439   CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty);
10440   CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr));
10441   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
10442       VarName, Addr, VarSize,
10443       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage);
10444   return Addr;
10445 }
10446 
registerTargetGlobalVariable(const VarDecl * VD,llvm::Constant * Addr)10447 void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
10448                                                    llvm::Constant *Addr) {
10449   if (CGM.getLangOpts().OMPTargetTriples.empty() &&
10450       !CGM.getLangOpts().OpenMPIsDevice)
10451     return;
10452   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10453       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
10454   if (!Res) {
10455     if (CGM.getLangOpts().OpenMPIsDevice) {
10456       // Register non-target variables being emitted in device code (debug info
10457       // may cause this).
10458       StringRef VarName = CGM.getMangledName(VD);
10459       EmittedNonTargetVariables.try_emplace(VarName, Addr);
10460     }
10461     return;
10462   }
10463   // Register declare target variables.
10464   OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
10465   StringRef VarName;
10466   CharUnits VarSize;
10467   llvm::GlobalValue::LinkageTypes Linkage;
10468 
10469   if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10470       !HasRequiresUnifiedSharedMemory) {
10471     Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
10472     VarName = CGM.getMangledName(VD);
10473     if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
10474       VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
10475       assert(!VarSize.isZero() && "Expected non-zero size of the variable");
10476     } else {
10477       VarSize = CharUnits::Zero();
10478     }
10479     Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
10480     // Temp solution to prevent optimizations of the internal variables.
10481     if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
10482       std::string RefName = getName({VarName, "ref"});
10483       if (!CGM.GetGlobalValue(RefName)) {
10484         llvm::Constant *AddrRef =
10485             getOrCreateInternalVariable(Addr->getType(), RefName);
10486         auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
10487         GVAddrRef->setConstant(/*Val=*/true);
10488         GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
10489         GVAddrRef->setInitializer(Addr);
10490         CGM.addCompilerUsedGlobal(GVAddrRef);
10491       }
10492     }
10493   } else {
10494     assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
10495             (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10496              HasRequiresUnifiedSharedMemory)) &&
10497            "Declare target attribute must link or to with unified memory.");
10498     if (*Res == OMPDeclareTargetDeclAttr::MT_Link)
10499       Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
10500     else
10501       Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
10502 
10503     if (CGM.getLangOpts().OpenMPIsDevice) {
10504       VarName = Addr->getName();
10505       Addr = nullptr;
10506     } else {
10507       VarName = getAddrOfDeclareTargetVar(VD).getName();
10508       Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer());
10509     }
10510     VarSize = CGM.getPointerSize();
10511     Linkage = llvm::GlobalValue::WeakAnyLinkage;
10512   }
10513 
10514   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
10515       VarName, Addr, VarSize, Flags, Linkage);
10516 }
10517 
emitTargetGlobal(GlobalDecl GD)10518 bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
10519   if (isa<FunctionDecl>(GD.getDecl()) ||
10520       isa<OMPDeclareReductionDecl>(GD.getDecl()))
10521     return emitTargetFunctions(GD);
10522 
10523   return emitTargetGlobalVariable(GD);
10524 }
10525 
emitDeferredTargetDecls() const10526 void CGOpenMPRuntime::emitDeferredTargetDecls() const {
10527   for (const VarDecl *VD : DeferredGlobalVariables) {
10528     llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10529         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
10530     if (!Res)
10531       continue;
10532     if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10533         !HasRequiresUnifiedSharedMemory) {
10534       CGM.EmitGlobal(VD);
10535     } else {
10536       assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
10537               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10538                HasRequiresUnifiedSharedMemory)) &&
10539              "Expected link clause or to clause with unified memory.");
10540       (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
10541     }
10542   }
10543 }
10544 
adjustTargetSpecificDataForLambdas(CodeGenFunction & CGF,const OMPExecutableDirective & D) const10545 void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
10546     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
10547   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
10548          " Expected target-based directive.");
10549 }
10550 
processRequiresDirective(const OMPRequiresDecl * D)10551 void CGOpenMPRuntime::processRequiresDirective(const OMPRequiresDecl *D) {
10552   for (const OMPClause *Clause : D->clauselists()) {
10553     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
10554       HasRequiresUnifiedSharedMemory = true;
10555     } else if (const auto *AC =
10556                    dyn_cast<OMPAtomicDefaultMemOrderClause>(Clause)) {
10557       switch (AC->getAtomicDefaultMemOrderKind()) {
10558       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_acq_rel:
10559         RequiresAtomicOrdering = llvm::AtomicOrdering::AcquireRelease;
10560         break;
10561       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_seq_cst:
10562         RequiresAtomicOrdering = llvm::AtomicOrdering::SequentiallyConsistent;
10563         break;
10564       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_relaxed:
10565         RequiresAtomicOrdering = llvm::AtomicOrdering::Monotonic;
10566         break;
10567       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown:
10568         break;
10569       }
10570     }
10571   }
10572 }
10573 
getDefaultMemoryOrdering() const10574 llvm::AtomicOrdering CGOpenMPRuntime::getDefaultMemoryOrdering() const {
10575   return RequiresAtomicOrdering;
10576 }
10577 
hasAllocateAttributeForGlobalVar(const VarDecl * VD,LangAS & AS)10578 bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
10579                                                        LangAS &AS) {
10580   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
10581     return false;
10582   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
10583   switch(A->getAllocatorType()) {
10584   case OMPAllocateDeclAttr::OMPNullMemAlloc:
10585   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
10586   // Not supported, fallback to the default mem space.
10587   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
10588   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
10589   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
10590   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
10591   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
10592   case OMPAllocateDeclAttr::OMPConstMemAlloc:
10593   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
10594     AS = LangAS::Default;
10595     return true;
10596   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
10597     llvm_unreachable("Expected predefined allocator for the variables with the "
10598                      "static storage.");
10599   }
10600   return false;
10601 }
10602 
hasRequiresUnifiedSharedMemory() const10603 bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
10604   return HasRequiresUnifiedSharedMemory;
10605 }
10606 
DisableAutoDeclareTargetRAII(CodeGenModule & CGM)10607 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
10608     CodeGenModule &CGM)
10609     : CGM(CGM) {
10610   if (CGM.getLangOpts().OpenMPIsDevice) {
10611     SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
10612     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
10613   }
10614 }
10615 
~DisableAutoDeclareTargetRAII()10616 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
10617   if (CGM.getLangOpts().OpenMPIsDevice)
10618     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
10619 }
10620 
markAsGlobalTarget(GlobalDecl GD)10621 bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
10622   if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
10623     return true;
10624 
10625   const auto *D = cast<FunctionDecl>(GD.getDecl());
10626   // Do not to emit function if it is marked as declare target as it was already
10627   // emitted.
10628   if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
10629     if (D->hasBody() && AlreadyEmittedTargetDecls.count(D) == 0) {
10630       if (auto *F = dyn_cast_or_null<llvm::Function>(
10631               CGM.GetGlobalValue(CGM.getMangledName(GD))))
10632         return !F->isDeclaration();
10633       return false;
10634     }
10635     return true;
10636   }
10637 
10638   return !AlreadyEmittedTargetDecls.insert(D).second;
10639 }
10640 
emitRequiresDirectiveRegFun()10641 llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
10642   // If we don't have entries or if we are emitting code for the device, we
10643   // don't need to do anything.
10644   if (CGM.getLangOpts().OMPTargetTriples.empty() ||
10645       CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
10646       (OffloadEntriesInfoManager.empty() &&
10647        !HasEmittedDeclareTargetRegion &&
10648        !HasEmittedTargetRegion))
10649     return nullptr;
10650 
10651   // Create and register the function that handles the requires directives.
10652   ASTContext &C = CGM.getContext();
10653 
10654   llvm::Function *RequiresRegFn;
10655   {
10656     CodeGenFunction CGF(CGM);
10657     const auto &FI = CGM.getTypes().arrangeNullaryFunction();
10658     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
10659     std::string ReqName = getName({"omp_offloading", "requires_reg"});
10660     RequiresRegFn = CGM.CreateGlobalInitOrCleanUpFunction(FTy, ReqName, FI);
10661     CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
10662     OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
10663     // TODO: check for other requires clauses.
10664     // The requires directive takes effect only when a target region is
10665     // present in the compilation unit. Otherwise it is ignored and not
10666     // passed to the runtime. This avoids the runtime from throwing an error
10667     // for mismatching requires clauses across compilation units that don't
10668     // contain at least 1 target region.
10669     assert((HasEmittedTargetRegion ||
10670             HasEmittedDeclareTargetRegion ||
10671             !OffloadEntriesInfoManager.empty()) &&
10672            "Target or declare target region expected.");
10673     if (HasRequiresUnifiedSharedMemory)
10674       Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
10675     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10676                             CGM.getModule(), OMPRTL___tgt_register_requires),
10677                         llvm::ConstantInt::get(CGM.Int64Ty, Flags));
10678     CGF.FinishFunction();
10679   }
10680   return RequiresRegFn;
10681 }
10682 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)10683 void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
10684                                     const OMPExecutableDirective &D,
10685                                     SourceLocation Loc,
10686                                     llvm::Function *OutlinedFn,
10687                                     ArrayRef<llvm::Value *> CapturedVars) {
10688   if (!CGF.HaveInsertPoint())
10689     return;
10690 
10691   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
10692   CodeGenFunction::RunCleanupsScope Scope(CGF);
10693 
10694   // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
10695   llvm::Value *Args[] = {
10696       RTLoc,
10697       CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
10698       CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
10699   llvm::SmallVector<llvm::Value *, 16> RealArgs;
10700   RealArgs.append(std::begin(Args), std::end(Args));
10701   RealArgs.append(CapturedVars.begin(), CapturedVars.end());
10702 
10703   llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
10704       CGM.getModule(), OMPRTL___kmpc_fork_teams);
10705   CGF.EmitRuntimeCall(RTLFn, RealArgs);
10706 }
10707 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)10708 void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
10709                                          const Expr *NumTeams,
10710                                          const Expr *ThreadLimit,
10711                                          SourceLocation Loc) {
10712   if (!CGF.HaveInsertPoint())
10713     return;
10714 
10715   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
10716 
10717   llvm::Value *NumTeamsVal =
10718       NumTeams
10719           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
10720                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
10721           : CGF.Builder.getInt32(0);
10722 
10723   llvm::Value *ThreadLimitVal =
10724       ThreadLimit
10725           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
10726                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
10727           : CGF.Builder.getInt32(0);
10728 
10729   // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
10730   llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
10731                                      ThreadLimitVal};
10732   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10733                           CGM.getModule(), OMPRTL___kmpc_push_num_teams),
10734                       PushNumTeamsArgs);
10735 }
10736 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)10737 void CGOpenMPRuntime::emitTargetDataCalls(
10738     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10739     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
10740   if (!CGF.HaveInsertPoint())
10741     return;
10742 
10743   // Action used to replace the default codegen action and turn privatization
10744   // off.
10745   PrePostActionTy NoPrivAction;
10746 
10747   // Generate the code for the opening of the data environment. Capture all the
10748   // arguments of the runtime call by reference because they are used in the
10749   // closing of the region.
10750   auto &&BeginThenGen = [this, &D, Device, &Info,
10751                          &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
10752     // Fill up the arrays with all the mapped variables.
10753     MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
10754 
10755     // Get map clause information.
10756     MappableExprsHandler MEHandler(D, CGF);
10757     MEHandler.generateAllInfo(CombinedInfo);
10758 
10759     // Fill up the arrays and create the arguments.
10760     emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder,
10761                          /*IsNonContiguous=*/true);
10762 
10763     llvm::Value *BasePointersArrayArg = nullptr;
10764     llvm::Value *PointersArrayArg = nullptr;
10765     llvm::Value *SizesArrayArg = nullptr;
10766     llvm::Value *MapTypesArrayArg = nullptr;
10767     llvm::Value *MapNamesArrayArg = nullptr;
10768     llvm::Value *MappersArrayArg = nullptr;
10769     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
10770                                  SizesArrayArg, MapTypesArrayArg,
10771                                  MapNamesArrayArg, MappersArrayArg, Info);
10772 
10773     // Emit device ID if any.
10774     llvm::Value *DeviceID = nullptr;
10775     if (Device) {
10776       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10777                                            CGF.Int64Ty, /*isSigned=*/true);
10778     } else {
10779       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10780     }
10781 
10782     // Emit the number of elements in the offloading arrays.
10783     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
10784     //
10785     // Source location for the ident struct
10786     llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
10787 
10788     llvm::Value *OffloadingArgs[] = {RTLoc,
10789                                      DeviceID,
10790                                      PointerNum,
10791                                      BasePointersArrayArg,
10792                                      PointersArrayArg,
10793                                      SizesArrayArg,
10794                                      MapTypesArrayArg,
10795                                      MapNamesArrayArg,
10796                                      MappersArrayArg};
10797     CGF.EmitRuntimeCall(
10798         OMPBuilder.getOrCreateRuntimeFunction(
10799             CGM.getModule(), OMPRTL___tgt_target_data_begin_mapper),
10800         OffloadingArgs);
10801 
10802     // If device pointer privatization is required, emit the body of the region
10803     // here. It will have to be duplicated: with and without privatization.
10804     if (!Info.CaptureDeviceAddrMap.empty())
10805       CodeGen(CGF);
10806   };
10807 
10808   // Generate code for the closing of the data region.
10809   auto &&EndThenGen = [this, Device, &Info, &D](CodeGenFunction &CGF,
10810                                                 PrePostActionTy &) {
10811     assert(Info.isValid() && "Invalid data environment closing arguments.");
10812 
10813     llvm::Value *BasePointersArrayArg = nullptr;
10814     llvm::Value *PointersArrayArg = nullptr;
10815     llvm::Value *SizesArrayArg = nullptr;
10816     llvm::Value *MapTypesArrayArg = nullptr;
10817     llvm::Value *MapNamesArrayArg = nullptr;
10818     llvm::Value *MappersArrayArg = nullptr;
10819     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
10820                                  SizesArrayArg, MapTypesArrayArg,
10821                                  MapNamesArrayArg, MappersArrayArg, Info,
10822                                  {/*ForEndCall=*/true});
10823 
10824     // Emit device ID if any.
10825     llvm::Value *DeviceID = nullptr;
10826     if (Device) {
10827       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10828                                            CGF.Int64Ty, /*isSigned=*/true);
10829     } else {
10830       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10831     }
10832 
10833     // Emit the number of elements in the offloading arrays.
10834     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
10835 
10836     // Source location for the ident struct
10837     llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
10838 
10839     llvm::Value *OffloadingArgs[] = {RTLoc,
10840                                      DeviceID,
10841                                      PointerNum,
10842                                      BasePointersArrayArg,
10843                                      PointersArrayArg,
10844                                      SizesArrayArg,
10845                                      MapTypesArrayArg,
10846                                      MapNamesArrayArg,
10847                                      MappersArrayArg};
10848     CGF.EmitRuntimeCall(
10849         OMPBuilder.getOrCreateRuntimeFunction(
10850             CGM.getModule(), OMPRTL___tgt_target_data_end_mapper),
10851         OffloadingArgs);
10852   };
10853 
10854   // If we need device pointer privatization, we need to emit the body of the
10855   // region with no privatization in the 'else' branch of the conditional.
10856   // Otherwise, we don't have to do anything.
10857   auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
10858                                                          PrePostActionTy &) {
10859     if (!Info.CaptureDeviceAddrMap.empty()) {
10860       CodeGen.setAction(NoPrivAction);
10861       CodeGen(CGF);
10862     }
10863   };
10864 
10865   // We don't have to do anything to close the region if the if clause evaluates
10866   // to false.
10867   auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
10868 
10869   if (IfCond) {
10870     emitIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
10871   } else {
10872     RegionCodeGenTy RCG(BeginThenGen);
10873     RCG(CGF);
10874   }
10875 
10876   // If we don't require privatization of device pointers, we emit the body in
10877   // between the runtime calls. This avoids duplicating the body code.
10878   if (Info.CaptureDeviceAddrMap.empty()) {
10879     CodeGen.setAction(NoPrivAction);
10880     CodeGen(CGF);
10881   }
10882 
10883   if (IfCond) {
10884     emitIfClause(CGF, IfCond, EndThenGen, EndElseGen);
10885   } else {
10886     RegionCodeGenTy RCG(EndThenGen);
10887     RCG(CGF);
10888   }
10889 }
10890 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)10891 void CGOpenMPRuntime::emitTargetDataStandAloneCall(
10892     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10893     const Expr *Device) {
10894   if (!CGF.HaveInsertPoint())
10895     return;
10896 
10897   assert((isa<OMPTargetEnterDataDirective>(D) ||
10898           isa<OMPTargetExitDataDirective>(D) ||
10899           isa<OMPTargetUpdateDirective>(D)) &&
10900          "Expecting either target enter, exit data, or update directives.");
10901 
10902   CodeGenFunction::OMPTargetDataInfo InputInfo;
10903   llvm::Value *MapTypesArray = nullptr;
10904   llvm::Value *MapNamesArray = nullptr;
10905   // Generate the code for the opening of the data environment.
10906   auto &&ThenGen = [this, &D, Device, &InputInfo, &MapTypesArray,
10907                     &MapNamesArray](CodeGenFunction &CGF, PrePostActionTy &) {
10908     // Emit device ID if any.
10909     llvm::Value *DeviceID = nullptr;
10910     if (Device) {
10911       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10912                                            CGF.Int64Ty, /*isSigned=*/true);
10913     } else {
10914       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10915     }
10916 
10917     // Emit the number of elements in the offloading arrays.
10918     llvm::Constant *PointerNum =
10919         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
10920 
10921     // Source location for the ident struct
10922     llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
10923 
10924     llvm::Value *OffloadingArgs[] = {RTLoc,
10925                                      DeviceID,
10926                                      PointerNum,
10927                                      InputInfo.BasePointersArray.getPointer(),
10928                                      InputInfo.PointersArray.getPointer(),
10929                                      InputInfo.SizesArray.getPointer(),
10930                                      MapTypesArray,
10931                                      MapNamesArray,
10932                                      InputInfo.MappersArray.getPointer()};
10933 
10934     // Select the right runtime function call for each standalone
10935     // directive.
10936     const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
10937     RuntimeFunction RTLFn;
10938     switch (D.getDirectiveKind()) {
10939     case OMPD_target_enter_data:
10940       RTLFn = HasNowait ? OMPRTL___tgt_target_data_begin_nowait_mapper
10941                         : OMPRTL___tgt_target_data_begin_mapper;
10942       break;
10943     case OMPD_target_exit_data:
10944       RTLFn = HasNowait ? OMPRTL___tgt_target_data_end_nowait_mapper
10945                         : OMPRTL___tgt_target_data_end_mapper;
10946       break;
10947     case OMPD_target_update:
10948       RTLFn = HasNowait ? OMPRTL___tgt_target_data_update_nowait_mapper
10949                         : OMPRTL___tgt_target_data_update_mapper;
10950       break;
10951     case OMPD_parallel:
10952     case OMPD_for:
10953     case OMPD_parallel_for:
10954     case OMPD_parallel_master:
10955     case OMPD_parallel_sections:
10956     case OMPD_for_simd:
10957     case OMPD_parallel_for_simd:
10958     case OMPD_cancel:
10959     case OMPD_cancellation_point:
10960     case OMPD_ordered:
10961     case OMPD_threadprivate:
10962     case OMPD_allocate:
10963     case OMPD_task:
10964     case OMPD_simd:
10965     case OMPD_sections:
10966     case OMPD_section:
10967     case OMPD_single:
10968     case OMPD_master:
10969     case OMPD_critical:
10970     case OMPD_taskyield:
10971     case OMPD_barrier:
10972     case OMPD_taskwait:
10973     case OMPD_taskgroup:
10974     case OMPD_atomic:
10975     case OMPD_flush:
10976     case OMPD_depobj:
10977     case OMPD_scan:
10978     case OMPD_teams:
10979     case OMPD_target_data:
10980     case OMPD_distribute:
10981     case OMPD_distribute_simd:
10982     case OMPD_distribute_parallel_for:
10983     case OMPD_distribute_parallel_for_simd:
10984     case OMPD_teams_distribute:
10985     case OMPD_teams_distribute_simd:
10986     case OMPD_teams_distribute_parallel_for:
10987     case OMPD_teams_distribute_parallel_for_simd:
10988     case OMPD_declare_simd:
10989     case OMPD_declare_variant:
10990     case OMPD_begin_declare_variant:
10991     case OMPD_end_declare_variant:
10992     case OMPD_declare_target:
10993     case OMPD_end_declare_target:
10994     case OMPD_declare_reduction:
10995     case OMPD_declare_mapper:
10996     case OMPD_taskloop:
10997     case OMPD_taskloop_simd:
10998     case OMPD_master_taskloop:
10999     case OMPD_master_taskloop_simd:
11000     case OMPD_parallel_master_taskloop:
11001     case OMPD_parallel_master_taskloop_simd:
11002     case OMPD_target:
11003     case OMPD_target_simd:
11004     case OMPD_target_teams_distribute:
11005     case OMPD_target_teams_distribute_simd:
11006     case OMPD_target_teams_distribute_parallel_for:
11007     case OMPD_target_teams_distribute_parallel_for_simd:
11008     case OMPD_target_teams:
11009     case OMPD_target_parallel:
11010     case OMPD_target_parallel_for:
11011     case OMPD_target_parallel_for_simd:
11012     case OMPD_requires:
11013     case OMPD_unknown:
11014     default:
11015       llvm_unreachable("Unexpected standalone target data directive.");
11016       break;
11017     }
11018     CGF.EmitRuntimeCall(
11019         OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), RTLFn),
11020         OffloadingArgs);
11021   };
11022 
11023   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
11024                           &MapNamesArray](CodeGenFunction &CGF,
11025                                           PrePostActionTy &) {
11026     // Fill up the arrays with all the mapped variables.
11027     MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
11028 
11029     // Get map clause information.
11030     MappableExprsHandler MEHandler(D, CGF);
11031     MEHandler.generateAllInfo(CombinedInfo);
11032 
11033     TargetDataInfo Info;
11034     // Fill up the arrays and create the arguments.
11035     emitOffloadingArrays(CGF, CombinedInfo, Info, OMPBuilder,
11036                          /*IsNonContiguous=*/true);
11037     bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() ||
11038                              D.hasClausesOfKind<OMPNowaitClause>();
11039     emitOffloadingArraysArgument(
11040         CGF, Info.BasePointersArray, Info.PointersArray, Info.SizesArray,
11041         Info.MapTypesArray, Info.MapNamesArray, Info.MappersArray, Info,
11042         {/*ForEndTask=*/false});
11043     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
11044     InputInfo.BasePointersArray =
11045         Address(Info.BasePointersArray, CGM.getPointerAlign());
11046     InputInfo.PointersArray =
11047         Address(Info.PointersArray, CGM.getPointerAlign());
11048     InputInfo.SizesArray =
11049         Address(Info.SizesArray, CGM.getPointerAlign());
11050     InputInfo.MappersArray = Address(Info.MappersArray, CGM.getPointerAlign());
11051     MapTypesArray = Info.MapTypesArray;
11052     MapNamesArray = Info.MapNamesArray;
11053     if (RequiresOuterTask)
11054       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
11055     else
11056       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
11057   };
11058 
11059   if (IfCond) {
11060     emitIfClause(CGF, IfCond, TargetThenGen,
11061                  [](CodeGenFunction &CGF, PrePostActionTy &) {});
11062   } else {
11063     RegionCodeGenTy ThenRCG(TargetThenGen);
11064     ThenRCG(CGF);
11065   }
11066 }
11067 
11068 namespace {
11069   /// Kind of parameter in a function with 'declare simd' directive.
11070   enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
11071   /// Attribute set of the parameter.
11072   struct ParamAttrTy {
11073     ParamKindTy Kind = Vector;
11074     llvm::APSInt StrideOrArg;
11075     llvm::APSInt Alignment;
11076   };
11077 } // namespace
11078 
evaluateCDTSize(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)11079 static unsigned evaluateCDTSize(const FunctionDecl *FD,
11080                                 ArrayRef<ParamAttrTy> ParamAttrs) {
11081   // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
11082   // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
11083   // of that clause. The VLEN value must be power of 2.
11084   // In other case the notion of the function`s "characteristic data type" (CDT)
11085   // is used to compute the vector length.
11086   // CDT is defined in the following order:
11087   //   a) For non-void function, the CDT is the return type.
11088   //   b) If the function has any non-uniform, non-linear parameters, then the
11089   //   CDT is the type of the first such parameter.
11090   //   c) If the CDT determined by a) or b) above is struct, union, or class
11091   //   type which is pass-by-value (except for the type that maps to the
11092   //   built-in complex data type), the characteristic data type is int.
11093   //   d) If none of the above three cases is applicable, the CDT is int.
11094   // The VLEN is then determined based on the CDT and the size of vector
11095   // register of that ISA for which current vector version is generated. The
11096   // VLEN is computed using the formula below:
11097   //   VLEN  = sizeof(vector_register) / sizeof(CDT),
11098   // where vector register size specified in section 3.2.1 Registers and the
11099   // Stack Frame of original AMD64 ABI document.
11100   QualType RetType = FD->getReturnType();
11101   if (RetType.isNull())
11102     return 0;
11103   ASTContext &C = FD->getASTContext();
11104   QualType CDT;
11105   if (!RetType.isNull() && !RetType->isVoidType()) {
11106     CDT = RetType;
11107   } else {
11108     unsigned Offset = 0;
11109     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11110       if (ParamAttrs[Offset].Kind == Vector)
11111         CDT = C.getPointerType(C.getRecordType(MD->getParent()));
11112       ++Offset;
11113     }
11114     if (CDT.isNull()) {
11115       for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
11116         if (ParamAttrs[I + Offset].Kind == Vector) {
11117           CDT = FD->getParamDecl(I)->getType();
11118           break;
11119         }
11120       }
11121     }
11122   }
11123   if (CDT.isNull())
11124     CDT = C.IntTy;
11125   CDT = CDT->getCanonicalTypeUnqualified();
11126   if (CDT->isRecordType() || CDT->isUnionType())
11127     CDT = C.IntTy;
11128   return C.getTypeSize(CDT);
11129 }
11130 
11131 static void
emitX86DeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn,const llvm::APSInt & VLENVal,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State)11132 emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
11133                            const llvm::APSInt &VLENVal,
11134                            ArrayRef<ParamAttrTy> ParamAttrs,
11135                            OMPDeclareSimdDeclAttr::BranchStateTy State) {
11136   struct ISADataTy {
11137     char ISA;
11138     unsigned VecRegSize;
11139   };
11140   ISADataTy ISAData[] = {
11141       {
11142           'b', 128
11143       }, // SSE
11144       {
11145           'c', 256
11146       }, // AVX
11147       {
11148           'd', 256
11149       }, // AVX2
11150       {
11151           'e', 512
11152       }, // AVX512
11153   };
11154   llvm::SmallVector<char, 2> Masked;
11155   switch (State) {
11156   case OMPDeclareSimdDeclAttr::BS_Undefined:
11157     Masked.push_back('N');
11158     Masked.push_back('M');
11159     break;
11160   case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11161     Masked.push_back('N');
11162     break;
11163   case OMPDeclareSimdDeclAttr::BS_Inbranch:
11164     Masked.push_back('M');
11165     break;
11166   }
11167   for (char Mask : Masked) {
11168     for (const ISADataTy &Data : ISAData) {
11169       SmallString<256> Buffer;
11170       llvm::raw_svector_ostream Out(Buffer);
11171       Out << "_ZGV" << Data.ISA << Mask;
11172       if (!VLENVal) {
11173         unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
11174         assert(NumElts && "Non-zero simdlen/cdtsize expected");
11175         Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
11176       } else {
11177         Out << VLENVal;
11178       }
11179       for (const ParamAttrTy &ParamAttr : ParamAttrs) {
11180         switch (ParamAttr.Kind){
11181         case LinearWithVarStride:
11182           Out << 's' << ParamAttr.StrideOrArg;
11183           break;
11184         case Linear:
11185           Out << 'l';
11186           if (ParamAttr.StrideOrArg != 1)
11187             Out << ParamAttr.StrideOrArg;
11188           break;
11189         case Uniform:
11190           Out << 'u';
11191           break;
11192         case Vector:
11193           Out << 'v';
11194           break;
11195         }
11196         if (!!ParamAttr.Alignment)
11197           Out << 'a' << ParamAttr.Alignment;
11198       }
11199       Out << '_' << Fn->getName();
11200       Fn->addFnAttr(Out.str());
11201     }
11202   }
11203 }
11204 
11205 // This are the Functions that are needed to mangle the name of the
11206 // vector functions generated by the compiler, according to the rules
11207 // defined in the "Vector Function ABI specifications for AArch64",
11208 // available at
11209 // https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
11210 
11211 /// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
11212 ///
11213 /// TODO: Need to implement the behavior for reference marked with a
11214 /// var or no linear modifiers (1.b in the section). For this, we
11215 /// need to extend ParamKindTy to support the linear modifiers.
getAArch64MTV(QualType QT,ParamKindTy Kind)11216 static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
11217   QT = QT.getCanonicalType();
11218 
11219   if (QT->isVoidType())
11220     return false;
11221 
11222   if (Kind == ParamKindTy::Uniform)
11223     return false;
11224 
11225   if (Kind == ParamKindTy::Linear)
11226     return false;
11227 
11228   // TODO: Handle linear references with modifiers
11229 
11230   if (Kind == ParamKindTy::LinearWithVarStride)
11231     return false;
11232 
11233   return true;
11234 }
11235 
11236 /// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
getAArch64PBV(QualType QT,ASTContext & C)11237 static bool getAArch64PBV(QualType QT, ASTContext &C) {
11238   QT = QT.getCanonicalType();
11239   unsigned Size = C.getTypeSize(QT);
11240 
11241   // Only scalars and complex within 16 bytes wide set PVB to true.
11242   if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
11243     return false;
11244 
11245   if (QT->isFloatingType())
11246     return true;
11247 
11248   if (QT->isIntegerType())
11249     return true;
11250 
11251   if (QT->isPointerType())
11252     return true;
11253 
11254   // TODO: Add support for complex types (section 3.1.2, item 2).
11255 
11256   return false;
11257 }
11258 
11259 /// Computes the lane size (LS) of a return type or of an input parameter,
11260 /// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
11261 /// TODO: Add support for references, section 3.2.1, item 1.
getAArch64LS(QualType QT,ParamKindTy Kind,ASTContext & C)11262 static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
11263   if (!getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
11264     QualType PTy = QT.getCanonicalType()->getPointeeType();
11265     if (getAArch64PBV(PTy, C))
11266       return C.getTypeSize(PTy);
11267   }
11268   if (getAArch64PBV(QT, C))
11269     return C.getTypeSize(QT);
11270 
11271   return C.getTypeSize(C.getUIntPtrType());
11272 }
11273 
11274 // Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
11275 // signature of the scalar function, as defined in 3.2.2 of the
11276 // AAVFABI.
11277 static std::tuple<unsigned, unsigned, bool>
getNDSWDS(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)11278 getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
11279   QualType RetType = FD->getReturnType().getCanonicalType();
11280 
11281   ASTContext &C = FD->getASTContext();
11282 
11283   bool OutputBecomesInput = false;
11284 
11285   llvm::SmallVector<unsigned, 8> Sizes;
11286   if (!RetType->isVoidType()) {
11287     Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
11288     if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
11289       OutputBecomesInput = true;
11290   }
11291   for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
11292     QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
11293     Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
11294   }
11295 
11296   assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
11297   // The LS of a function parameter / return value can only be a power
11298   // of 2, starting from 8 bits, up to 128.
11299   assert(std::all_of(Sizes.begin(), Sizes.end(),
11300                      [](unsigned Size) {
11301                        return Size == 8 || Size == 16 || Size == 32 ||
11302                               Size == 64 || Size == 128;
11303                      }) &&
11304          "Invalid size");
11305 
11306   return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
11307                          *std::max_element(std::begin(Sizes), std::end(Sizes)),
11308                          OutputBecomesInput);
11309 }
11310 
11311 /// Mangle the parameter part of the vector function name according to
11312 /// their OpenMP classification. The mangling function is defined in
11313 /// section 3.5 of the AAVFABI.
mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs)11314 static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
11315   SmallString<256> Buffer;
11316   llvm::raw_svector_ostream Out(Buffer);
11317   for (const auto &ParamAttr : ParamAttrs) {
11318     switch (ParamAttr.Kind) {
11319     case LinearWithVarStride:
11320       Out << "ls" << ParamAttr.StrideOrArg;
11321       break;
11322     case Linear:
11323       Out << 'l';
11324       // Don't print the step value if it is not present or if it is
11325       // equal to 1.
11326       if (ParamAttr.StrideOrArg != 1)
11327         Out << ParamAttr.StrideOrArg;
11328       break;
11329     case Uniform:
11330       Out << 'u';
11331       break;
11332     case Vector:
11333       Out << 'v';
11334       break;
11335     }
11336 
11337     if (!!ParamAttr.Alignment)
11338       Out << 'a' << ParamAttr.Alignment;
11339   }
11340 
11341   return std::string(Out.str());
11342 }
11343 
11344 // Function used to add the attribute. The parameter `VLEN` is
11345 // templated to allow the use of "x" when targeting scalable functions
11346 // for SVE.
11347 template <typename T>
addAArch64VectorName(T VLEN,StringRef LMask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)11348 static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
11349                                  char ISA, StringRef ParSeq,
11350                                  StringRef MangledName, bool OutputBecomesInput,
11351                                  llvm::Function *Fn) {
11352   SmallString<256> Buffer;
11353   llvm::raw_svector_ostream Out(Buffer);
11354   Out << Prefix << ISA << LMask << VLEN;
11355   if (OutputBecomesInput)
11356     Out << "v";
11357   Out << ParSeq << "_" << MangledName;
11358   Fn->addFnAttr(Out.str());
11359 }
11360 
11361 // Helper function to generate the Advanced SIMD names depending on
11362 // the value of the NDS when simdlen is not present.
addAArch64AdvSIMDNDSNames(unsigned NDS,StringRef Mask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)11363 static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
11364                                       StringRef Prefix, char ISA,
11365                                       StringRef ParSeq, StringRef MangledName,
11366                                       bool OutputBecomesInput,
11367                                       llvm::Function *Fn) {
11368   switch (NDS) {
11369   case 8:
11370     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
11371                          OutputBecomesInput, Fn);
11372     addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
11373                          OutputBecomesInput, Fn);
11374     break;
11375   case 16:
11376     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
11377                          OutputBecomesInput, Fn);
11378     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
11379                          OutputBecomesInput, Fn);
11380     break;
11381   case 32:
11382     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
11383                          OutputBecomesInput, Fn);
11384     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
11385                          OutputBecomesInput, Fn);
11386     break;
11387   case 64:
11388   case 128:
11389     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
11390                          OutputBecomesInput, Fn);
11391     break;
11392   default:
11393     llvm_unreachable("Scalar type is too wide.");
11394   }
11395 }
11396 
11397 /// Emit vector function attributes for AArch64, as defined in the AAVFABI.
emitAArch64DeclareSimdFunction(CodeGenModule & CGM,const FunctionDecl * FD,unsigned UserVLEN,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State,StringRef MangledName,char ISA,unsigned VecRegSize,llvm::Function * Fn,SourceLocation SLoc)11398 static void emitAArch64DeclareSimdFunction(
11399     CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
11400     ArrayRef<ParamAttrTy> ParamAttrs,
11401     OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
11402     char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
11403 
11404   // Get basic data for building the vector signature.
11405   const auto Data = getNDSWDS(FD, ParamAttrs);
11406   const unsigned NDS = std::get<0>(Data);
11407   const unsigned WDS = std::get<1>(Data);
11408   const bool OutputBecomesInput = std::get<2>(Data);
11409 
11410   // Check the values provided via `simdlen` by the user.
11411   // 1. A `simdlen(1)` doesn't produce vector signatures,
11412   if (UserVLEN == 1) {
11413     unsigned DiagID = CGM.getDiags().getCustomDiagID(
11414         DiagnosticsEngine::Warning,
11415         "The clause simdlen(1) has no effect when targeting aarch64.");
11416     CGM.getDiags().Report(SLoc, DiagID);
11417     return;
11418   }
11419 
11420   // 2. Section 3.3.1, item 1: user input must be a power of 2 for
11421   // Advanced SIMD output.
11422   if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
11423     unsigned DiagID = CGM.getDiags().getCustomDiagID(
11424         DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
11425                                     "power of 2 when targeting Advanced SIMD.");
11426     CGM.getDiags().Report(SLoc, DiagID);
11427     return;
11428   }
11429 
11430   // 3. Section 3.4.1. SVE fixed lengh must obey the architectural
11431   // limits.
11432   if (ISA == 's' && UserVLEN != 0) {
11433     if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
11434       unsigned DiagID = CGM.getDiags().getCustomDiagID(
11435           DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
11436                                       "lanes in the architectural constraints "
11437                                       "for SVE (min is 128-bit, max is "
11438                                       "2048-bit, by steps of 128-bit)");
11439       CGM.getDiags().Report(SLoc, DiagID) << WDS;
11440       return;
11441     }
11442   }
11443 
11444   // Sort out parameter sequence.
11445   const std::string ParSeq = mangleVectorParameters(ParamAttrs);
11446   StringRef Prefix = "_ZGV";
11447   // Generate simdlen from user input (if any).
11448   if (UserVLEN) {
11449     if (ISA == 's') {
11450       // SVE generates only a masked function.
11451       addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11452                            OutputBecomesInput, Fn);
11453     } else {
11454       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
11455       // Advanced SIMD generates one or two functions, depending on
11456       // the `[not]inbranch` clause.
11457       switch (State) {
11458       case OMPDeclareSimdDeclAttr::BS_Undefined:
11459         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
11460                              OutputBecomesInput, Fn);
11461         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11462                              OutputBecomesInput, Fn);
11463         break;
11464       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11465         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
11466                              OutputBecomesInput, Fn);
11467         break;
11468       case OMPDeclareSimdDeclAttr::BS_Inbranch:
11469         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11470                              OutputBecomesInput, Fn);
11471         break;
11472       }
11473     }
11474   } else {
11475     // If no user simdlen is provided, follow the AAVFABI rules for
11476     // generating the vector length.
11477     if (ISA == 's') {
11478       // SVE, section 3.4.1, item 1.
11479       addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
11480                            OutputBecomesInput, Fn);
11481     } else {
11482       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
11483       // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
11484       // two vector names depending on the use of the clause
11485       // `[not]inbranch`.
11486       switch (State) {
11487       case OMPDeclareSimdDeclAttr::BS_Undefined:
11488         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
11489                                   OutputBecomesInput, Fn);
11490         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
11491                                   OutputBecomesInput, Fn);
11492         break;
11493       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11494         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
11495                                   OutputBecomesInput, Fn);
11496         break;
11497       case OMPDeclareSimdDeclAttr::BS_Inbranch:
11498         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
11499                                   OutputBecomesInput, Fn);
11500         break;
11501       }
11502     }
11503   }
11504 }
11505 
emitDeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn)11506 void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
11507                                               llvm::Function *Fn) {
11508   ASTContext &C = CGM.getContext();
11509   FD = FD->getMostRecentDecl();
11510   // Map params to their positions in function decl.
11511   llvm::DenseMap<const Decl *, unsigned> ParamPositions;
11512   if (isa<CXXMethodDecl>(FD))
11513     ParamPositions.try_emplace(FD, 0);
11514   unsigned ParamPos = ParamPositions.size();
11515   for (const ParmVarDecl *P : FD->parameters()) {
11516     ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
11517     ++ParamPos;
11518   }
11519   while (FD) {
11520     for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
11521       llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
11522       // Mark uniform parameters.
11523       for (const Expr *E : Attr->uniforms()) {
11524         E = E->IgnoreParenImpCasts();
11525         unsigned Pos;
11526         if (isa<CXXThisExpr>(E)) {
11527           Pos = ParamPositions[FD];
11528         } else {
11529           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11530                                 ->getCanonicalDecl();
11531           Pos = ParamPositions[PVD];
11532         }
11533         ParamAttrs[Pos].Kind = Uniform;
11534       }
11535       // Get alignment info.
11536       auto NI = Attr->alignments_begin();
11537       for (const Expr *E : Attr->aligneds()) {
11538         E = E->IgnoreParenImpCasts();
11539         unsigned Pos;
11540         QualType ParmTy;
11541         if (isa<CXXThisExpr>(E)) {
11542           Pos = ParamPositions[FD];
11543           ParmTy = E->getType();
11544         } else {
11545           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11546                                 ->getCanonicalDecl();
11547           Pos = ParamPositions[PVD];
11548           ParmTy = PVD->getType();
11549         }
11550         ParamAttrs[Pos].Alignment =
11551             (*NI)
11552                 ? (*NI)->EvaluateKnownConstInt(C)
11553                 : llvm::APSInt::getUnsigned(
11554                       C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
11555                           .getQuantity());
11556         ++NI;
11557       }
11558       // Mark linear parameters.
11559       auto SI = Attr->steps_begin();
11560       auto MI = Attr->modifiers_begin();
11561       for (const Expr *E : Attr->linears()) {
11562         E = E->IgnoreParenImpCasts();
11563         unsigned Pos;
11564         // Rescaling factor needed to compute the linear parameter
11565         // value in the mangled name.
11566         unsigned PtrRescalingFactor = 1;
11567         if (isa<CXXThisExpr>(E)) {
11568           Pos = ParamPositions[FD];
11569         } else {
11570           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11571                                 ->getCanonicalDecl();
11572           Pos = ParamPositions[PVD];
11573           if (auto *P = dyn_cast<PointerType>(PVD->getType()))
11574             PtrRescalingFactor = CGM.getContext()
11575                                      .getTypeSizeInChars(P->getPointeeType())
11576                                      .getQuantity();
11577         }
11578         ParamAttrTy &ParamAttr = ParamAttrs[Pos];
11579         ParamAttr.Kind = Linear;
11580         // Assuming a stride of 1, for `linear` without modifiers.
11581         ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(1);
11582         if (*SI) {
11583           Expr::EvalResult Result;
11584           if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
11585             if (const auto *DRE =
11586                     cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
11587               if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
11588                 ParamAttr.Kind = LinearWithVarStride;
11589                 ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
11590                     ParamPositions[StridePVD->getCanonicalDecl()]);
11591               }
11592             }
11593           } else {
11594             ParamAttr.StrideOrArg = Result.Val.getInt();
11595           }
11596         }
11597         // If we are using a linear clause on a pointer, we need to
11598         // rescale the value of linear_step with the byte size of the
11599         // pointee type.
11600         if (Linear == ParamAttr.Kind)
11601           ParamAttr.StrideOrArg = ParamAttr.StrideOrArg * PtrRescalingFactor;
11602         ++SI;
11603         ++MI;
11604       }
11605       llvm::APSInt VLENVal;
11606       SourceLocation ExprLoc;
11607       const Expr *VLENExpr = Attr->getSimdlen();
11608       if (VLENExpr) {
11609         VLENVal = VLENExpr->EvaluateKnownConstInt(C);
11610         ExprLoc = VLENExpr->getExprLoc();
11611       }
11612       OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
11613       if (CGM.getTriple().isX86()) {
11614         emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
11615       } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
11616         unsigned VLEN = VLENVal.getExtValue();
11617         StringRef MangledName = Fn->getName();
11618         if (CGM.getTarget().hasFeature("sve"))
11619           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
11620                                          MangledName, 's', 128, Fn, ExprLoc);
11621         if (CGM.getTarget().hasFeature("neon"))
11622           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
11623                                          MangledName, 'n', 128, Fn, ExprLoc);
11624       }
11625     }
11626     FD = FD->getPreviousDecl();
11627   }
11628 }
11629 
11630 namespace {
11631 /// Cleanup action for doacross support.
11632 class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
11633 public:
11634   static const int DoacrossFinArgs = 2;
11635 
11636 private:
11637   llvm::FunctionCallee RTLFn;
11638   llvm::Value *Args[DoacrossFinArgs];
11639 
11640 public:
DoacrossCleanupTy(llvm::FunctionCallee RTLFn,ArrayRef<llvm::Value * > CallArgs)11641   DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
11642                     ArrayRef<llvm::Value *> CallArgs)
11643       : RTLFn(RTLFn) {
11644     assert(CallArgs.size() == DoacrossFinArgs);
11645     std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
11646   }
Emit(CodeGenFunction & CGF,Flags)11647   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
11648     if (!CGF.HaveInsertPoint())
11649       return;
11650     CGF.EmitRuntimeCall(RTLFn, Args);
11651   }
11652 };
11653 } // namespace
11654 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)11655 void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
11656                                        const OMPLoopDirective &D,
11657                                        ArrayRef<Expr *> NumIterations) {
11658   if (!CGF.HaveInsertPoint())
11659     return;
11660 
11661   ASTContext &C = CGM.getContext();
11662   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
11663   RecordDecl *RD;
11664   if (KmpDimTy.isNull()) {
11665     // Build struct kmp_dim {  // loop bounds info casted to kmp_int64
11666     //  kmp_int64 lo; // lower
11667     //  kmp_int64 up; // upper
11668     //  kmp_int64 st; // stride
11669     // };
11670     RD = C.buildImplicitRecord("kmp_dim");
11671     RD->startDefinition();
11672     addFieldToRecordDecl(C, RD, Int64Ty);
11673     addFieldToRecordDecl(C, RD, Int64Ty);
11674     addFieldToRecordDecl(C, RD, Int64Ty);
11675     RD->completeDefinition();
11676     KmpDimTy = C.getRecordType(RD);
11677   } else {
11678     RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
11679   }
11680   llvm::APInt Size(/*numBits=*/32, NumIterations.size());
11681   QualType ArrayTy =
11682       C.getConstantArrayType(KmpDimTy, Size, nullptr, ArrayType::Normal, 0);
11683 
11684   Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
11685   CGF.EmitNullInitialization(DimsAddr, ArrayTy);
11686   enum { LowerFD = 0, UpperFD, StrideFD };
11687   // Fill dims with data.
11688   for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
11689     LValue DimsLVal = CGF.MakeAddrLValue(
11690         CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
11691     // dims.upper = num_iterations;
11692     LValue UpperLVal = CGF.EmitLValueForField(
11693         DimsLVal, *std::next(RD->field_begin(), UpperFD));
11694     llvm::Value *NumIterVal = CGF.EmitScalarConversion(
11695         CGF.EmitScalarExpr(NumIterations[I]), NumIterations[I]->getType(),
11696         Int64Ty, NumIterations[I]->getExprLoc());
11697     CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
11698     // dims.stride = 1;
11699     LValue StrideLVal = CGF.EmitLValueForField(
11700         DimsLVal, *std::next(RD->field_begin(), StrideFD));
11701     CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
11702                           StrideLVal);
11703   }
11704 
11705   // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
11706   // kmp_int32 num_dims, struct kmp_dim * dims);
11707   llvm::Value *Args[] = {
11708       emitUpdateLocation(CGF, D.getBeginLoc()),
11709       getThreadID(CGF, D.getBeginLoc()),
11710       llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
11711       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11712           CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
11713           CGM.VoidPtrTy)};
11714 
11715   llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11716       CGM.getModule(), OMPRTL___kmpc_doacross_init);
11717   CGF.EmitRuntimeCall(RTLFn, Args);
11718   llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
11719       emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
11720   llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11721       CGM.getModule(), OMPRTL___kmpc_doacross_fini);
11722   CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
11723                                              llvm::makeArrayRef(FiniArgs));
11724 }
11725 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)11726 void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
11727                                           const OMPDependClause *C) {
11728   QualType Int64Ty =
11729       CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
11730   llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
11731   QualType ArrayTy = CGM.getContext().getConstantArrayType(
11732       Int64Ty, Size, nullptr, ArrayType::Normal, 0);
11733   Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
11734   for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
11735     const Expr *CounterVal = C->getLoopData(I);
11736     assert(CounterVal);
11737     llvm::Value *CntVal = CGF.EmitScalarConversion(
11738         CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
11739         CounterVal->getExprLoc());
11740     CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
11741                           /*Volatile=*/false, Int64Ty);
11742   }
11743   llvm::Value *Args[] = {
11744       emitUpdateLocation(CGF, C->getBeginLoc()),
11745       getThreadID(CGF, C->getBeginLoc()),
11746       CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
11747   llvm::FunctionCallee RTLFn;
11748   if (C->getDependencyKind() == OMPC_DEPEND_source) {
11749     RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
11750                                                   OMPRTL___kmpc_doacross_post);
11751   } else {
11752     assert(C->getDependencyKind() == OMPC_DEPEND_sink);
11753     RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
11754                                                   OMPRTL___kmpc_doacross_wait);
11755   }
11756   CGF.EmitRuntimeCall(RTLFn, Args);
11757 }
11758 
emitCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee Callee,ArrayRef<llvm::Value * > Args) const11759 void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
11760                                llvm::FunctionCallee Callee,
11761                                ArrayRef<llvm::Value *> Args) const {
11762   assert(Loc.isValid() && "Outlined function call location must be valid.");
11763   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
11764 
11765   if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
11766     if (Fn->doesNotThrow()) {
11767       CGF.EmitNounwindRuntimeCall(Fn, Args);
11768       return;
11769     }
11770   }
11771   CGF.EmitRuntimeCall(Callee, Args);
11772 }
11773 
emitOutlinedFunctionCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee OutlinedFn,ArrayRef<llvm::Value * > Args) const11774 void CGOpenMPRuntime::emitOutlinedFunctionCall(
11775     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
11776     ArrayRef<llvm::Value *> Args) const {
11777   emitCall(CGF, Loc, OutlinedFn, Args);
11778 }
11779 
emitFunctionProlog(CodeGenFunction & CGF,const Decl * D)11780 void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
11781   if (const auto *FD = dyn_cast<FunctionDecl>(D))
11782     if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
11783       HasEmittedDeclareTargetRegion = true;
11784 }
11785 
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const11786 Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
11787                                              const VarDecl *NativeParam,
11788                                              const VarDecl *TargetParam) const {
11789   return CGF.GetAddrOfLocalVar(NativeParam);
11790 }
11791 
getAddressOfLocalVariable(CodeGenFunction & CGF,const VarDecl * VD)11792 Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
11793                                                    const VarDecl *VD) {
11794   if (!VD)
11795     return Address::invalid();
11796   Address UntiedAddr = Address::invalid();
11797   Address UntiedRealAddr = Address::invalid();
11798   auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn);
11799   if (It != FunctionToUntiedTaskStackMap.end()) {
11800     const UntiedLocalVarsAddressesMap &UntiedData =
11801         UntiedLocalVarsStack[It->second];
11802     auto I = UntiedData.find(VD);
11803     if (I != UntiedData.end()) {
11804       UntiedAddr = I->second.first;
11805       UntiedRealAddr = I->second.second;
11806     }
11807   }
11808   const VarDecl *CVD = VD->getCanonicalDecl();
11809   if (CVD->hasAttr<OMPAllocateDeclAttr>()) {
11810     // Use the default allocation.
11811     if (!isAllocatableDecl(VD))
11812       return UntiedAddr;
11813     llvm::Value *Size;
11814     CharUnits Align = CGM.getContext().getDeclAlign(CVD);
11815     if (CVD->getType()->isVariablyModifiedType()) {
11816       Size = CGF.getTypeSize(CVD->getType());
11817       // Align the size: ((size + align - 1) / align) * align
11818       Size = CGF.Builder.CreateNUWAdd(
11819           Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
11820       Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
11821       Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
11822     } else {
11823       CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
11824       Size = CGM.getSize(Sz.alignTo(Align));
11825     }
11826     llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
11827     const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
11828     assert(AA->getAllocator() &&
11829            "Expected allocator expression for non-default allocator.");
11830     llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
11831     // According to the standard, the original allocator type is a enum
11832     // (integer). Convert to pointer type, if required.
11833     Allocator = CGF.EmitScalarConversion(
11834         Allocator, AA->getAllocator()->getType(), CGF.getContext().VoidPtrTy,
11835         AA->getAllocator()->getExprLoc());
11836     llvm::Value *Args[] = {ThreadID, Size, Allocator};
11837 
11838     llvm::Value *Addr =
11839         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
11840                                 CGM.getModule(), OMPRTL___kmpc_alloc),
11841                             Args, getName({CVD->getName(), ".void.addr"}));
11842     llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11843         CGM.getModule(), OMPRTL___kmpc_free);
11844     QualType Ty = CGM.getContext().getPointerType(CVD->getType());
11845     Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11846         Addr, CGF.ConvertTypeForMem(Ty), getName({CVD->getName(), ".addr"}));
11847     if (UntiedAddr.isValid())
11848       CGF.EmitStoreOfScalar(Addr, UntiedAddr, /*Volatile=*/false, Ty);
11849 
11850     // Cleanup action for allocate support.
11851     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
11852       llvm::FunctionCallee RTLFn;
11853       unsigned LocEncoding;
11854       Address Addr;
11855       const Expr *Allocator;
11856 
11857     public:
11858       OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn, unsigned LocEncoding,
11859                            Address Addr, const Expr *Allocator)
11860           : RTLFn(RTLFn), LocEncoding(LocEncoding), Addr(Addr),
11861             Allocator(Allocator) {}
11862       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
11863         if (!CGF.HaveInsertPoint())
11864           return;
11865         llvm::Value *Args[3];
11866         Args[0] = CGF.CGM.getOpenMPRuntime().getThreadID(
11867             CGF, SourceLocation::getFromRawEncoding(LocEncoding));
11868         Args[1] = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11869             Addr.getPointer(), CGF.VoidPtrTy);
11870         llvm::Value *AllocVal = CGF.EmitScalarExpr(Allocator);
11871         // According to the standard, the original allocator type is a enum
11872         // (integer). Convert to pointer type, if required.
11873         AllocVal = CGF.EmitScalarConversion(AllocVal, Allocator->getType(),
11874                                             CGF.getContext().VoidPtrTy,
11875                                             Allocator->getExprLoc());
11876         Args[2] = AllocVal;
11877 
11878         CGF.EmitRuntimeCall(RTLFn, Args);
11879       }
11880     };
11881     Address VDAddr =
11882         UntiedRealAddr.isValid() ? UntiedRealAddr : Address(Addr, Align);
11883     CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(
11884         NormalAndEHCleanup, FiniRTLFn, CVD->getLocation().getRawEncoding(),
11885         VDAddr, AA->getAllocator());
11886     if (UntiedRealAddr.isValid())
11887       if (auto *Region =
11888               dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
11889         Region->emitUntiedSwitch(CGF);
11890     return VDAddr;
11891   }
11892   return UntiedAddr;
11893 }
11894 
isLocalVarInUntiedTask(CodeGenFunction & CGF,const VarDecl * VD) const11895 bool CGOpenMPRuntime::isLocalVarInUntiedTask(CodeGenFunction &CGF,
11896                                              const VarDecl *VD) const {
11897   auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn);
11898   if (It == FunctionToUntiedTaskStackMap.end())
11899     return false;
11900   return UntiedLocalVarsStack[It->second].count(VD) > 0;
11901 }
11902 
NontemporalDeclsRAII(CodeGenModule & CGM,const OMPLoopDirective & S)11903 CGOpenMPRuntime::NontemporalDeclsRAII::NontemporalDeclsRAII(
11904     CodeGenModule &CGM, const OMPLoopDirective &S)
11905     : CGM(CGM), NeedToPush(S.hasClausesOfKind<OMPNontemporalClause>()) {
11906   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11907   if (!NeedToPush)
11908     return;
11909   NontemporalDeclsSet &DS =
11910       CGM.getOpenMPRuntime().NontemporalDeclsStack.emplace_back();
11911   for (const auto *C : S.getClausesOfKind<OMPNontemporalClause>()) {
11912     for (const Stmt *Ref : C->private_refs()) {
11913       const auto *SimpleRefExpr = cast<Expr>(Ref)->IgnoreParenImpCasts();
11914       const ValueDecl *VD;
11915       if (const auto *DRE = dyn_cast<DeclRefExpr>(SimpleRefExpr)) {
11916         VD = DRE->getDecl();
11917       } else {
11918         const auto *ME = cast<MemberExpr>(SimpleRefExpr);
11919         assert((ME->isImplicitCXXThis() ||
11920                 isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) &&
11921                "Expected member of current class.");
11922         VD = ME->getMemberDecl();
11923       }
11924       DS.insert(VD);
11925     }
11926   }
11927 }
11928 
~NontemporalDeclsRAII()11929 CGOpenMPRuntime::NontemporalDeclsRAII::~NontemporalDeclsRAII() {
11930   if (!NeedToPush)
11931     return;
11932   CGM.getOpenMPRuntime().NontemporalDeclsStack.pop_back();
11933 }
11934 
UntiedTaskLocalDeclsRAII(CodeGenFunction & CGF,const llvm::DenseMap<CanonicalDeclPtr<const VarDecl>,std::pair<Address,Address>> & LocalVars)11935 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::UntiedTaskLocalDeclsRAII(
11936     CodeGenFunction &CGF,
11937     const llvm::DenseMap<CanonicalDeclPtr<const VarDecl>,
11938                          std::pair<Address, Address>> &LocalVars)
11939     : CGM(CGF.CGM), NeedToPush(!LocalVars.empty()) {
11940   if (!NeedToPush)
11941     return;
11942   CGM.getOpenMPRuntime().FunctionToUntiedTaskStackMap.try_emplace(
11943       CGF.CurFn, CGM.getOpenMPRuntime().UntiedLocalVarsStack.size());
11944   CGM.getOpenMPRuntime().UntiedLocalVarsStack.push_back(LocalVars);
11945 }
11946 
~UntiedTaskLocalDeclsRAII()11947 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::~UntiedTaskLocalDeclsRAII() {
11948   if (!NeedToPush)
11949     return;
11950   CGM.getOpenMPRuntime().UntiedLocalVarsStack.pop_back();
11951 }
11952 
isNontemporalDecl(const ValueDecl * VD) const11953 bool CGOpenMPRuntime::isNontemporalDecl(const ValueDecl *VD) const {
11954   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11955 
11956   return llvm::any_of(
11957       CGM.getOpenMPRuntime().NontemporalDeclsStack,
11958       [VD](const NontemporalDeclsSet &Set) { return Set.count(VD) > 0; });
11959 }
11960 
tryToDisableInnerAnalysis(const OMPExecutableDirective & S,llvm::DenseSet<CanonicalDeclPtr<const Decl>> & NeedToAddForLPCsAsDisabled) const11961 void CGOpenMPRuntime::LastprivateConditionalRAII::tryToDisableInnerAnalysis(
11962     const OMPExecutableDirective &S,
11963     llvm::DenseSet<CanonicalDeclPtr<const Decl>> &NeedToAddForLPCsAsDisabled)
11964     const {
11965   llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToCheckForLPCs;
11966   // Vars in target/task regions must be excluded completely.
11967   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()) ||
11968       isOpenMPTaskingDirective(S.getDirectiveKind())) {
11969     SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
11970     getOpenMPCaptureRegions(CaptureRegions, S.getDirectiveKind());
11971     const CapturedStmt *CS = S.getCapturedStmt(CaptureRegions.front());
11972     for (const CapturedStmt::Capture &Cap : CS->captures()) {
11973       if (Cap.capturesVariable() || Cap.capturesVariableByCopy())
11974         NeedToCheckForLPCs.insert(Cap.getCapturedVar());
11975     }
11976   }
11977   // Exclude vars in private clauses.
11978   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
11979     for (const Expr *Ref : C->varlists()) {
11980       if (!Ref->getType()->isScalarType())
11981         continue;
11982       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11983       if (!DRE)
11984         continue;
11985       NeedToCheckForLPCs.insert(DRE->getDecl());
11986     }
11987   }
11988   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
11989     for (const Expr *Ref : C->varlists()) {
11990       if (!Ref->getType()->isScalarType())
11991         continue;
11992       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11993       if (!DRE)
11994         continue;
11995       NeedToCheckForLPCs.insert(DRE->getDecl());
11996     }
11997   }
11998   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
11999     for (const Expr *Ref : C->varlists()) {
12000       if (!Ref->getType()->isScalarType())
12001         continue;
12002       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
12003       if (!DRE)
12004         continue;
12005       NeedToCheckForLPCs.insert(DRE->getDecl());
12006     }
12007   }
12008   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
12009     for (const Expr *Ref : C->varlists()) {
12010       if (!Ref->getType()->isScalarType())
12011         continue;
12012       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
12013       if (!DRE)
12014         continue;
12015       NeedToCheckForLPCs.insert(DRE->getDecl());
12016     }
12017   }
12018   for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
12019     for (const Expr *Ref : C->varlists()) {
12020       if (!Ref->getType()->isScalarType())
12021         continue;
12022       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
12023       if (!DRE)
12024         continue;
12025       NeedToCheckForLPCs.insert(DRE->getDecl());
12026     }
12027   }
12028   for (const Decl *VD : NeedToCheckForLPCs) {
12029     for (const LastprivateConditionalData &Data :
12030          llvm::reverse(CGM.getOpenMPRuntime().LastprivateConditionalStack)) {
12031       if (Data.DeclToUniqueName.count(VD) > 0) {
12032         if (!Data.Disabled)
12033           NeedToAddForLPCsAsDisabled.insert(VD);
12034         break;
12035       }
12036     }
12037   }
12038 }
12039 
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S,LValue IVLVal)12040 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
12041     CodeGenFunction &CGF, const OMPExecutableDirective &S, LValue IVLVal)
12042     : CGM(CGF.CGM),
12043       Action((CGM.getLangOpts().OpenMP >= 50 &&
12044               llvm::any_of(S.getClausesOfKind<OMPLastprivateClause>(),
12045                            [](const OMPLastprivateClause *C) {
12046                              return C->getKind() ==
12047                                     OMPC_LASTPRIVATE_conditional;
12048                            }))
12049                  ? ActionToDo::PushAsLastprivateConditional
12050                  : ActionToDo::DoNotPush) {
12051   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
12052   if (CGM.getLangOpts().OpenMP < 50 || Action == ActionToDo::DoNotPush)
12053     return;
12054   assert(Action == ActionToDo::PushAsLastprivateConditional &&
12055          "Expected a push action.");
12056   LastprivateConditionalData &Data =
12057       CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
12058   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
12059     if (C->getKind() != OMPC_LASTPRIVATE_conditional)
12060       continue;
12061 
12062     for (const Expr *Ref : C->varlists()) {
12063       Data.DeclToUniqueName.insert(std::make_pair(
12064           cast<DeclRefExpr>(Ref->IgnoreParenImpCasts())->getDecl(),
12065           SmallString<16>(generateUniqueName(CGM, "pl_cond", Ref))));
12066     }
12067   }
12068   Data.IVLVal = IVLVal;
12069   Data.Fn = CGF.CurFn;
12070 }
12071 
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S)12072 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
12073     CodeGenFunction &CGF, const OMPExecutableDirective &S)
12074     : CGM(CGF.CGM), Action(ActionToDo::DoNotPush) {
12075   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
12076   if (CGM.getLangOpts().OpenMP < 50)
12077     return;
12078   llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToAddForLPCsAsDisabled;
12079   tryToDisableInnerAnalysis(S, NeedToAddForLPCsAsDisabled);
12080   if (!NeedToAddForLPCsAsDisabled.empty()) {
12081     Action = ActionToDo::DisableLastprivateConditional;
12082     LastprivateConditionalData &Data =
12083         CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
12084     for (const Decl *VD : NeedToAddForLPCsAsDisabled)
12085       Data.DeclToUniqueName.insert(std::make_pair(VD, SmallString<16>()));
12086     Data.Fn = CGF.CurFn;
12087     Data.Disabled = true;
12088   }
12089 }
12090 
12091 CGOpenMPRuntime::LastprivateConditionalRAII
disable(CodeGenFunction & CGF,const OMPExecutableDirective & S)12092 CGOpenMPRuntime::LastprivateConditionalRAII::disable(
12093     CodeGenFunction &CGF, const OMPExecutableDirective &S) {
12094   return LastprivateConditionalRAII(CGF, S);
12095 }
12096 
~LastprivateConditionalRAII()12097 CGOpenMPRuntime::LastprivateConditionalRAII::~LastprivateConditionalRAII() {
12098   if (CGM.getLangOpts().OpenMP < 50)
12099     return;
12100   if (Action == ActionToDo::DisableLastprivateConditional) {
12101     assert(CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
12102            "Expected list of disabled private vars.");
12103     CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
12104   }
12105   if (Action == ActionToDo::PushAsLastprivateConditional) {
12106     assert(
12107         !CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
12108         "Expected list of lastprivate conditional vars.");
12109     CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
12110   }
12111 }
12112 
emitLastprivateConditionalInit(CodeGenFunction & CGF,const VarDecl * VD)12113 Address CGOpenMPRuntime::emitLastprivateConditionalInit(CodeGenFunction &CGF,
12114                                                         const VarDecl *VD) {
12115   ASTContext &C = CGM.getContext();
12116   auto I = LastprivateConditionalToTypes.find(CGF.CurFn);
12117   if (I == LastprivateConditionalToTypes.end())
12118     I = LastprivateConditionalToTypes.try_emplace(CGF.CurFn).first;
12119   QualType NewType;
12120   const FieldDecl *VDField;
12121   const FieldDecl *FiredField;
12122   LValue BaseLVal;
12123   auto VI = I->getSecond().find(VD);
12124   if (VI == I->getSecond().end()) {
12125     RecordDecl *RD = C.buildImplicitRecord("lasprivate.conditional");
12126     RD->startDefinition();
12127     VDField = addFieldToRecordDecl(C, RD, VD->getType().getNonReferenceType());
12128     FiredField = addFieldToRecordDecl(C, RD, C.CharTy);
12129     RD->completeDefinition();
12130     NewType = C.getRecordType(RD);
12131     Address Addr = CGF.CreateMemTemp(NewType, C.getDeclAlign(VD), VD->getName());
12132     BaseLVal = CGF.MakeAddrLValue(Addr, NewType, AlignmentSource::Decl);
12133     I->getSecond().try_emplace(VD, NewType, VDField, FiredField, BaseLVal);
12134   } else {
12135     NewType = std::get<0>(VI->getSecond());
12136     VDField = std::get<1>(VI->getSecond());
12137     FiredField = std::get<2>(VI->getSecond());
12138     BaseLVal = std::get<3>(VI->getSecond());
12139   }
12140   LValue FiredLVal =
12141       CGF.EmitLValueForField(BaseLVal, FiredField);
12142   CGF.EmitStoreOfScalar(
12143       llvm::ConstantInt::getNullValue(CGF.ConvertTypeForMem(C.CharTy)),
12144       FiredLVal);
12145   return CGF.EmitLValueForField(BaseLVal, VDField).getAddress(CGF);
12146 }
12147 
12148 namespace {
12149 /// Checks if the lastprivate conditional variable is referenced in LHS.
12150 class LastprivateConditionalRefChecker final
12151     : public ConstStmtVisitor<LastprivateConditionalRefChecker, bool> {
12152   ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM;
12153   const Expr *FoundE = nullptr;
12154   const Decl *FoundD = nullptr;
12155   StringRef UniqueDeclName;
12156   LValue IVLVal;
12157   llvm::Function *FoundFn = nullptr;
12158   SourceLocation Loc;
12159 
12160 public:
VisitDeclRefExpr(const DeclRefExpr * E)12161   bool VisitDeclRefExpr(const DeclRefExpr *E) {
12162     for (const CGOpenMPRuntime::LastprivateConditionalData &D :
12163          llvm::reverse(LPM)) {
12164       auto It = D.DeclToUniqueName.find(E->getDecl());
12165       if (It == D.DeclToUniqueName.end())
12166         continue;
12167       if (D.Disabled)
12168         return false;
12169       FoundE = E;
12170       FoundD = E->getDecl()->getCanonicalDecl();
12171       UniqueDeclName = It->second;
12172       IVLVal = D.IVLVal;
12173       FoundFn = D.Fn;
12174       break;
12175     }
12176     return FoundE == E;
12177   }
VisitMemberExpr(const MemberExpr * E)12178   bool VisitMemberExpr(const MemberExpr *E) {
12179     if (!CodeGenFunction::IsWrappedCXXThis(E->getBase()))
12180       return false;
12181     for (const CGOpenMPRuntime::LastprivateConditionalData &D :
12182          llvm::reverse(LPM)) {
12183       auto It = D.DeclToUniqueName.find(E->getMemberDecl());
12184       if (It == D.DeclToUniqueName.end())
12185         continue;
12186       if (D.Disabled)
12187         return false;
12188       FoundE = E;
12189       FoundD = E->getMemberDecl()->getCanonicalDecl();
12190       UniqueDeclName = It->second;
12191       IVLVal = D.IVLVal;
12192       FoundFn = D.Fn;
12193       break;
12194     }
12195     return FoundE == E;
12196   }
VisitStmt(const Stmt * S)12197   bool VisitStmt(const Stmt *S) {
12198     for (const Stmt *Child : S->children()) {
12199       if (!Child)
12200         continue;
12201       if (const auto *E = dyn_cast<Expr>(Child))
12202         if (!E->isGLValue())
12203           continue;
12204       if (Visit(Child))
12205         return true;
12206     }
12207     return false;
12208   }
LastprivateConditionalRefChecker(ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)12209   explicit LastprivateConditionalRefChecker(
12210       ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)
12211       : LPM(LPM) {}
12212   std::tuple<const Expr *, const Decl *, StringRef, LValue, llvm::Function *>
getFoundData() const12213   getFoundData() const {
12214     return std::make_tuple(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn);
12215   }
12216 };
12217 } // namespace
12218 
emitLastprivateConditionalUpdate(CodeGenFunction & CGF,LValue IVLVal,StringRef UniqueDeclName,LValue LVal,SourceLocation Loc)12219 void CGOpenMPRuntime::emitLastprivateConditionalUpdate(CodeGenFunction &CGF,
12220                                                        LValue IVLVal,
12221                                                        StringRef UniqueDeclName,
12222                                                        LValue LVal,
12223                                                        SourceLocation Loc) {
12224   // Last updated loop counter for the lastprivate conditional var.
12225   // int<xx> last_iv = 0;
12226   llvm::Type *LLIVTy = CGF.ConvertTypeForMem(IVLVal.getType());
12227   llvm::Constant *LastIV =
12228       getOrCreateInternalVariable(LLIVTy, getName({UniqueDeclName, "iv"}));
12229   cast<llvm::GlobalVariable>(LastIV)->setAlignment(
12230       IVLVal.getAlignment().getAsAlign());
12231   LValue LastIVLVal = CGF.MakeNaturalAlignAddrLValue(LastIV, IVLVal.getType());
12232 
12233   // Last value of the lastprivate conditional.
12234   // decltype(priv_a) last_a;
12235   llvm::Constant *Last = getOrCreateInternalVariable(
12236       CGF.ConvertTypeForMem(LVal.getType()), UniqueDeclName);
12237   cast<llvm::GlobalVariable>(Last)->setAlignment(
12238       LVal.getAlignment().getAsAlign());
12239   LValue LastLVal =
12240       CGF.MakeAddrLValue(Last, LVal.getType(), LVal.getAlignment());
12241 
12242   // Global loop counter. Required to handle inner parallel-for regions.
12243   // iv
12244   llvm::Value *IVVal = CGF.EmitLoadOfScalar(IVLVal, Loc);
12245 
12246   // #pragma omp critical(a)
12247   // if (last_iv <= iv) {
12248   //   last_iv = iv;
12249   //   last_a = priv_a;
12250   // }
12251   auto &&CodeGen = [&LastIVLVal, &IVLVal, IVVal, &LVal, &LastLVal,
12252                     Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
12253     Action.Enter(CGF);
12254     llvm::Value *LastIVVal = CGF.EmitLoadOfScalar(LastIVLVal, Loc);
12255     // (last_iv <= iv) ? Check if the variable is updated and store new
12256     // value in global var.
12257     llvm::Value *CmpRes;
12258     if (IVLVal.getType()->isSignedIntegerType()) {
12259       CmpRes = CGF.Builder.CreateICmpSLE(LastIVVal, IVVal);
12260     } else {
12261       assert(IVLVal.getType()->isUnsignedIntegerType() &&
12262              "Loop iteration variable must be integer.");
12263       CmpRes = CGF.Builder.CreateICmpULE(LastIVVal, IVVal);
12264     }
12265     llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lp_cond_then");
12266     llvm::BasicBlock *ExitBB = CGF.createBasicBlock("lp_cond_exit");
12267     CGF.Builder.CreateCondBr(CmpRes, ThenBB, ExitBB);
12268     // {
12269     CGF.EmitBlock(ThenBB);
12270 
12271     //   last_iv = iv;
12272     CGF.EmitStoreOfScalar(IVVal, LastIVLVal);
12273 
12274     //   last_a = priv_a;
12275     switch (CGF.getEvaluationKind(LVal.getType())) {
12276     case TEK_Scalar: {
12277       llvm::Value *PrivVal = CGF.EmitLoadOfScalar(LVal, Loc);
12278       CGF.EmitStoreOfScalar(PrivVal, LastLVal);
12279       break;
12280     }
12281     case TEK_Complex: {
12282       CodeGenFunction::ComplexPairTy PrivVal = CGF.EmitLoadOfComplex(LVal, Loc);
12283       CGF.EmitStoreOfComplex(PrivVal, LastLVal, /*isInit=*/false);
12284       break;
12285     }
12286     case TEK_Aggregate:
12287       llvm_unreachable(
12288           "Aggregates are not supported in lastprivate conditional.");
12289     }
12290     // }
12291     CGF.EmitBranch(ExitBB);
12292     // There is no need to emit line number for unconditional branch.
12293     (void)ApplyDebugLocation::CreateEmpty(CGF);
12294     CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
12295   };
12296 
12297   if (CGM.getLangOpts().OpenMPSimd) {
12298     // Do not emit as a critical region as no parallel region could be emitted.
12299     RegionCodeGenTy ThenRCG(CodeGen);
12300     ThenRCG(CGF);
12301   } else {
12302     emitCriticalRegion(CGF, UniqueDeclName, CodeGen, Loc);
12303   }
12304 }
12305 
checkAndEmitLastprivateConditional(CodeGenFunction & CGF,const Expr * LHS)12306 void CGOpenMPRuntime::checkAndEmitLastprivateConditional(CodeGenFunction &CGF,
12307                                                          const Expr *LHS) {
12308   if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
12309     return;
12310   LastprivateConditionalRefChecker Checker(LastprivateConditionalStack);
12311   if (!Checker.Visit(LHS))
12312     return;
12313   const Expr *FoundE;
12314   const Decl *FoundD;
12315   StringRef UniqueDeclName;
12316   LValue IVLVal;
12317   llvm::Function *FoundFn;
12318   std::tie(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn) =
12319       Checker.getFoundData();
12320   if (FoundFn != CGF.CurFn) {
12321     // Special codegen for inner parallel regions.
12322     // ((struct.lastprivate.conditional*)&priv_a)->Fired = 1;
12323     auto It = LastprivateConditionalToTypes[FoundFn].find(FoundD);
12324     assert(It != LastprivateConditionalToTypes[FoundFn].end() &&
12325            "Lastprivate conditional is not found in outer region.");
12326     QualType StructTy = std::get<0>(It->getSecond());
12327     const FieldDecl* FiredDecl = std::get<2>(It->getSecond());
12328     LValue PrivLVal = CGF.EmitLValue(FoundE);
12329     Address StructAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
12330         PrivLVal.getAddress(CGF),
12331         CGF.ConvertTypeForMem(CGF.getContext().getPointerType(StructTy)));
12332     LValue BaseLVal =
12333         CGF.MakeAddrLValue(StructAddr, StructTy, AlignmentSource::Decl);
12334     LValue FiredLVal = CGF.EmitLValueForField(BaseLVal, FiredDecl);
12335     CGF.EmitAtomicStore(RValue::get(llvm::ConstantInt::get(
12336                             CGF.ConvertTypeForMem(FiredDecl->getType()), 1)),
12337                         FiredLVal, llvm::AtomicOrdering::Unordered,
12338                         /*IsVolatile=*/true, /*isInit=*/false);
12339     return;
12340   }
12341 
12342   // Private address of the lastprivate conditional in the current context.
12343   // priv_a
12344   LValue LVal = CGF.EmitLValue(FoundE);
12345   emitLastprivateConditionalUpdate(CGF, IVLVal, UniqueDeclName, LVal,
12346                                    FoundE->getExprLoc());
12347 }
12348 
checkAndEmitSharedLastprivateConditional(CodeGenFunction & CGF,const OMPExecutableDirective & D,const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> & IgnoredDecls)12349 void CGOpenMPRuntime::checkAndEmitSharedLastprivateConditional(
12350     CodeGenFunction &CGF, const OMPExecutableDirective &D,
12351     const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> &IgnoredDecls) {
12352   if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
12353     return;
12354   auto Range = llvm::reverse(LastprivateConditionalStack);
12355   auto It = llvm::find_if(
12356       Range, [](const LastprivateConditionalData &D) { return !D.Disabled; });
12357   if (It == Range.end() || It->Fn != CGF.CurFn)
12358     return;
12359   auto LPCI = LastprivateConditionalToTypes.find(It->Fn);
12360   assert(LPCI != LastprivateConditionalToTypes.end() &&
12361          "Lastprivates must be registered already.");
12362   SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
12363   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
12364   const CapturedStmt *CS = D.getCapturedStmt(CaptureRegions.back());
12365   for (const auto &Pair : It->DeclToUniqueName) {
12366     const auto *VD = cast<VarDecl>(Pair.first->getCanonicalDecl());
12367     if (!CS->capturesVariable(VD) || IgnoredDecls.count(VD) > 0)
12368       continue;
12369     auto I = LPCI->getSecond().find(Pair.first);
12370     assert(I != LPCI->getSecond().end() &&
12371            "Lastprivate must be rehistered already.");
12372     // bool Cmp = priv_a.Fired != 0;
12373     LValue BaseLVal = std::get<3>(I->getSecond());
12374     LValue FiredLVal =
12375         CGF.EmitLValueForField(BaseLVal, std::get<2>(I->getSecond()));
12376     llvm::Value *Res = CGF.EmitLoadOfScalar(FiredLVal, D.getBeginLoc());
12377     llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Res);
12378     llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lpc.then");
12379     llvm::BasicBlock *DoneBB = CGF.createBasicBlock("lpc.done");
12380     // if (Cmp) {
12381     CGF.Builder.CreateCondBr(Cmp, ThenBB, DoneBB);
12382     CGF.EmitBlock(ThenBB);
12383     Address Addr = CGF.GetAddrOfLocalVar(VD);
12384     LValue LVal;
12385     if (VD->getType()->isReferenceType())
12386       LVal = CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
12387                                            AlignmentSource::Decl);
12388     else
12389       LVal = CGF.MakeAddrLValue(Addr, VD->getType().getNonReferenceType(),
12390                                 AlignmentSource::Decl);
12391     emitLastprivateConditionalUpdate(CGF, It->IVLVal, Pair.second, LVal,
12392                                      D.getBeginLoc());
12393     auto AL = ApplyDebugLocation::CreateArtificial(CGF);
12394     CGF.EmitBlock(DoneBB, /*IsFinal=*/true);
12395     // }
12396   }
12397 }
12398 
emitLastprivateConditionalFinalUpdate(CodeGenFunction & CGF,LValue PrivLVal,const VarDecl * VD,SourceLocation Loc)12399 void CGOpenMPRuntime::emitLastprivateConditionalFinalUpdate(
12400     CodeGenFunction &CGF, LValue PrivLVal, const VarDecl *VD,
12401     SourceLocation Loc) {
12402   if (CGF.getLangOpts().OpenMP < 50)
12403     return;
12404   auto It = LastprivateConditionalStack.back().DeclToUniqueName.find(VD);
12405   assert(It != LastprivateConditionalStack.back().DeclToUniqueName.end() &&
12406          "Unknown lastprivate conditional variable.");
12407   StringRef UniqueName = It->second;
12408   llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(UniqueName);
12409   // The variable was not updated in the region - exit.
12410   if (!GV)
12411     return;
12412   LValue LPLVal = CGF.MakeAddrLValue(
12413       GV, PrivLVal.getType().getNonReferenceType(), PrivLVal.getAlignment());
12414   llvm::Value *Res = CGF.EmitLoadOfScalar(LPLVal, Loc);
12415   CGF.EmitStoreOfScalar(Res, PrivLVal);
12416 }
12417 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)12418 llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
12419     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12420     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
12421   llvm_unreachable("Not supported in SIMD-only mode");
12422 }
12423 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)12424 llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
12425     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12426     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
12427   llvm_unreachable("Not supported in SIMD-only mode");
12428 }
12429 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)12430 llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
12431     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12432     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
12433     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
12434     bool Tied, unsigned &NumberOfParts) {
12435   llvm_unreachable("Not supported in SIMD-only mode");
12436 }
12437 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)12438 void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
12439                                            SourceLocation Loc,
12440                                            llvm::Function *OutlinedFn,
12441                                            ArrayRef<llvm::Value *> CapturedVars,
12442                                            const Expr *IfCond) {
12443   llvm_unreachable("Not supported in SIMD-only mode");
12444 }
12445 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)12446 void CGOpenMPSIMDRuntime::emitCriticalRegion(
12447     CodeGenFunction &CGF, StringRef CriticalName,
12448     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
12449     const Expr *Hint) {
12450   llvm_unreachable("Not supported in SIMD-only mode");
12451 }
12452 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)12453 void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
12454                                            const RegionCodeGenTy &MasterOpGen,
12455                                            SourceLocation Loc) {
12456   llvm_unreachable("Not supported in SIMD-only mode");
12457 }
12458 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)12459 void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
12460                                             SourceLocation Loc) {
12461   llvm_unreachable("Not supported in SIMD-only mode");
12462 }
12463 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)12464 void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
12465     CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
12466     SourceLocation Loc) {
12467   llvm_unreachable("Not supported in SIMD-only mode");
12468 }
12469 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps)12470 void CGOpenMPSIMDRuntime::emitSingleRegion(
12471     CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
12472     SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
12473     ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
12474     ArrayRef<const Expr *> AssignmentOps) {
12475   llvm_unreachable("Not supported in SIMD-only mode");
12476 }
12477 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)12478 void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
12479                                             const RegionCodeGenTy &OrderedOpGen,
12480                                             SourceLocation Loc,
12481                                             bool IsThreads) {
12482   llvm_unreachable("Not supported in SIMD-only mode");
12483 }
12484 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)12485 void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
12486                                           SourceLocation Loc,
12487                                           OpenMPDirectiveKind Kind,
12488                                           bool EmitChecks,
12489                                           bool ForceSimpleCall) {
12490   llvm_unreachable("Not supported in SIMD-only mode");
12491 }
12492 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)12493 void CGOpenMPSIMDRuntime::emitForDispatchInit(
12494     CodeGenFunction &CGF, SourceLocation Loc,
12495     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
12496     bool Ordered, const DispatchRTInput &DispatchValues) {
12497   llvm_unreachable("Not supported in SIMD-only mode");
12498 }
12499 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)12500 void CGOpenMPSIMDRuntime::emitForStaticInit(
12501     CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
12502     const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
12503   llvm_unreachable("Not supported in SIMD-only mode");
12504 }
12505 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const StaticRTInput & Values)12506 void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
12507     CodeGenFunction &CGF, SourceLocation Loc,
12508     OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
12509   llvm_unreachable("Not supported in SIMD-only mode");
12510 }
12511 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)12512 void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
12513                                                      SourceLocation Loc,
12514                                                      unsigned IVSize,
12515                                                      bool IVSigned) {
12516   llvm_unreachable("Not supported in SIMD-only mode");
12517 }
12518 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)12519 void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
12520                                               SourceLocation Loc,
12521                                               OpenMPDirectiveKind DKind) {
12522   llvm_unreachable("Not supported in SIMD-only mode");
12523 }
12524 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)12525 llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
12526                                               SourceLocation Loc,
12527                                               unsigned IVSize, bool IVSigned,
12528                                               Address IL, Address LB,
12529                                               Address UB, Address ST) {
12530   llvm_unreachable("Not supported in SIMD-only mode");
12531 }
12532 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)12533 void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
12534                                                llvm::Value *NumThreads,
12535                                                SourceLocation Loc) {
12536   llvm_unreachable("Not supported in SIMD-only mode");
12537 }
12538 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)12539 void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
12540                                              ProcBindKind ProcBind,
12541                                              SourceLocation Loc) {
12542   llvm_unreachable("Not supported in SIMD-only mode");
12543 }
12544 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)12545 Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
12546                                                     const VarDecl *VD,
12547                                                     Address VDAddr,
12548                                                     SourceLocation Loc) {
12549   llvm_unreachable("Not supported in SIMD-only mode");
12550 }
12551 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)12552 llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
12553     const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
12554     CodeGenFunction *CGF) {
12555   llvm_unreachable("Not supported in SIMD-only mode");
12556 }
12557 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)12558 Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
12559     CodeGenFunction &CGF, QualType VarType, StringRef Name) {
12560   llvm_unreachable("Not supported in SIMD-only mode");
12561 }
12562 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * > Vars,SourceLocation Loc,llvm::AtomicOrdering AO)12563 void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
12564                                     ArrayRef<const Expr *> Vars,
12565                                     SourceLocation Loc,
12566                                     llvm::AtomicOrdering AO) {
12567   llvm_unreachable("Not supported in SIMD-only mode");
12568 }
12569 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)12570 void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
12571                                        const OMPExecutableDirective &D,
12572                                        llvm::Function *TaskFunction,
12573                                        QualType SharedsTy, Address Shareds,
12574                                        const Expr *IfCond,
12575                                        const OMPTaskDataTy &Data) {
12576   llvm_unreachable("Not supported in SIMD-only mode");
12577 }
12578 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)12579 void CGOpenMPSIMDRuntime::emitTaskLoopCall(
12580     CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
12581     llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
12582     const Expr *IfCond, const OMPTaskDataTy &Data) {
12583   llvm_unreachable("Not supported in SIMD-only mode");
12584 }
12585 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)12586 void CGOpenMPSIMDRuntime::emitReduction(
12587     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
12588     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
12589     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
12590   assert(Options.SimpleReduction && "Only simple reduction is expected.");
12591   CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
12592                                  ReductionOps, Options);
12593 }
12594 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)12595 llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
12596     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
12597     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
12598   llvm_unreachable("Not supported in SIMD-only mode");
12599 }
12600 
emitTaskReductionFini(CodeGenFunction & CGF,SourceLocation Loc,bool IsWorksharingReduction)12601 void CGOpenMPSIMDRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
12602                                                 SourceLocation Loc,
12603                                                 bool IsWorksharingReduction) {
12604   llvm_unreachable("Not supported in SIMD-only mode");
12605 }
12606 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)12607 void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
12608                                                   SourceLocation Loc,
12609                                                   ReductionCodeGen &RCG,
12610                                                   unsigned N) {
12611   llvm_unreachable("Not supported in SIMD-only mode");
12612 }
12613 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)12614 Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
12615                                                   SourceLocation Loc,
12616                                                   llvm::Value *ReductionsPtr,
12617                                                   LValue SharedLVal) {
12618   llvm_unreachable("Not supported in SIMD-only mode");
12619 }
12620 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)12621 void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
12622                                            SourceLocation Loc) {
12623   llvm_unreachable("Not supported in SIMD-only mode");
12624 }
12625 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)12626 void CGOpenMPSIMDRuntime::emitCancellationPointCall(
12627     CodeGenFunction &CGF, SourceLocation Loc,
12628     OpenMPDirectiveKind CancelRegion) {
12629   llvm_unreachable("Not supported in SIMD-only mode");
12630 }
12631 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)12632 void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
12633                                          SourceLocation Loc, const Expr *IfCond,
12634                                          OpenMPDirectiveKind CancelRegion) {
12635   llvm_unreachable("Not supported in SIMD-only mode");
12636 }
12637 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)12638 void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
12639     const OMPExecutableDirective &D, StringRef ParentName,
12640     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
12641     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
12642   llvm_unreachable("Not supported in SIMD-only mode");
12643 }
12644 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,llvm::PointerIntPair<const Expr *,2,OpenMPDeviceClauseModifier> Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)12645 void CGOpenMPSIMDRuntime::emitTargetCall(
12646     CodeGenFunction &CGF, const OMPExecutableDirective &D,
12647     llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
12648     llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
12649     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
12650                                      const OMPLoopDirective &D)>
12651         SizeEmitter) {
12652   llvm_unreachable("Not supported in SIMD-only mode");
12653 }
12654 
emitTargetFunctions(GlobalDecl GD)12655 bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
12656   llvm_unreachable("Not supported in SIMD-only mode");
12657 }
12658 
emitTargetGlobalVariable(GlobalDecl GD)12659 bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
12660   llvm_unreachable("Not supported in SIMD-only mode");
12661 }
12662 
emitTargetGlobal(GlobalDecl GD)12663 bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
12664   return false;
12665 }
12666 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)12667 void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
12668                                         const OMPExecutableDirective &D,
12669                                         SourceLocation Loc,
12670                                         llvm::Function *OutlinedFn,
12671                                         ArrayRef<llvm::Value *> CapturedVars) {
12672   llvm_unreachable("Not supported in SIMD-only mode");
12673 }
12674 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)12675 void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
12676                                              const Expr *NumTeams,
12677                                              const Expr *ThreadLimit,
12678                                              SourceLocation Loc) {
12679   llvm_unreachable("Not supported in SIMD-only mode");
12680 }
12681 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)12682 void CGOpenMPSIMDRuntime::emitTargetDataCalls(
12683     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
12684     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
12685   llvm_unreachable("Not supported in SIMD-only mode");
12686 }
12687 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)12688 void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
12689     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
12690     const Expr *Device) {
12691   llvm_unreachable("Not supported in SIMD-only mode");
12692 }
12693 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)12694 void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
12695                                            const OMPLoopDirective &D,
12696                                            ArrayRef<Expr *> NumIterations) {
12697   llvm_unreachable("Not supported in SIMD-only mode");
12698 }
12699 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)12700 void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
12701                                               const OMPDependClause *C) {
12702   llvm_unreachable("Not supported in SIMD-only mode");
12703 }
12704 
12705 const VarDecl *
translateParameter(const FieldDecl * FD,const VarDecl * NativeParam) const12706 CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
12707                                         const VarDecl *NativeParam) const {
12708   llvm_unreachable("Not supported in SIMD-only mode");
12709 }
12710 
12711 Address
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const12712 CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
12713                                          const VarDecl *NativeParam,
12714                                          const VarDecl *TargetParam) const {
12715   llvm_unreachable("Not supported in SIMD-only mode");
12716 }
12717