1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CGOpenMPRuntimeNVPTX.h"
16 #include "CodeGenFunction.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/DeclOpenMP.h"
19 #include "clang/AST/StmtOpenMP.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/Basic/Cuda.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
24 #include "llvm/IR/IntrinsicsNVPTX.h"
25 
26 using namespace clang;
27 using namespace CodeGen;
28 using namespace llvm::omp;
29 
30 namespace {
31 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
32 class NVPTXActionTy final : public PrePostActionTy {
33   llvm::FunctionCallee EnterCallee = nullptr;
34   ArrayRef<llvm::Value *> EnterArgs;
35   llvm::FunctionCallee ExitCallee = nullptr;
36   ArrayRef<llvm::Value *> ExitArgs;
37   bool Conditional = false;
38   llvm::BasicBlock *ContBlock = nullptr;
39 
40 public:
NVPTXActionTy(llvm::FunctionCallee EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::FunctionCallee ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)41   NVPTXActionTy(llvm::FunctionCallee EnterCallee,
42                 ArrayRef<llvm::Value *> EnterArgs,
43                 llvm::FunctionCallee ExitCallee,
44                 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
45       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
46         ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)47   void Enter(CodeGenFunction &CGF) override {
48     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
49     if (Conditional) {
50       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
51       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
52       ContBlock = CGF.createBasicBlock("omp_if.end");
53       // Generate the branch (If-stmt)
54       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
55       CGF.EmitBlock(ThenBlock);
56     }
57   }
Done(CodeGenFunction & CGF)58   void Done(CodeGenFunction &CGF) {
59     // Emit the rest of blocks/branches
60     CGF.EmitBranch(ContBlock);
61     CGF.EmitBlock(ContBlock, true);
62   }
Exit(CodeGenFunction & CGF)63   void Exit(CodeGenFunction &CGF) override {
64     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
65   }
66 };
67 
68 /// A class to track the execution mode when codegening directives within
69 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
70 /// to the target region and used by containing directives such as 'parallel'
71 /// to emit optimized code.
72 class ExecutionRuntimeModesRAII {
73 private:
74   CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
75       CGOpenMPRuntimeGPU::EM_Unknown;
76   CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
77   bool SavedRuntimeMode = false;
78   bool *RuntimeMode = nullptr;
79 
80 public:
81   /// Constructor for Non-SPMD mode.
ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode & ExecMode)82   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
83       : ExecMode(ExecMode) {
84     SavedExecMode = ExecMode;
85     ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
86   }
87   /// Constructor for SPMD mode.
ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode & ExecMode,bool & RuntimeMode,bool FullRuntimeMode)88   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
89                             bool &RuntimeMode, bool FullRuntimeMode)
90       : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
91     SavedExecMode = ExecMode;
92     SavedRuntimeMode = RuntimeMode;
93     ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
94     RuntimeMode = FullRuntimeMode;
95   }
~ExecutionRuntimeModesRAII()96   ~ExecutionRuntimeModesRAII() {
97     ExecMode = SavedExecMode;
98     if (RuntimeMode)
99       *RuntimeMode = SavedRuntimeMode;
100   }
101 };
102 
103 /// GPU Configuration:  This information can be derived from cuda registers,
104 /// however, providing compile time constants helps generate more efficient
105 /// code.  For all practical purposes this is fine because the configuration
106 /// is the same for all known NVPTX architectures.
107 enum MachineConfiguration : unsigned {
108   /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
109   /// specific Grid Values like GV_Warp_Size, GV_Warp_Size_Log2,
110   /// and GV_Warp_Size_Log2_Mask.
111 
112   /// Global memory alignment for performance.
113   GlobalMemoryAlignment = 128,
114 
115   /// Maximal size of the shared memory buffer.
116   SharedMemorySize = 128,
117 };
118 
getPrivateItem(const Expr * RefExpr)119 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
120   RefExpr = RefExpr->IgnoreParens();
121   if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
122     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
123     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
124       Base = TempASE->getBase()->IgnoreParenImpCasts();
125     RefExpr = Base;
126   } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
127     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
128     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
129       Base = TempOASE->getBase()->IgnoreParenImpCasts();
130     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
131       Base = TempASE->getBase()->IgnoreParenImpCasts();
132     RefExpr = Base;
133   }
134   RefExpr = RefExpr->IgnoreParenImpCasts();
135   if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
136     return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
137   const auto *ME = cast<MemberExpr>(RefExpr);
138   return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
139 }
140 
141 
buildRecordForGlobalizedVars(ASTContext & C,ArrayRef<const ValueDecl * > EscapedDecls,ArrayRef<const ValueDecl * > EscapedDeclsForTeams,llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & MappedDeclsFields,int BufSize)142 static RecordDecl *buildRecordForGlobalizedVars(
143     ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
144     ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
145     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
146         &MappedDeclsFields, int BufSize) {
147   using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
148   if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
149     return nullptr;
150   SmallVector<VarsDataTy, 4> GlobalizedVars;
151   for (const ValueDecl *D : EscapedDecls)
152     GlobalizedVars.emplace_back(
153         CharUnits::fromQuantity(std::max(
154             C.getDeclAlign(D).getQuantity(),
155             static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
156         D);
157   for (const ValueDecl *D : EscapedDeclsForTeams)
158     GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
159   llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
160     return L.first > R.first;
161   });
162 
163   // Build struct _globalized_locals_ty {
164   //         /*  globalized vars  */[WarSize] align (max(decl_align,
165   //         GlobalMemoryAlignment))
166   //         /*  globalized vars  */ for EscapedDeclsForTeams
167   //       };
168   RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
169   GlobalizedRD->startDefinition();
170   llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
171       EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
172   for (const auto &Pair : GlobalizedVars) {
173     const ValueDecl *VD = Pair.second;
174     QualType Type = VD->getType();
175     if (Type->isLValueReferenceType())
176       Type = C.getPointerType(Type.getNonReferenceType());
177     else
178       Type = Type.getNonReferenceType();
179     SourceLocation Loc = VD->getLocation();
180     FieldDecl *Field;
181     if (SingleEscaped.count(VD)) {
182       Field = FieldDecl::Create(
183           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
184           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
185           /*BW=*/nullptr, /*Mutable=*/false,
186           /*InitStyle=*/ICIS_NoInit);
187       Field->setAccess(AS_public);
188       if (VD->hasAttrs()) {
189         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
190              E(VD->getAttrs().end());
191              I != E; ++I)
192           Field->addAttr(*I);
193       }
194     } else {
195       llvm::APInt ArraySize(32, BufSize);
196       Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
197                                     0);
198       Field = FieldDecl::Create(
199           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
200           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
201           /*BW=*/nullptr, /*Mutable=*/false,
202           /*InitStyle=*/ICIS_NoInit);
203       Field->setAccess(AS_public);
204       llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
205                                      static_cast<CharUnits::QuantityType>(
206                                          GlobalMemoryAlignment)));
207       Field->addAttr(AlignedAttr::CreateImplicit(
208           C, /*IsAlignmentExpr=*/true,
209           IntegerLiteral::Create(C, Align,
210                                  C.getIntTypeForBitwidth(32, /*Signed=*/0),
211                                  SourceLocation()),
212           {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
213     }
214     GlobalizedRD->addDecl(Field);
215     MappedDeclsFields.try_emplace(VD, Field);
216   }
217   GlobalizedRD->completeDefinition();
218   return GlobalizedRD;
219 }
220 
221 /// Get the list of variables that can escape their declaration context.
222 class CheckVarsEscapingDeclContext final
223     : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
224   CodeGenFunction &CGF;
225   llvm::SetVector<const ValueDecl *> EscapedDecls;
226   llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
227   llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
228   RecordDecl *GlobalizedRD = nullptr;
229   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
230   bool AllEscaped = false;
231   bool IsForCombinedParallelRegion = false;
232 
markAsEscaped(const ValueDecl * VD)233   void markAsEscaped(const ValueDecl *VD) {
234     // Do not globalize declare target variables.
235     if (!isa<VarDecl>(VD) ||
236         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
237       return;
238     VD = cast<ValueDecl>(VD->getCanonicalDecl());
239     // Use user-specified allocation.
240     if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
241       return;
242     // Variables captured by value must be globalized.
243     if (auto *CSI = CGF.CapturedStmtInfo) {
244       if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
245         // Check if need to capture the variable that was already captured by
246         // value in the outer region.
247         if (!IsForCombinedParallelRegion) {
248           if (!FD->hasAttrs())
249             return;
250           const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
251           if (!Attr)
252             return;
253           if (((Attr->getCaptureKind() != OMPC_map) &&
254                !isOpenMPPrivate(Attr->getCaptureKind())) ||
255               ((Attr->getCaptureKind() == OMPC_map) &&
256                !FD->getType()->isAnyPointerType()))
257             return;
258         }
259         if (!FD->getType()->isReferenceType()) {
260           assert(!VD->getType()->isVariablyModifiedType() &&
261                  "Parameter captured by value with variably modified type");
262           EscapedParameters.insert(VD);
263         } else if (!IsForCombinedParallelRegion) {
264           return;
265         }
266       }
267     }
268     if ((!CGF.CapturedStmtInfo ||
269          (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
270         VD->getType()->isReferenceType())
271       // Do not globalize variables with reference type.
272       return;
273     if (VD->getType()->isVariablyModifiedType())
274       EscapedVariableLengthDecls.insert(VD);
275     else
276       EscapedDecls.insert(VD);
277   }
278 
VisitValueDecl(const ValueDecl * VD)279   void VisitValueDecl(const ValueDecl *VD) {
280     if (VD->getType()->isLValueReferenceType())
281       markAsEscaped(VD);
282     if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
283       if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
284         const bool SavedAllEscaped = AllEscaped;
285         AllEscaped = VD->getType()->isLValueReferenceType();
286         Visit(VarD->getInit());
287         AllEscaped = SavedAllEscaped;
288       }
289     }
290   }
VisitOpenMPCapturedStmt(const CapturedStmt * S,ArrayRef<OMPClause * > Clauses,bool IsCombinedParallelRegion)291   void VisitOpenMPCapturedStmt(const CapturedStmt *S,
292                                ArrayRef<OMPClause *> Clauses,
293                                bool IsCombinedParallelRegion) {
294     if (!S)
295       return;
296     for (const CapturedStmt::Capture &C : S->captures()) {
297       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
298         const ValueDecl *VD = C.getCapturedVar();
299         bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
300         if (IsCombinedParallelRegion) {
301           // Check if the variable is privatized in the combined construct and
302           // those private copies must be shared in the inner parallel
303           // directive.
304           IsForCombinedParallelRegion = false;
305           for (const OMPClause *C : Clauses) {
306             if (!isOpenMPPrivate(C->getClauseKind()) ||
307                 C->getClauseKind() == OMPC_reduction ||
308                 C->getClauseKind() == OMPC_linear ||
309                 C->getClauseKind() == OMPC_private)
310               continue;
311             ArrayRef<const Expr *> Vars;
312             if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
313               Vars = PC->getVarRefs();
314             else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
315               Vars = PC->getVarRefs();
316             else
317               llvm_unreachable("Unexpected clause.");
318             for (const auto *E : Vars) {
319               const Decl *D =
320                   cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
321               if (D == VD->getCanonicalDecl()) {
322                 IsForCombinedParallelRegion = true;
323                 break;
324               }
325             }
326             if (IsForCombinedParallelRegion)
327               break;
328           }
329         }
330         markAsEscaped(VD);
331         if (isa<OMPCapturedExprDecl>(VD))
332           VisitValueDecl(VD);
333         IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
334       }
335     }
336   }
337 
buildRecordForGlobalizedVars(bool IsInTTDRegion)338   void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
339     assert(!GlobalizedRD &&
340            "Record for globalized variables is built already.");
341     ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
342     unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size);
343     if (IsInTTDRegion)
344       EscapedDeclsForTeams = EscapedDecls.getArrayRef();
345     else
346       EscapedDeclsForParallel = EscapedDecls.getArrayRef();
347     GlobalizedRD = ::buildRecordForGlobalizedVars(
348         CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
349         MappedDeclsFields, WarpSize);
350   }
351 
352 public:
CheckVarsEscapingDeclContext(CodeGenFunction & CGF,ArrayRef<const ValueDecl * > TeamsReductions)353   CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
354                                ArrayRef<const ValueDecl *> TeamsReductions)
355       : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
356   }
357   virtual ~CheckVarsEscapingDeclContext() = default;
VisitDeclStmt(const DeclStmt * S)358   void VisitDeclStmt(const DeclStmt *S) {
359     if (!S)
360       return;
361     for (const Decl *D : S->decls())
362       if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
363         VisitValueDecl(VD);
364   }
VisitOMPExecutableDirective(const OMPExecutableDirective * D)365   void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
366     if (!D)
367       return;
368     if (!D->hasAssociatedStmt())
369       return;
370     if (const auto *S =
371             dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
372       // Do not analyze directives that do not actually require capturing,
373       // like `omp for` or `omp simd` directives.
374       llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
375       getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
376       if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
377         VisitStmt(S->getCapturedStmt());
378         return;
379       }
380       VisitOpenMPCapturedStmt(
381           S, D->clauses(),
382           CaptureRegions.back() == OMPD_parallel &&
383               isOpenMPDistributeDirective(D->getDirectiveKind()));
384     }
385   }
VisitCapturedStmt(const CapturedStmt * S)386   void VisitCapturedStmt(const CapturedStmt *S) {
387     if (!S)
388       return;
389     for (const CapturedStmt::Capture &C : S->captures()) {
390       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
391         const ValueDecl *VD = C.getCapturedVar();
392         markAsEscaped(VD);
393         if (isa<OMPCapturedExprDecl>(VD))
394           VisitValueDecl(VD);
395       }
396     }
397   }
VisitLambdaExpr(const LambdaExpr * E)398   void VisitLambdaExpr(const LambdaExpr *E) {
399     if (!E)
400       return;
401     for (const LambdaCapture &C : E->captures()) {
402       if (C.capturesVariable()) {
403         if (C.getCaptureKind() == LCK_ByRef) {
404           const ValueDecl *VD = C.getCapturedVar();
405           markAsEscaped(VD);
406           if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
407             VisitValueDecl(VD);
408         }
409       }
410     }
411   }
VisitBlockExpr(const BlockExpr * E)412   void VisitBlockExpr(const BlockExpr *E) {
413     if (!E)
414       return;
415     for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
416       if (C.isByRef()) {
417         const VarDecl *VD = C.getVariable();
418         markAsEscaped(VD);
419         if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
420           VisitValueDecl(VD);
421       }
422     }
423   }
VisitCallExpr(const CallExpr * E)424   void VisitCallExpr(const CallExpr *E) {
425     if (!E)
426       return;
427     for (const Expr *Arg : E->arguments()) {
428       if (!Arg)
429         continue;
430       if (Arg->isLValue()) {
431         const bool SavedAllEscaped = AllEscaped;
432         AllEscaped = true;
433         Visit(Arg);
434         AllEscaped = SavedAllEscaped;
435       } else {
436         Visit(Arg);
437       }
438     }
439     Visit(E->getCallee());
440   }
VisitDeclRefExpr(const DeclRefExpr * E)441   void VisitDeclRefExpr(const DeclRefExpr *E) {
442     if (!E)
443       return;
444     const ValueDecl *VD = E->getDecl();
445     if (AllEscaped)
446       markAsEscaped(VD);
447     if (isa<OMPCapturedExprDecl>(VD))
448       VisitValueDecl(VD);
449     else if (const auto *VarD = dyn_cast<VarDecl>(VD))
450       if (VarD->isInitCapture())
451         VisitValueDecl(VD);
452   }
VisitUnaryOperator(const UnaryOperator * E)453   void VisitUnaryOperator(const UnaryOperator *E) {
454     if (!E)
455       return;
456     if (E->getOpcode() == UO_AddrOf) {
457       const bool SavedAllEscaped = AllEscaped;
458       AllEscaped = true;
459       Visit(E->getSubExpr());
460       AllEscaped = SavedAllEscaped;
461     } else {
462       Visit(E->getSubExpr());
463     }
464   }
VisitImplicitCastExpr(const ImplicitCastExpr * E)465   void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
466     if (!E)
467       return;
468     if (E->getCastKind() == CK_ArrayToPointerDecay) {
469       const bool SavedAllEscaped = AllEscaped;
470       AllEscaped = true;
471       Visit(E->getSubExpr());
472       AllEscaped = SavedAllEscaped;
473     } else {
474       Visit(E->getSubExpr());
475     }
476   }
VisitExpr(const Expr * E)477   void VisitExpr(const Expr *E) {
478     if (!E)
479       return;
480     bool SavedAllEscaped = AllEscaped;
481     if (!E->isLValue())
482       AllEscaped = false;
483     for (const Stmt *Child : E->children())
484       if (Child)
485         Visit(Child);
486     AllEscaped = SavedAllEscaped;
487   }
VisitStmt(const Stmt * S)488   void VisitStmt(const Stmt *S) {
489     if (!S)
490       return;
491     for (const Stmt *Child : S->children())
492       if (Child)
493         Visit(Child);
494   }
495 
496   /// Returns the record that handles all the escaped local variables and used
497   /// instead of their original storage.
getGlobalizedRecord(bool IsInTTDRegion)498   const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
499     if (!GlobalizedRD)
500       buildRecordForGlobalizedVars(IsInTTDRegion);
501     return GlobalizedRD;
502   }
503 
504   /// Returns the field in the globalized record for the escaped variable.
getFieldForGlobalizedVar(const ValueDecl * VD) const505   const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
506     assert(GlobalizedRD &&
507            "Record for globalized variables must be generated already.");
508     auto I = MappedDeclsFields.find(VD);
509     if (I == MappedDeclsFields.end())
510       return nullptr;
511     return I->getSecond();
512   }
513 
514   /// Returns the list of the escaped local variables/parameters.
getEscapedDecls() const515   ArrayRef<const ValueDecl *> getEscapedDecls() const {
516     return EscapedDecls.getArrayRef();
517   }
518 
519   /// Checks if the escaped local variable is actually a parameter passed by
520   /// value.
getEscapedParameters() const521   const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
522     return EscapedParameters;
523   }
524 
525   /// Returns the list of the escaped variables with the variably modified
526   /// types.
getEscapedVariableLengthDecls() const527   ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
528     return EscapedVariableLengthDecls.getArrayRef();
529   }
530 };
531 } // anonymous namespace
532 
533 /// Get the id of the warp in the block.
534 /// We assume that the warp size is 32, which is always the case
535 /// on the NVPTX device, to generate more efficient code.
getNVPTXWarpID(CodeGenFunction & CGF)536 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
537   CGBuilderTy &Bld = CGF.Builder;
538   unsigned LaneIDBits =
539       CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size_Log2);
540   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
541   return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
542 }
543 
544 /// Get the id of the current lane in the Warp.
545 /// We assume that the warp size is 32, which is always the case
546 /// on the NVPTX device, to generate more efficient code.
getNVPTXLaneID(CodeGenFunction & CGF)547 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
548   CGBuilderTy &Bld = CGF.Builder;
549   unsigned LaneIDMask = CGF.getContext().getTargetInfo().getGridValue(
550       llvm::omp::GV_Warp_Size_Log2_Mask);
551   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
552   return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
553                        "nvptx_lane_id");
554 }
555 
556 /// Get the value of the thread_limit clause in the teams directive.
557 /// For the 'generic' execution mode, the runtime encodes thread_limit in
558 /// the launch parameters, always starting thread_limit+warpSize threads per
559 /// CTA. The threads in the last warp are reserved for master execution.
560 /// For the 'spmd' execution mode, all threads in a CTA are part of the team.
getThreadLimit(CodeGenFunction & CGF,bool IsInSPMDExecutionMode=false)561 static llvm::Value *getThreadLimit(CodeGenFunction &CGF,
562                                    bool IsInSPMDExecutionMode = false) {
563   CGBuilderTy &Bld = CGF.Builder;
564   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
565   return IsInSPMDExecutionMode
566              ? RT.getGPUNumThreads(CGF)
567              : Bld.CreateNUWSub(RT.getGPUNumThreads(CGF),
568                                 RT.getGPUWarpSize(CGF), "thread_limit");
569 }
570 
571 /// Get the thread id of the OMP master thread.
572 /// The master thread id is the first thread (lane) of the last warp in the
573 /// GPU block.  Warp size is assumed to be some power of 2.
574 /// Thread id is 0 indexed.
575 /// E.g: If NumThreads is 33, master id is 32.
576 ///      If NumThreads is 64, master id is 32.
577 ///      If NumThreads is 1024, master id is 992.
getMasterThreadID(CodeGenFunction & CGF)578 static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) {
579   CGBuilderTy &Bld = CGF.Builder;
580   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
581   llvm::Value *NumThreads = RT.getGPUNumThreads(CGF);
582   // We assume that the warp size is a power of 2.
583   llvm::Value *Mask = Bld.CreateNUWSub(RT.getGPUWarpSize(CGF), Bld.getInt32(1));
584 
585   return Bld.CreateAnd(Bld.CreateNUWSub(NumThreads, Bld.getInt32(1)),
586                        Bld.CreateNot(Mask), "master_tid");
587 }
588 
WorkerFunctionState(CodeGenModule & CGM,SourceLocation Loc)589 CGOpenMPRuntimeGPU::WorkerFunctionState::WorkerFunctionState(
590     CodeGenModule &CGM, SourceLocation Loc)
591     : WorkerFn(nullptr), CGFI(CGM.getTypes().arrangeNullaryFunction()),
592       Loc(Loc) {
593   createWorkerFunction(CGM);
594 }
595 
createWorkerFunction(CodeGenModule & CGM)596 void CGOpenMPRuntimeGPU::WorkerFunctionState::createWorkerFunction(
597     CodeGenModule &CGM) {
598   // Create an worker function with no arguments.
599 
600   WorkerFn = llvm::Function::Create(
601       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
602       /*placeholder=*/"_worker", &CGM.getModule());
603   CGM.SetInternalFunctionAttributes(GlobalDecl(), WorkerFn, CGFI);
604   WorkerFn->setDoesNotRecurse();
605 }
606 
607 CGOpenMPRuntimeGPU::ExecutionMode
getExecutionMode() const608 CGOpenMPRuntimeGPU::getExecutionMode() const {
609   return CurrentExecutionMode;
610 }
611 
612 static CGOpenMPRuntimeGPU::DataSharingMode
getDataSharingMode(CodeGenModule & CGM)613 getDataSharingMode(CodeGenModule &CGM) {
614   return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
615                                           : CGOpenMPRuntimeGPU::Generic;
616 }
617 
618 /// Check for inner (nested) SPMD construct, if any
hasNestedSPMDDirective(ASTContext & Ctx,const OMPExecutableDirective & D)619 static bool hasNestedSPMDDirective(ASTContext &Ctx,
620                                    const OMPExecutableDirective &D) {
621   const auto *CS = D.getInnermostCapturedStmt();
622   const auto *Body =
623       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
624   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
625 
626   if (const auto *NestedDir =
627           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
628     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
629     switch (D.getDirectiveKind()) {
630     case OMPD_target:
631       if (isOpenMPParallelDirective(DKind))
632         return true;
633       if (DKind == OMPD_teams) {
634         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
635             /*IgnoreCaptured=*/true);
636         if (!Body)
637           return false;
638         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
639         if (const auto *NND =
640                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
641           DKind = NND->getDirectiveKind();
642           if (isOpenMPParallelDirective(DKind))
643             return true;
644         }
645       }
646       return false;
647     case OMPD_target_teams:
648       return isOpenMPParallelDirective(DKind);
649     case OMPD_target_simd:
650     case OMPD_target_parallel:
651     case OMPD_target_parallel_for:
652     case OMPD_target_parallel_for_simd:
653     case OMPD_target_teams_distribute:
654     case OMPD_target_teams_distribute_simd:
655     case OMPD_target_teams_distribute_parallel_for:
656     case OMPD_target_teams_distribute_parallel_for_simd:
657     case OMPD_parallel:
658     case OMPD_for:
659     case OMPD_parallel_for:
660     case OMPD_parallel_master:
661     case OMPD_parallel_sections:
662     case OMPD_for_simd:
663     case OMPD_parallel_for_simd:
664     case OMPD_cancel:
665     case OMPD_cancellation_point:
666     case OMPD_ordered:
667     case OMPD_threadprivate:
668     case OMPD_allocate:
669     case OMPD_task:
670     case OMPD_simd:
671     case OMPD_sections:
672     case OMPD_section:
673     case OMPD_single:
674     case OMPD_master:
675     case OMPD_critical:
676     case OMPD_taskyield:
677     case OMPD_barrier:
678     case OMPD_taskwait:
679     case OMPD_taskgroup:
680     case OMPD_atomic:
681     case OMPD_flush:
682     case OMPD_depobj:
683     case OMPD_scan:
684     case OMPD_teams:
685     case OMPD_target_data:
686     case OMPD_target_exit_data:
687     case OMPD_target_enter_data:
688     case OMPD_distribute:
689     case OMPD_distribute_simd:
690     case OMPD_distribute_parallel_for:
691     case OMPD_distribute_parallel_for_simd:
692     case OMPD_teams_distribute:
693     case OMPD_teams_distribute_simd:
694     case OMPD_teams_distribute_parallel_for:
695     case OMPD_teams_distribute_parallel_for_simd:
696     case OMPD_target_update:
697     case OMPD_declare_simd:
698     case OMPD_declare_variant:
699     case OMPD_begin_declare_variant:
700     case OMPD_end_declare_variant:
701     case OMPD_declare_target:
702     case OMPD_end_declare_target:
703     case OMPD_declare_reduction:
704     case OMPD_declare_mapper:
705     case OMPD_taskloop:
706     case OMPD_taskloop_simd:
707     case OMPD_master_taskloop:
708     case OMPD_master_taskloop_simd:
709     case OMPD_parallel_master_taskloop:
710     case OMPD_parallel_master_taskloop_simd:
711     case OMPD_requires:
712     case OMPD_unknown:
713     default:
714       llvm_unreachable("Unexpected directive.");
715     }
716   }
717 
718   return false;
719 }
720 
supportsSPMDExecutionMode(ASTContext & Ctx,const OMPExecutableDirective & D)721 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
722                                       const OMPExecutableDirective &D) {
723   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
724   switch (DirectiveKind) {
725   case OMPD_target:
726   case OMPD_target_teams:
727     return hasNestedSPMDDirective(Ctx, D);
728   case OMPD_target_parallel:
729   case OMPD_target_parallel_for:
730   case OMPD_target_parallel_for_simd:
731   case OMPD_target_teams_distribute_parallel_for:
732   case OMPD_target_teams_distribute_parallel_for_simd:
733   case OMPD_target_simd:
734   case OMPD_target_teams_distribute_simd:
735     return true;
736   case OMPD_target_teams_distribute:
737     return false;
738   case OMPD_parallel:
739   case OMPD_for:
740   case OMPD_parallel_for:
741   case OMPD_parallel_master:
742   case OMPD_parallel_sections:
743   case OMPD_for_simd:
744   case OMPD_parallel_for_simd:
745   case OMPD_cancel:
746   case OMPD_cancellation_point:
747   case OMPD_ordered:
748   case OMPD_threadprivate:
749   case OMPD_allocate:
750   case OMPD_task:
751   case OMPD_simd:
752   case OMPD_sections:
753   case OMPD_section:
754   case OMPD_single:
755   case OMPD_master:
756   case OMPD_critical:
757   case OMPD_taskyield:
758   case OMPD_barrier:
759   case OMPD_taskwait:
760   case OMPD_taskgroup:
761   case OMPD_atomic:
762   case OMPD_flush:
763   case OMPD_depobj:
764   case OMPD_scan:
765   case OMPD_teams:
766   case OMPD_target_data:
767   case OMPD_target_exit_data:
768   case OMPD_target_enter_data:
769   case OMPD_distribute:
770   case OMPD_distribute_simd:
771   case OMPD_distribute_parallel_for:
772   case OMPD_distribute_parallel_for_simd:
773   case OMPD_teams_distribute:
774   case OMPD_teams_distribute_simd:
775   case OMPD_teams_distribute_parallel_for:
776   case OMPD_teams_distribute_parallel_for_simd:
777   case OMPD_target_update:
778   case OMPD_declare_simd:
779   case OMPD_declare_variant:
780   case OMPD_begin_declare_variant:
781   case OMPD_end_declare_variant:
782   case OMPD_declare_target:
783   case OMPD_end_declare_target:
784   case OMPD_declare_reduction:
785   case OMPD_declare_mapper:
786   case OMPD_taskloop:
787   case OMPD_taskloop_simd:
788   case OMPD_master_taskloop:
789   case OMPD_master_taskloop_simd:
790   case OMPD_parallel_master_taskloop:
791   case OMPD_parallel_master_taskloop_simd:
792   case OMPD_requires:
793   case OMPD_unknown:
794   default:
795     break;
796   }
797   llvm_unreachable(
798       "Unknown programming model for OpenMP directive on NVPTX target.");
799 }
800 
801 /// Check if the directive is loops based and has schedule clause at all or has
802 /// static scheduling.
hasStaticScheduling(const OMPExecutableDirective & D)803 static bool hasStaticScheduling(const OMPExecutableDirective &D) {
804   assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
805          isOpenMPLoopDirective(D.getDirectiveKind()) &&
806          "Expected loop-based directive.");
807   return !D.hasClausesOfKind<OMPOrderedClause>() &&
808          (!D.hasClausesOfKind<OMPScheduleClause>() ||
809           llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
810                        [](const OMPScheduleClause *C) {
811                          return C->getScheduleKind() == OMPC_SCHEDULE_static;
812                        }));
813 }
814 
815 /// Check for inner (nested) lightweight runtime construct, if any
hasNestedLightweightDirective(ASTContext & Ctx,const OMPExecutableDirective & D)816 static bool hasNestedLightweightDirective(ASTContext &Ctx,
817                                           const OMPExecutableDirective &D) {
818   assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
819   const auto *CS = D.getInnermostCapturedStmt();
820   const auto *Body =
821       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
822   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
823 
824   if (const auto *NestedDir =
825           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
826     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
827     switch (D.getDirectiveKind()) {
828     case OMPD_target:
829       if (isOpenMPParallelDirective(DKind) &&
830           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
831           hasStaticScheduling(*NestedDir))
832         return true;
833       if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
834         return true;
835       if (DKind == OMPD_parallel) {
836         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
837             /*IgnoreCaptured=*/true);
838         if (!Body)
839           return false;
840         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
841         if (const auto *NND =
842                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
843           DKind = NND->getDirectiveKind();
844           if (isOpenMPWorksharingDirective(DKind) &&
845               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
846             return true;
847         }
848       } else if (DKind == OMPD_teams) {
849         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
850             /*IgnoreCaptured=*/true);
851         if (!Body)
852           return false;
853         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
854         if (const auto *NND =
855                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
856           DKind = NND->getDirectiveKind();
857           if (isOpenMPParallelDirective(DKind) &&
858               isOpenMPWorksharingDirective(DKind) &&
859               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
860             return true;
861           if (DKind == OMPD_parallel) {
862             Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
863                 /*IgnoreCaptured=*/true);
864             if (!Body)
865               return false;
866             ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
867             if (const auto *NND =
868                     dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
869               DKind = NND->getDirectiveKind();
870               if (isOpenMPWorksharingDirective(DKind) &&
871                   isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
872                 return true;
873             }
874           }
875         }
876       }
877       return false;
878     case OMPD_target_teams:
879       if (isOpenMPParallelDirective(DKind) &&
880           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
881           hasStaticScheduling(*NestedDir))
882         return true;
883       if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
884         return true;
885       if (DKind == OMPD_parallel) {
886         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
887             /*IgnoreCaptured=*/true);
888         if (!Body)
889           return false;
890         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
891         if (const auto *NND =
892                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
893           DKind = NND->getDirectiveKind();
894           if (isOpenMPWorksharingDirective(DKind) &&
895               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
896             return true;
897         }
898       }
899       return false;
900     case OMPD_target_parallel:
901       if (DKind == OMPD_simd)
902         return true;
903       return isOpenMPWorksharingDirective(DKind) &&
904              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
905     case OMPD_target_teams_distribute:
906     case OMPD_target_simd:
907     case OMPD_target_parallel_for:
908     case OMPD_target_parallel_for_simd:
909     case OMPD_target_teams_distribute_simd:
910     case OMPD_target_teams_distribute_parallel_for:
911     case OMPD_target_teams_distribute_parallel_for_simd:
912     case OMPD_parallel:
913     case OMPD_for:
914     case OMPD_parallel_for:
915     case OMPD_parallel_master:
916     case OMPD_parallel_sections:
917     case OMPD_for_simd:
918     case OMPD_parallel_for_simd:
919     case OMPD_cancel:
920     case OMPD_cancellation_point:
921     case OMPD_ordered:
922     case OMPD_threadprivate:
923     case OMPD_allocate:
924     case OMPD_task:
925     case OMPD_simd:
926     case OMPD_sections:
927     case OMPD_section:
928     case OMPD_single:
929     case OMPD_master:
930     case OMPD_critical:
931     case OMPD_taskyield:
932     case OMPD_barrier:
933     case OMPD_taskwait:
934     case OMPD_taskgroup:
935     case OMPD_atomic:
936     case OMPD_flush:
937     case OMPD_depobj:
938     case OMPD_scan:
939     case OMPD_teams:
940     case OMPD_target_data:
941     case OMPD_target_exit_data:
942     case OMPD_target_enter_data:
943     case OMPD_distribute:
944     case OMPD_distribute_simd:
945     case OMPD_distribute_parallel_for:
946     case OMPD_distribute_parallel_for_simd:
947     case OMPD_teams_distribute:
948     case OMPD_teams_distribute_simd:
949     case OMPD_teams_distribute_parallel_for:
950     case OMPD_teams_distribute_parallel_for_simd:
951     case OMPD_target_update:
952     case OMPD_declare_simd:
953     case OMPD_declare_variant:
954     case OMPD_begin_declare_variant:
955     case OMPD_end_declare_variant:
956     case OMPD_declare_target:
957     case OMPD_end_declare_target:
958     case OMPD_declare_reduction:
959     case OMPD_declare_mapper:
960     case OMPD_taskloop:
961     case OMPD_taskloop_simd:
962     case OMPD_master_taskloop:
963     case OMPD_master_taskloop_simd:
964     case OMPD_parallel_master_taskloop:
965     case OMPD_parallel_master_taskloop_simd:
966     case OMPD_requires:
967     case OMPD_unknown:
968     default:
969       llvm_unreachable("Unexpected directive.");
970     }
971   }
972 
973   return false;
974 }
975 
976 /// Checks if the construct supports lightweight runtime. It must be SPMD
977 /// construct + inner loop-based construct with static scheduling.
supportsLightweightRuntime(ASTContext & Ctx,const OMPExecutableDirective & D)978 static bool supportsLightweightRuntime(ASTContext &Ctx,
979                                        const OMPExecutableDirective &D) {
980   if (!supportsSPMDExecutionMode(Ctx, D))
981     return false;
982   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
983   switch (DirectiveKind) {
984   case OMPD_target:
985   case OMPD_target_teams:
986   case OMPD_target_parallel:
987     return hasNestedLightweightDirective(Ctx, D);
988   case OMPD_target_parallel_for:
989   case OMPD_target_parallel_for_simd:
990   case OMPD_target_teams_distribute_parallel_for:
991   case OMPD_target_teams_distribute_parallel_for_simd:
992     // (Last|First)-privates must be shared in parallel region.
993     return hasStaticScheduling(D);
994   case OMPD_target_simd:
995   case OMPD_target_teams_distribute_simd:
996     return true;
997   case OMPD_target_teams_distribute:
998     return false;
999   case OMPD_parallel:
1000   case OMPD_for:
1001   case OMPD_parallel_for:
1002   case OMPD_parallel_master:
1003   case OMPD_parallel_sections:
1004   case OMPD_for_simd:
1005   case OMPD_parallel_for_simd:
1006   case OMPD_cancel:
1007   case OMPD_cancellation_point:
1008   case OMPD_ordered:
1009   case OMPD_threadprivate:
1010   case OMPD_allocate:
1011   case OMPD_task:
1012   case OMPD_simd:
1013   case OMPD_sections:
1014   case OMPD_section:
1015   case OMPD_single:
1016   case OMPD_master:
1017   case OMPD_critical:
1018   case OMPD_taskyield:
1019   case OMPD_barrier:
1020   case OMPD_taskwait:
1021   case OMPD_taskgroup:
1022   case OMPD_atomic:
1023   case OMPD_flush:
1024   case OMPD_depobj:
1025   case OMPD_scan:
1026   case OMPD_teams:
1027   case OMPD_target_data:
1028   case OMPD_target_exit_data:
1029   case OMPD_target_enter_data:
1030   case OMPD_distribute:
1031   case OMPD_distribute_simd:
1032   case OMPD_distribute_parallel_for:
1033   case OMPD_distribute_parallel_for_simd:
1034   case OMPD_teams_distribute:
1035   case OMPD_teams_distribute_simd:
1036   case OMPD_teams_distribute_parallel_for:
1037   case OMPD_teams_distribute_parallel_for_simd:
1038   case OMPD_target_update:
1039   case OMPD_declare_simd:
1040   case OMPD_declare_variant:
1041   case OMPD_begin_declare_variant:
1042   case OMPD_end_declare_variant:
1043   case OMPD_declare_target:
1044   case OMPD_end_declare_target:
1045   case OMPD_declare_reduction:
1046   case OMPD_declare_mapper:
1047   case OMPD_taskloop:
1048   case OMPD_taskloop_simd:
1049   case OMPD_master_taskloop:
1050   case OMPD_master_taskloop_simd:
1051   case OMPD_parallel_master_taskloop:
1052   case OMPD_parallel_master_taskloop_simd:
1053   case OMPD_requires:
1054   case OMPD_unknown:
1055   default:
1056     break;
1057   }
1058   llvm_unreachable(
1059       "Unknown programming model for OpenMP directive on NVPTX target.");
1060 }
1061 
emitNonSPMDKernel(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)1062 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
1063                                              StringRef ParentName,
1064                                              llvm::Function *&OutlinedFn,
1065                                              llvm::Constant *&OutlinedFnID,
1066                                              bool IsOffloadEntry,
1067                                              const RegionCodeGenTy &CodeGen) {
1068   ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1069   EntryFunctionState EST;
1070   WorkerFunctionState WST(CGM, D.getBeginLoc());
1071   Work.clear();
1072   WrapperFunctionsMap.clear();
1073 
1074   // Emit target region as a standalone region.
1075   class NVPTXPrePostActionTy : public PrePostActionTy {
1076     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1077     CGOpenMPRuntimeGPU::WorkerFunctionState &WST;
1078 
1079   public:
1080     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST,
1081                          CGOpenMPRuntimeGPU::WorkerFunctionState &WST)
1082         : EST(EST), WST(WST) {}
1083     void Enter(CodeGenFunction &CGF) override {
1084       auto &RT =
1085           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1086       RT.emitNonSPMDEntryHeader(CGF, EST, WST);
1087       // Skip target region initialization.
1088       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1089     }
1090     void Exit(CodeGenFunction &CGF) override {
1091       auto &RT =
1092           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1093       RT.clearLocThreadIdInsertPt(CGF);
1094       RT.emitNonSPMDEntryFooter(CGF, EST);
1095     }
1096   } Action(EST, WST);
1097   CodeGen.setAction(Action);
1098   IsInTTDRegion = true;
1099   // Reserve place for the globalized memory.
1100   GlobalizedRecords.emplace_back();
1101   if (!KernelStaticGlobalized) {
1102     KernelStaticGlobalized = new llvm::GlobalVariable(
1103         CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
1104         llvm::GlobalValue::InternalLinkage,
1105         llvm::UndefValue::get(CGM.VoidPtrTy),
1106         "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
1107         llvm::GlobalValue::NotThreadLocal,
1108         CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
1109   }
1110   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1111                                    IsOffloadEntry, CodeGen);
1112   IsInTTDRegion = false;
1113 
1114   // Now change the name of the worker function to correspond to this target
1115   // region's entry function.
1116   WST.WorkerFn->setName(Twine(OutlinedFn->getName(), "_worker"));
1117 
1118   // Create the worker function
1119   emitWorkerFunction(WST);
1120 }
1121 
1122 // Setup NVPTX threads for master-worker OpenMP scheme.
emitNonSPMDEntryHeader(CodeGenFunction & CGF,EntryFunctionState & EST,WorkerFunctionState & WST)1123 void CGOpenMPRuntimeGPU::emitNonSPMDEntryHeader(CodeGenFunction &CGF,
1124                                                   EntryFunctionState &EST,
1125                                                   WorkerFunctionState &WST) {
1126   CGBuilderTy &Bld = CGF.Builder;
1127 
1128   llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker");
1129   llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck");
1130   llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
1131   EST.ExitBB = CGF.createBasicBlock(".exit");
1132 
1133   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1134   llvm::Value *IsWorker =
1135       Bld.CreateICmpULT(RT.getGPUThreadID(CGF), getThreadLimit(CGF));
1136   Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB);
1137 
1138   CGF.EmitBlock(WorkerBB);
1139   emitCall(CGF, WST.Loc, WST.WorkerFn);
1140   CGF.EmitBranch(EST.ExitBB);
1141 
1142   CGF.EmitBlock(MasterCheckBB);
1143   llvm::Value *IsMaster =
1144       Bld.CreateICmpEQ(RT.getGPUThreadID(CGF), getMasterThreadID(CGF));
1145   Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB);
1146 
1147   CGF.EmitBlock(MasterBB);
1148   IsInTargetMasterThreadRegion = true;
1149   // SEQUENTIAL (MASTER) REGION START
1150   // First action in sequential region:
1151   // Initialize the state of the OpenMP runtime library on the GPU.
1152   // TODO: Optimize runtime initialization and pass in correct value.
1153   llvm::Value *Args[] = {getThreadLimit(CGF),
1154                          Bld.getInt16(/*RequiresOMPRuntime=*/1)};
1155   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1156                           CGM.getModule(), OMPRTL___kmpc_kernel_init),
1157                       Args);
1158 
1159   // For data sharing, we need to initialize the stack.
1160   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1161       CGM.getModule(), OMPRTL___kmpc_data_sharing_init_stack));
1162 
1163   emitGenericVarsProlog(CGF, WST.Loc);
1164 }
1165 
emitNonSPMDEntryFooter(CodeGenFunction & CGF,EntryFunctionState & EST)1166 void CGOpenMPRuntimeGPU::emitNonSPMDEntryFooter(CodeGenFunction &CGF,
1167                                                   EntryFunctionState &EST) {
1168   IsInTargetMasterThreadRegion = false;
1169   if (!CGF.HaveInsertPoint())
1170     return;
1171 
1172   emitGenericVarsEpilog(CGF);
1173 
1174   if (!EST.ExitBB)
1175     EST.ExitBB = CGF.createBasicBlock(".exit");
1176 
1177   llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier");
1178   CGF.EmitBranch(TerminateBB);
1179 
1180   CGF.EmitBlock(TerminateBB);
1181   // Signal termination condition.
1182   // TODO: Optimize runtime initialization and pass in correct value.
1183   llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)};
1184   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1185                           CGM.getModule(), OMPRTL___kmpc_kernel_deinit),
1186                       Args);
1187   // Barrier to terminate worker threads.
1188   syncCTAThreads(CGF);
1189   // Master thread jumps to exit point.
1190   CGF.EmitBranch(EST.ExitBB);
1191 
1192   CGF.EmitBlock(EST.ExitBB);
1193   EST.ExitBB = nullptr;
1194 }
1195 
emitSPMDKernel(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)1196 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
1197                                           StringRef ParentName,
1198                                           llvm::Function *&OutlinedFn,
1199                                           llvm::Constant *&OutlinedFnID,
1200                                           bool IsOffloadEntry,
1201                                           const RegionCodeGenTy &CodeGen) {
1202   ExecutionRuntimeModesRAII ModeRAII(
1203       CurrentExecutionMode, RequiresFullRuntime,
1204       CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1205           !supportsLightweightRuntime(CGM.getContext(), D));
1206   EntryFunctionState EST;
1207 
1208   // Emit target region as a standalone region.
1209   class NVPTXPrePostActionTy : public PrePostActionTy {
1210     CGOpenMPRuntimeGPU &RT;
1211     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1212     const OMPExecutableDirective &D;
1213 
1214   public:
1215     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
1216                          CGOpenMPRuntimeGPU::EntryFunctionState &EST,
1217                          const OMPExecutableDirective &D)
1218         : RT(RT), EST(EST), D(D) {}
1219     void Enter(CodeGenFunction &CGF) override {
1220       RT.emitSPMDEntryHeader(CGF, EST, D);
1221       // Skip target region initialization.
1222       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1223     }
1224     void Exit(CodeGenFunction &CGF) override {
1225       RT.clearLocThreadIdInsertPt(CGF);
1226       RT.emitSPMDEntryFooter(CGF, EST);
1227     }
1228   } Action(*this, EST, D);
1229   CodeGen.setAction(Action);
1230   IsInTTDRegion = true;
1231   // Reserve place for the globalized memory.
1232   GlobalizedRecords.emplace_back();
1233   if (!KernelStaticGlobalized) {
1234     KernelStaticGlobalized = new llvm::GlobalVariable(
1235         CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
1236         llvm::GlobalValue::InternalLinkage,
1237         llvm::UndefValue::get(CGM.VoidPtrTy),
1238         "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
1239         llvm::GlobalValue::NotThreadLocal,
1240         CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
1241   }
1242   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1243                                    IsOffloadEntry, CodeGen);
1244   IsInTTDRegion = false;
1245 }
1246 
emitSPMDEntryHeader(CodeGenFunction & CGF,EntryFunctionState & EST,const OMPExecutableDirective & D)1247 void CGOpenMPRuntimeGPU::emitSPMDEntryHeader(
1248     CodeGenFunction &CGF, EntryFunctionState &EST,
1249     const OMPExecutableDirective &D) {
1250   CGBuilderTy &Bld = CGF.Builder;
1251 
1252   // Setup BBs in entry function.
1253   llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute");
1254   EST.ExitBB = CGF.createBasicBlock(".exit");
1255 
1256   llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSPMDExecutionMode=*/true),
1257                          /*RequiresOMPRuntime=*/
1258                          Bld.getInt16(RequiresFullRuntime ? 1 : 0)};
1259   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1260                           CGM.getModule(), OMPRTL___kmpc_spmd_kernel_init),
1261                       Args);
1262 
1263   if (RequiresFullRuntime) {
1264     // For data sharing, we need to initialize the stack.
1265     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1266         CGM.getModule(), OMPRTL___kmpc_data_sharing_init_stack_spmd));
1267   }
1268 
1269   CGF.EmitBranch(ExecuteBB);
1270 
1271   CGF.EmitBlock(ExecuteBB);
1272 
1273   IsInTargetMasterThreadRegion = true;
1274 }
1275 
emitSPMDEntryFooter(CodeGenFunction & CGF,EntryFunctionState & EST)1276 void CGOpenMPRuntimeGPU::emitSPMDEntryFooter(CodeGenFunction &CGF,
1277                                                EntryFunctionState &EST) {
1278   IsInTargetMasterThreadRegion = false;
1279   if (!CGF.HaveInsertPoint())
1280     return;
1281 
1282   if (!EST.ExitBB)
1283     EST.ExitBB = CGF.createBasicBlock(".exit");
1284 
1285   llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit");
1286   CGF.EmitBranch(OMPDeInitBB);
1287 
1288   CGF.EmitBlock(OMPDeInitBB);
1289   // DeInitialize the OMP state in the runtime; called by all active threads.
1290   llvm::Value *Args[] = {/*RequiresOMPRuntime=*/
1291                          CGF.Builder.getInt16(RequiresFullRuntime ? 1 : 0)};
1292   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1293                           CGM.getModule(), OMPRTL___kmpc_spmd_kernel_deinit_v2),
1294                       Args);
1295   CGF.EmitBranch(EST.ExitBB);
1296 
1297   CGF.EmitBlock(EST.ExitBB);
1298   EST.ExitBB = nullptr;
1299 }
1300 
1301 // Create a unique global variable to indicate the execution mode of this target
1302 // region. The execution mode is either 'generic', or 'spmd' depending on the
1303 // target directive. This variable is picked up by the offload library to setup
1304 // the device appropriately before kernel launch. If the execution mode is
1305 // 'generic', the runtime reserves one warp for the master, otherwise, all
1306 // warps participate in parallel work.
setPropertyExecutionMode(CodeGenModule & CGM,StringRef Name,bool Mode)1307 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1308                                      bool Mode) {
1309   auto *GVMode =
1310       new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1311                                llvm::GlobalValue::WeakAnyLinkage,
1312                                llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1),
1313                                Twine(Name, "_exec_mode"));
1314   CGM.addCompilerUsedGlobal(GVMode);
1315 }
1316 
emitWorkerFunction(WorkerFunctionState & WST)1317 void CGOpenMPRuntimeGPU::emitWorkerFunction(WorkerFunctionState &WST) {
1318   ASTContext &Ctx = CGM.getContext();
1319 
1320   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
1321   CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, WST.CGFI, {},
1322                     WST.Loc, WST.Loc);
1323   emitWorkerLoop(CGF, WST);
1324   CGF.FinishFunction();
1325 }
1326 
emitWorkerLoop(CodeGenFunction & CGF,WorkerFunctionState & WST)1327 void CGOpenMPRuntimeGPU::emitWorkerLoop(CodeGenFunction &CGF,
1328                                         WorkerFunctionState &WST) {
1329   //
1330   // The workers enter this loop and wait for parallel work from the master.
1331   // When the master encounters a parallel region it sets up the work + variable
1332   // arguments, and wakes up the workers.  The workers first check to see if
1333   // they are required for the parallel region, i.e., within the # of requested
1334   // parallel threads.  The activated workers load the variable arguments and
1335   // execute the parallel work.
1336   //
1337 
1338   CGBuilderTy &Bld = CGF.Builder;
1339 
1340   llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work");
1341   llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers");
1342   llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel");
1343   llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel");
1344   llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel");
1345   llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
1346 
1347   CGF.EmitBranch(AwaitBB);
1348 
1349   // Workers wait for work from master.
1350   CGF.EmitBlock(AwaitBB);
1351   // Wait for parallel work
1352   syncCTAThreads(CGF);
1353 
1354   Address WorkFn =
1355       CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn");
1356   Address ExecStatus =
1357       CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status");
1358   CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0));
1359   CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy));
1360 
1361   // TODO: Optimize runtime initialization and pass in correct value.
1362   llvm::Value *Args[] = {WorkFn.getPointer()};
1363   llvm::Value *Ret =
1364       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1365                               CGM.getModule(), OMPRTL___kmpc_kernel_parallel),
1366                           Args);
1367   Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus);
1368 
1369   // On termination condition (workid == 0), exit loop.
1370   llvm::Value *WorkID = Bld.CreateLoad(WorkFn);
1371   llvm::Value *ShouldTerminate = Bld.CreateIsNull(WorkID, "should_terminate");
1372   Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB);
1373 
1374   // Activate requested workers.
1375   CGF.EmitBlock(SelectWorkersBB);
1376   llvm::Value *IsActive =
1377       Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active");
1378   Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB);
1379 
1380   // Signal start of parallel region.
1381   CGF.EmitBlock(ExecuteBB);
1382   // Skip initialization.
1383   setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1384 
1385   // Process work items: outlined parallel functions.
1386   for (llvm::Function *W : Work) {
1387     // Try to match this outlined function.
1388     llvm::Value *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy);
1389 
1390     llvm::Value *WorkFnMatch =
1391         Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match");
1392 
1393     llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn");
1394     llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next");
1395     Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB);
1396 
1397     // Execute this outlined function.
1398     CGF.EmitBlock(ExecuteFNBB);
1399 
1400     // Insert call to work function via shared wrapper. The shared
1401     // wrapper takes two arguments:
1402     //   - the parallelism level;
1403     //   - the thread ID;
1404     emitCall(CGF, WST.Loc, W,
1405              {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
1406 
1407     // Go to end of parallel region.
1408     CGF.EmitBranch(TerminateBB);
1409 
1410     CGF.EmitBlock(CheckNextBB);
1411   }
1412   // Default case: call to outlined function through pointer if the target
1413   // region makes a declare target call that may contain an orphaned parallel
1414   // directive.
1415   auto *ParallelFnTy =
1416       llvm::FunctionType::get(CGM.VoidTy, {CGM.Int16Ty, CGM.Int32Ty},
1417                               /*isVarArg=*/false);
1418   llvm::Value *WorkFnCast =
1419       Bld.CreateBitCast(WorkID, ParallelFnTy->getPointerTo());
1420   // Insert call to work function via shared wrapper. The shared
1421   // wrapper takes two arguments:
1422   //   - the parallelism level;
1423   //   - the thread ID;
1424   emitCall(CGF, WST.Loc, {ParallelFnTy, WorkFnCast},
1425            {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
1426   // Go to end of parallel region.
1427   CGF.EmitBranch(TerminateBB);
1428 
1429   // Signal end of parallel region.
1430   CGF.EmitBlock(TerminateBB);
1431   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1432                           CGM.getModule(), OMPRTL___kmpc_kernel_end_parallel),
1433                       llvm::None);
1434   CGF.EmitBranch(BarrierBB);
1435 
1436   // All active and inactive workers wait at a barrier after parallel region.
1437   CGF.EmitBlock(BarrierBB);
1438   // Barrier after parallel region.
1439   syncCTAThreads(CGF);
1440   CGF.EmitBranch(AwaitBB);
1441 
1442   // Exit target region.
1443   CGF.EmitBlock(ExitBB);
1444   // Skip initialization.
1445   clearLocThreadIdInsertPt(CGF);
1446 }
1447 
createOffloadEntry(llvm::Constant * ID,llvm::Constant * Addr,uint64_t Size,int32_t,llvm::GlobalValue::LinkageTypes)1448 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
1449                                               llvm::Constant *Addr,
1450                                               uint64_t Size, int32_t,
1451                                               llvm::GlobalValue::LinkageTypes) {
1452   // TODO: Add support for global variables on the device after declare target
1453   // support.
1454   if (!isa<llvm::Function>(Addr))
1455     return;
1456   llvm::Module &M = CGM.getModule();
1457   llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1458 
1459   // Get "nvvm.annotations" metadata node
1460   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1461 
1462   llvm::Metadata *MDVals[] = {
1463       llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"),
1464       llvm::ConstantAsMetadata::get(
1465           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1466   // Append metadata to nvvm.annotations
1467   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1468 }
1469 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)1470 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
1471     const OMPExecutableDirective &D, StringRef ParentName,
1472     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1473     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1474   if (!IsOffloadEntry) // Nothing to do.
1475     return;
1476 
1477   assert(!ParentName.empty() && "Invalid target region parent name!");
1478 
1479   bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1480   if (Mode)
1481     emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1482                    CodeGen);
1483   else
1484     emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1485                       CodeGen);
1486 
1487   setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1488 }
1489 
1490 namespace {
1491 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
1492 /// Enum for accesseing the reserved_2 field of the ident_t struct.
1493 enum ModeFlagsTy : unsigned {
1494   /// Bit set to 1 when in SPMD mode.
1495   KMP_IDENT_SPMD_MODE = 0x01,
1496   /// Bit set to 1 when a simplified runtime is used.
1497   KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1498   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
1499 };
1500 
1501 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1502 static const ModeFlagsTy UndefinedMode =
1503     (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1504 } // anonymous namespace
1505 
getDefaultLocationReserved2Flags() const1506 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
1507   switch (getExecutionMode()) {
1508   case EM_SPMD:
1509     if (requiresFullRuntime())
1510       return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1511     return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1512   case EM_NonSPMD:
1513     assert(requiresFullRuntime() && "Expected full runtime.");
1514     return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1515   case EM_Unknown:
1516     return UndefinedMode;
1517   }
1518   llvm_unreachable("Unknown flags are requested.");
1519 }
1520 
CGOpenMPRuntimeGPU(CodeGenModule & CGM)1521 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
1522     : CGOpenMPRuntime(CGM, "_", "$") {
1523   if (!CGM.getLangOpts().OpenMPIsDevice)
1524     llvm_unreachable("OpenMP NVPTX can only handle device code.");
1525 }
1526 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)1527 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
1528                                               ProcBindKind ProcBind,
1529                                               SourceLocation Loc) {
1530   // Do nothing in case of SPMD mode and L0 parallel.
1531   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1532     return;
1533 
1534   CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1535 }
1536 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)1537 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
1538                                                 llvm::Value *NumThreads,
1539                                                 SourceLocation Loc) {
1540   // Do nothing in case of SPMD mode and L0 parallel.
1541   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1542     return;
1543 
1544   CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc);
1545 }
1546 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)1547 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
1548                                               const Expr *NumTeams,
1549                                               const Expr *ThreadLimit,
1550                                               SourceLocation Loc) {}
1551 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1552 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
1553     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1554     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1555   // Emit target region as a standalone region.
1556   class NVPTXPrePostActionTy : public PrePostActionTy {
1557     bool &IsInParallelRegion;
1558     bool PrevIsInParallelRegion;
1559 
1560   public:
1561     NVPTXPrePostActionTy(bool &IsInParallelRegion)
1562         : IsInParallelRegion(IsInParallelRegion) {}
1563     void Enter(CodeGenFunction &CGF) override {
1564       PrevIsInParallelRegion = IsInParallelRegion;
1565       IsInParallelRegion = true;
1566     }
1567     void Exit(CodeGenFunction &CGF) override {
1568       IsInParallelRegion = PrevIsInParallelRegion;
1569     }
1570   } Action(IsInParallelRegion);
1571   CodeGen.setAction(Action);
1572   bool PrevIsInTTDRegion = IsInTTDRegion;
1573   IsInTTDRegion = false;
1574   bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
1575   IsInTargetMasterThreadRegion = false;
1576   auto *OutlinedFun =
1577       cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
1578           D, ThreadIDVar, InnermostKind, CodeGen));
1579   if (CGM.getLangOpts().Optimize) {
1580     OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
1581     OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
1582     OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
1583   }
1584   IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
1585   IsInTTDRegion = PrevIsInTTDRegion;
1586   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
1587       !IsInParallelRegion) {
1588     llvm::Function *WrapperFun =
1589         createParallelDataSharingWrapper(OutlinedFun, D);
1590     WrapperFunctionsMap[OutlinedFun] = WrapperFun;
1591   }
1592 
1593   return OutlinedFun;
1594 }
1595 
1596 /// Get list of lastprivate variables from the teams distribute ... or
1597 /// teams {distribute ...} directives.
1598 static void
getDistributeLastprivateVars(ASTContext & Ctx,const OMPExecutableDirective & D,llvm::SmallVectorImpl<const ValueDecl * > & Vars)1599 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1600                              llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1601   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1602          "expected teams directive.");
1603   const OMPExecutableDirective *Dir = &D;
1604   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1605     if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
1606             Ctx,
1607             D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
1608                 /*IgnoreCaptured=*/true))) {
1609       Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
1610       if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
1611         Dir = nullptr;
1612     }
1613   }
1614   if (!Dir)
1615     return;
1616   for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
1617     for (const Expr *E : C->getVarRefs())
1618       Vars.push_back(getPrivateItem(E));
1619   }
1620 }
1621 
1622 /// Get list of reduction variables from the teams ... directives.
1623 static void
getTeamsReductionVars(ASTContext & Ctx,const OMPExecutableDirective & D,llvm::SmallVectorImpl<const ValueDecl * > & Vars)1624 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1625                       llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1626   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1627          "expected teams directive.");
1628   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1629     for (const Expr *E : C->privates())
1630       Vars.push_back(getPrivateItem(E));
1631   }
1632 }
1633 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1634 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1635     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1636     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1637   SourceLocation Loc = D.getBeginLoc();
1638 
1639   const RecordDecl *GlobalizedRD = nullptr;
1640   llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1641   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1642   unsigned WarpSize = CGM.getTarget().getGridValue(llvm::omp::GV_Warp_Size);
1643   // Globalize team reductions variable unconditionally in all modes.
1644   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1645     getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1646   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1647     getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1648     if (!LastPrivatesReductions.empty()) {
1649       GlobalizedRD = ::buildRecordForGlobalizedVars(
1650           CGM.getContext(), llvm::None, LastPrivatesReductions,
1651           MappedDeclsFields, WarpSize);
1652     }
1653   } else if (!LastPrivatesReductions.empty()) {
1654     assert(!TeamAndReductions.first &&
1655            "Previous team declaration is not expected.");
1656     TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1657     std::swap(TeamAndReductions.second, LastPrivatesReductions);
1658   }
1659 
1660   // Emit target region as a standalone region.
1661   class NVPTXPrePostActionTy : public PrePostActionTy {
1662     SourceLocation &Loc;
1663     const RecordDecl *GlobalizedRD;
1664     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1665         &MappedDeclsFields;
1666 
1667   public:
1668     NVPTXPrePostActionTy(
1669         SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1670         llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1671             &MappedDeclsFields)
1672         : Loc(Loc), GlobalizedRD(GlobalizedRD),
1673           MappedDeclsFields(MappedDeclsFields) {}
1674     void Enter(CodeGenFunction &CGF) override {
1675       auto &Rt =
1676           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1677       if (GlobalizedRD) {
1678         auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1679         I->getSecond().GlobalRecord = GlobalizedRD;
1680         I->getSecond().MappedParams =
1681             std::make_unique<CodeGenFunction::OMPMapVars>();
1682         DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1683         for (const auto &Pair : MappedDeclsFields) {
1684           assert(Pair.getFirst()->isCanonicalDecl() &&
1685                  "Expected canonical declaration");
1686           Data.insert(std::make_pair(Pair.getFirst(),
1687                                      MappedVarData(Pair.getSecond(),
1688                                                    /*IsOnePerTeam=*/true)));
1689         }
1690       }
1691       Rt.emitGenericVarsProlog(CGF, Loc);
1692     }
1693     void Exit(CodeGenFunction &CGF) override {
1694       static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1695           .emitGenericVarsEpilog(CGF);
1696     }
1697   } Action(Loc, GlobalizedRD, MappedDeclsFields);
1698   CodeGen.setAction(Action);
1699   llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1700       D, ThreadIDVar, InnermostKind, CodeGen);
1701   if (CGM.getLangOpts().Optimize) {
1702     OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
1703     OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
1704     OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
1705   }
1706 
1707   return OutlinedFun;
1708 }
1709 
emitGenericVarsProlog(CodeGenFunction & CGF,SourceLocation Loc,bool WithSPMDCheck)1710 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1711                                                  SourceLocation Loc,
1712                                                  bool WithSPMDCheck) {
1713   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1714       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1715     return;
1716 
1717   CGBuilderTy &Bld = CGF.Builder;
1718 
1719   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1720   if (I == FunctionGlobalizedDecls.end())
1721     return;
1722   if (const RecordDecl *GlobalizedVarsRecord = I->getSecond().GlobalRecord) {
1723     QualType GlobalRecTy = CGM.getContext().getRecordType(GlobalizedVarsRecord);
1724     QualType SecGlobalRecTy;
1725 
1726     // Recover pointer to this function's global record. The runtime will
1727     // handle the specifics of the allocation of the memory.
1728     // Use actual memory size of the record including the padding
1729     // for alignment purposes.
1730     unsigned Alignment =
1731         CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
1732     unsigned GlobalRecordSize =
1733         CGM.getContext().getTypeSizeInChars(GlobalRecTy).getQuantity();
1734     GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
1735 
1736     llvm::PointerType *GlobalRecPtrTy =
1737         CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo();
1738     llvm::Value *GlobalRecCastAddr;
1739     llvm::Value *IsTTD = nullptr;
1740     if (!IsInTTDRegion &&
1741         (WithSPMDCheck ||
1742          getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) {
1743       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
1744       llvm::BasicBlock *SPMDBB = CGF.createBasicBlock(".spmd");
1745       llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
1746       if (I->getSecond().SecondaryGlobalRecord.hasValue()) {
1747         llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1748         llvm::Value *ThreadID = getThreadID(CGF, Loc);
1749         llvm::Value *PL = CGF.EmitRuntimeCall(
1750             OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
1751                                                   OMPRTL___kmpc_parallel_level),
1752             {RTLoc, ThreadID});
1753         IsTTD = Bld.CreateIsNull(PL);
1754       }
1755       llvm::Value *IsSPMD = Bld.CreateIsNotNull(
1756           CGF.EmitNounwindRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1757               CGM.getModule(), OMPRTL___kmpc_is_spmd_exec_mode)));
1758       Bld.CreateCondBr(IsSPMD, SPMDBB, NonSPMDBB);
1759       // There is no need to emit line number for unconditional branch.
1760       (void)ApplyDebugLocation::CreateEmpty(CGF);
1761       CGF.EmitBlock(SPMDBB);
1762       Address RecPtr = Address(llvm::ConstantPointerNull::get(GlobalRecPtrTy),
1763                                CharUnits::fromQuantity(Alignment));
1764       CGF.EmitBranch(ExitBB);
1765       // There is no need to emit line number for unconditional branch.
1766       (void)ApplyDebugLocation::CreateEmpty(CGF);
1767       CGF.EmitBlock(NonSPMDBB);
1768       llvm::Value *Size = llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize);
1769       if (const RecordDecl *SecGlobalizedVarsRecord =
1770               I->getSecond().SecondaryGlobalRecord.getValueOr(nullptr)) {
1771         SecGlobalRecTy =
1772             CGM.getContext().getRecordType(SecGlobalizedVarsRecord);
1773 
1774         // Recover pointer to this function's global record. The runtime will
1775         // handle the specifics of the allocation of the memory.
1776         // Use actual memory size of the record including the padding
1777         // for alignment purposes.
1778         unsigned Alignment =
1779             CGM.getContext().getTypeAlignInChars(SecGlobalRecTy).getQuantity();
1780         unsigned GlobalRecordSize =
1781             CGM.getContext().getTypeSizeInChars(SecGlobalRecTy).getQuantity();
1782         GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
1783         Size = Bld.CreateSelect(
1784             IsTTD, llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), Size);
1785       }
1786       // TODO: allow the usage of shared memory to be controlled by
1787       // the user, for now, default to global.
1788       llvm::Value *GlobalRecordSizeArg[] = {
1789           Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
1790       llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
1791           OMPBuilder.getOrCreateRuntimeFunction(
1792               CGM.getModule(), OMPRTL___kmpc_data_sharing_coalesced_push_stack),
1793           GlobalRecordSizeArg);
1794       GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1795           GlobalRecValue, GlobalRecPtrTy);
1796       CGF.EmitBlock(ExitBB);
1797       auto *Phi = Bld.CreatePHI(GlobalRecPtrTy,
1798                                 /*NumReservedValues=*/2, "_select_stack");
1799       Phi->addIncoming(RecPtr.getPointer(), SPMDBB);
1800       Phi->addIncoming(GlobalRecCastAddr, NonSPMDBB);
1801       GlobalRecCastAddr = Phi;
1802       I->getSecond().GlobalRecordAddr = Phi;
1803       I->getSecond().IsInSPMDModeFlag = IsSPMD;
1804     } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) {
1805       assert(GlobalizedRecords.back().Records.size() < 2 &&
1806              "Expected less than 2 globalized records: one for target and one "
1807              "for teams.");
1808       unsigned Offset = 0;
1809       for (const RecordDecl *RD : GlobalizedRecords.back().Records) {
1810         QualType RDTy = CGM.getContext().getRecordType(RD);
1811         unsigned Alignment =
1812             CGM.getContext().getTypeAlignInChars(RDTy).getQuantity();
1813         unsigned Size = CGM.getContext().getTypeSizeInChars(RDTy).getQuantity();
1814         Offset =
1815             llvm::alignTo(llvm::alignTo(Offset, Alignment) + Size, Alignment);
1816       }
1817       unsigned Alignment =
1818           CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
1819       Offset = llvm::alignTo(Offset, Alignment);
1820       GlobalizedRecords.back().Records.push_back(GlobalizedVarsRecord);
1821       ++GlobalizedRecords.back().RegionCounter;
1822       if (GlobalizedRecords.back().Records.size() == 1) {
1823         assert(KernelStaticGlobalized &&
1824                "Kernel static pointer must be initialized already.");
1825         auto *UseSharedMemory = new llvm::GlobalVariable(
1826             CGM.getModule(), CGM.Int16Ty, /*isConstant=*/true,
1827             llvm::GlobalValue::InternalLinkage, nullptr,
1828             "_openmp_static_kernel$is_shared");
1829         UseSharedMemory->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1830         QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
1831             /*DestWidth=*/16, /*Signed=*/0);
1832         llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
1833             Address(UseSharedMemory,
1834                     CGM.getContext().getTypeAlignInChars(Int16Ty)),
1835             /*Volatile=*/false, Int16Ty, Loc);
1836         auto *StaticGlobalized = new llvm::GlobalVariable(
1837             CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false,
1838             llvm::GlobalValue::CommonLinkage, nullptr);
1839         auto *RecSize = new llvm::GlobalVariable(
1840             CGM.getModule(), CGM.SizeTy, /*isConstant=*/true,
1841             llvm::GlobalValue::InternalLinkage, nullptr,
1842             "_openmp_static_kernel$size");
1843         RecSize->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1844         llvm::Value *Ld = CGF.EmitLoadOfScalar(
1845             Address(RecSize, CGM.getSizeAlign()), /*Volatile=*/false,
1846             CGM.getContext().getSizeType(), Loc);
1847         llvm::Value *ResAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1848             KernelStaticGlobalized, CGM.VoidPtrPtrTy);
1849         llvm::Value *GlobalRecordSizeArg[] = {
1850             llvm::ConstantInt::get(
1851                 CGM.Int16Ty,
1852                 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD ? 1 : 0),
1853             StaticGlobalized, Ld, IsInSharedMemory, ResAddr};
1854         CGF.EmitRuntimeCall(
1855             OMPBuilder.getOrCreateRuntimeFunction(
1856                 CGM.getModule(), OMPRTL___kmpc_get_team_static_memory),
1857             GlobalRecordSizeArg);
1858         GlobalizedRecords.back().Buffer = StaticGlobalized;
1859         GlobalizedRecords.back().RecSize = RecSize;
1860         GlobalizedRecords.back().UseSharedMemory = UseSharedMemory;
1861         GlobalizedRecords.back().Loc = Loc;
1862       }
1863       assert(KernelStaticGlobalized && "Global address must be set already.");
1864       Address FrameAddr = CGF.EmitLoadOfPointer(
1865           Address(KernelStaticGlobalized, CGM.getPointerAlign()),
1866           CGM.getContext()
1867               .getPointerType(CGM.getContext().VoidPtrTy)
1868               .castAs<PointerType>());
1869       llvm::Value *GlobalRecValue =
1870           Bld.CreateConstInBoundsGEP(FrameAddr, Offset).getPointer();
1871       I->getSecond().GlobalRecordAddr = GlobalRecValue;
1872       I->getSecond().IsInSPMDModeFlag = nullptr;
1873       GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1874           GlobalRecValue, CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo());
1875     } else {
1876       // TODO: allow the usage of shared memory to be controlled by
1877       // the user, for now, default to global.
1878       bool UseSharedMemory =
1879           IsInTTDRegion && GlobalRecordSize <= SharedMemorySize;
1880       llvm::Value *GlobalRecordSizeArg[] = {
1881           llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize),
1882           CGF.Builder.getInt16(UseSharedMemory ? 1 : 0)};
1883       llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
1884           OMPBuilder.getOrCreateRuntimeFunction(
1885               CGM.getModule(),
1886               IsInTTDRegion ? OMPRTL___kmpc_data_sharing_push_stack
1887                             : OMPRTL___kmpc_data_sharing_coalesced_push_stack),
1888           GlobalRecordSizeArg);
1889       GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1890           GlobalRecValue, GlobalRecPtrTy);
1891       I->getSecond().GlobalRecordAddr = GlobalRecValue;
1892       I->getSecond().IsInSPMDModeFlag = nullptr;
1893     }
1894     LValue Base =
1895         CGF.MakeNaturalAlignPointeeAddrLValue(GlobalRecCastAddr, GlobalRecTy);
1896 
1897     // Emit the "global alloca" which is a GEP from the global declaration
1898     // record using the pointer returned by the runtime.
1899     LValue SecBase;
1900     decltype(I->getSecond().LocalVarData)::const_iterator SecIt;
1901     if (IsTTD) {
1902       SecIt = I->getSecond().SecondaryLocalVarData->begin();
1903       llvm::PointerType *SecGlobalRecPtrTy =
1904           CGF.ConvertTypeForMem(SecGlobalRecTy)->getPointerTo();
1905       SecBase = CGF.MakeNaturalAlignPointeeAddrLValue(
1906           Bld.CreatePointerBitCastOrAddrSpaceCast(
1907               I->getSecond().GlobalRecordAddr, SecGlobalRecPtrTy),
1908           SecGlobalRecTy);
1909     }
1910     for (auto &Rec : I->getSecond().LocalVarData) {
1911       bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1912       llvm::Value *ParValue;
1913       if (EscapedParam) {
1914         const auto *VD = cast<VarDecl>(Rec.first);
1915         LValue ParLVal =
1916             CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1917         ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1918       }
1919       LValue VarAddr = CGF.EmitLValueForField(Base, Rec.second.FD);
1920       // Emit VarAddr basing on lane-id if required.
1921       QualType VarTy;
1922       if (Rec.second.IsOnePerTeam) {
1923         VarTy = Rec.second.FD->getType();
1924       } else {
1925         llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(
1926             VarAddr.getAddress(CGF).getPointer(),
1927             {Bld.getInt32(0), getNVPTXLaneID(CGF)});
1928         VarTy =
1929             Rec.second.FD->getType()->castAsArrayTypeUnsafe()->getElementType();
1930         VarAddr = CGF.MakeAddrLValue(
1931             Address(Ptr, CGM.getContext().getDeclAlign(Rec.first)), VarTy,
1932             AlignmentSource::Decl);
1933       }
1934       Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1935       if (!IsInTTDRegion &&
1936           (WithSPMDCheck ||
1937            getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) {
1938         assert(I->getSecond().IsInSPMDModeFlag &&
1939                "Expected unknown execution mode or required SPMD check.");
1940         if (IsTTD) {
1941           assert(SecIt->second.IsOnePerTeam &&
1942                  "Secondary glob data must be one per team.");
1943           LValue SecVarAddr = CGF.EmitLValueForField(SecBase, SecIt->second.FD);
1944           VarAddr.setAddress(
1945               Address(Bld.CreateSelect(IsTTD, SecVarAddr.getPointer(CGF),
1946                                        VarAddr.getPointer(CGF)),
1947                       VarAddr.getAlignment()));
1948           Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1949         }
1950         Address GlobalPtr = Rec.second.PrivateAddr;
1951         Address LocalAddr = CGF.CreateMemTemp(VarTy, Rec.second.FD->getName());
1952         Rec.second.PrivateAddr = Address(
1953             Bld.CreateSelect(I->getSecond().IsInSPMDModeFlag,
1954                              LocalAddr.getPointer(), GlobalPtr.getPointer()),
1955             LocalAddr.getAlignment());
1956       }
1957       if (EscapedParam) {
1958         const auto *VD = cast<VarDecl>(Rec.first);
1959         CGF.EmitStoreOfScalar(ParValue, VarAddr);
1960         I->getSecond().MappedParams->setVarAddr(CGF, VD,
1961                                                 VarAddr.getAddress(CGF));
1962       }
1963       if (IsTTD)
1964         ++SecIt;
1965     }
1966   }
1967   for (const ValueDecl *VD : I->getSecond().EscapedVariableLengthDecls) {
1968     // Recover pointer to this function's global record. The runtime will
1969     // handle the specifics of the allocation of the memory.
1970     // Use actual memory size of the record including the padding
1971     // for alignment purposes.
1972     CGBuilderTy &Bld = CGF.Builder;
1973     llvm::Value *Size = CGF.getTypeSize(VD->getType());
1974     CharUnits Align = CGM.getContext().getDeclAlign(VD);
1975     Size = Bld.CreateNUWAdd(
1976         Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1977     llvm::Value *AlignVal =
1978         llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1979     Size = Bld.CreateUDiv(Size, AlignVal);
1980     Size = Bld.CreateNUWMul(Size, AlignVal);
1981     // TODO: allow the usage of shared memory to be controlled by
1982     // the user, for now, default to global.
1983     llvm::Value *GlobalRecordSizeArg[] = {
1984         Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
1985     llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
1986         OMPBuilder.getOrCreateRuntimeFunction(
1987             CGM.getModule(), OMPRTL___kmpc_data_sharing_coalesced_push_stack),
1988         GlobalRecordSizeArg);
1989     llvm::Value *GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1990         GlobalRecValue, CGF.ConvertTypeForMem(VD->getType())->getPointerTo());
1991     LValue Base = CGF.MakeAddrLValue(GlobalRecCastAddr, VD->getType(),
1992                                      CGM.getContext().getDeclAlign(VD),
1993                                      AlignmentSource::Decl);
1994     I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1995                                             Base.getAddress(CGF));
1996     I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(GlobalRecValue);
1997   }
1998   I->getSecond().MappedParams->apply(CGF);
1999 }
2000 
emitGenericVarsEpilog(CodeGenFunction & CGF,bool WithSPMDCheck)2001 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
2002                                                  bool WithSPMDCheck) {
2003   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
2004       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
2005     return;
2006 
2007   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
2008   if (I != FunctionGlobalizedDecls.end()) {
2009     I->getSecond().MappedParams->restore(CGF);
2010     if (!CGF.HaveInsertPoint())
2011       return;
2012     for (llvm::Value *Addr :
2013          llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
2014       CGF.EmitRuntimeCall(
2015           OMPBuilder.getOrCreateRuntimeFunction(
2016               CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack),
2017           Addr);
2018     }
2019     if (I->getSecond().GlobalRecordAddr) {
2020       if (!IsInTTDRegion &&
2021           (WithSPMDCheck ||
2022            getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) {
2023         CGBuilderTy &Bld = CGF.Builder;
2024         llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
2025         llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
2026         Bld.CreateCondBr(I->getSecond().IsInSPMDModeFlag, ExitBB, NonSPMDBB);
2027         // There is no need to emit line number for unconditional branch.
2028         (void)ApplyDebugLocation::CreateEmpty(CGF);
2029         CGF.EmitBlock(NonSPMDBB);
2030         CGF.EmitRuntimeCall(
2031             OMPBuilder.getOrCreateRuntimeFunction(
2032                 CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack),
2033             CGF.EmitCastToVoidPtr(I->getSecond().GlobalRecordAddr));
2034         CGF.EmitBlock(ExitBB);
2035       } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) {
2036         assert(GlobalizedRecords.back().RegionCounter > 0 &&
2037                "region counter must be > 0.");
2038         --GlobalizedRecords.back().RegionCounter;
2039         // Emit the restore function only in the target region.
2040         if (GlobalizedRecords.back().RegionCounter == 0) {
2041           QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
2042               /*DestWidth=*/16, /*Signed=*/0);
2043           llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
2044               Address(GlobalizedRecords.back().UseSharedMemory,
2045                       CGM.getContext().getTypeAlignInChars(Int16Ty)),
2046               /*Volatile=*/false, Int16Ty, GlobalizedRecords.back().Loc);
2047           llvm::Value *Args[] = {
2048               llvm::ConstantInt::get(
2049                   CGM.Int16Ty,
2050                   getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD ? 1 : 0),
2051               IsInSharedMemory};
2052           CGF.EmitRuntimeCall(
2053               OMPBuilder.getOrCreateRuntimeFunction(
2054                   CGM.getModule(), OMPRTL___kmpc_restore_team_static_memory),
2055               Args);
2056         }
2057       } else {
2058         CGF.EmitRuntimeCall(
2059             OMPBuilder.getOrCreateRuntimeFunction(
2060                 CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack),
2061             I->getSecond().GlobalRecordAddr);
2062       }
2063     }
2064   }
2065 }
2066 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)2067 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
2068                                          const OMPExecutableDirective &D,
2069                                          SourceLocation Loc,
2070                                          llvm::Function *OutlinedFn,
2071                                          ArrayRef<llvm::Value *> CapturedVars) {
2072   if (!CGF.HaveInsertPoint())
2073     return;
2074 
2075   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2076                                                       /*Name=*/".zero.addr");
2077   CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2078   llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2079   OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
2080   OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2081   OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2082   emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2083 }
2084 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)2085 void CGOpenMPRuntimeGPU::emitParallelCall(
2086     CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn,
2087     ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
2088   if (!CGF.HaveInsertPoint())
2089     return;
2090 
2091   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
2092     emitSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
2093   else
2094     emitNonSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
2095 }
2096 
emitNonSPMDParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)2097 void CGOpenMPRuntimeGPU::emitNonSPMDParallelCall(
2098     CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
2099     ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
2100   llvm::Function *Fn = cast<llvm::Function>(OutlinedFn);
2101 
2102   // Force inline this outlined function at its call site.
2103   Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
2104 
2105   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2106                                                       /*Name=*/".zero.addr");
2107   CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2108   // ThreadId for serialized parallels is 0.
2109   Address ThreadIDAddr = ZeroAddr;
2110   auto &&CodeGen = [this, Fn, CapturedVars, Loc, &ThreadIDAddr](
2111                        CodeGenFunction &CGF, PrePostActionTy &Action) {
2112     Action.Enter(CGF);
2113 
2114     Address ZeroAddr =
2115         CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2116                                          /*Name=*/".bound.zero.addr");
2117     CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2118     llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2119     OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
2120     OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2121     OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2122     emitOutlinedFunctionCall(CGF, Loc, Fn, OutlinedFnArgs);
2123   };
2124   auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
2125                                         PrePostActionTy &) {
2126 
2127     RegionCodeGenTy RCG(CodeGen);
2128     llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2129     llvm::Value *ThreadID = getThreadID(CGF, Loc);
2130     llvm::Value *Args[] = {RTLoc, ThreadID};
2131 
2132     NVPTXActionTy Action(
2133         OMPBuilder.getOrCreateRuntimeFunction(
2134             CGM.getModule(), OMPRTL___kmpc_serialized_parallel),
2135         Args,
2136         OMPBuilder.getOrCreateRuntimeFunction(
2137             CGM.getModule(), OMPRTL___kmpc_end_serialized_parallel),
2138         Args);
2139     RCG.setAction(Action);
2140     RCG(CGF);
2141   };
2142 
2143   auto &&L0ParallelGen = [this, CapturedVars, Fn](CodeGenFunction &CGF,
2144                                                   PrePostActionTy &Action) {
2145     CGBuilderTy &Bld = CGF.Builder;
2146     llvm::Function *WFn = WrapperFunctionsMap[Fn];
2147     assert(WFn && "Wrapper function does not exist!");
2148     llvm::Value *ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
2149 
2150     // Prepare for parallel region. Indicate the outlined function.
2151     llvm::Value *Args[] = {ID};
2152     CGF.EmitRuntimeCall(
2153         OMPBuilder.getOrCreateRuntimeFunction(
2154             CGM.getModule(), OMPRTL___kmpc_kernel_prepare_parallel),
2155         Args);
2156 
2157     // Create a private scope that will globalize the arguments
2158     // passed from the outside of the target region.
2159     CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
2160 
2161     // There's something to share.
2162     if (!CapturedVars.empty()) {
2163       // Prepare for parallel region. Indicate the outlined function.
2164       Address SharedArgs =
2165           CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "shared_arg_refs");
2166       llvm::Value *SharedArgsPtr = SharedArgs.getPointer();
2167 
2168       llvm::Value *DataSharingArgs[] = {
2169           SharedArgsPtr,
2170           llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
2171       CGF.EmitRuntimeCall(
2172           OMPBuilder.getOrCreateRuntimeFunction(
2173               CGM.getModule(), OMPRTL___kmpc_begin_sharing_variables),
2174           DataSharingArgs);
2175 
2176       // Store variable address in a list of references to pass to workers.
2177       unsigned Idx = 0;
2178       ASTContext &Ctx = CGF.getContext();
2179       Address SharedArgListAddress = CGF.EmitLoadOfPointer(
2180           SharedArgs, Ctx.getPointerType(Ctx.getPointerType(Ctx.VoidPtrTy))
2181                           .castAs<PointerType>());
2182       for (llvm::Value *V : CapturedVars) {
2183         Address Dst = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
2184         llvm::Value *PtrV;
2185         if (V->getType()->isIntegerTy())
2186           PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
2187         else
2188           PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
2189         CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
2190                               Ctx.getPointerType(Ctx.VoidPtrTy));
2191         ++Idx;
2192       }
2193     }
2194 
2195     // Activate workers. This barrier is used by the master to signal
2196     // work for the workers.
2197     syncCTAThreads(CGF);
2198 
2199     // OpenMP [2.5, Parallel Construct, p.49]
2200     // There is an implied barrier at the end of a parallel region. After the
2201     // end of a parallel region, only the master thread of the team resumes
2202     // execution of the enclosing task region.
2203     //
2204     // The master waits at this barrier until all workers are done.
2205     syncCTAThreads(CGF);
2206 
2207     if (!CapturedVars.empty())
2208       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2209           CGM.getModule(), OMPRTL___kmpc_end_sharing_variables));
2210 
2211     // Remember for post-processing in worker loop.
2212     Work.emplace_back(WFn);
2213   };
2214 
2215   auto &&LNParallelGen = [this, Loc, &SeqGen, &L0ParallelGen](
2216                              CodeGenFunction &CGF, PrePostActionTy &Action) {
2217     if (IsInParallelRegion) {
2218       SeqGen(CGF, Action);
2219     } else if (IsInTargetMasterThreadRegion) {
2220       L0ParallelGen(CGF, Action);
2221     } else {
2222       // Check for master and then parallelism:
2223       // if (__kmpc_is_spmd_exec_mode() || __kmpc_parallel_level(loc, gtid)) {
2224       //   Serialized execution.
2225       // } else {
2226       //   Worker call.
2227       // }
2228       CGBuilderTy &Bld = CGF.Builder;
2229       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
2230       llvm::BasicBlock *SeqBB = CGF.createBasicBlock(".sequential");
2231       llvm::BasicBlock *ParallelCheckBB = CGF.createBasicBlock(".parcheck");
2232       llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
2233       llvm::Value *IsSPMD = Bld.CreateIsNotNull(
2234           CGF.EmitNounwindRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2235               CGM.getModule(), OMPRTL___kmpc_is_spmd_exec_mode)));
2236       Bld.CreateCondBr(IsSPMD, SeqBB, ParallelCheckBB);
2237       // There is no need to emit line number for unconditional branch.
2238       (void)ApplyDebugLocation::CreateEmpty(CGF);
2239       CGF.EmitBlock(ParallelCheckBB);
2240       llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2241       llvm::Value *ThreadID = getThreadID(CGF, Loc);
2242       llvm::Value *PL = CGF.EmitRuntimeCall(
2243           OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2244                                                 OMPRTL___kmpc_parallel_level),
2245           {RTLoc, ThreadID});
2246       llvm::Value *Res = Bld.CreateIsNotNull(PL);
2247       Bld.CreateCondBr(Res, SeqBB, MasterBB);
2248       CGF.EmitBlock(SeqBB);
2249       SeqGen(CGF, Action);
2250       CGF.EmitBranch(ExitBB);
2251       // There is no need to emit line number for unconditional branch.
2252       (void)ApplyDebugLocation::CreateEmpty(CGF);
2253       CGF.EmitBlock(MasterBB);
2254       L0ParallelGen(CGF, Action);
2255       CGF.EmitBranch(ExitBB);
2256       // There is no need to emit line number for unconditional branch.
2257       (void)ApplyDebugLocation::CreateEmpty(CGF);
2258       // Emit the continuation block for code after the if.
2259       CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2260     }
2261   };
2262 
2263   if (IfCond) {
2264     emitIfClause(CGF, IfCond, LNParallelGen, SeqGen);
2265   } else {
2266     CodeGenFunction::RunCleanupsScope Scope(CGF);
2267     RegionCodeGenTy ThenRCG(LNParallelGen);
2268     ThenRCG(CGF);
2269   }
2270 }
2271 
emitSPMDParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)2272 void CGOpenMPRuntimeGPU::emitSPMDParallelCall(
2273     CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn,
2274     ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
2275   // Just call the outlined function to execute the parallel region.
2276   // OutlinedFn(&GTid, &zero, CapturedStruct);
2277   //
2278   llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2279 
2280   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2281                                                       /*Name=*/".zero.addr");
2282   CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2283   // ThreadId for serialized parallels is 0.
2284   Address ThreadIDAddr = ZeroAddr;
2285   auto &&CodeGen = [this, OutlinedFn, CapturedVars, Loc, &ThreadIDAddr](
2286                        CodeGenFunction &CGF, PrePostActionTy &Action) {
2287     Action.Enter(CGF);
2288 
2289     Address ZeroAddr =
2290         CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2291                                          /*Name=*/".bound.zero.addr");
2292     CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
2293     llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2294     OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
2295     OutlinedFnArgs.push_back(ZeroAddr.getPointer());
2296     OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2297     emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2298   };
2299   auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
2300                                         PrePostActionTy &) {
2301 
2302     RegionCodeGenTy RCG(CodeGen);
2303     llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2304     llvm::Value *ThreadID = getThreadID(CGF, Loc);
2305     llvm::Value *Args[] = {RTLoc, ThreadID};
2306 
2307     NVPTXActionTy Action(
2308         OMPBuilder.getOrCreateRuntimeFunction(
2309             CGM.getModule(), OMPRTL___kmpc_serialized_parallel),
2310         Args,
2311         OMPBuilder.getOrCreateRuntimeFunction(
2312             CGM.getModule(), OMPRTL___kmpc_end_serialized_parallel),
2313         Args);
2314     RCG.setAction(Action);
2315     RCG(CGF);
2316   };
2317 
2318   if (IsInTargetMasterThreadRegion) {
2319     // In the worker need to use the real thread id.
2320     ThreadIDAddr = emitThreadIDAddress(CGF, Loc);
2321     RegionCodeGenTy RCG(CodeGen);
2322     RCG(CGF);
2323   } else {
2324     // If we are not in the target region, it is definitely L2 parallelism or
2325     // more, because for SPMD mode we always has L1 parallel level, sowe don't
2326     // need to check for orphaned directives.
2327     RegionCodeGenTy RCG(SeqGen);
2328     RCG(CGF);
2329   }
2330 }
2331 
syncCTAThreads(CodeGenFunction & CGF)2332 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
2333   // Always emit simple barriers!
2334   if (!CGF.HaveInsertPoint())
2335     return;
2336   // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
2337   // This function does not use parameters, so we can emit just default values.
2338   llvm::Value *Args[] = {
2339       llvm::ConstantPointerNull::get(
2340           cast<llvm::PointerType>(getIdentTyPointerTy())),
2341       llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
2342   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2343                           CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
2344                       Args);
2345 }
2346 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool,bool)2347 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
2348                                            SourceLocation Loc,
2349                                            OpenMPDirectiveKind Kind, bool,
2350                                            bool) {
2351   // Always emit simple barriers!
2352   if (!CGF.HaveInsertPoint())
2353     return;
2354   // Build call __kmpc_cancel_barrier(loc, thread_id);
2355   unsigned Flags = getDefaultFlagsForBarriers(Kind);
2356   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
2357                          getThreadID(CGF, Loc)};
2358 
2359   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2360                           CGM.getModule(), OMPRTL___kmpc_barrier),
2361                       Args);
2362 }
2363 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)2364 void CGOpenMPRuntimeGPU::emitCriticalRegion(
2365     CodeGenFunction &CGF, StringRef CriticalName,
2366     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
2367     const Expr *Hint) {
2368   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
2369   llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
2370   llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
2371   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
2372   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
2373 
2374   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2375 
2376   // Get the mask of active threads in the warp.
2377   llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2378       CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
2379   // Fetch team-local id of the thread.
2380   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2381 
2382   // Get the width of the team.
2383   llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
2384 
2385   // Initialize the counter variable for the loop.
2386   QualType Int32Ty =
2387       CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
2388   Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
2389   LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
2390   CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
2391                         /*isInit=*/true);
2392 
2393   // Block checks if loop counter exceeds upper bound.
2394   CGF.EmitBlock(LoopBB);
2395   llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
2396   llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
2397   CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
2398 
2399   // Block tests which single thread should execute region, and which threads
2400   // should go straight to synchronisation point.
2401   CGF.EmitBlock(TestBB);
2402   CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
2403   llvm::Value *CmpThreadToCounter =
2404       CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
2405   CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
2406 
2407   // Block emits the body of the critical region.
2408   CGF.EmitBlock(BodyBB);
2409 
2410   // Output the critical statement.
2411   CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
2412                                       Hint);
2413 
2414   // After the body surrounded by the critical region, the single executing
2415   // thread will jump to the synchronisation point.
2416   // Block waits for all threads in current team to finish then increments the
2417   // counter variable and returns to the loop.
2418   CGF.EmitBlock(SyncBB);
2419   // Reconverge active threads in the warp.
2420   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2421                                 CGM.getModule(), OMPRTL___kmpc_syncwarp),
2422                             Mask);
2423 
2424   llvm::Value *IncCounterVal =
2425       CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
2426   CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
2427   CGF.EmitBranch(LoopBB);
2428 
2429   // Block that is reached when  all threads in the team complete the region.
2430   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2431 }
2432 
2433 /// Cast value to the specified type.
castValueToType(CodeGenFunction & CGF,llvm::Value * Val,QualType ValTy,QualType CastTy,SourceLocation Loc)2434 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
2435                                     QualType ValTy, QualType CastTy,
2436                                     SourceLocation Loc) {
2437   assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
2438          "Cast type must sized.");
2439   assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
2440          "Val type must sized.");
2441   llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
2442   if (ValTy == CastTy)
2443     return Val;
2444   if (CGF.getContext().getTypeSizeInChars(ValTy) ==
2445       CGF.getContext().getTypeSizeInChars(CastTy))
2446     return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
2447   if (CastTy->isIntegerType() && ValTy->isIntegerType())
2448     return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
2449                                      CastTy->hasSignedIntegerRepresentation());
2450   Address CastItem = CGF.CreateMemTemp(CastTy);
2451   Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2452       CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
2453   CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
2454                         LValueBaseInfo(AlignmentSource::Type),
2455                         TBAAAccessInfo());
2456   return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
2457                               LValueBaseInfo(AlignmentSource::Type),
2458                               TBAAAccessInfo());
2459 }
2460 
2461 /// This function creates calls to one of two shuffle functions to copy
2462 /// variables between lanes in a warp.
createRuntimeShuffleFunction(CodeGenFunction & CGF,llvm::Value * Elem,QualType ElemType,llvm::Value * Offset,SourceLocation Loc)2463 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
2464                                                  llvm::Value *Elem,
2465                                                  QualType ElemType,
2466                                                  llvm::Value *Offset,
2467                                                  SourceLocation Loc) {
2468   CodeGenModule &CGM = CGF.CGM;
2469   CGBuilderTy &Bld = CGF.Builder;
2470   CGOpenMPRuntimeGPU &RT =
2471       *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
2472   llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
2473 
2474   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
2475   assert(Size.getQuantity() <= 8 &&
2476          "Unsupported bitwidth in shuffle instruction.");
2477 
2478   RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
2479                                   ? OMPRTL___kmpc_shuffle_int32
2480                                   : OMPRTL___kmpc_shuffle_int64;
2481 
2482   // Cast all types to 32- or 64-bit values before calling shuffle routines.
2483   QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
2484       Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
2485   llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
2486   llvm::Value *WarpSize =
2487       Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
2488 
2489   llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
2490       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
2491       {ElemCast, Offset, WarpSize});
2492 
2493   return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
2494 }
2495 
shuffleAndStore(CodeGenFunction & CGF,Address SrcAddr,Address DestAddr,QualType ElemType,llvm::Value * Offset,SourceLocation Loc)2496 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
2497                             Address DestAddr, QualType ElemType,
2498                             llvm::Value *Offset, SourceLocation Loc) {
2499   CGBuilderTy &Bld = CGF.Builder;
2500 
2501   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
2502   // Create the loop over the big sized data.
2503   // ptr = (void*)Elem;
2504   // ptrEnd = (void*) Elem + 1;
2505   // Step = 8;
2506   // while (ptr + Step < ptrEnd)
2507   //   shuffle((int64_t)*ptr);
2508   // Step = 4;
2509   // while (ptr + Step < ptrEnd)
2510   //   shuffle((int32_t)*ptr);
2511   // ...
2512   Address ElemPtr = DestAddr;
2513   Address Ptr = SrcAddr;
2514   Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
2515       Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy);
2516   for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
2517     if (Size < CharUnits::fromQuantity(IntSize))
2518       continue;
2519     QualType IntType = CGF.getContext().getIntTypeForBitwidth(
2520         CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
2521         /*Signed=*/1);
2522     llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
2523     Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
2524     ElemPtr =
2525         Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
2526     if (Size.getQuantity() / IntSize > 1) {
2527       llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
2528       llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
2529       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
2530       llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
2531       CGF.EmitBlock(PreCondBB);
2532       llvm::PHINode *PhiSrc =
2533           Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
2534       PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
2535       llvm::PHINode *PhiDest =
2536           Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
2537       PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
2538       Ptr = Address(PhiSrc, Ptr.getAlignment());
2539       ElemPtr = Address(PhiDest, ElemPtr.getAlignment());
2540       llvm::Value *PtrDiff = Bld.CreatePtrDiff(
2541           PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast(
2542                                    Ptr.getPointer(), CGF.VoidPtrTy));
2543       Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
2544                        ThenBB, ExitBB);
2545       CGF.EmitBlock(ThenBB);
2546       llvm::Value *Res = createRuntimeShuffleFunction(
2547           CGF,
2548           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
2549                                LValueBaseInfo(AlignmentSource::Type),
2550                                TBAAAccessInfo()),
2551           IntType, Offset, Loc);
2552       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
2553                             LValueBaseInfo(AlignmentSource::Type),
2554                             TBAAAccessInfo());
2555       Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
2556       Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
2557       PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
2558       PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
2559       CGF.EmitBranch(PreCondBB);
2560       CGF.EmitBlock(ExitBB);
2561     } else {
2562       llvm::Value *Res = createRuntimeShuffleFunction(
2563           CGF,
2564           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
2565                                LValueBaseInfo(AlignmentSource::Type),
2566                                TBAAAccessInfo()),
2567           IntType, Offset, Loc);
2568       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
2569                             LValueBaseInfo(AlignmentSource::Type),
2570                             TBAAAccessInfo());
2571       Ptr = Bld.CreateConstGEP(Ptr, 1);
2572       ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
2573     }
2574     Size = Size % IntSize;
2575   }
2576 }
2577 
2578 namespace {
2579 enum CopyAction : unsigned {
2580   // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
2581   // the warp using shuffle instructions.
2582   RemoteLaneToThread,
2583   // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
2584   ThreadCopy,
2585   // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
2586   ThreadToScratchpad,
2587   // ScratchpadToThread: Copy from a scratchpad array in global memory
2588   // containing team-reduced data to a thread's stack.
2589   ScratchpadToThread,
2590 };
2591 } // namespace
2592 
2593 struct CopyOptionsTy {
2594   llvm::Value *RemoteLaneOffset;
2595   llvm::Value *ScratchpadIndex;
2596   llvm::Value *ScratchpadWidth;
2597 };
2598 
2599 /// Emit instructions to copy a Reduce list, which contains partially
2600 /// aggregated values, in the specified direction.
emitReductionListCopy(CopyAction Action,CodeGenFunction & CGF,QualType ReductionArrayTy,ArrayRef<const Expr * > Privates,Address SrcBase,Address DestBase,CopyOptionsTy CopyOptions={nullptr, nullptr, nullptr})2601 static void emitReductionListCopy(
2602     CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
2603     ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
2604     CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
2605 
2606   CodeGenModule &CGM = CGF.CGM;
2607   ASTContext &C = CGM.getContext();
2608   CGBuilderTy &Bld = CGF.Builder;
2609 
2610   llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
2611   llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
2612   llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
2613 
2614   // Iterates, element-by-element, through the source Reduce list and
2615   // make a copy.
2616   unsigned Idx = 0;
2617   unsigned Size = Privates.size();
2618   for (const Expr *Private : Privates) {
2619     Address SrcElementAddr = Address::invalid();
2620     Address DestElementAddr = Address::invalid();
2621     Address DestElementPtrAddr = Address::invalid();
2622     // Should we shuffle in an element from a remote lane?
2623     bool ShuffleInElement = false;
2624     // Set to true to update the pointer in the dest Reduce list to a
2625     // newly created element.
2626     bool UpdateDestListPtr = false;
2627     // Increment the src or dest pointer to the scratchpad, for each
2628     // new element.
2629     bool IncrScratchpadSrc = false;
2630     bool IncrScratchpadDest = false;
2631 
2632     switch (Action) {
2633     case RemoteLaneToThread: {
2634       // Step 1.1: Get the address for the src element in the Reduce list.
2635       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
2636       SrcElementAddr = CGF.EmitLoadOfPointer(
2637           SrcElementPtrAddr,
2638           C.getPointerType(Private->getType())->castAs<PointerType>());
2639 
2640       // Step 1.2: Create a temporary to store the element in the destination
2641       // Reduce list.
2642       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
2643       DestElementAddr =
2644           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
2645       ShuffleInElement = true;
2646       UpdateDestListPtr = true;
2647       break;
2648     }
2649     case ThreadCopy: {
2650       // Step 1.1: Get the address for the src element in the Reduce list.
2651       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
2652       SrcElementAddr = CGF.EmitLoadOfPointer(
2653           SrcElementPtrAddr,
2654           C.getPointerType(Private->getType())->castAs<PointerType>());
2655 
2656       // Step 1.2: Get the address for dest element.  The destination
2657       // element has already been created on the thread's stack.
2658       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
2659       DestElementAddr = CGF.EmitLoadOfPointer(
2660           DestElementPtrAddr,
2661           C.getPointerType(Private->getType())->castAs<PointerType>());
2662       break;
2663     }
2664     case ThreadToScratchpad: {
2665       // Step 1.1: Get the address for the src element in the Reduce list.
2666       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
2667       SrcElementAddr = CGF.EmitLoadOfPointer(
2668           SrcElementPtrAddr,
2669           C.getPointerType(Private->getType())->castAs<PointerType>());
2670 
2671       // Step 1.2: Get the address for dest element:
2672       // address = base + index * ElementSizeInChars.
2673       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2674       llvm::Value *CurrentOffset =
2675           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
2676       llvm::Value *ScratchPadElemAbsolutePtrVal =
2677           Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
2678       ScratchPadElemAbsolutePtrVal =
2679           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
2680       DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
2681                                 C.getTypeAlignInChars(Private->getType()));
2682       IncrScratchpadDest = true;
2683       break;
2684     }
2685     case ScratchpadToThread: {
2686       // Step 1.1: Get the address for the src element in the scratchpad.
2687       // address = base + index * ElementSizeInChars.
2688       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2689       llvm::Value *CurrentOffset =
2690           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
2691       llvm::Value *ScratchPadElemAbsolutePtrVal =
2692           Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
2693       ScratchPadElemAbsolutePtrVal =
2694           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
2695       SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
2696                                C.getTypeAlignInChars(Private->getType()));
2697       IncrScratchpadSrc = true;
2698 
2699       // Step 1.2: Create a temporary to store the element in the destination
2700       // Reduce list.
2701       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
2702       DestElementAddr =
2703           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
2704       UpdateDestListPtr = true;
2705       break;
2706     }
2707     }
2708 
2709     // Regardless of src and dest of copy, we emit the load of src
2710     // element as this is required in all directions
2711     SrcElementAddr = Bld.CreateElementBitCast(
2712         SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
2713     DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
2714                                                SrcElementAddr.getElementType());
2715 
2716     // Now that all active lanes have read the element in the
2717     // Reduce list, shuffle over the value from the remote lane.
2718     if (ShuffleInElement) {
2719       shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
2720                       RemoteLaneOffset, Private->getExprLoc());
2721     } else {
2722       switch (CGF.getEvaluationKind(Private->getType())) {
2723       case TEK_Scalar: {
2724         llvm::Value *Elem = CGF.EmitLoadOfScalar(
2725             SrcElementAddr, /*Volatile=*/false, Private->getType(),
2726             Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
2727             TBAAAccessInfo());
2728         // Store the source element value to the dest element address.
2729         CGF.EmitStoreOfScalar(
2730             Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
2731             LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2732         break;
2733       }
2734       case TEK_Complex: {
2735         CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
2736             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2737             Private->getExprLoc());
2738         CGF.EmitStoreOfComplex(
2739             Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2740             /*isInit=*/false);
2741         break;
2742       }
2743       case TEK_Aggregate:
2744         CGF.EmitAggregateCopy(
2745             CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2746             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2747             Private->getType(), AggValueSlot::DoesNotOverlap);
2748         break;
2749       }
2750     }
2751 
2752     // Step 3.1: Modify reference in dest Reduce list as needed.
2753     // Modifying the reference in Reduce list to point to the newly
2754     // created element.  The element is live in the current function
2755     // scope and that of functions it invokes (i.e., reduce_function).
2756     // RemoteReduceData[i] = (void*)&RemoteElem
2757     if (UpdateDestListPtr) {
2758       CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
2759                                 DestElementAddr.getPointer(), CGF.VoidPtrTy),
2760                             DestElementPtrAddr, /*Volatile=*/false,
2761                             C.VoidPtrTy);
2762     }
2763 
2764     // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
2765     // address of the next element in scratchpad memory, unless we're currently
2766     // processing the last one.  Memory alignment is also taken care of here.
2767     if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
2768       llvm::Value *ScratchpadBasePtr =
2769           IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
2770       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2771       ScratchpadBasePtr = Bld.CreateNUWAdd(
2772           ScratchpadBasePtr,
2773           Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
2774 
2775       // Take care of global memory alignment for performance
2776       ScratchpadBasePtr = Bld.CreateNUWSub(
2777           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2778       ScratchpadBasePtr = Bld.CreateUDiv(
2779           ScratchpadBasePtr,
2780           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2781       ScratchpadBasePtr = Bld.CreateNUWAdd(
2782           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2783       ScratchpadBasePtr = Bld.CreateNUWMul(
2784           ScratchpadBasePtr,
2785           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2786 
2787       if (IncrScratchpadDest)
2788         DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
2789       else /* IncrScratchpadSrc = true */
2790         SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
2791     }
2792 
2793     ++Idx;
2794   }
2795 }
2796 
2797 /// This function emits a helper that gathers Reduce lists from the first
2798 /// lane of every active warp to lanes in the first warp.
2799 ///
2800 /// void inter_warp_copy_func(void* reduce_data, num_warps)
2801 ///   shared smem[warp_size];
2802 ///   For all data entries D in reduce_data:
2803 ///     sync
2804 ///     If (I am the first lane in each warp)
2805 ///       Copy my local D to smem[warp_id]
2806 ///     sync
2807 ///     if (I am the first warp)
2808 ///       Copy smem[thread_id] to my local D
emitInterWarpCopyFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc)2809 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
2810                                               ArrayRef<const Expr *> Privates,
2811                                               QualType ReductionArrayTy,
2812                                               SourceLocation Loc) {
2813   ASTContext &C = CGM.getContext();
2814   llvm::Module &M = CGM.getModule();
2815 
2816   // ReduceList: thread local Reduce list.
2817   // At the stage of the computation when this function is called, partially
2818   // aggregated values reside in the first lane of every active warp.
2819   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2820                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2821   // NumWarps: number of warps active in the parallel region.  This could
2822   // be smaller than 32 (max warps in a CTA) for partial block reduction.
2823   ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2824                                 C.getIntTypeForBitwidth(32, /* Signed */ true),
2825                                 ImplicitParamDecl::Other);
2826   FunctionArgList Args;
2827   Args.push_back(&ReduceListArg);
2828   Args.push_back(&NumWarpsArg);
2829 
2830   const CGFunctionInfo &CGFI =
2831       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2832   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2833                                     llvm::GlobalValue::InternalLinkage,
2834                                     "_omp_reduction_inter_warp_copy_func", &M);
2835   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2836   Fn->setDoesNotRecurse();
2837   CodeGenFunction CGF(CGM);
2838   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2839 
2840   CGBuilderTy &Bld = CGF.Builder;
2841 
2842   // This array is used as a medium to transfer, one reduce element at a time,
2843   // the data from the first lane of every warp to lanes in the first warp
2844   // in order to perform the final step of a reduction in a parallel region
2845   // (reduction across warps).  The array is placed in NVPTX __shared__ memory
2846   // for reduced latency, as well as to have a distinct copy for concurrently
2847   // executing target regions.  The array is declared with common linkage so
2848   // as to be shared across compilation units.
2849   StringRef TransferMediumName =
2850       "__openmp_nvptx_data_transfer_temporary_storage";
2851   llvm::GlobalVariable *TransferMedium =
2852       M.getGlobalVariable(TransferMediumName);
2853   unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size);
2854   if (!TransferMedium) {
2855     auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
2856     unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
2857     TransferMedium = new llvm::GlobalVariable(
2858         M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
2859         llvm::UndefValue::get(Ty), TransferMediumName,
2860         /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2861         SharedAddressSpace);
2862     CGM.addCompilerUsedGlobal(TransferMedium);
2863   }
2864 
2865   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2866   // Get the CUDA thread id of the current OpenMP thread on the GPU.
2867   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2868   // nvptx_lane_id = nvptx_id % warpsize
2869   llvm::Value *LaneID = getNVPTXLaneID(CGF);
2870   // nvptx_warp_id = nvptx_id / warpsize
2871   llvm::Value *WarpID = getNVPTXWarpID(CGF);
2872 
2873   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2874   Address LocalReduceList(
2875       Bld.CreatePointerBitCastOrAddrSpaceCast(
2876           CGF.EmitLoadOfScalar(
2877               AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
2878               LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
2879           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2880       CGF.getPointerAlign());
2881 
2882   unsigned Idx = 0;
2883   for (const Expr *Private : Privates) {
2884     //
2885     // Warp master copies reduce element to transfer medium in __shared__
2886     // memory.
2887     //
2888     unsigned RealTySize =
2889         C.getTypeSizeInChars(Private->getType())
2890             .alignTo(C.getTypeAlignInChars(Private->getType()))
2891             .getQuantity();
2892     for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
2893       unsigned NumIters = RealTySize / TySize;
2894       if (NumIters == 0)
2895         continue;
2896       QualType CType = C.getIntTypeForBitwidth(
2897           C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
2898       llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
2899       CharUnits Align = CharUnits::fromQuantity(TySize);
2900       llvm::Value *Cnt = nullptr;
2901       Address CntAddr = Address::invalid();
2902       llvm::BasicBlock *PrecondBB = nullptr;
2903       llvm::BasicBlock *ExitBB = nullptr;
2904       if (NumIters > 1) {
2905         CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
2906         CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
2907                               /*Volatile=*/false, C.IntTy);
2908         PrecondBB = CGF.createBasicBlock("precond");
2909         ExitBB = CGF.createBasicBlock("exit");
2910         llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
2911         // There is no need to emit line number for unconditional branch.
2912         (void)ApplyDebugLocation::CreateEmpty(CGF);
2913         CGF.EmitBlock(PrecondBB);
2914         Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
2915         llvm::Value *Cmp =
2916             Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
2917         Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
2918         CGF.EmitBlock(BodyBB);
2919       }
2920       // kmpc_barrier.
2921       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2922                                              /*EmitChecks=*/false,
2923                                              /*ForceSimpleCall=*/true);
2924       llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2925       llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2926       llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2927 
2928       // if (lane_id == 0)
2929       llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
2930       Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2931       CGF.EmitBlock(ThenBB);
2932 
2933       // Reduce element = LocalReduceList[i]
2934       Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2935       llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2936           ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2937       // elemptr = ((CopyType*)(elemptrptr)) + I
2938       Address ElemPtr = Address(ElemPtrPtr, Align);
2939       ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
2940       if (NumIters > 1) {
2941         ElemPtr = Address(Bld.CreateGEP(ElemPtr.getPointer(), Cnt),
2942                           ElemPtr.getAlignment());
2943       }
2944 
2945       // Get pointer to location in transfer medium.
2946       // MediumPtr = &medium[warp_id]
2947       llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
2948           TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
2949       Address MediumPtr(MediumPtrVal, Align);
2950       // Casting to actual data type.
2951       // MediumPtr = (CopyType*)MediumPtrAddr;
2952       MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
2953 
2954       // elem = *elemptr
2955       //*MediumPtr = elem
2956       llvm::Value *Elem = CGF.EmitLoadOfScalar(
2957           ElemPtr, /*Volatile=*/false, CType, Loc,
2958           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2959       // Store the source element value to the dest element address.
2960       CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
2961                             LValueBaseInfo(AlignmentSource::Type),
2962                             TBAAAccessInfo());
2963 
2964       Bld.CreateBr(MergeBB);
2965 
2966       CGF.EmitBlock(ElseBB);
2967       Bld.CreateBr(MergeBB);
2968 
2969       CGF.EmitBlock(MergeBB);
2970 
2971       // kmpc_barrier.
2972       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2973                                              /*EmitChecks=*/false,
2974                                              /*ForceSimpleCall=*/true);
2975 
2976       //
2977       // Warp 0 copies reduce element from transfer medium.
2978       //
2979       llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
2980       llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
2981       llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
2982 
2983       Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
2984       llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
2985           AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
2986 
2987       // Up to 32 threads in warp 0 are active.
2988       llvm::Value *IsActiveThread =
2989           Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
2990       Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2991 
2992       CGF.EmitBlock(W0ThenBB);
2993 
2994       // SrcMediumPtr = &medium[tid]
2995       llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
2996           TransferMedium,
2997           {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
2998       Address SrcMediumPtr(SrcMediumPtrVal, Align);
2999       // SrcMediumVal = *SrcMediumPtr;
3000       SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
3001 
3002       // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
3003       Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
3004       llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
3005           TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
3006       Address TargetElemPtr = Address(TargetElemPtrVal, Align);
3007       TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
3008       if (NumIters > 1) {
3009         TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getPointer(), Cnt),
3010                                 TargetElemPtr.getAlignment());
3011       }
3012 
3013       // *TargetElemPtr = SrcMediumVal;
3014       llvm::Value *SrcMediumValue =
3015           CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
3016       CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
3017                             CType);
3018       Bld.CreateBr(W0MergeBB);
3019 
3020       CGF.EmitBlock(W0ElseBB);
3021       Bld.CreateBr(W0MergeBB);
3022 
3023       CGF.EmitBlock(W0MergeBB);
3024 
3025       if (NumIters > 1) {
3026         Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
3027         CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
3028         CGF.EmitBranch(PrecondBB);
3029         (void)ApplyDebugLocation::CreateEmpty(CGF);
3030         CGF.EmitBlock(ExitBB);
3031       }
3032       RealTySize %= TySize;
3033     }
3034     ++Idx;
3035   }
3036 
3037   CGF.FinishFunction();
3038   return Fn;
3039 }
3040 
3041 /// Emit a helper that reduces data across two OpenMP threads (lanes)
3042 /// in the same warp.  It uses shuffle instructions to copy over data from
3043 /// a remote lane's stack.  The reduction algorithm performed is specified
3044 /// by the fourth parameter.
3045 ///
3046 /// Algorithm Versions.
3047 /// Full Warp Reduce (argument value 0):
3048 ///   This algorithm assumes that all 32 lanes are active and gathers
3049 ///   data from these 32 lanes, producing a single resultant value.
3050 /// Contiguous Partial Warp Reduce (argument value 1):
3051 ///   This algorithm assumes that only a *contiguous* subset of lanes
3052 ///   are active.  This happens for the last warp in a parallel region
3053 ///   when the user specified num_threads is not an integer multiple of
3054 ///   32.  This contiguous subset always starts with the zeroth lane.
3055 /// Partial Warp Reduce (argument value 2):
3056 ///   This algorithm gathers data from any number of lanes at any position.
3057 /// All reduced values are stored in the lowest possible lane.  The set
3058 /// of problems every algorithm addresses is a super set of those
3059 /// addressable by algorithms with a lower version number.  Overhead
3060 /// increases as algorithm version increases.
3061 ///
3062 /// Terminology
3063 /// Reduce element:
3064 ///   Reduce element refers to the individual data field with primitive
3065 ///   data types to be combined and reduced across threads.
3066 /// Reduce list:
3067 ///   Reduce list refers to a collection of local, thread-private
3068 ///   reduce elements.
3069 /// Remote Reduce list:
3070 ///   Remote Reduce list refers to a collection of remote (relative to
3071 ///   the current thread) reduce elements.
3072 ///
3073 /// We distinguish between three states of threads that are important to
3074 /// the implementation of this function.
3075 /// Alive threads:
3076 ///   Threads in a warp executing the SIMT instruction, as distinguished from
3077 ///   threads that are inactive due to divergent control flow.
3078 /// Active threads:
3079 ///   The minimal set of threads that has to be alive upon entry to this
3080 ///   function.  The computation is correct iff active threads are alive.
3081 ///   Some threads are alive but they are not active because they do not
3082 ///   contribute to the computation in any useful manner.  Turning them off
3083 ///   may introduce control flow overheads without any tangible benefits.
3084 /// Effective threads:
3085 ///   In order to comply with the argument requirements of the shuffle
3086 ///   function, we must keep all lanes holding data alive.  But at most
3087 ///   half of them perform value aggregation; we refer to this half of
3088 ///   threads as effective. The other half is simply handing off their
3089 ///   data.
3090 ///
3091 /// Procedure
3092 /// Value shuffle:
3093 ///   In this step active threads transfer data from higher lane positions
3094 ///   in the warp to lower lane positions, creating Remote Reduce list.
3095 /// Value aggregation:
3096 ///   In this step, effective threads combine their thread local Reduce list
3097 ///   with Remote Reduce list and store the result in the thread local
3098 ///   Reduce list.
3099 /// Value copy:
3100 ///   In this step, we deal with the assumption made by algorithm 2
3101 ///   (i.e. contiguity assumption).  When we have an odd number of lanes
3102 ///   active, say 2k+1, only k threads will be effective and therefore k
3103 ///   new values will be produced.  However, the Reduce list owned by the
3104 ///   (2k+1)th thread is ignored in the value aggregation.  Therefore
3105 ///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
3106 ///   that the contiguity assumption still holds.
emitShuffleAndReduceFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,llvm::Function * ReduceFn,SourceLocation Loc)3107 static llvm::Function *emitShuffleAndReduceFunction(
3108     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3109     QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
3110   ASTContext &C = CGM.getContext();
3111 
3112   // Thread local Reduce list used to host the values of data to be reduced.
3113   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3114                                   C.VoidPtrTy, ImplicitParamDecl::Other);
3115   // Current lane id; could be logical.
3116   ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
3117                               ImplicitParamDecl::Other);
3118   // Offset of the remote source lane relative to the current lane.
3119   ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3120                                         C.ShortTy, ImplicitParamDecl::Other);
3121   // Algorithm version.  This is expected to be known at compile time.
3122   ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3123                                C.ShortTy, ImplicitParamDecl::Other);
3124   FunctionArgList Args;
3125   Args.push_back(&ReduceListArg);
3126   Args.push_back(&LaneIDArg);
3127   Args.push_back(&RemoteLaneOffsetArg);
3128   Args.push_back(&AlgoVerArg);
3129 
3130   const CGFunctionInfo &CGFI =
3131       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3132   auto *Fn = llvm::Function::Create(
3133       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3134       "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
3135   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3136   Fn->setDoesNotRecurse();
3137   if (CGM.getLangOpts().Optimize) {
3138     Fn->removeFnAttr(llvm::Attribute::NoInline);
3139     Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
3140     Fn->addFnAttr(llvm::Attribute::AlwaysInline);
3141   }
3142 
3143   CodeGenFunction CGF(CGM);
3144   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3145 
3146   CGBuilderTy &Bld = CGF.Builder;
3147 
3148   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3149   Address LocalReduceList(
3150       Bld.CreatePointerBitCastOrAddrSpaceCast(
3151           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
3152                                C.VoidPtrTy, SourceLocation()),
3153           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
3154       CGF.getPointerAlign());
3155 
3156   Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
3157   llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
3158       AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
3159 
3160   Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
3161   llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
3162       AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
3163 
3164   Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
3165   llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
3166       AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
3167 
3168   // Create a local thread-private variable to host the Reduce list
3169   // from a remote lane.
3170   Address RemoteReduceList =
3171       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
3172 
3173   // This loop iterates through the list of reduce elements and copies,
3174   // element by element, from a remote lane in the warp to RemoteReduceList,
3175   // hosted on the thread's stack.
3176   emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
3177                         LocalReduceList, RemoteReduceList,
3178                         {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
3179                          /*ScratchpadIndex=*/nullptr,
3180                          /*ScratchpadWidth=*/nullptr});
3181 
3182   // The actions to be performed on the Remote Reduce list is dependent
3183   // on the algorithm version.
3184   //
3185   //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
3186   //  LaneId % 2 == 0 && Offset > 0):
3187   //    do the reduction value aggregation
3188   //
3189   //  The thread local variable Reduce list is mutated in place to host the
3190   //  reduced data, which is the aggregated value produced from local and
3191   //  remote lanes.
3192   //
3193   //  Note that AlgoVer is expected to be a constant integer known at compile
3194   //  time.
3195   //  When AlgoVer==0, the first conjunction evaluates to true, making
3196   //    the entire predicate true during compile time.
3197   //  When AlgoVer==1, the second conjunction has only the second part to be
3198   //    evaluated during runtime.  Other conjunctions evaluates to false
3199   //    during compile time.
3200   //  When AlgoVer==2, the third conjunction has only the second part to be
3201   //    evaluated during runtime.  Other conjunctions evaluates to false
3202   //    during compile time.
3203   llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
3204 
3205   llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
3206   llvm::Value *CondAlgo1 = Bld.CreateAnd(
3207       Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
3208 
3209   llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
3210   llvm::Value *CondAlgo2 = Bld.CreateAnd(
3211       Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
3212   CondAlgo2 = Bld.CreateAnd(
3213       CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
3214 
3215   llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
3216   CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
3217 
3218   llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
3219   llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
3220   llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
3221   Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
3222 
3223   CGF.EmitBlock(ThenBB);
3224   // reduce_function(LocalReduceList, RemoteReduceList)
3225   llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3226       LocalReduceList.getPointer(), CGF.VoidPtrTy);
3227   llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3228       RemoteReduceList.getPointer(), CGF.VoidPtrTy);
3229   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3230       CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
3231   Bld.CreateBr(MergeBB);
3232 
3233   CGF.EmitBlock(ElseBB);
3234   Bld.CreateBr(MergeBB);
3235 
3236   CGF.EmitBlock(MergeBB);
3237 
3238   // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
3239   // Reduce list.
3240   Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
3241   llvm::Value *CondCopy = Bld.CreateAnd(
3242       Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
3243 
3244   llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
3245   llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
3246   llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
3247   Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
3248 
3249   CGF.EmitBlock(CpyThenBB);
3250   emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
3251                         RemoteReduceList, LocalReduceList);
3252   Bld.CreateBr(CpyMergeBB);
3253 
3254   CGF.EmitBlock(CpyElseBB);
3255   Bld.CreateBr(CpyMergeBB);
3256 
3257   CGF.EmitBlock(CpyMergeBB);
3258 
3259   CGF.FinishFunction();
3260   return Fn;
3261 }
3262 
3263 /// This function emits a helper that copies all the reduction variables from
3264 /// the team into the provided global buffer for the reduction variables.
3265 ///
3266 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
3267 ///   For all data entries D in reduce_data:
3268 ///     Copy local D to buffer.D[Idx]
emitListToGlobalCopyFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap)3269 static llvm::Value *emitListToGlobalCopyFunction(
3270     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3271     QualType ReductionArrayTy, SourceLocation Loc,
3272     const RecordDecl *TeamReductionRec,
3273     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
3274         &VarFieldMap) {
3275   ASTContext &C = CGM.getContext();
3276 
3277   // Buffer: global reduction buffer.
3278   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3279                               C.VoidPtrTy, ImplicitParamDecl::Other);
3280   // Idx: index of the buffer.
3281   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3282                            ImplicitParamDecl::Other);
3283   // ReduceList: thread local Reduce list.
3284   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3285                                   C.VoidPtrTy, ImplicitParamDecl::Other);
3286   FunctionArgList Args;
3287   Args.push_back(&BufferArg);
3288   Args.push_back(&IdxArg);
3289   Args.push_back(&ReduceListArg);
3290 
3291   const CGFunctionInfo &CGFI =
3292       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3293   auto *Fn = llvm::Function::Create(
3294       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3295       "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
3296   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3297   Fn->setDoesNotRecurse();
3298   CodeGenFunction CGF(CGM);
3299   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3300 
3301   CGBuilderTy &Bld = CGF.Builder;
3302 
3303   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3304   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
3305   Address LocalReduceList(
3306       Bld.CreatePointerBitCastOrAddrSpaceCast(
3307           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
3308                                C.VoidPtrTy, Loc),
3309           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
3310       CGF.getPointerAlign());
3311   QualType StaticTy = C.getRecordType(TeamReductionRec);
3312   llvm::Type *LLVMReductionsBufferTy =
3313       CGM.getTypes().ConvertTypeForMem(StaticTy);
3314   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3315       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
3316       LLVMReductionsBufferTy->getPointerTo());
3317   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
3318                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
3319                                               /*Volatile=*/false, C.IntTy,
3320                                               Loc)};
3321   unsigned Idx = 0;
3322   for (const Expr *Private : Privates) {
3323     // Reduce element = LocalReduceList[i]
3324     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
3325     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
3326         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
3327     // elemptr = ((CopyType*)(elemptrptr)) + I
3328     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3329         ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
3330     Address ElemPtr =
3331         Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
3332     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
3333     // Global = Buffer.VD[Idx];
3334     const FieldDecl *FD = VarFieldMap.lookup(VD);
3335     LValue GlobLVal = CGF.EmitLValueForField(
3336         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
3337     llvm::Value *BufferPtr =
3338         Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
3339     GlobLVal.setAddress(Address(BufferPtr, GlobLVal.getAlignment()));
3340     switch (CGF.getEvaluationKind(Private->getType())) {
3341     case TEK_Scalar: {
3342       llvm::Value *V = CGF.EmitLoadOfScalar(
3343           ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
3344           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
3345       CGF.EmitStoreOfScalar(V, GlobLVal);
3346       break;
3347     }
3348     case TEK_Complex: {
3349       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
3350           CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
3351       CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
3352       break;
3353     }
3354     case TEK_Aggregate:
3355       CGF.EmitAggregateCopy(GlobLVal,
3356                             CGF.MakeAddrLValue(ElemPtr, Private->getType()),
3357                             Private->getType(), AggValueSlot::DoesNotOverlap);
3358       break;
3359     }
3360     ++Idx;
3361   }
3362 
3363   CGF.FinishFunction();
3364   return Fn;
3365 }
3366 
3367 /// This function emits a helper that reduces all the reduction variables from
3368 /// the team into the provided global buffer for the reduction variables.
3369 ///
3370 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
3371 ///  void *GlobPtrs[];
3372 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
3373 ///  ...
3374 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
3375 ///  reduce_function(GlobPtrs, reduce_data);
emitListToGlobalReduceFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap,llvm::Function * ReduceFn)3376 static llvm::Value *emitListToGlobalReduceFunction(
3377     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3378     QualType ReductionArrayTy, SourceLocation Loc,
3379     const RecordDecl *TeamReductionRec,
3380     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
3381         &VarFieldMap,
3382     llvm::Function *ReduceFn) {
3383   ASTContext &C = CGM.getContext();
3384 
3385   // Buffer: global reduction buffer.
3386   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3387                               C.VoidPtrTy, ImplicitParamDecl::Other);
3388   // Idx: index of the buffer.
3389   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3390                            ImplicitParamDecl::Other);
3391   // ReduceList: thread local Reduce list.
3392   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3393                                   C.VoidPtrTy, ImplicitParamDecl::Other);
3394   FunctionArgList Args;
3395   Args.push_back(&BufferArg);
3396   Args.push_back(&IdxArg);
3397   Args.push_back(&ReduceListArg);
3398 
3399   const CGFunctionInfo &CGFI =
3400       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3401   auto *Fn = llvm::Function::Create(
3402       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3403       "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
3404   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3405   Fn->setDoesNotRecurse();
3406   CodeGenFunction CGF(CGM);
3407   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3408 
3409   CGBuilderTy &Bld = CGF.Builder;
3410 
3411   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
3412   QualType StaticTy = C.getRecordType(TeamReductionRec);
3413   llvm::Type *LLVMReductionsBufferTy =
3414       CGM.getTypes().ConvertTypeForMem(StaticTy);
3415   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3416       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
3417       LLVMReductionsBufferTy->getPointerTo());
3418 
3419   // 1. Build a list of reduction variables.
3420   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3421   Address ReductionList =
3422       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3423   auto IPriv = Privates.begin();
3424   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
3425                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
3426                                               /*Volatile=*/false, C.IntTy,
3427                                               Loc)};
3428   unsigned Idx = 0;
3429   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
3430     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3431     // Global = Buffer.VD[Idx];
3432     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
3433     const FieldDecl *FD = VarFieldMap.lookup(VD);
3434     LValue GlobLVal = CGF.EmitLValueForField(
3435         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
3436     llvm::Value *BufferPtr =
3437         Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
3438     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
3439     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
3440     if ((*IPriv)->getType()->isVariablyModifiedType()) {
3441       // Store array size.
3442       ++Idx;
3443       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3444       llvm::Value *Size = CGF.Builder.CreateIntCast(
3445           CGF.getVLASize(
3446                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3447               .NumElts,
3448           CGF.SizeTy, /*isSigned=*/false);
3449       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3450                               Elem);
3451     }
3452   }
3453 
3454   // Call reduce_function(GlobalReduceList, ReduceList)
3455   llvm::Value *GlobalReduceList =
3456       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
3457   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3458   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
3459       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
3460   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3461       CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
3462   CGF.FinishFunction();
3463   return Fn;
3464 }
3465 
3466 /// This function emits a helper that copies all the reduction variables from
3467 /// the team into the provided global buffer for the reduction variables.
3468 ///
3469 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
3470 ///   For all data entries D in reduce_data:
3471 ///     Copy buffer.D[Idx] to local D;
emitGlobalToListCopyFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap)3472 static llvm::Value *emitGlobalToListCopyFunction(
3473     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3474     QualType ReductionArrayTy, SourceLocation Loc,
3475     const RecordDecl *TeamReductionRec,
3476     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
3477         &VarFieldMap) {
3478   ASTContext &C = CGM.getContext();
3479 
3480   // Buffer: global reduction buffer.
3481   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3482                               C.VoidPtrTy, ImplicitParamDecl::Other);
3483   // Idx: index of the buffer.
3484   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3485                            ImplicitParamDecl::Other);
3486   // ReduceList: thread local Reduce list.
3487   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3488                                   C.VoidPtrTy, ImplicitParamDecl::Other);
3489   FunctionArgList Args;
3490   Args.push_back(&BufferArg);
3491   Args.push_back(&IdxArg);
3492   Args.push_back(&ReduceListArg);
3493 
3494   const CGFunctionInfo &CGFI =
3495       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3496   auto *Fn = llvm::Function::Create(
3497       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3498       "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
3499   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3500   Fn->setDoesNotRecurse();
3501   CodeGenFunction CGF(CGM);
3502   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3503 
3504   CGBuilderTy &Bld = CGF.Builder;
3505 
3506   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3507   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
3508   Address LocalReduceList(
3509       Bld.CreatePointerBitCastOrAddrSpaceCast(
3510           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
3511                                C.VoidPtrTy, Loc),
3512           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
3513       CGF.getPointerAlign());
3514   QualType StaticTy = C.getRecordType(TeamReductionRec);
3515   llvm::Type *LLVMReductionsBufferTy =
3516       CGM.getTypes().ConvertTypeForMem(StaticTy);
3517   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3518       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
3519       LLVMReductionsBufferTy->getPointerTo());
3520 
3521   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
3522                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
3523                                               /*Volatile=*/false, C.IntTy,
3524                                               Loc)};
3525   unsigned Idx = 0;
3526   for (const Expr *Private : Privates) {
3527     // Reduce element = LocalReduceList[i]
3528     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
3529     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
3530         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
3531     // elemptr = ((CopyType*)(elemptrptr)) + I
3532     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3533         ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
3534     Address ElemPtr =
3535         Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
3536     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
3537     // Global = Buffer.VD[Idx];
3538     const FieldDecl *FD = VarFieldMap.lookup(VD);
3539     LValue GlobLVal = CGF.EmitLValueForField(
3540         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
3541     llvm::Value *BufferPtr =
3542         Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
3543     GlobLVal.setAddress(Address(BufferPtr, GlobLVal.getAlignment()));
3544     switch (CGF.getEvaluationKind(Private->getType())) {
3545     case TEK_Scalar: {
3546       llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
3547       CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
3548                             LValueBaseInfo(AlignmentSource::Type),
3549                             TBAAAccessInfo());
3550       break;
3551     }
3552     case TEK_Complex: {
3553       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
3554       CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
3555                              /*isInit=*/false);
3556       break;
3557     }
3558     case TEK_Aggregate:
3559       CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
3560                             GlobLVal, Private->getType(),
3561                             AggValueSlot::DoesNotOverlap);
3562       break;
3563     }
3564     ++Idx;
3565   }
3566 
3567   CGF.FinishFunction();
3568   return Fn;
3569 }
3570 
3571 /// This function emits a helper that reduces all the reduction variables from
3572 /// the team into the provided global buffer for the reduction variables.
3573 ///
3574 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
3575 ///  void *GlobPtrs[];
3576 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
3577 ///  ...
3578 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
3579 ///  reduce_function(reduce_data, GlobPtrs);
emitGlobalToListReduceFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap,llvm::Function * ReduceFn)3580 static llvm::Value *emitGlobalToListReduceFunction(
3581     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
3582     QualType ReductionArrayTy, SourceLocation Loc,
3583     const RecordDecl *TeamReductionRec,
3584     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
3585         &VarFieldMap,
3586     llvm::Function *ReduceFn) {
3587   ASTContext &C = CGM.getContext();
3588 
3589   // Buffer: global reduction buffer.
3590   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3591                               C.VoidPtrTy, ImplicitParamDecl::Other);
3592   // Idx: index of the buffer.
3593   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3594                            ImplicitParamDecl::Other);
3595   // ReduceList: thread local Reduce list.
3596   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3597                                   C.VoidPtrTy, ImplicitParamDecl::Other);
3598   FunctionArgList Args;
3599   Args.push_back(&BufferArg);
3600   Args.push_back(&IdxArg);
3601   Args.push_back(&ReduceListArg);
3602 
3603   const CGFunctionInfo &CGFI =
3604       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3605   auto *Fn = llvm::Function::Create(
3606       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3607       "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
3608   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3609   Fn->setDoesNotRecurse();
3610   CodeGenFunction CGF(CGM);
3611   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
3612 
3613   CGBuilderTy &Bld = CGF.Builder;
3614 
3615   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
3616   QualType StaticTy = C.getRecordType(TeamReductionRec);
3617   llvm::Type *LLVMReductionsBufferTy =
3618       CGM.getTypes().ConvertTypeForMem(StaticTy);
3619   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
3620       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
3621       LLVMReductionsBufferTy->getPointerTo());
3622 
3623   // 1. Build a list of reduction variables.
3624   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3625   Address ReductionList =
3626       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3627   auto IPriv = Privates.begin();
3628   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
3629                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
3630                                               /*Volatile=*/false, C.IntTy,
3631                                               Loc)};
3632   unsigned Idx = 0;
3633   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
3634     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3635     // Global = Buffer.VD[Idx];
3636     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
3637     const FieldDecl *FD = VarFieldMap.lookup(VD);
3638     LValue GlobLVal = CGF.EmitLValueForField(
3639         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
3640     llvm::Value *BufferPtr =
3641         Bld.CreateInBoundsGEP(GlobLVal.getPointer(CGF), Idxs);
3642     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
3643     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
3644     if ((*IPriv)->getType()->isVariablyModifiedType()) {
3645       // Store array size.
3646       ++Idx;
3647       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3648       llvm::Value *Size = CGF.Builder.CreateIntCast(
3649           CGF.getVLASize(
3650                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3651               .NumElts,
3652           CGF.SizeTy, /*isSigned=*/false);
3653       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3654                               Elem);
3655     }
3656   }
3657 
3658   // Call reduce_function(ReduceList, GlobalReduceList)
3659   llvm::Value *GlobalReduceList =
3660       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
3661   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
3662   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
3663       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
3664   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
3665       CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
3666   CGF.FinishFunction();
3667   return Fn;
3668 }
3669 
3670 ///
3671 /// Design of OpenMP reductions on the GPU
3672 ///
3673 /// Consider a typical OpenMP program with one or more reduction
3674 /// clauses:
3675 ///
3676 /// float foo;
3677 /// double bar;
3678 /// #pragma omp target teams distribute parallel for \
3679 ///             reduction(+:foo) reduction(*:bar)
3680 /// for (int i = 0; i < N; i++) {
3681 ///   foo += A[i]; bar *= B[i];
3682 /// }
3683 ///
3684 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
3685 /// all teams.  In our OpenMP implementation on the NVPTX device an
3686 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
3687 /// within a team are mapped to CUDA threads within a threadblock.
3688 /// Our goal is to efficiently aggregate values across all OpenMP
3689 /// threads such that:
3690 ///
3691 ///   - the compiler and runtime are logically concise, and
3692 ///   - the reduction is performed efficiently in a hierarchical
3693 ///     manner as follows: within OpenMP threads in the same warp,
3694 ///     across warps in a threadblock, and finally across teams on
3695 ///     the NVPTX device.
3696 ///
3697 /// Introduction to Decoupling
3698 ///
3699 /// We would like to decouple the compiler and the runtime so that the
3700 /// latter is ignorant of the reduction variables (number, data types)
3701 /// and the reduction operators.  This allows a simpler interface
3702 /// and implementation while still attaining good performance.
3703 ///
3704 /// Pseudocode for the aforementioned OpenMP program generated by the
3705 /// compiler is as follows:
3706 ///
3707 /// 1. Create private copies of reduction variables on each OpenMP
3708 ///    thread: 'foo_private', 'bar_private'
3709 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
3710 ///    to it and writes the result in 'foo_private' and 'bar_private'
3711 ///    respectively.
3712 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
3713 ///    and store the result on the team master:
3714 ///
3715 ///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
3716 ///        reduceData, shuffleReduceFn, interWarpCpyFn)
3717 ///
3718 ///     where:
3719 ///       struct ReduceData {
3720 ///         double *foo;
3721 ///         double *bar;
3722 ///       } reduceData
3723 ///       reduceData.foo = &foo_private
3724 ///       reduceData.bar = &bar_private
3725 ///
3726 ///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
3727 ///     auxiliary functions generated by the compiler that operate on
3728 ///     variables of type 'ReduceData'.  They aid the runtime perform
3729 ///     algorithmic steps in a data agnostic manner.
3730 ///
3731 ///     'shuffleReduceFn' is a pointer to a function that reduces data
3732 ///     of type 'ReduceData' across two OpenMP threads (lanes) in the
3733 ///     same warp.  It takes the following arguments as input:
3734 ///
3735 ///     a. variable of type 'ReduceData' on the calling lane,
3736 ///     b. its lane_id,
3737 ///     c. an offset relative to the current lane_id to generate a
3738 ///        remote_lane_id.  The remote lane contains the second
3739 ///        variable of type 'ReduceData' that is to be reduced.
3740 ///     d. an algorithm version parameter determining which reduction
3741 ///        algorithm to use.
3742 ///
3743 ///     'shuffleReduceFn' retrieves data from the remote lane using
3744 ///     efficient GPU shuffle intrinsics and reduces, using the
3745 ///     algorithm specified by the 4th parameter, the two operands
3746 ///     element-wise.  The result is written to the first operand.
3747 ///
3748 ///     Different reduction algorithms are implemented in different
3749 ///     runtime functions, all calling 'shuffleReduceFn' to perform
3750 ///     the essential reduction step.  Therefore, based on the 4th
3751 ///     parameter, this function behaves slightly differently to
3752 ///     cooperate with the runtime to ensure correctness under
3753 ///     different circumstances.
3754 ///
3755 ///     'InterWarpCpyFn' is a pointer to a function that transfers
3756 ///     reduced variables across warps.  It tunnels, through CUDA
3757 ///     shared memory, the thread-private data of type 'ReduceData'
3758 ///     from lane 0 of each warp to a lane in the first warp.
3759 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
3760 ///    The last team writes the global reduced value to memory.
3761 ///
3762 ///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
3763 ///             reduceData, shuffleReduceFn, interWarpCpyFn,
3764 ///             scratchpadCopyFn, loadAndReduceFn)
3765 ///
3766 ///     'scratchpadCopyFn' is a helper that stores reduced
3767 ///     data from the team master to a scratchpad array in
3768 ///     global memory.
3769 ///
3770 ///     'loadAndReduceFn' is a helper that loads data from
3771 ///     the scratchpad array and reduces it with the input
3772 ///     operand.
3773 ///
3774 ///     These compiler generated functions hide address
3775 ///     calculation and alignment information from the runtime.
3776 /// 5. if ret == 1:
3777 ///     The team master of the last team stores the reduced
3778 ///     result to the globals in memory.
3779 ///     foo += reduceData.foo; bar *= reduceData.bar
3780 ///
3781 ///
3782 /// Warp Reduction Algorithms
3783 ///
3784 /// On the warp level, we have three algorithms implemented in the
3785 /// OpenMP runtime depending on the number of active lanes:
3786 ///
3787 /// Full Warp Reduction
3788 ///
3789 /// The reduce algorithm within a warp where all lanes are active
3790 /// is implemented in the runtime as follows:
3791 ///
3792 /// full_warp_reduce(void *reduce_data,
3793 ///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3794 ///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
3795 ///     ShuffleReduceFn(reduce_data, 0, offset, 0);
3796 /// }
3797 ///
3798 /// The algorithm completes in log(2, WARPSIZE) steps.
3799 ///
3800 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
3801 /// not used therefore we save instructions by not retrieving lane_id
3802 /// from the corresponding special registers.  The 4th parameter, which
3803 /// represents the version of the algorithm being used, is set to 0 to
3804 /// signify full warp reduction.
3805 ///
3806 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3807 ///
3808 /// #reduce_elem refers to an element in the local lane's data structure
3809 /// #remote_elem is retrieved from a remote lane
3810 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3811 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
3812 ///
3813 /// Contiguous Partial Warp Reduction
3814 ///
3815 /// This reduce algorithm is used within a warp where only the first
3816 /// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
3817 /// number of OpenMP threads in a parallel region is not a multiple of
3818 /// WARPSIZE.  The algorithm is implemented in the runtime as follows:
3819 ///
3820 /// void
3821 /// contiguous_partial_reduce(void *reduce_data,
3822 ///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
3823 ///                           int size, int lane_id) {
3824 ///   int curr_size;
3825 ///   int offset;
3826 ///   curr_size = size;
3827 ///   mask = curr_size/2;
3828 ///   while (offset>0) {
3829 ///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
3830 ///     curr_size = (curr_size+1)/2;
3831 ///     offset = curr_size/2;
3832 ///   }
3833 /// }
3834 ///
3835 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3836 ///
3837 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3838 /// if (lane_id < offset)
3839 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3840 /// else
3841 ///     reduce_elem = remote_elem
3842 ///
3843 /// This algorithm assumes that the data to be reduced are located in a
3844 /// contiguous subset of lanes starting from the first.  When there is
3845 /// an odd number of active lanes, the data in the last lane is not
3846 /// aggregated with any other lane's dat but is instead copied over.
3847 ///
3848 /// Dispersed Partial Warp Reduction
3849 ///
3850 /// This algorithm is used within a warp when any discontiguous subset of
3851 /// lanes are active.  It is used to implement the reduction operation
3852 /// across lanes in an OpenMP simd region or in a nested parallel region.
3853 ///
3854 /// void
3855 /// dispersed_partial_reduce(void *reduce_data,
3856 ///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3857 ///   int size, remote_id;
3858 ///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
3859 ///   do {
3860 ///       remote_id = next_active_lane_id_right_after_me();
3861 ///       # the above function returns 0 of no active lane
3862 ///       # is present right after the current lane.
3863 ///       size = number_of_active_lanes_in_this_warp();
3864 ///       logical_lane_id /= 2;
3865 ///       ShuffleReduceFn(reduce_data, logical_lane_id,
3866 ///                       remote_id-1-threadIdx.x, 2);
3867 ///   } while (logical_lane_id % 2 == 0 && size > 1);
3868 /// }
3869 ///
3870 /// There is no assumption made about the initial state of the reduction.
3871 /// Any number of lanes (>=1) could be active at any position.  The reduction
3872 /// result is returned in the first active lane.
3873 ///
3874 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3875 ///
3876 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3877 /// if (lane_id % 2 == 0 && offset > 0)
3878 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3879 /// else
3880 ///     reduce_elem = remote_elem
3881 ///
3882 ///
3883 /// Intra-Team Reduction
3884 ///
3885 /// This function, as implemented in the runtime call
3886 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
3887 /// threads in a team.  It first reduces within a warp using the
3888 /// aforementioned algorithms.  We then proceed to gather all such
3889 /// reduced values at the first warp.
3890 ///
3891 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
3892 /// data from each of the "warp master" (zeroth lane of each warp, where
3893 /// warp-reduced data is held) to the zeroth warp.  This step reduces (in
3894 /// a mathematical sense) the problem of reduction across warp masters in
3895 /// a block to the problem of warp reduction.
3896 ///
3897 ///
3898 /// Inter-Team Reduction
3899 ///
3900 /// Once a team has reduced its data to a single value, it is stored in
3901 /// a global scratchpad array.  Since each team has a distinct slot, this
3902 /// can be done without locking.
3903 ///
3904 /// The last team to write to the scratchpad array proceeds to reduce the
3905 /// scratchpad array.  One or more workers in the last team use the helper
3906 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
3907 /// the k'th worker reduces every k'th element.
3908 ///
3909 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
3910 /// reduce across workers and compute a globally reduced value.
3911 ///
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)3912 void CGOpenMPRuntimeGPU::emitReduction(
3913     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
3914     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
3915     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
3916   if (!CGF.HaveInsertPoint())
3917     return;
3918 
3919   bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
3920 #ifndef NDEBUG
3921   bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
3922 #endif
3923 
3924   if (Options.SimpleReduction) {
3925     assert(!TeamsReduction && !ParallelReduction &&
3926            "Invalid reduction selection in emitReduction.");
3927     CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
3928                                    ReductionOps, Options);
3929     return;
3930   }
3931 
3932   assert((TeamsReduction || ParallelReduction) &&
3933          "Invalid reduction selection in emitReduction.");
3934 
3935   // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3936   // RedList, shuffle_reduce_func, interwarp_copy_func);
3937   // or
3938   // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3939   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3940   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3941 
3942   llvm::Value *Res;
3943   ASTContext &C = CGM.getContext();
3944   // 1. Build a list of reduction variables.
3945   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3946   auto Size = RHSExprs.size();
3947   for (const Expr *E : Privates) {
3948     if (E->getType()->isVariablyModifiedType())
3949       // Reserve place for array size.
3950       ++Size;
3951   }
3952   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
3953   QualType ReductionArrayTy =
3954       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3955                              /*IndexTypeQuals=*/0);
3956   Address ReductionList =
3957       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3958   auto IPriv = Privates.begin();
3959   unsigned Idx = 0;
3960   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
3961     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3962     CGF.Builder.CreateStore(
3963         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3964             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
3965         Elem);
3966     if ((*IPriv)->getType()->isVariablyModifiedType()) {
3967       // Store array size.
3968       ++Idx;
3969       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3970       llvm::Value *Size = CGF.Builder.CreateIntCast(
3971           CGF.getVLASize(
3972                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3973               .NumElts,
3974           CGF.SizeTy, /*isSigned=*/false);
3975       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3976                               Elem);
3977     }
3978   }
3979 
3980   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3981       ReductionList.getPointer(), CGF.VoidPtrTy);
3982   llvm::Function *ReductionFn = emitReductionFunction(
3983       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
3984       LHSExprs, RHSExprs, ReductionOps);
3985   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
3986   llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
3987       CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
3988   llvm::Value *InterWarpCopyFn =
3989       emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
3990 
3991   if (ParallelReduction) {
3992     llvm::Value *Args[] = {RTLoc,
3993                            ThreadId,
3994                            CGF.Builder.getInt32(RHSExprs.size()),
3995                            ReductionArrayTySize,
3996                            RL,
3997                            ShuffleAndReduceFn,
3998                            InterWarpCopyFn};
3999 
4000     Res = CGF.EmitRuntimeCall(
4001         OMPBuilder.getOrCreateRuntimeFunction(
4002             CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
4003         Args);
4004   } else {
4005     assert(TeamsReduction && "expected teams reduction.");
4006     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
4007     llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
4008     int Cnt = 0;
4009     for (const Expr *DRE : Privates) {
4010       PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
4011       ++Cnt;
4012     }
4013     const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
4014         CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
4015         C.getLangOpts().OpenMPCUDAReductionBufNum);
4016     TeamsReductions.push_back(TeamReductionRec);
4017     if (!KernelTeamsReductionPtr) {
4018       KernelTeamsReductionPtr = new llvm::GlobalVariable(
4019           CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
4020           llvm::GlobalValue::InternalLinkage, nullptr,
4021           "_openmp_teams_reductions_buffer_$_$ptr");
4022     }
4023     llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
4024         Address(KernelTeamsReductionPtr, CGM.getPointerAlign()),
4025         /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
4026     llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
4027         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
4028     llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
4029         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
4030         ReductionFn);
4031     llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
4032         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
4033     llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
4034         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
4035         ReductionFn);
4036 
4037     llvm::Value *Args[] = {
4038         RTLoc,
4039         ThreadId,
4040         GlobalBufferPtr,
4041         CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
4042         RL,
4043         ShuffleAndReduceFn,
4044         InterWarpCopyFn,
4045         GlobalToBufferCpyFn,
4046         GlobalToBufferRedFn,
4047         BufferToGlobalCpyFn,
4048         BufferToGlobalRedFn};
4049 
4050     Res = CGF.EmitRuntimeCall(
4051         OMPBuilder.getOrCreateRuntimeFunction(
4052             CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
4053         Args);
4054   }
4055 
4056   // 5. Build if (res == 1)
4057   llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
4058   llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
4059   llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
4060       Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
4061   CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
4062 
4063   // 6. Build then branch: where we have reduced values in the master
4064   //    thread in each team.
4065   //    __kmpc_end_reduce{_nowait}(<gtid>);
4066   //    break;
4067   CGF.EmitBlock(ThenBB);
4068 
4069   // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
4070   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
4071                     this](CodeGenFunction &CGF, PrePostActionTy &Action) {
4072     auto IPriv = Privates.begin();
4073     auto ILHS = LHSExprs.begin();
4074     auto IRHS = RHSExprs.begin();
4075     for (const Expr *E : ReductionOps) {
4076       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
4077                                   cast<DeclRefExpr>(*IRHS));
4078       ++IPriv;
4079       ++ILHS;
4080       ++IRHS;
4081     }
4082   };
4083   llvm::Value *EndArgs[] = {ThreadId};
4084   RegionCodeGenTy RCG(CodeGen);
4085   NVPTXActionTy Action(
4086       nullptr, llvm::None,
4087       OMPBuilder.getOrCreateRuntimeFunction(
4088           CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
4089       EndArgs);
4090   RCG.setAction(Action);
4091   RCG(CGF);
4092   // There is no need to emit line number for unconditional branch.
4093   (void)ApplyDebugLocation::CreateEmpty(CGF);
4094   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
4095 }
4096 
4097 const VarDecl *
translateParameter(const FieldDecl * FD,const VarDecl * NativeParam) const4098 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
4099                                        const VarDecl *NativeParam) const {
4100   if (!NativeParam->getType()->isReferenceType())
4101     return NativeParam;
4102   QualType ArgType = NativeParam->getType();
4103   QualifierCollector QC;
4104   const Type *NonQualTy = QC.strip(ArgType);
4105   QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
4106   if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
4107     if (Attr->getCaptureKind() == OMPC_map) {
4108       PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
4109                                                         LangAS::opencl_global);
4110     } else if (Attr->getCaptureKind() == OMPC_firstprivate &&
4111                PointeeTy.isConstant(CGM.getContext())) {
4112       PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
4113                                                         LangAS::opencl_generic);
4114     }
4115   }
4116   ArgType = CGM.getContext().getPointerType(PointeeTy);
4117   QC.addRestrict();
4118   enum { NVPTX_local_addr = 5 };
4119   QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
4120   ArgType = QC.apply(CGM.getContext(), ArgType);
4121   if (isa<ImplicitParamDecl>(NativeParam))
4122     return ImplicitParamDecl::Create(
4123         CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
4124         NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
4125   return ParmVarDecl::Create(
4126       CGM.getContext(),
4127       const_cast<DeclContext *>(NativeParam->getDeclContext()),
4128       NativeParam->getBeginLoc(), NativeParam->getLocation(),
4129       NativeParam->getIdentifier(), ArgType,
4130       /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
4131 }
4132 
4133 Address
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const4134 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
4135                                           const VarDecl *NativeParam,
4136                                           const VarDecl *TargetParam) const {
4137   assert(NativeParam != TargetParam &&
4138          NativeParam->getType()->isReferenceType() &&
4139          "Native arg must not be the same as target arg.");
4140   Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
4141   QualType NativeParamType = NativeParam->getType();
4142   QualifierCollector QC;
4143   const Type *NonQualTy = QC.strip(NativeParamType);
4144   QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
4145   unsigned NativePointeeAddrSpace =
4146       CGF.getContext().getTargetAddressSpace(NativePointeeTy);
4147   QualType TargetTy = TargetParam->getType();
4148   llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
4149       LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
4150   // First cast to generic.
4151   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4152       TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
4153                       /*AddrSpace=*/0));
4154   // Cast from generic to native address space.
4155   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4156       TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
4157                       NativePointeeAddrSpace));
4158   Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
4159   CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
4160                         NativeParamType);
4161   return NativeParamAddr;
4162 }
4163 
emitOutlinedFunctionCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee OutlinedFn,ArrayRef<llvm::Value * > Args) const4164 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
4165     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
4166     ArrayRef<llvm::Value *> Args) const {
4167   SmallVector<llvm::Value *, 4> TargetArgs;
4168   TargetArgs.reserve(Args.size());
4169   auto *FnType = OutlinedFn.getFunctionType();
4170   for (unsigned I = 0, E = Args.size(); I < E; ++I) {
4171     if (FnType->isVarArg() && FnType->getNumParams() <= I) {
4172       TargetArgs.append(std::next(Args.begin(), I), Args.end());
4173       break;
4174     }
4175     llvm::Type *TargetType = FnType->getParamType(I);
4176     llvm::Value *NativeArg = Args[I];
4177     if (!TargetType->isPointerTy()) {
4178       TargetArgs.emplace_back(NativeArg);
4179       continue;
4180     }
4181     llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4182         NativeArg,
4183         NativeArg->getType()->getPointerElementType()->getPointerTo());
4184     TargetArgs.emplace_back(
4185         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
4186   }
4187   CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
4188 }
4189 
4190 /// Emit function which wraps the outline parallel region
4191 /// and controls the arguments which are passed to this function.
4192 /// The wrapper ensures that the outlined function is called
4193 /// with the correct arguments when data is shared.
createParallelDataSharingWrapper(llvm::Function * OutlinedParallelFn,const OMPExecutableDirective & D)4194 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
4195     llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
4196   ASTContext &Ctx = CGM.getContext();
4197   const auto &CS = *D.getCapturedStmt(OMPD_parallel);
4198 
4199   // Create a function that takes as argument the source thread.
4200   FunctionArgList WrapperArgs;
4201   QualType Int16QTy =
4202       Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
4203   QualType Int32QTy =
4204       Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
4205   ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
4206                                      /*Id=*/nullptr, Int16QTy,
4207                                      ImplicitParamDecl::Other);
4208   ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
4209                                /*Id=*/nullptr, Int32QTy,
4210                                ImplicitParamDecl::Other);
4211   WrapperArgs.emplace_back(&ParallelLevelArg);
4212   WrapperArgs.emplace_back(&WrapperArg);
4213 
4214   const CGFunctionInfo &CGFI =
4215       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
4216 
4217   auto *Fn = llvm::Function::Create(
4218       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
4219       Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
4220   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
4221   Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
4222   Fn->setDoesNotRecurse();
4223 
4224   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
4225   CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
4226                     D.getBeginLoc(), D.getBeginLoc());
4227 
4228   const auto *RD = CS.getCapturedRecordDecl();
4229   auto CurField = RD->field_begin();
4230 
4231   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
4232                                                       /*Name=*/".zero.addr");
4233   CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
4234   // Get the array of arguments.
4235   SmallVector<llvm::Value *, 8> Args;
4236 
4237   Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
4238   Args.emplace_back(ZeroAddr.getPointer());
4239 
4240   CGBuilderTy &Bld = CGF.Builder;
4241   auto CI = CS.capture_begin();
4242 
4243   // Use global memory for data sharing.
4244   // Handle passing of global args to workers.
4245   Address GlobalArgs =
4246       CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
4247   llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
4248   llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
4249   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4250                           CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
4251                       DataSharingArgs);
4252 
4253   // Retrieve the shared variables from the list of references returned
4254   // by the runtime. Pass the variables to the outlined function.
4255   Address SharedArgListAddress = Address::invalid();
4256   if (CS.capture_size() > 0 ||
4257       isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
4258     SharedArgListAddress = CGF.EmitLoadOfPointer(
4259         GlobalArgs, CGF.getContext()
4260                         .getPointerType(CGF.getContext().getPointerType(
4261                             CGF.getContext().VoidPtrTy))
4262                         .castAs<PointerType>());
4263   }
4264   unsigned Idx = 0;
4265   if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
4266     Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
4267     Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
4268         Src, CGF.SizeTy->getPointerTo());
4269     llvm::Value *LB = CGF.EmitLoadOfScalar(
4270         TypedAddress,
4271         /*Volatile=*/false,
4272         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
4273         cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
4274     Args.emplace_back(LB);
4275     ++Idx;
4276     Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
4277     TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
4278         Src, CGF.SizeTy->getPointerTo());
4279     llvm::Value *UB = CGF.EmitLoadOfScalar(
4280         TypedAddress,
4281         /*Volatile=*/false,
4282         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
4283         cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
4284     Args.emplace_back(UB);
4285     ++Idx;
4286   }
4287   if (CS.capture_size() > 0) {
4288     ASTContext &CGFContext = CGF.getContext();
4289     for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
4290       QualType ElemTy = CurField->getType();
4291       Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
4292       Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
4293           Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
4294       llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
4295                                               /*Volatile=*/false,
4296                                               CGFContext.getPointerType(ElemTy),
4297                                               CI->getLocation());
4298       if (CI->capturesVariableByCopy() &&
4299           !CI->getCapturedVar()->getType()->isAnyPointerType()) {
4300         Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
4301                               CI->getLocation());
4302       }
4303       Args.emplace_back(Arg);
4304     }
4305   }
4306 
4307   emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
4308   CGF.FinishFunction();
4309   return Fn;
4310 }
4311 
emitFunctionProlog(CodeGenFunction & CGF,const Decl * D)4312 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
4313                                               const Decl *D) {
4314   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
4315     return;
4316 
4317   assert(D && "Expected function or captured|block decl.");
4318   assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
4319          "Function is registered already.");
4320   assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
4321          "Team is set but not processed.");
4322   const Stmt *Body = nullptr;
4323   bool NeedToDelayGlobalization = false;
4324   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4325     Body = FD->getBody();
4326   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
4327     Body = BD->getBody();
4328   } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
4329     Body = CD->getBody();
4330     NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
4331     if (NeedToDelayGlobalization &&
4332         getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
4333       return;
4334   }
4335   if (!Body)
4336     return;
4337   CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
4338   VarChecker.Visit(Body);
4339   const RecordDecl *GlobalizedVarsRecord =
4340       VarChecker.getGlobalizedRecord(IsInTTDRegion);
4341   TeamAndReductions.first = nullptr;
4342   TeamAndReductions.second.clear();
4343   ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
4344       VarChecker.getEscapedVariableLengthDecls();
4345   if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
4346     return;
4347   auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
4348   I->getSecond().MappedParams =
4349       std::make_unique<CodeGenFunction::OMPMapVars>();
4350   I->getSecond().GlobalRecord = GlobalizedVarsRecord;
4351   I->getSecond().EscapedParameters.insert(
4352       VarChecker.getEscapedParameters().begin(),
4353       VarChecker.getEscapedParameters().end());
4354   I->getSecond().EscapedVariableLengthDecls.append(
4355       EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
4356   DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
4357   for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
4358     assert(VD->isCanonicalDecl() && "Expected canonical declaration");
4359     const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
4360     Data.insert(std::make_pair(VD, MappedVarData(FD, IsInTTDRegion)));
4361   }
4362   if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
4363     CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
4364     VarChecker.Visit(Body);
4365     I->getSecond().SecondaryGlobalRecord =
4366         VarChecker.getGlobalizedRecord(/*IsInTTDRegion=*/true);
4367     I->getSecond().SecondaryLocalVarData.emplace();
4368     DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
4369     for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
4370       assert(VD->isCanonicalDecl() && "Expected canonical declaration");
4371       const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
4372       Data.insert(
4373           std::make_pair(VD, MappedVarData(FD, /*IsInTTDRegion=*/true)));
4374     }
4375   }
4376   if (!NeedToDelayGlobalization) {
4377     emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
4378     struct GlobalizationScope final : EHScopeStack::Cleanup {
4379       GlobalizationScope() = default;
4380 
4381       void Emit(CodeGenFunction &CGF, Flags flags) override {
4382         static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
4383             .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
4384       }
4385     };
4386     CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
4387   }
4388 }
4389 
getAddressOfLocalVariable(CodeGenFunction & CGF,const VarDecl * VD)4390 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
4391                                                         const VarDecl *VD) {
4392   if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
4393     const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
4394     auto AS = LangAS::Default;
4395     switch (A->getAllocatorType()) {
4396       // Use the default allocator here as by default local vars are
4397       // threadlocal.
4398     case OMPAllocateDeclAttr::OMPNullMemAlloc:
4399     case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
4400     case OMPAllocateDeclAttr::OMPThreadMemAlloc:
4401     case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
4402     case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
4403       // Follow the user decision - use default allocation.
4404       return Address::invalid();
4405     case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
4406       // TODO: implement aupport for user-defined allocators.
4407       return Address::invalid();
4408     case OMPAllocateDeclAttr::OMPConstMemAlloc:
4409       AS = LangAS::cuda_constant;
4410       break;
4411     case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
4412       AS = LangAS::cuda_shared;
4413       break;
4414     case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
4415     case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
4416       break;
4417     }
4418     llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
4419     auto *GV = new llvm::GlobalVariable(
4420         CGM.getModule(), VarTy, /*isConstant=*/false,
4421         llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
4422         VD->getName(),
4423         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
4424         CGM.getContext().getTargetAddressSpace(AS));
4425     CharUnits Align = CGM.getContext().getDeclAlign(VD);
4426     GV->setAlignment(Align.getAsAlign());
4427     return Address(
4428         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4429             GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
4430                     VD->getType().getAddressSpace()))),
4431         Align);
4432   }
4433 
4434   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
4435     return Address::invalid();
4436 
4437   VD = VD->getCanonicalDecl();
4438   auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
4439   if (I == FunctionGlobalizedDecls.end())
4440     return Address::invalid();
4441   auto VDI = I->getSecond().LocalVarData.find(VD);
4442   if (VDI != I->getSecond().LocalVarData.end())
4443     return VDI->second.PrivateAddr;
4444   if (VD->hasAttrs()) {
4445     for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
4446          E(VD->attr_end());
4447          IT != E; ++IT) {
4448       auto VDI = I->getSecond().LocalVarData.find(
4449           cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
4450               ->getCanonicalDecl());
4451       if (VDI != I->getSecond().LocalVarData.end())
4452         return VDI->second.PrivateAddr;
4453     }
4454   }
4455 
4456   return Address::invalid();
4457 }
4458 
functionFinished(CodeGenFunction & CGF)4459 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
4460   FunctionGlobalizedDecls.erase(CGF.CurFn);
4461   CGOpenMPRuntime::functionFinished(CGF);
4462 }
4463 
getDefaultDistScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPDistScheduleClauseKind & ScheduleKind,llvm::Value * & Chunk) const4464 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
4465     CodeGenFunction &CGF, const OMPLoopDirective &S,
4466     OpenMPDistScheduleClauseKind &ScheduleKind,
4467     llvm::Value *&Chunk) const {
4468   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
4469   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
4470     ScheduleKind = OMPC_DIST_SCHEDULE_static;
4471     Chunk = CGF.EmitScalarConversion(
4472         RT.getGPUNumThreads(CGF),
4473         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
4474         S.getIterationVariable()->getType(), S.getBeginLoc());
4475     return;
4476   }
4477   CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
4478       CGF, S, ScheduleKind, Chunk);
4479 }
4480 
getDefaultScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPScheduleClauseKind & ScheduleKind,const Expr * & ChunkExpr) const4481 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
4482     CodeGenFunction &CGF, const OMPLoopDirective &S,
4483     OpenMPScheduleClauseKind &ScheduleKind,
4484     const Expr *&ChunkExpr) const {
4485   ScheduleKind = OMPC_SCHEDULE_static;
4486   // Chunk size is 1 in this case.
4487   llvm::APInt ChunkSize(32, 1);
4488   ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
4489       CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
4490       SourceLocation());
4491 }
4492 
adjustTargetSpecificDataForLambdas(CodeGenFunction & CGF,const OMPExecutableDirective & D) const4493 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
4494     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
4495   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
4496          " Expected target-based directive.");
4497   const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
4498   for (const CapturedStmt::Capture &C : CS->captures()) {
4499     // Capture variables captured by reference in lambdas for target-based
4500     // directives.
4501     if (!C.capturesVariable())
4502       continue;
4503     const VarDecl *VD = C.getCapturedVar();
4504     const auto *RD = VD->getType()
4505                          .getCanonicalType()
4506                          .getNonReferenceType()
4507                          ->getAsCXXRecordDecl();
4508     if (!RD || !RD->isLambda())
4509       continue;
4510     Address VDAddr = CGF.GetAddrOfLocalVar(VD);
4511     LValue VDLVal;
4512     if (VD->getType().getCanonicalType()->isReferenceType())
4513       VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
4514     else
4515       VDLVal = CGF.MakeAddrLValue(
4516           VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
4517     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
4518     FieldDecl *ThisCapture = nullptr;
4519     RD->getCaptureFields(Captures, ThisCapture);
4520     if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
4521       LValue ThisLVal =
4522           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
4523       llvm::Value *CXXThis = CGF.LoadCXXThis();
4524       CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
4525     }
4526     for (const LambdaCapture &LC : RD->captures()) {
4527       if (LC.getCaptureKind() != LCK_ByRef)
4528         continue;
4529       const VarDecl *VD = LC.getCapturedVar();
4530       if (!CS->capturesVariable(VD))
4531         continue;
4532       auto It = Captures.find(VD);
4533       assert(It != Captures.end() && "Found lambda capture without field.");
4534       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
4535       Address VDAddr = CGF.GetAddrOfLocalVar(VD);
4536       if (VD->getType().getCanonicalType()->isReferenceType())
4537         VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
4538                                                VD->getType().getCanonicalType())
4539                      .getAddress(CGF);
4540       CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
4541     }
4542   }
4543 }
4544 
getDefaultFirstprivateAddressSpace() const4545 unsigned CGOpenMPRuntimeGPU::getDefaultFirstprivateAddressSpace() const {
4546   return CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant);
4547 }
4548 
hasAllocateAttributeForGlobalVar(const VarDecl * VD,LangAS & AS)4549 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
4550                                                             LangAS &AS) {
4551   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
4552     return false;
4553   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
4554   switch(A->getAllocatorType()) {
4555   case OMPAllocateDeclAttr::OMPNullMemAlloc:
4556   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
4557   // Not supported, fallback to the default mem space.
4558   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
4559   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
4560   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
4561   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
4562   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
4563     AS = LangAS::Default;
4564     return true;
4565   case OMPAllocateDeclAttr::OMPConstMemAlloc:
4566     AS = LangAS::cuda_constant;
4567     return true;
4568   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
4569     AS = LangAS::cuda_shared;
4570     return true;
4571   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
4572     llvm_unreachable("Expected predefined allocator for the variables with the "
4573                      "static storage.");
4574   }
4575   return false;
4576 }
4577 
4578 // Get current CudaArch and ignore any unknown values
getCudaArch(CodeGenModule & CGM)4579 static CudaArch getCudaArch(CodeGenModule &CGM) {
4580   if (!CGM.getTarget().hasFeature("ptx"))
4581     return CudaArch::UNKNOWN;
4582   for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
4583     if (Feature.getValue()) {
4584       CudaArch Arch = StringToCudaArch(Feature.getKey());
4585       if (Arch != CudaArch::UNKNOWN)
4586         return Arch;
4587     }
4588   }
4589   return CudaArch::UNKNOWN;
4590 }
4591 
4592 /// Check to see if target architecture supports unified addressing which is
4593 /// a restriction for OpenMP requires clause "unified_shared_memory".
processRequiresDirective(const OMPRequiresDecl * D)4594 void CGOpenMPRuntimeGPU::processRequiresDirective(
4595     const OMPRequiresDecl *D) {
4596   for (const OMPClause *Clause : D->clauselists()) {
4597     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
4598       CudaArch Arch = getCudaArch(CGM);
4599       switch (Arch) {
4600       case CudaArch::SM_20:
4601       case CudaArch::SM_21:
4602       case CudaArch::SM_30:
4603       case CudaArch::SM_32:
4604       case CudaArch::SM_35:
4605       case CudaArch::SM_37:
4606       case CudaArch::SM_50:
4607       case CudaArch::SM_52:
4608       case CudaArch::SM_53:
4609       case CudaArch::SM_60:
4610       case CudaArch::SM_61:
4611       case CudaArch::SM_62: {
4612         SmallString<256> Buffer;
4613         llvm::raw_svector_ostream Out(Buffer);
4614         Out << "Target architecture " << CudaArchToString(Arch)
4615             << " does not support unified addressing";
4616         CGM.Error(Clause->getBeginLoc(), Out.str());
4617         return;
4618       }
4619       case CudaArch::SM_70:
4620       case CudaArch::SM_72:
4621       case CudaArch::SM_75:
4622       case CudaArch::SM_80:
4623       case CudaArch::GFX600:
4624       case CudaArch::GFX601:
4625       case CudaArch::GFX602:
4626       case CudaArch::GFX700:
4627       case CudaArch::GFX701:
4628       case CudaArch::GFX702:
4629       case CudaArch::GFX703:
4630       case CudaArch::GFX704:
4631       case CudaArch::GFX705:
4632       case CudaArch::GFX801:
4633       case CudaArch::GFX802:
4634       case CudaArch::GFX803:
4635       case CudaArch::GFX805:
4636       case CudaArch::GFX810:
4637       case CudaArch::GFX900:
4638       case CudaArch::GFX902:
4639       case CudaArch::GFX904:
4640       case CudaArch::GFX906:
4641       case CudaArch::GFX908:
4642       case CudaArch::GFX909:
4643       case CudaArch::GFX90c:
4644       case CudaArch::GFX1010:
4645       case CudaArch::GFX1011:
4646       case CudaArch::GFX1012:
4647       case CudaArch::GFX1030:
4648       case CudaArch::GFX1031:
4649       case CudaArch::GFX1032:
4650       case CudaArch::GFX1033:
4651       case CudaArch::UNUSED:
4652       case CudaArch::UNKNOWN:
4653         break;
4654       case CudaArch::LAST:
4655         llvm_unreachable("Unexpected Cuda arch.");
4656       }
4657     }
4658   }
4659   CGOpenMPRuntime::processRequiresDirective(D);
4660 }
4661 
4662 /// Get number of SMs and number of blocks per SM.
getSMsBlocksPerSM(CodeGenModule & CGM)4663 static std::pair<unsigned, unsigned> getSMsBlocksPerSM(CodeGenModule &CGM) {
4664   std::pair<unsigned, unsigned> Data;
4665   if (CGM.getLangOpts().OpenMPCUDANumSMs)
4666     Data.first = CGM.getLangOpts().OpenMPCUDANumSMs;
4667   if (CGM.getLangOpts().OpenMPCUDABlocksPerSM)
4668     Data.second = CGM.getLangOpts().OpenMPCUDABlocksPerSM;
4669   if (Data.first && Data.second)
4670     return Data;
4671   switch (getCudaArch(CGM)) {
4672   case CudaArch::SM_20:
4673   case CudaArch::SM_21:
4674   case CudaArch::SM_30:
4675   case CudaArch::SM_32:
4676   case CudaArch::SM_35:
4677   case CudaArch::SM_37:
4678   case CudaArch::SM_50:
4679   case CudaArch::SM_52:
4680   case CudaArch::SM_53:
4681     return {16, 16};
4682   case CudaArch::SM_60:
4683   case CudaArch::SM_61:
4684   case CudaArch::SM_62:
4685     return {56, 32};
4686   case CudaArch::SM_70:
4687   case CudaArch::SM_72:
4688   case CudaArch::SM_75:
4689   case CudaArch::SM_80:
4690     return {84, 32};
4691   case CudaArch::GFX600:
4692   case CudaArch::GFX601:
4693   case CudaArch::GFX602:
4694   case CudaArch::GFX700:
4695   case CudaArch::GFX701:
4696   case CudaArch::GFX702:
4697   case CudaArch::GFX703:
4698   case CudaArch::GFX704:
4699   case CudaArch::GFX705:
4700   case CudaArch::GFX801:
4701   case CudaArch::GFX802:
4702   case CudaArch::GFX803:
4703   case CudaArch::GFX805:
4704   case CudaArch::GFX810:
4705   case CudaArch::GFX900:
4706   case CudaArch::GFX902:
4707   case CudaArch::GFX904:
4708   case CudaArch::GFX906:
4709   case CudaArch::GFX908:
4710   case CudaArch::GFX909:
4711   case CudaArch::GFX90c:
4712   case CudaArch::GFX1010:
4713   case CudaArch::GFX1011:
4714   case CudaArch::GFX1012:
4715   case CudaArch::GFX1030:
4716   case CudaArch::GFX1031:
4717   case CudaArch::GFX1032:
4718   case CudaArch::GFX1033:
4719   case CudaArch::UNUSED:
4720   case CudaArch::UNKNOWN:
4721     break;
4722   case CudaArch::LAST:
4723     llvm_unreachable("Unexpected Cuda arch.");
4724   }
4725   llvm_unreachable("Unexpected NVPTX target without ptx feature.");
4726 }
4727 
clear()4728 void CGOpenMPRuntimeGPU::clear() {
4729   if (!GlobalizedRecords.empty() &&
4730       !CGM.getLangOpts().OpenMPCUDATargetParallel) {
4731     ASTContext &C = CGM.getContext();
4732     llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> GlobalRecs;
4733     llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> SharedRecs;
4734     RecordDecl *StaticRD = C.buildImplicitRecord(
4735         "_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
4736     StaticRD->startDefinition();
4737     RecordDecl *SharedStaticRD = C.buildImplicitRecord(
4738         "_shared_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
4739     SharedStaticRD->startDefinition();
4740     for (const GlobalPtrSizeRecsTy &Records : GlobalizedRecords) {
4741       if (Records.Records.empty())
4742         continue;
4743       unsigned Size = 0;
4744       unsigned RecAlignment = 0;
4745       for (const RecordDecl *RD : Records.Records) {
4746         QualType RDTy = C.getRecordType(RD);
4747         unsigned Alignment = C.getTypeAlignInChars(RDTy).getQuantity();
4748         RecAlignment = std::max(RecAlignment, Alignment);
4749         unsigned RecSize = C.getTypeSizeInChars(RDTy).getQuantity();
4750         Size =
4751             llvm::alignTo(llvm::alignTo(Size, Alignment) + RecSize, Alignment);
4752       }
4753       Size = llvm::alignTo(Size, RecAlignment);
4754       llvm::APInt ArySize(/*numBits=*/64, Size);
4755       QualType SubTy = C.getConstantArrayType(
4756           C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
4757       const bool UseSharedMemory = Size <= SharedMemorySize;
4758       auto *Field =
4759           FieldDecl::Create(C, UseSharedMemory ? SharedStaticRD : StaticRD,
4760                             SourceLocation(), SourceLocation(), nullptr, SubTy,
4761                             C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
4762                             /*BW=*/nullptr, /*Mutable=*/false,
4763                             /*InitStyle=*/ICIS_NoInit);
4764       Field->setAccess(AS_public);
4765       if (UseSharedMemory) {
4766         SharedStaticRD->addDecl(Field);
4767         SharedRecs.push_back(&Records);
4768       } else {
4769         StaticRD->addDecl(Field);
4770         GlobalRecs.push_back(&Records);
4771       }
4772       Records.RecSize->setInitializer(llvm::ConstantInt::get(CGM.SizeTy, Size));
4773       Records.UseSharedMemory->setInitializer(
4774           llvm::ConstantInt::get(CGM.Int16Ty, UseSharedMemory ? 1 : 0));
4775     }
4776     // Allocate SharedMemorySize buffer for the shared memory.
4777     // FIXME: nvlink does not handle weak linkage correctly (object with the
4778     // different size are reported as erroneous).
4779     // Restore this code as sson as nvlink is fixed.
4780     if (!SharedStaticRD->field_empty()) {
4781       llvm::APInt ArySize(/*numBits=*/64, SharedMemorySize);
4782       QualType SubTy = C.getConstantArrayType(
4783           C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
4784       auto *Field = FieldDecl::Create(
4785           C, SharedStaticRD, SourceLocation(), SourceLocation(), nullptr, SubTy,
4786           C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
4787           /*BW=*/nullptr, /*Mutable=*/false,
4788           /*InitStyle=*/ICIS_NoInit);
4789       Field->setAccess(AS_public);
4790       SharedStaticRD->addDecl(Field);
4791     }
4792     SharedStaticRD->completeDefinition();
4793     if (!SharedStaticRD->field_empty()) {
4794       QualType StaticTy = C.getRecordType(SharedStaticRD);
4795       llvm::Type *LLVMStaticTy = CGM.getTypes().ConvertTypeForMem(StaticTy);
4796       auto *GV = new llvm::GlobalVariable(
4797           CGM.getModule(), LLVMStaticTy,
4798           /*isConstant=*/false, llvm::GlobalValue::WeakAnyLinkage,
4799           llvm::UndefValue::get(LLVMStaticTy),
4800           "_openmp_shared_static_glob_rd_$_", /*InsertBefore=*/nullptr,
4801           llvm::GlobalValue::NotThreadLocal,
4802           C.getTargetAddressSpace(LangAS::cuda_shared));
4803       auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
4804           GV, CGM.VoidPtrTy);
4805       for (const GlobalPtrSizeRecsTy *Rec : SharedRecs) {
4806         Rec->Buffer->replaceAllUsesWith(Replacement);
4807         Rec->Buffer->eraseFromParent();
4808       }
4809     }
4810     StaticRD->completeDefinition();
4811     if (!StaticRD->field_empty()) {
4812       QualType StaticTy = C.getRecordType(StaticRD);
4813       std::pair<unsigned, unsigned> SMsBlockPerSM = getSMsBlocksPerSM(CGM);
4814       llvm::APInt Size1(32, SMsBlockPerSM.second);
4815       QualType Arr1Ty =
4816           C.getConstantArrayType(StaticTy, Size1, nullptr, ArrayType::Normal,
4817                                  /*IndexTypeQuals=*/0);
4818       llvm::APInt Size2(32, SMsBlockPerSM.first);
4819       QualType Arr2Ty =
4820           C.getConstantArrayType(Arr1Ty, Size2, nullptr, ArrayType::Normal,
4821                                  /*IndexTypeQuals=*/0);
4822       llvm::Type *LLVMArr2Ty = CGM.getTypes().ConvertTypeForMem(Arr2Ty);
4823       // FIXME: nvlink does not handle weak linkage correctly (object with the
4824       // different size are reported as erroneous).
4825       // Restore CommonLinkage as soon as nvlink is fixed.
4826       auto *GV = new llvm::GlobalVariable(
4827           CGM.getModule(), LLVMArr2Ty,
4828           /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
4829           llvm::Constant::getNullValue(LLVMArr2Ty),
4830           "_openmp_static_glob_rd_$_");
4831       auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
4832           GV, CGM.VoidPtrTy);
4833       for (const GlobalPtrSizeRecsTy *Rec : GlobalRecs) {
4834         Rec->Buffer->replaceAllUsesWith(Replacement);
4835         Rec->Buffer->eraseFromParent();
4836       }
4837     }
4838   }
4839   if (!TeamsReductions.empty()) {
4840     ASTContext &C = CGM.getContext();
4841     RecordDecl *StaticRD = C.buildImplicitRecord(
4842         "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
4843     StaticRD->startDefinition();
4844     for (const RecordDecl *TeamReductionRec : TeamsReductions) {
4845       QualType RecTy = C.getRecordType(TeamReductionRec);
4846       auto *Field = FieldDecl::Create(
4847           C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
4848           C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
4849           /*BW=*/nullptr, /*Mutable=*/false,
4850           /*InitStyle=*/ICIS_NoInit);
4851       Field->setAccess(AS_public);
4852       StaticRD->addDecl(Field);
4853     }
4854     StaticRD->completeDefinition();
4855     QualType StaticTy = C.getRecordType(StaticRD);
4856     llvm::Type *LLVMReductionsBufferTy =
4857         CGM.getTypes().ConvertTypeForMem(StaticTy);
4858     // FIXME: nvlink does not handle weak linkage correctly (object with the
4859     // different size are reported as erroneous).
4860     // Restore CommonLinkage as soon as nvlink is fixed.
4861     auto *GV = new llvm::GlobalVariable(
4862         CGM.getModule(), LLVMReductionsBufferTy,
4863         /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
4864         llvm::Constant::getNullValue(LLVMReductionsBufferTy),
4865         "_openmp_teams_reductions_buffer_$_");
4866     KernelTeamsReductionPtr->setInitializer(
4867         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4868                                                              CGM.VoidPtrTy));
4869   }
4870   CGOpenMPRuntime::clear();
4871 }
4872