1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Type.h"
40
41 using namespace clang;
42 using namespace CodeGen;
43
44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
45 "Clang max alignment greater than what LLVM supports?");
46
EmitDecl(const Decl & D)47 void CodeGenFunction::EmitDecl(const Decl &D) {
48 switch (D.getKind()) {
49 case Decl::BuiltinTemplate:
50 case Decl::TranslationUnit:
51 case Decl::ExternCContext:
52 case Decl::Namespace:
53 case Decl::UnresolvedUsingTypename:
54 case Decl::ClassTemplateSpecialization:
55 case Decl::ClassTemplatePartialSpecialization:
56 case Decl::VarTemplateSpecialization:
57 case Decl::VarTemplatePartialSpecialization:
58 case Decl::TemplateTypeParm:
59 case Decl::UnresolvedUsingValue:
60 case Decl::NonTypeTemplateParm:
61 case Decl::CXXDeductionGuide:
62 case Decl::CXXMethod:
63 case Decl::CXXConstructor:
64 case Decl::CXXDestructor:
65 case Decl::CXXConversion:
66 case Decl::Field:
67 case Decl::MSProperty:
68 case Decl::IndirectField:
69 case Decl::ObjCIvar:
70 case Decl::ObjCAtDefsField:
71 case Decl::ParmVar:
72 case Decl::ImplicitParam:
73 case Decl::ClassTemplate:
74 case Decl::VarTemplate:
75 case Decl::FunctionTemplate:
76 case Decl::TypeAliasTemplate:
77 case Decl::TemplateTemplateParm:
78 case Decl::ObjCMethod:
79 case Decl::ObjCCategory:
80 case Decl::ObjCProtocol:
81 case Decl::ObjCInterface:
82 case Decl::ObjCCategoryImpl:
83 case Decl::ObjCImplementation:
84 case Decl::ObjCProperty:
85 case Decl::ObjCCompatibleAlias:
86 case Decl::PragmaComment:
87 case Decl::PragmaDetectMismatch:
88 case Decl::AccessSpec:
89 case Decl::LinkageSpec:
90 case Decl::Export:
91 case Decl::ObjCPropertyImpl:
92 case Decl::FileScopeAsm:
93 case Decl::Friend:
94 case Decl::FriendTemplate:
95 case Decl::Block:
96 case Decl::Captured:
97 case Decl::ClassScopeFunctionSpecialization:
98 case Decl::UsingShadow:
99 case Decl::ConstructorUsingShadow:
100 case Decl::ObjCTypeParam:
101 case Decl::Binding:
102 llvm_unreachable("Declaration should not be in declstmts!");
103 case Decl::Record: // struct/union/class X;
104 case Decl::CXXRecord: // struct/union/class X; [C++]
105 if (CGDebugInfo *DI = getDebugInfo())
106 if (cast<RecordDecl>(D).getDefinition())
107 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
108 return;
109 case Decl::Enum: // enum X;
110 if (CGDebugInfo *DI = getDebugInfo())
111 if (cast<EnumDecl>(D).getDefinition())
112 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
113 return;
114 case Decl::Function: // void X();
115 case Decl::EnumConstant: // enum ? { X = ? }
116 case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
117 case Decl::Label: // __label__ x;
118 case Decl::Import:
119 case Decl::MSGuid: // __declspec(uuid("..."))
120 case Decl::TemplateParamObject:
121 case Decl::OMPThreadPrivate:
122 case Decl::OMPAllocate:
123 case Decl::OMPCapturedExpr:
124 case Decl::OMPRequires:
125 case Decl::Empty:
126 case Decl::Concept:
127 case Decl::LifetimeExtendedTemporary:
128 case Decl::RequiresExprBody:
129 // None of these decls require codegen support.
130 return;
131
132 case Decl::NamespaceAlias:
133 if (CGDebugInfo *DI = getDebugInfo())
134 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
135 return;
136 case Decl::Using: // using X; [C++]
137 if (CGDebugInfo *DI = getDebugInfo())
138 DI->EmitUsingDecl(cast<UsingDecl>(D));
139 return;
140 case Decl::UsingPack:
141 for (auto *Using : cast<UsingPackDecl>(D).expansions())
142 EmitDecl(*Using);
143 return;
144 case Decl::UsingDirective: // using namespace X; [C++]
145 if (CGDebugInfo *DI = getDebugInfo())
146 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
147 return;
148 case Decl::Var:
149 case Decl::Decomposition: {
150 const VarDecl &VD = cast<VarDecl>(D);
151 assert(VD.isLocalVarDecl() &&
152 "Should not see file-scope variables inside a function!");
153 EmitVarDecl(VD);
154 if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
155 for (auto *B : DD->bindings())
156 if (auto *HD = B->getHoldingVar())
157 EmitVarDecl(*HD);
158 return;
159 }
160
161 case Decl::OMPDeclareReduction:
162 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
163
164 case Decl::OMPDeclareMapper:
165 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
166
167 case Decl::Typedef: // typedef int X;
168 case Decl::TypeAlias: { // using X = int; [C++0x]
169 QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
170 if (CGDebugInfo *DI = getDebugInfo())
171 DI->EmitAndRetainType(Ty);
172 if (Ty->isVariablyModifiedType())
173 EmitVariablyModifiedType(Ty);
174 return;
175 }
176 }
177 }
178
179 /// EmitVarDecl - This method handles emission of any variable declaration
180 /// inside a function, including static vars etc.
EmitVarDecl(const VarDecl & D)181 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
182 if (D.hasExternalStorage())
183 // Don't emit it now, allow it to be emitted lazily on its first use.
184 return;
185
186 // Some function-scope variable does not have static storage but still
187 // needs to be emitted like a static variable, e.g. a function-scope
188 // variable in constant address space in OpenCL.
189 if (D.getStorageDuration() != SD_Automatic) {
190 // Static sampler variables translated to function calls.
191 if (D.getType()->isSamplerT())
192 return;
193
194 llvm::GlobalValue::LinkageTypes Linkage =
195 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
196
197 // FIXME: We need to force the emission/use of a guard variable for
198 // some variables even if we can constant-evaluate them because
199 // we can't guarantee every translation unit will constant-evaluate them.
200
201 return EmitStaticVarDecl(D, Linkage);
202 }
203
204 if (D.getType().getAddressSpace() == LangAS::opencl_local)
205 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
206
207 assert(D.hasLocalStorage());
208 return EmitAutoVarDecl(D);
209 }
210
getStaticDeclName(CodeGenModule & CGM,const VarDecl & D)211 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
212 if (CGM.getLangOpts().CPlusPlus)
213 return CGM.getMangledName(&D).str();
214
215 // If this isn't C++, we don't need a mangled name, just a pretty one.
216 assert(!D.isExternallyVisible() && "name shouldn't matter");
217 std::string ContextName;
218 const DeclContext *DC = D.getDeclContext();
219 if (auto *CD = dyn_cast<CapturedDecl>(DC))
220 DC = cast<DeclContext>(CD->getNonClosureContext());
221 if (const auto *FD = dyn_cast<FunctionDecl>(DC))
222 ContextName = std::string(CGM.getMangledName(FD));
223 else if (const auto *BD = dyn_cast<BlockDecl>(DC))
224 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
225 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
226 ContextName = OMD->getSelector().getAsString();
227 else
228 llvm_unreachable("Unknown context for static var decl");
229
230 ContextName += "." + D.getNameAsString();
231 return ContextName;
232 }
233
getOrCreateStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)234 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
235 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
236 // In general, we don't always emit static var decls once before we reference
237 // them. It is possible to reference them before emitting the function that
238 // contains them, and it is possible to emit the containing function multiple
239 // times.
240 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
241 return ExistingGV;
242
243 QualType Ty = D.getType();
244 assert(Ty->isConstantSizeType() && "VLAs can't be static");
245
246 // Use the label if the variable is renamed with the asm-label extension.
247 std::string Name;
248 if (D.hasAttr<AsmLabelAttr>())
249 Name = std::string(getMangledName(&D));
250 else
251 Name = getStaticDeclName(*this, D);
252
253 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
254 LangAS AS = GetGlobalVarAddressSpace(&D);
255 unsigned TargetAS = getContext().getTargetAddressSpace(AS);
256
257 // OpenCL variables in local address space and CUDA shared
258 // variables cannot have an initializer.
259 llvm::Constant *Init = nullptr;
260 if (Ty.getAddressSpace() == LangAS::opencl_local ||
261 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
262 Init = llvm::UndefValue::get(LTy);
263 else
264 Init = EmitNullConstant(Ty);
265
266 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
267 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
268 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
269 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
270
271 if (supportsCOMDAT() && GV->isWeakForLinker())
272 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
273
274 if (D.getTLSKind())
275 setTLSMode(GV, D);
276
277 setGVProperties(GV, &D);
278
279 // Make sure the result is of the correct type.
280 LangAS ExpectedAS = Ty.getAddressSpace();
281 llvm::Constant *Addr = GV;
282 if (AS != ExpectedAS) {
283 Addr = getTargetCodeGenInfo().performAddrSpaceCast(
284 *this, GV, AS, ExpectedAS,
285 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
286 }
287
288 setStaticLocalDeclAddress(&D, Addr);
289
290 // Ensure that the static local gets initialized by making sure the parent
291 // function gets emitted eventually.
292 const Decl *DC = cast<Decl>(D.getDeclContext());
293
294 // We can't name blocks or captured statements directly, so try to emit their
295 // parents.
296 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
297 DC = DC->getNonClosureContext();
298 // FIXME: Ensure that global blocks get emitted.
299 if (!DC)
300 return Addr;
301 }
302
303 GlobalDecl GD;
304 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
305 GD = GlobalDecl(CD, Ctor_Base);
306 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
307 GD = GlobalDecl(DD, Dtor_Base);
308 else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
309 GD = GlobalDecl(FD);
310 else {
311 // Don't do anything for Obj-C method decls or global closures. We should
312 // never defer them.
313 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
314 }
315 if (GD.getDecl()) {
316 // Disable emission of the parent function for the OpenMP device codegen.
317 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
318 (void)GetAddrOfGlobal(GD);
319 }
320
321 return Addr;
322 }
323
324 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
325 /// global variable that has already been created for it. If the initializer
326 /// has a different type than GV does, this may free GV and return a different
327 /// one. Otherwise it just returns GV.
328 llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl & D,llvm::GlobalVariable * GV)329 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
330 llvm::GlobalVariable *GV) {
331 ConstantEmitter emitter(*this);
332 llvm::Constant *Init = emitter.tryEmitForInitializer(D);
333
334 // If constant emission failed, then this should be a C++ static
335 // initializer.
336 if (!Init) {
337 if (!getLangOpts().CPlusPlus)
338 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
339 else if (HaveInsertPoint()) {
340 // Since we have a static initializer, this global variable can't
341 // be constant.
342 GV->setConstant(false);
343
344 EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
345 }
346 return GV;
347 }
348
349 // The initializer may differ in type from the global. Rewrite
350 // the global to match the initializer. (We have to do this
351 // because some types, like unions, can't be completely represented
352 // in the LLVM type system.)
353 if (GV->getValueType() != Init->getType()) {
354 llvm::GlobalVariable *OldGV = GV;
355
356 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
357 OldGV->isConstant(),
358 OldGV->getLinkage(), Init, "",
359 /*InsertBefore*/ OldGV,
360 OldGV->getThreadLocalMode(),
361 CGM.getContext().getTargetAddressSpace(D.getType()));
362 GV->setVisibility(OldGV->getVisibility());
363 GV->setDSOLocal(OldGV->isDSOLocal());
364 GV->setComdat(OldGV->getComdat());
365
366 // Steal the name of the old global
367 GV->takeName(OldGV);
368
369 // Replace all uses of the old global with the new global
370 llvm::Constant *NewPtrForOldDecl =
371 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
372 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
373
374 // Erase the old global, since it is no longer used.
375 OldGV->eraseFromParent();
376 }
377
378 GV->setConstant(CGM.isTypeConstant(D.getType(), true));
379 GV->setInitializer(Init);
380
381 emitter.finalize(GV);
382
383 if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
384 HaveInsertPoint()) {
385 // We have a constant initializer, but a nontrivial destructor. We still
386 // need to perform a guarded "initialization" in order to register the
387 // destructor.
388 EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
389 }
390
391 return GV;
392 }
393
EmitStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)394 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
395 llvm::GlobalValue::LinkageTypes Linkage) {
396 // Check to see if we already have a global variable for this
397 // declaration. This can happen when double-emitting function
398 // bodies, e.g. with complete and base constructors.
399 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
400 CharUnits alignment = getContext().getDeclAlign(&D);
401
402 // Store into LocalDeclMap before generating initializer to handle
403 // circular references.
404 setAddrOfLocalVar(&D, Address(addr, alignment));
405
406 // We can't have a VLA here, but we can have a pointer to a VLA,
407 // even though that doesn't really make any sense.
408 // Make sure to evaluate VLA bounds now so that we have them for later.
409 if (D.getType()->isVariablyModifiedType())
410 EmitVariablyModifiedType(D.getType());
411
412 // Save the type in case adding the initializer forces a type change.
413 llvm::Type *expectedType = addr->getType();
414
415 llvm::GlobalVariable *var =
416 cast<llvm::GlobalVariable>(addr->stripPointerCasts());
417
418 // CUDA's local and local static __shared__ variables should not
419 // have any non-empty initializers. This is ensured by Sema.
420 // Whatever initializer such variable may have when it gets here is
421 // a no-op and should not be emitted.
422 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
423 D.hasAttr<CUDASharedAttr>();
424 // If this value has an initializer, emit it.
425 if (D.getInit() && !isCudaSharedVar)
426 var = AddInitializerToStaticVarDecl(D, var);
427
428 var->setAlignment(alignment.getAsAlign());
429
430 if (D.hasAttr<AnnotateAttr>())
431 CGM.AddGlobalAnnotations(&D, var);
432
433 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
434 var->addAttribute("bss-section", SA->getName());
435 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
436 var->addAttribute("data-section", SA->getName());
437 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
438 var->addAttribute("rodata-section", SA->getName());
439 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
440 var->addAttribute("relro-section", SA->getName());
441
442 if (const SectionAttr *SA = D.getAttr<SectionAttr>())
443 var->setSection(SA->getName());
444
445 if (D.hasAttr<UsedAttr>())
446 CGM.addUsedGlobal(var);
447
448 // We may have to cast the constant because of the initializer
449 // mismatch above.
450 //
451 // FIXME: It is really dangerous to store this in the map; if anyone
452 // RAUW's the GV uses of this constant will be invalid.
453 llvm::Constant *castedAddr =
454 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
455 if (var != castedAddr)
456 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
457 CGM.setStaticLocalDeclAddress(&D, castedAddr);
458
459 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
460
461 // Emit global variable debug descriptor for static vars.
462 CGDebugInfo *DI = getDebugInfo();
463 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
464 DI->setLocation(D.getLocation());
465 DI->EmitGlobalVariable(var, &D);
466 }
467 }
468
469 namespace {
470 struct DestroyObject final : EHScopeStack::Cleanup {
DestroyObject__anon53e8cf900111::DestroyObject471 DestroyObject(Address addr, QualType type,
472 CodeGenFunction::Destroyer *destroyer,
473 bool useEHCleanupForArray)
474 : addr(addr), type(type), destroyer(destroyer),
475 useEHCleanupForArray(useEHCleanupForArray) {}
476
477 Address addr;
478 QualType type;
479 CodeGenFunction::Destroyer *destroyer;
480 bool useEHCleanupForArray;
481
Emit__anon53e8cf900111::DestroyObject482 void Emit(CodeGenFunction &CGF, Flags flags) override {
483 // Don't use an EH cleanup recursively from an EH cleanup.
484 bool useEHCleanupForArray =
485 flags.isForNormalCleanup() && this->useEHCleanupForArray;
486
487 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
488 }
489 };
490
491 template <class Derived>
492 struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable__anon53e8cf900111::DestroyNRVOVariable493 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
494 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
495
496 llvm::Value *NRVOFlag;
497 Address Loc;
498 QualType Ty;
499
Emit__anon53e8cf900111::DestroyNRVOVariable500 void Emit(CodeGenFunction &CGF, Flags flags) override {
501 // Along the exceptions path we always execute the dtor.
502 bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
503
504 llvm::BasicBlock *SkipDtorBB = nullptr;
505 if (NRVO) {
506 // If we exited via NRVO, we skip the destructor call.
507 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
508 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
509 llvm::Value *DidNRVO =
510 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
511 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
512 CGF.EmitBlock(RunDtorBB);
513 }
514
515 static_cast<Derived *>(this)->emitDestructorCall(CGF);
516
517 if (NRVO) CGF.EmitBlock(SkipDtorBB);
518 }
519
520 virtual ~DestroyNRVOVariable() = default;
521 };
522
523 struct DestroyNRVOVariableCXX final
524 : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
DestroyNRVOVariableCXX__anon53e8cf900111::DestroyNRVOVariableCXX525 DestroyNRVOVariableCXX(Address addr, QualType type,
526 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
527 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
528 Dtor(Dtor) {}
529
530 const CXXDestructorDecl *Dtor;
531
emitDestructorCall__anon53e8cf900111::DestroyNRVOVariableCXX532 void emitDestructorCall(CodeGenFunction &CGF) {
533 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
534 /*ForVirtualBase=*/false,
535 /*Delegating=*/false, Loc, Ty);
536 }
537 };
538
539 struct DestroyNRVOVariableC final
540 : DestroyNRVOVariable<DestroyNRVOVariableC> {
DestroyNRVOVariableC__anon53e8cf900111::DestroyNRVOVariableC541 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
542 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
543
emitDestructorCall__anon53e8cf900111::DestroyNRVOVariableC544 void emitDestructorCall(CodeGenFunction &CGF) {
545 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
546 }
547 };
548
549 struct CallStackRestore final : EHScopeStack::Cleanup {
550 Address Stack;
CallStackRestore__anon53e8cf900111::CallStackRestore551 CallStackRestore(Address Stack) : Stack(Stack) {}
Emit__anon53e8cf900111::CallStackRestore552 void Emit(CodeGenFunction &CGF, Flags flags) override {
553 llvm::Value *V = CGF.Builder.CreateLoad(Stack);
554 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
555 CGF.Builder.CreateCall(F, V);
556 }
557 };
558
559 struct ExtendGCLifetime final : EHScopeStack::Cleanup {
560 const VarDecl &Var;
ExtendGCLifetime__anon53e8cf900111::ExtendGCLifetime561 ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
562
Emit__anon53e8cf900111::ExtendGCLifetime563 void Emit(CodeGenFunction &CGF, Flags flags) override {
564 // Compute the address of the local variable, in case it's a
565 // byref or something.
566 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
567 Var.getType(), VK_LValue, SourceLocation());
568 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
569 SourceLocation());
570 CGF.EmitExtendGCLifetime(value);
571 }
572 };
573
574 struct CallCleanupFunction final : EHScopeStack::Cleanup {
575 llvm::Constant *CleanupFn;
576 const CGFunctionInfo &FnInfo;
577 const VarDecl &Var;
578
CallCleanupFunction__anon53e8cf900111::CallCleanupFunction579 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
580 const VarDecl *Var)
581 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
582
Emit__anon53e8cf900111::CallCleanupFunction583 void Emit(CodeGenFunction &CGF, Flags flags) override {
584 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
585 Var.getType(), VK_LValue, SourceLocation());
586 // Compute the address of the local variable, in case it's a byref
587 // or something.
588 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
589
590 // In some cases, the type of the function argument will be different from
591 // the type of the pointer. An example of this is
592 // void f(void* arg);
593 // __attribute__((cleanup(f))) void *g;
594 //
595 // To fix this we insert a bitcast here.
596 QualType ArgTy = FnInfo.arg_begin()->type;
597 llvm::Value *Arg =
598 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
599
600 CallArgList Args;
601 Args.add(RValue::get(Arg),
602 CGF.getContext().getPointerType(Var.getType()));
603 auto Callee = CGCallee::forDirect(CleanupFn);
604 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
605 }
606 };
607 } // end anonymous namespace
608
609 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
610 /// variable with lifetime.
EmitAutoVarWithLifetime(CodeGenFunction & CGF,const VarDecl & var,Address addr,Qualifiers::ObjCLifetime lifetime)611 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
612 Address addr,
613 Qualifiers::ObjCLifetime lifetime) {
614 switch (lifetime) {
615 case Qualifiers::OCL_None:
616 llvm_unreachable("present but none");
617
618 case Qualifiers::OCL_ExplicitNone:
619 // nothing to do
620 break;
621
622 case Qualifiers::OCL_Strong: {
623 CodeGenFunction::Destroyer *destroyer =
624 (var.hasAttr<ObjCPreciseLifetimeAttr>()
625 ? CodeGenFunction::destroyARCStrongPrecise
626 : CodeGenFunction::destroyARCStrongImprecise);
627
628 CleanupKind cleanupKind = CGF.getARCCleanupKind();
629 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
630 cleanupKind & EHCleanup);
631 break;
632 }
633 case Qualifiers::OCL_Autoreleasing:
634 // nothing to do
635 break;
636
637 case Qualifiers::OCL_Weak:
638 // __weak objects always get EH cleanups; otherwise, exceptions
639 // could cause really nasty crashes instead of mere leaks.
640 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
641 CodeGenFunction::destroyARCWeak,
642 /*useEHCleanup*/ true);
643 break;
644 }
645 }
646
isAccessedBy(const VarDecl & var,const Stmt * s)647 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
648 if (const Expr *e = dyn_cast<Expr>(s)) {
649 // Skip the most common kinds of expressions that make
650 // hierarchy-walking expensive.
651 s = e = e->IgnoreParenCasts();
652
653 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
654 return (ref->getDecl() == &var);
655 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
656 const BlockDecl *block = be->getBlockDecl();
657 for (const auto &I : block->captures()) {
658 if (I.getVariable() == &var)
659 return true;
660 }
661 }
662 }
663
664 for (const Stmt *SubStmt : s->children())
665 // SubStmt might be null; as in missing decl or conditional of an if-stmt.
666 if (SubStmt && isAccessedBy(var, SubStmt))
667 return true;
668
669 return false;
670 }
671
isAccessedBy(const ValueDecl * decl,const Expr * e)672 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
673 if (!decl) return false;
674 if (!isa<VarDecl>(decl)) return false;
675 const VarDecl *var = cast<VarDecl>(decl);
676 return isAccessedBy(*var, e);
677 }
678
tryEmitARCCopyWeakInit(CodeGenFunction & CGF,const LValue & destLV,const Expr * init)679 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
680 const LValue &destLV, const Expr *init) {
681 bool needsCast = false;
682
683 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
684 switch (castExpr->getCastKind()) {
685 // Look through casts that don't require representation changes.
686 case CK_NoOp:
687 case CK_BitCast:
688 case CK_BlockPointerToObjCPointerCast:
689 needsCast = true;
690 break;
691
692 // If we find an l-value to r-value cast from a __weak variable,
693 // emit this operation as a copy or move.
694 case CK_LValueToRValue: {
695 const Expr *srcExpr = castExpr->getSubExpr();
696 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
697 return false;
698
699 // Emit the source l-value.
700 LValue srcLV = CGF.EmitLValue(srcExpr);
701
702 // Handle a formal type change to avoid asserting.
703 auto srcAddr = srcLV.getAddress(CGF);
704 if (needsCast) {
705 srcAddr = CGF.Builder.CreateElementBitCast(
706 srcAddr, destLV.getAddress(CGF).getElementType());
707 }
708
709 // If it was an l-value, use objc_copyWeak.
710 if (srcExpr->getValueKind() == VK_LValue) {
711 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
712 } else {
713 assert(srcExpr->getValueKind() == VK_XValue);
714 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
715 }
716 return true;
717 }
718
719 // Stop at anything else.
720 default:
721 return false;
722 }
723
724 init = castExpr->getSubExpr();
725 }
726 return false;
727 }
728
drillIntoBlockVariable(CodeGenFunction & CGF,LValue & lvalue,const VarDecl * var)729 static void drillIntoBlockVariable(CodeGenFunction &CGF,
730 LValue &lvalue,
731 const VarDecl *var) {
732 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
733 }
734
EmitNullabilityCheck(LValue LHS,llvm::Value * RHS,SourceLocation Loc)735 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
736 SourceLocation Loc) {
737 if (!SanOpts.has(SanitizerKind::NullabilityAssign))
738 return;
739
740 auto Nullability = LHS.getType()->getNullability(getContext());
741 if (!Nullability || *Nullability != NullabilityKind::NonNull)
742 return;
743
744 // Check if the right hand side of the assignment is nonnull, if the left
745 // hand side must be nonnull.
746 SanitizerScope SanScope(this);
747 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
748 llvm::Constant *StaticData[] = {
749 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
750 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
751 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
752 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
753 SanitizerHandler::TypeMismatch, StaticData, RHS);
754 }
755
EmitScalarInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)756 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
757 LValue lvalue, bool capturedByInit) {
758 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
759 if (!lifetime) {
760 llvm::Value *value = EmitScalarExpr(init);
761 if (capturedByInit)
762 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
763 EmitNullabilityCheck(lvalue, value, init->getExprLoc());
764 EmitStoreThroughLValue(RValue::get(value), lvalue, true);
765 return;
766 }
767
768 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
769 init = DIE->getExpr();
770
771 // If we're emitting a value with lifetime, we have to do the
772 // initialization *before* we leave the cleanup scopes.
773 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(init))
774 init = EWC->getSubExpr();
775 CodeGenFunction::RunCleanupsScope Scope(*this);
776
777 // We have to maintain the illusion that the variable is
778 // zero-initialized. If the variable might be accessed in its
779 // initializer, zero-initialize before running the initializer, then
780 // actually perform the initialization with an assign.
781 bool accessedByInit = false;
782 if (lifetime != Qualifiers::OCL_ExplicitNone)
783 accessedByInit = (capturedByInit || isAccessedBy(D, init));
784 if (accessedByInit) {
785 LValue tempLV = lvalue;
786 // Drill down to the __block object if necessary.
787 if (capturedByInit) {
788 // We can use a simple GEP for this because it can't have been
789 // moved yet.
790 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
791 cast<VarDecl>(D),
792 /*follow*/ false));
793 }
794
795 auto ty =
796 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
797 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
798
799 // If __weak, we want to use a barrier under certain conditions.
800 if (lifetime == Qualifiers::OCL_Weak)
801 EmitARCInitWeak(tempLV.getAddress(*this), zero);
802
803 // Otherwise just do a simple store.
804 else
805 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
806 }
807
808 // Emit the initializer.
809 llvm::Value *value = nullptr;
810
811 switch (lifetime) {
812 case Qualifiers::OCL_None:
813 llvm_unreachable("present but none");
814
815 case Qualifiers::OCL_Strong: {
816 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
817 value = EmitARCRetainScalarExpr(init);
818 break;
819 }
820 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
821 // that we omit the retain, and causes non-autoreleased return values to be
822 // immediately released.
823 LLVM_FALLTHROUGH;
824 }
825
826 case Qualifiers::OCL_ExplicitNone:
827 value = EmitARCUnsafeUnretainedScalarExpr(init);
828 break;
829
830 case Qualifiers::OCL_Weak: {
831 // If it's not accessed by the initializer, try to emit the
832 // initialization with a copy or move.
833 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
834 return;
835 }
836
837 // No way to optimize a producing initializer into this. It's not
838 // worth optimizing for, because the value will immediately
839 // disappear in the common case.
840 value = EmitScalarExpr(init);
841
842 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
843 if (accessedByInit)
844 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
845 else
846 EmitARCInitWeak(lvalue.getAddress(*this), value);
847 return;
848 }
849
850 case Qualifiers::OCL_Autoreleasing:
851 value = EmitARCRetainAutoreleaseScalarExpr(init);
852 break;
853 }
854
855 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
856
857 EmitNullabilityCheck(lvalue, value, init->getExprLoc());
858
859 // If the variable might have been accessed by its initializer, we
860 // might have to initialize with a barrier. We have to do this for
861 // both __weak and __strong, but __weak got filtered out above.
862 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
863 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
864 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
865 EmitARCRelease(oldValue, ARCImpreciseLifetime);
866 return;
867 }
868
869 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
870 }
871
872 /// Decide whether we can emit the non-zero parts of the specified initializer
873 /// with equal or fewer than NumStores scalar stores.
canEmitInitWithFewStoresAfterBZero(llvm::Constant * Init,unsigned & NumStores)874 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
875 unsigned &NumStores) {
876 // Zero and Undef never requires any extra stores.
877 if (isa<llvm::ConstantAggregateZero>(Init) ||
878 isa<llvm::ConstantPointerNull>(Init) ||
879 isa<llvm::UndefValue>(Init))
880 return true;
881 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
882 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
883 isa<llvm::ConstantExpr>(Init))
884 return Init->isNullValue() || NumStores--;
885
886 // See if we can emit each element.
887 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
888 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
889 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
890 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
891 return false;
892 }
893 return true;
894 }
895
896 if (llvm::ConstantDataSequential *CDS =
897 dyn_cast<llvm::ConstantDataSequential>(Init)) {
898 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
899 llvm::Constant *Elt = CDS->getElementAsConstant(i);
900 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
901 return false;
902 }
903 return true;
904 }
905
906 // Anything else is hard and scary.
907 return false;
908 }
909
910 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
911 /// the scalar stores that would be required.
emitStoresForInitAfterBZero(CodeGenModule & CGM,llvm::Constant * Init,Address Loc,bool isVolatile,CGBuilderTy & Builder,bool IsAutoInit)912 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
913 llvm::Constant *Init, Address Loc,
914 bool isVolatile, CGBuilderTy &Builder,
915 bool IsAutoInit) {
916 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
917 "called emitStoresForInitAfterBZero for zero or undef value.");
918
919 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
920 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
921 isa<llvm::ConstantExpr>(Init)) {
922 auto *I = Builder.CreateStore(Init, Loc, isVolatile);
923 if (IsAutoInit)
924 I->addAnnotationMetadata("auto-init");
925 return;
926 }
927
928 if (llvm::ConstantDataSequential *CDS =
929 dyn_cast<llvm::ConstantDataSequential>(Init)) {
930 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
931 llvm::Constant *Elt = CDS->getElementAsConstant(i);
932
933 // If necessary, get a pointer to the element and emit it.
934 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
935 emitStoresForInitAfterBZero(
936 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
937 Builder, IsAutoInit);
938 }
939 return;
940 }
941
942 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
943 "Unknown value type!");
944
945 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
946 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
947
948 // If necessary, get a pointer to the element and emit it.
949 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
950 emitStoresForInitAfterBZero(CGM, Elt,
951 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
952 isVolatile, Builder, IsAutoInit);
953 }
954 }
955
956 /// Decide whether we should use bzero plus some stores to initialize a local
957 /// variable instead of using a memcpy from a constant global. It is beneficial
958 /// to use bzero if the global is all zeros, or mostly zeros and large.
shouldUseBZeroPlusStoresToInitialize(llvm::Constant * Init,uint64_t GlobalSize)959 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
960 uint64_t GlobalSize) {
961 // If a global is all zeros, always use a bzero.
962 if (isa<llvm::ConstantAggregateZero>(Init)) return true;
963
964 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
965 // do it if it will require 6 or fewer scalar stores.
966 // TODO: Should budget depends on the size? Avoiding a large global warrants
967 // plopping in more stores.
968 unsigned StoreBudget = 6;
969 uint64_t SizeLimit = 32;
970
971 return GlobalSize > SizeLimit &&
972 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
973 }
974
975 /// Decide whether we should use memset to initialize a local variable instead
976 /// of using a memcpy from a constant global. Assumes we've already decided to
977 /// not user bzero.
978 /// FIXME We could be more clever, as we are for bzero above, and generate
979 /// memset followed by stores. It's unclear that's worth the effort.
shouldUseMemSetToInitialize(llvm::Constant * Init,uint64_t GlobalSize,const llvm::DataLayout & DL)980 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
981 uint64_t GlobalSize,
982 const llvm::DataLayout &DL) {
983 uint64_t SizeLimit = 32;
984 if (GlobalSize <= SizeLimit)
985 return nullptr;
986 return llvm::isBytewiseValue(Init, DL);
987 }
988
989 /// Decide whether we want to split a constant structure or array store into a
990 /// sequence of its fields' stores. This may cost us code size and compilation
991 /// speed, but plays better with store optimizations.
shouldSplitConstantStore(CodeGenModule & CGM,uint64_t GlobalByteSize)992 static bool shouldSplitConstantStore(CodeGenModule &CGM,
993 uint64_t GlobalByteSize) {
994 // Don't break things that occupy more than one cacheline.
995 uint64_t ByteSizeLimit = 64;
996 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
997 return false;
998 if (GlobalByteSize <= ByteSizeLimit)
999 return true;
1000 return false;
1001 }
1002
1003 enum class IsPattern { No, Yes };
1004
1005 /// Generate a constant filled with either a pattern or zeroes.
patternOrZeroFor(CodeGenModule & CGM,IsPattern isPattern,llvm::Type * Ty)1006 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1007 llvm::Type *Ty) {
1008 if (isPattern == IsPattern::Yes)
1009 return initializationPatternFor(CGM, Ty);
1010 else
1011 return llvm::Constant::getNullValue(Ty);
1012 }
1013
1014 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1015 llvm::Constant *constant);
1016
1017 /// Helper function for constWithPadding() to deal with padding in structures.
constStructWithPadding(CodeGenModule & CGM,IsPattern isPattern,llvm::StructType * STy,llvm::Constant * constant)1018 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1019 IsPattern isPattern,
1020 llvm::StructType *STy,
1021 llvm::Constant *constant) {
1022 const llvm::DataLayout &DL = CGM.getDataLayout();
1023 const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1024 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1025 unsigned SizeSoFar = 0;
1026 SmallVector<llvm::Constant *, 8> Values;
1027 bool NestedIntact = true;
1028 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1029 unsigned CurOff = Layout->getElementOffset(i);
1030 if (SizeSoFar < CurOff) {
1031 assert(!STy->isPacked());
1032 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1033 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1034 }
1035 llvm::Constant *CurOp;
1036 if (constant->isZeroValue())
1037 CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1038 else
1039 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1040 auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1041 if (CurOp != NewOp)
1042 NestedIntact = false;
1043 Values.push_back(NewOp);
1044 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1045 }
1046 unsigned TotalSize = Layout->getSizeInBytes();
1047 if (SizeSoFar < TotalSize) {
1048 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1049 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1050 }
1051 if (NestedIntact && Values.size() == STy->getNumElements())
1052 return constant;
1053 return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1054 }
1055
1056 /// Replace all padding bytes in a given constant with either a pattern byte or
1057 /// 0x00.
constWithPadding(CodeGenModule & CGM,IsPattern isPattern,llvm::Constant * constant)1058 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1059 llvm::Constant *constant) {
1060 llvm::Type *OrigTy = constant->getType();
1061 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1062 return constStructWithPadding(CGM, isPattern, STy, constant);
1063 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1064 llvm::SmallVector<llvm::Constant *, 8> Values;
1065 uint64_t Size = ArrayTy->getNumElements();
1066 if (!Size)
1067 return constant;
1068 llvm::Type *ElemTy = ArrayTy->getElementType();
1069 bool ZeroInitializer = constant->isNullValue();
1070 llvm::Constant *OpValue, *PaddedOp;
1071 if (ZeroInitializer) {
1072 OpValue = llvm::Constant::getNullValue(ElemTy);
1073 PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1074 }
1075 for (unsigned Op = 0; Op != Size; ++Op) {
1076 if (!ZeroInitializer) {
1077 OpValue = constant->getAggregateElement(Op);
1078 PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1079 }
1080 Values.push_back(PaddedOp);
1081 }
1082 auto *NewElemTy = Values[0]->getType();
1083 if (NewElemTy == ElemTy)
1084 return constant;
1085 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1086 return llvm::ConstantArray::get(NewArrayTy, Values);
1087 }
1088 // FIXME: Add handling for tail padding in vectors. Vectors don't
1089 // have padding between or inside elements, but the total amount of
1090 // data can be less than the allocated size.
1091 return constant;
1092 }
1093
createUnnamedGlobalFrom(const VarDecl & D,llvm::Constant * Constant,CharUnits Align)1094 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1095 llvm::Constant *Constant,
1096 CharUnits Align) {
1097 auto FunctionName = [&](const DeclContext *DC) -> std::string {
1098 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1099 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1100 return CC->getNameAsString();
1101 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1102 return CD->getNameAsString();
1103 return std::string(getMangledName(FD));
1104 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1105 return OM->getNameAsString();
1106 } else if (isa<BlockDecl>(DC)) {
1107 return "<block>";
1108 } else if (isa<CapturedDecl>(DC)) {
1109 return "<captured>";
1110 } else {
1111 llvm_unreachable("expected a function or method");
1112 }
1113 };
1114
1115 // Form a simple per-variable cache of these values in case we find we
1116 // want to reuse them.
1117 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1118 if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1119 auto *Ty = Constant->getType();
1120 bool isConstant = true;
1121 llvm::GlobalVariable *InsertBefore = nullptr;
1122 unsigned AS =
1123 getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
1124 std::string Name;
1125 if (D.hasGlobalStorage())
1126 Name = getMangledName(&D).str() + ".const";
1127 else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1128 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1129 else
1130 llvm_unreachable("local variable has no parent function or method");
1131 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1132 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1133 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1134 GV->setAlignment(Align.getAsAlign());
1135 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1136 CacheEntry = GV;
1137 } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
1138 CacheEntry->setAlignment(Align.getAsAlign());
1139 }
1140
1141 return Address(CacheEntry, Align);
1142 }
1143
createUnnamedGlobalForMemcpyFrom(CodeGenModule & CGM,const VarDecl & D,CGBuilderTy & Builder,llvm::Constant * Constant,CharUnits Align)1144 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1145 const VarDecl &D,
1146 CGBuilderTy &Builder,
1147 llvm::Constant *Constant,
1148 CharUnits Align) {
1149 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1150 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
1151 SrcPtr.getAddressSpace());
1152 if (SrcPtr.getType() != BP)
1153 SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1154 return SrcPtr;
1155 }
1156
emitStoresForConstant(CodeGenModule & CGM,const VarDecl & D,Address Loc,bool isVolatile,CGBuilderTy & Builder,llvm::Constant * constant,bool IsAutoInit)1157 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1158 Address Loc, bool isVolatile,
1159 CGBuilderTy &Builder,
1160 llvm::Constant *constant, bool IsAutoInit) {
1161 auto *Ty = constant->getType();
1162 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1163 if (!ConstantSize)
1164 return;
1165
1166 bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1167 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1168 if (canDoSingleStore) {
1169 auto *I = Builder.CreateStore(constant, Loc, isVolatile);
1170 if (IsAutoInit)
1171 I->addAnnotationMetadata("auto-init");
1172 return;
1173 }
1174
1175 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1176
1177 // If the initializer is all or mostly the same, codegen with bzero / memset
1178 // then do a few stores afterward.
1179 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1180 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0),
1181 SizeVal, isVolatile);
1182 if (IsAutoInit)
1183 I->addAnnotationMetadata("auto-init");
1184
1185 bool valueAlreadyCorrect =
1186 constant->isNullValue() || isa<llvm::UndefValue>(constant);
1187 if (!valueAlreadyCorrect) {
1188 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1189 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder,
1190 IsAutoInit);
1191 }
1192 return;
1193 }
1194
1195 // If the initializer is a repeated byte pattern, use memset.
1196 llvm::Value *Pattern =
1197 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1198 if (Pattern) {
1199 uint64_t Value = 0x00;
1200 if (!isa<llvm::UndefValue>(Pattern)) {
1201 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1202 assert(AP.getBitWidth() <= 8);
1203 Value = AP.getLimitedValue();
1204 }
1205 auto *I = Builder.CreateMemSet(
1206 Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile);
1207 if (IsAutoInit)
1208 I->addAnnotationMetadata("auto-init");
1209 return;
1210 }
1211
1212 // If the initializer is small, use a handful of stores.
1213 if (shouldSplitConstantStore(CGM, ConstantSize)) {
1214 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1215 // FIXME: handle the case when STy != Loc.getElementType().
1216 if (STy == Loc.getElementType()) {
1217 for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1218 Address EltPtr = Builder.CreateStructGEP(Loc, i);
1219 emitStoresForConstant(
1220 CGM, D, EltPtr, isVolatile, Builder,
1221 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
1222 IsAutoInit);
1223 }
1224 return;
1225 }
1226 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1227 // FIXME: handle the case when ATy != Loc.getElementType().
1228 if (ATy == Loc.getElementType()) {
1229 for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1230 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1231 emitStoresForConstant(
1232 CGM, D, EltPtr, isVolatile, Builder,
1233 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
1234 IsAutoInit);
1235 }
1236 return;
1237 }
1238 }
1239 }
1240
1241 // Copy from a global.
1242 auto *I =
1243 Builder.CreateMemCpy(Loc,
1244 createUnnamedGlobalForMemcpyFrom(
1245 CGM, D, Builder, constant, Loc.getAlignment()),
1246 SizeVal, isVolatile);
1247 if (IsAutoInit)
1248 I->addAnnotationMetadata("auto-init");
1249 }
1250
emitStoresForZeroInit(CodeGenModule & CGM,const VarDecl & D,Address Loc,bool isVolatile,CGBuilderTy & Builder)1251 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1252 Address Loc, bool isVolatile,
1253 CGBuilderTy &Builder) {
1254 llvm::Type *ElTy = Loc.getElementType();
1255 llvm::Constant *constant =
1256 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1257 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1258 /*IsAutoInit=*/true);
1259 }
1260
emitStoresForPatternInit(CodeGenModule & CGM,const VarDecl & D,Address Loc,bool isVolatile,CGBuilderTy & Builder)1261 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1262 Address Loc, bool isVolatile,
1263 CGBuilderTy &Builder) {
1264 llvm::Type *ElTy = Loc.getElementType();
1265 llvm::Constant *constant = constWithPadding(
1266 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1267 assert(!isa<llvm::UndefValue>(constant));
1268 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1269 /*IsAutoInit=*/true);
1270 }
1271
containsUndef(llvm::Constant * constant)1272 static bool containsUndef(llvm::Constant *constant) {
1273 auto *Ty = constant->getType();
1274 if (isa<llvm::UndefValue>(constant))
1275 return true;
1276 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1277 for (llvm::Use &Op : constant->operands())
1278 if (containsUndef(cast<llvm::Constant>(Op)))
1279 return true;
1280 return false;
1281 }
1282
replaceUndef(CodeGenModule & CGM,IsPattern isPattern,llvm::Constant * constant)1283 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1284 llvm::Constant *constant) {
1285 auto *Ty = constant->getType();
1286 if (isa<llvm::UndefValue>(constant))
1287 return patternOrZeroFor(CGM, isPattern, Ty);
1288 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1289 return constant;
1290 if (!containsUndef(constant))
1291 return constant;
1292 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1293 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1294 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1295 Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1296 }
1297 if (Ty->isStructTy())
1298 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1299 if (Ty->isArrayTy())
1300 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1301 assert(Ty->isVectorTy());
1302 return llvm::ConstantVector::get(Values);
1303 }
1304
1305 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1306 /// variable declaration with auto, register, or no storage class specifier.
1307 /// These turn into simple stack objects, or GlobalValues depending on target.
EmitAutoVarDecl(const VarDecl & D)1308 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1309 AutoVarEmission emission = EmitAutoVarAlloca(D);
1310 EmitAutoVarInit(emission);
1311 EmitAutoVarCleanups(emission);
1312 }
1313
1314 /// Emit a lifetime.begin marker if some criteria are satisfied.
1315 /// \return a pointer to the temporary size Value if a marker was emitted, null
1316 /// otherwise
EmitLifetimeStart(uint64_t Size,llvm::Value * Addr)1317 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1318 llvm::Value *Addr) {
1319 if (!ShouldEmitLifetimeMarkers)
1320 return nullptr;
1321
1322 assert(Addr->getType()->getPointerAddressSpace() ==
1323 CGM.getDataLayout().getAllocaAddrSpace() &&
1324 "Pointer should be in alloca address space");
1325 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1326 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1327 llvm::CallInst *C =
1328 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1329 C->setDoesNotThrow();
1330 return SizeV;
1331 }
1332
EmitLifetimeEnd(llvm::Value * Size,llvm::Value * Addr)1333 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1334 assert(Addr->getType()->getPointerAddressSpace() ==
1335 CGM.getDataLayout().getAllocaAddrSpace() &&
1336 "Pointer should be in alloca address space");
1337 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1338 llvm::CallInst *C =
1339 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1340 C->setDoesNotThrow();
1341 }
1342
EmitAndRegisterVariableArrayDimensions(CGDebugInfo * DI,const VarDecl & D,bool EmitDebugInfo)1343 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1344 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1345 // For each dimension stores its QualType and corresponding
1346 // size-expression Value.
1347 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1348 SmallVector<IdentifierInfo *, 4> VLAExprNames;
1349
1350 // Break down the array into individual dimensions.
1351 QualType Type1D = D.getType();
1352 while (getContext().getAsVariableArrayType(Type1D)) {
1353 auto VlaSize = getVLAElements1D(Type1D);
1354 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1355 Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1356 else {
1357 // Generate a locally unique name for the size expression.
1358 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1359 SmallString<12> Buffer;
1360 StringRef NameRef = Name.toStringRef(Buffer);
1361 auto &Ident = getContext().Idents.getOwn(NameRef);
1362 VLAExprNames.push_back(&Ident);
1363 auto SizeExprAddr =
1364 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1365 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1366 Dimensions.emplace_back(SizeExprAddr.getPointer(),
1367 Type1D.getUnqualifiedType());
1368 }
1369 Type1D = VlaSize.Type;
1370 }
1371
1372 if (!EmitDebugInfo)
1373 return;
1374
1375 // Register each dimension's size-expression with a DILocalVariable,
1376 // so that it can be used by CGDebugInfo when instantiating a DISubrange
1377 // to describe this array.
1378 unsigned NameIdx = 0;
1379 for (auto &VlaSize : Dimensions) {
1380 llvm::Metadata *MD;
1381 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1382 MD = llvm::ConstantAsMetadata::get(C);
1383 else {
1384 // Create an artificial VarDecl to generate debug info for.
1385 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1386 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1387 auto QT = getContext().getIntTypeForBitwidth(
1388 VlaExprTy->getScalarSizeInBits(), false);
1389 auto *ArtificialDecl = VarDecl::Create(
1390 getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1391 D.getLocation(), D.getLocation(), NameIdent, QT,
1392 getContext().CreateTypeSourceInfo(QT), SC_Auto);
1393 ArtificialDecl->setImplicit();
1394
1395 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1396 Builder);
1397 }
1398 assert(MD && "No Size expression debug node created");
1399 DI->registerVLASizeExpression(VlaSize.Type, MD);
1400 }
1401 }
1402
1403 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1404 /// local variable. Does not emit initialization or destruction.
1405 CodeGenFunction::AutoVarEmission
EmitAutoVarAlloca(const VarDecl & D)1406 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1407 QualType Ty = D.getType();
1408 assert(
1409 Ty.getAddressSpace() == LangAS::Default ||
1410 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1411
1412 AutoVarEmission emission(D);
1413
1414 bool isEscapingByRef = D.isEscapingByref();
1415 emission.IsEscapingByRef = isEscapingByRef;
1416
1417 CharUnits alignment = getContext().getDeclAlign(&D);
1418
1419 // If the type is variably-modified, emit all the VLA sizes for it.
1420 if (Ty->isVariablyModifiedType())
1421 EmitVariablyModifiedType(Ty);
1422
1423 auto *DI = getDebugInfo();
1424 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1425
1426 Address address = Address::invalid();
1427 Address AllocaAddr = Address::invalid();
1428 Address OpenMPLocalAddr = Address::invalid();
1429 if (CGM.getLangOpts().OpenMPIRBuilder)
1430 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1431 else
1432 OpenMPLocalAddr =
1433 getLangOpts().OpenMP
1434 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1435 : Address::invalid();
1436
1437 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1438
1439 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1440 address = OpenMPLocalAddr;
1441 } else if (Ty->isConstantSizeType()) {
1442 // If this value is an array or struct with a statically determinable
1443 // constant initializer, there are optimizations we can do.
1444 //
1445 // TODO: We should constant-evaluate the initializer of any variable,
1446 // as long as it is initialized by a constant expression. Currently,
1447 // isConstantInitializer produces wrong answers for structs with
1448 // reference or bitfield members, and a few other cases, and checking
1449 // for POD-ness protects us from some of these.
1450 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1451 (D.isConstexpr() ||
1452 ((Ty.isPODType(getContext()) ||
1453 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1454 D.getInit()->isConstantInitializer(getContext(), false)))) {
1455
1456 // If the variable's a const type, and it's neither an NRVO
1457 // candidate nor a __block variable and has no mutable members,
1458 // emit it as a global instead.
1459 // Exception is if a variable is located in non-constant address space
1460 // in OpenCL.
1461 if ((!getLangOpts().OpenCL ||
1462 Ty.getAddressSpace() == LangAS::opencl_constant) &&
1463 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1464 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1465 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1466
1467 // Signal this condition to later callbacks.
1468 emission.Addr = Address::invalid();
1469 assert(emission.wasEmittedAsGlobal());
1470 return emission;
1471 }
1472
1473 // Otherwise, tell the initialization code that we're in this case.
1474 emission.IsConstantAggregate = true;
1475 }
1476
1477 // A normal fixed sized variable becomes an alloca in the entry block,
1478 // unless:
1479 // - it's an NRVO variable.
1480 // - we are compiling OpenMP and it's an OpenMP local variable.
1481 if (NRVO) {
1482 // The named return value optimization: allocate this variable in the
1483 // return slot, so that we can elide the copy when returning this
1484 // variable (C++0x [class.copy]p34).
1485 address = ReturnValue;
1486
1487 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1488 const auto *RD = RecordTy->getDecl();
1489 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1490 if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1491 RD->isNonTrivialToPrimitiveDestroy()) {
1492 // Create a flag that is used to indicate when the NRVO was applied
1493 // to this variable. Set it to zero to indicate that NRVO was not
1494 // applied.
1495 llvm::Value *Zero = Builder.getFalse();
1496 Address NRVOFlag =
1497 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1498 EnsureInsertPoint();
1499 Builder.CreateStore(Zero, NRVOFlag);
1500
1501 // Record the NRVO flag for this variable.
1502 NRVOFlags[&D] = NRVOFlag.getPointer();
1503 emission.NRVOFlag = NRVOFlag.getPointer();
1504 }
1505 }
1506 } else {
1507 CharUnits allocaAlignment;
1508 llvm::Type *allocaTy;
1509 if (isEscapingByRef) {
1510 auto &byrefInfo = getBlockByrefInfo(&D);
1511 allocaTy = byrefInfo.Type;
1512 allocaAlignment = byrefInfo.ByrefAlignment;
1513 } else {
1514 allocaTy = ConvertTypeForMem(Ty);
1515 allocaAlignment = alignment;
1516 }
1517
1518 // Create the alloca. Note that we set the name separately from
1519 // building the instruction so that it's there even in no-asserts
1520 // builds.
1521 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1522 /*ArraySize=*/nullptr, &AllocaAddr);
1523
1524 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1525 // the catch parameter starts in the catchpad instruction, and we can't
1526 // insert code in those basic blocks.
1527 bool IsMSCatchParam =
1528 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1529
1530 // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1531 // if we don't have a valid insertion point (?).
1532 if (HaveInsertPoint() && !IsMSCatchParam) {
1533 // If there's a jump into the lifetime of this variable, its lifetime
1534 // gets broken up into several regions in IR, which requires more work
1535 // to handle correctly. For now, just omit the intrinsics; this is a
1536 // rare case, and it's better to just be conservatively correct.
1537 // PR28267.
1538 //
1539 // We have to do this in all language modes if there's a jump past the
1540 // declaration. We also have to do it in C if there's a jump to an
1541 // earlier point in the current block because non-VLA lifetimes begin as
1542 // soon as the containing block is entered, not when its variables
1543 // actually come into scope; suppressing the lifetime annotations
1544 // completely in this case is unnecessarily pessimistic, but again, this
1545 // is rare.
1546 if (!Bypasses.IsBypassed(&D) &&
1547 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1548 llvm::TypeSize size =
1549 CGM.getDataLayout().getTypeAllocSize(allocaTy);
1550 emission.SizeForLifetimeMarkers =
1551 size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer())
1552 : EmitLifetimeStart(size.getFixedSize(),
1553 AllocaAddr.getPointer());
1554 }
1555 } else {
1556 assert(!emission.useLifetimeMarkers());
1557 }
1558 }
1559 } else {
1560 EnsureInsertPoint();
1561
1562 if (!DidCallStackSave) {
1563 // Save the stack.
1564 Address Stack =
1565 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1566
1567 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1568 llvm::Value *V = Builder.CreateCall(F);
1569 Builder.CreateStore(V, Stack);
1570
1571 DidCallStackSave = true;
1572
1573 // Push a cleanup block and restore the stack there.
1574 // FIXME: in general circumstances, this should be an EH cleanup.
1575 pushStackRestore(NormalCleanup, Stack);
1576 }
1577
1578 auto VlaSize = getVLASize(Ty);
1579 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1580
1581 // Allocate memory for the array.
1582 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1583 &AllocaAddr);
1584
1585 // If we have debug info enabled, properly describe the VLA dimensions for
1586 // this type by registering the vla size expression for each of the
1587 // dimensions.
1588 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1589 }
1590
1591 setAddrOfLocalVar(&D, address);
1592 emission.Addr = address;
1593 emission.AllocaAddr = AllocaAddr;
1594
1595 // Emit debug info for local var declaration.
1596 if (EmitDebugInfo && HaveInsertPoint()) {
1597 Address DebugAddr = address;
1598 bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1599 DI->setLocation(D.getLocation());
1600
1601 // If NRVO, use a pointer to the return address.
1602 if (UsePointerValue)
1603 DebugAddr = ReturnValuePointer;
1604
1605 (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
1606 UsePointerValue);
1607 }
1608
1609 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1610 EmitVarAnnotations(&D, address.getPointer());
1611
1612 // Make sure we call @llvm.lifetime.end.
1613 if (emission.useLifetimeMarkers())
1614 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1615 emission.getOriginalAllocatedAddress(),
1616 emission.getSizeForLifetimeMarkers());
1617
1618 return emission;
1619 }
1620
1621 static bool isCapturedBy(const VarDecl &, const Expr *);
1622
1623 /// Determines whether the given __block variable is potentially
1624 /// captured by the given statement.
isCapturedBy(const VarDecl & Var,const Stmt * S)1625 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1626 if (const Expr *E = dyn_cast<Expr>(S))
1627 return isCapturedBy(Var, E);
1628 for (const Stmt *SubStmt : S->children())
1629 if (isCapturedBy(Var, SubStmt))
1630 return true;
1631 return false;
1632 }
1633
1634 /// Determines whether the given __block variable is potentially
1635 /// captured by the given expression.
isCapturedBy(const VarDecl & Var,const Expr * E)1636 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1637 // Skip the most common kinds of expressions that make
1638 // hierarchy-walking expensive.
1639 E = E->IgnoreParenCasts();
1640
1641 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1642 const BlockDecl *Block = BE->getBlockDecl();
1643 for (const auto &I : Block->captures()) {
1644 if (I.getVariable() == &Var)
1645 return true;
1646 }
1647
1648 // No need to walk into the subexpressions.
1649 return false;
1650 }
1651
1652 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1653 const CompoundStmt *CS = SE->getSubStmt();
1654 for (const auto *BI : CS->body())
1655 if (const auto *BIE = dyn_cast<Expr>(BI)) {
1656 if (isCapturedBy(Var, BIE))
1657 return true;
1658 }
1659 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1660 // special case declarations
1661 for (const auto *I : DS->decls()) {
1662 if (const auto *VD = dyn_cast<VarDecl>((I))) {
1663 const Expr *Init = VD->getInit();
1664 if (Init && isCapturedBy(Var, Init))
1665 return true;
1666 }
1667 }
1668 }
1669 else
1670 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1671 // Later, provide code to poke into statements for capture analysis.
1672 return true;
1673 return false;
1674 }
1675
1676 for (const Stmt *SubStmt : E->children())
1677 if (isCapturedBy(Var, SubStmt))
1678 return true;
1679
1680 return false;
1681 }
1682
1683 /// Determine whether the given initializer is trivial in the sense
1684 /// that it requires no code to be generated.
isTrivialInitializer(const Expr * Init)1685 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1686 if (!Init)
1687 return true;
1688
1689 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1690 if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1691 if (Constructor->isTrivial() &&
1692 Constructor->isDefaultConstructor() &&
1693 !Construct->requiresZeroInitialization())
1694 return true;
1695
1696 return false;
1697 }
1698
emitZeroOrPatternForAutoVarInit(QualType type,const VarDecl & D,Address Loc)1699 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1700 const VarDecl &D,
1701 Address Loc) {
1702 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1703 CharUnits Size = getContext().getTypeSizeInChars(type);
1704 bool isVolatile = type.isVolatileQualified();
1705 if (!Size.isZero()) {
1706 switch (trivialAutoVarInit) {
1707 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1708 llvm_unreachable("Uninitialized handled by caller");
1709 case LangOptions::TrivialAutoVarInitKind::Zero:
1710 if (CGM.stopAutoInit())
1711 return;
1712 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1713 break;
1714 case LangOptions::TrivialAutoVarInitKind::Pattern:
1715 if (CGM.stopAutoInit())
1716 return;
1717 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1718 break;
1719 }
1720 return;
1721 }
1722
1723 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1724 // them, so emit a memcpy with the VLA size to initialize each element.
1725 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1726 // will catch that code, but there exists code which generates zero-sized
1727 // VLAs. Be nice and initialize whatever they requested.
1728 const auto *VlaType = getContext().getAsVariableArrayType(type);
1729 if (!VlaType)
1730 return;
1731 auto VlaSize = getVLASize(VlaType);
1732 auto SizeVal = VlaSize.NumElts;
1733 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1734 switch (trivialAutoVarInit) {
1735 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1736 llvm_unreachable("Uninitialized handled by caller");
1737
1738 case LangOptions::TrivialAutoVarInitKind::Zero: {
1739 if (CGM.stopAutoInit())
1740 return;
1741 if (!EltSize.isOne())
1742 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1743 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0),
1744 SizeVal, isVolatile);
1745 I->addAnnotationMetadata("auto-init");
1746 break;
1747 }
1748
1749 case LangOptions::TrivialAutoVarInitKind::Pattern: {
1750 if (CGM.stopAutoInit())
1751 return;
1752 llvm::Type *ElTy = Loc.getElementType();
1753 llvm::Constant *Constant = constWithPadding(
1754 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1755 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1756 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1757 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1758 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1759 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1760 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1761 "vla.iszerosized");
1762 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1763 EmitBlock(SetupBB);
1764 if (!EltSize.isOne())
1765 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1766 llvm::Value *BaseSizeInChars =
1767 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1768 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1769 llvm::Value *End =
1770 Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1771 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1772 EmitBlock(LoopBB);
1773 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1774 Cur->addIncoming(Begin.getPointer(), OriginBB);
1775 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1776 auto *I =
1777 Builder.CreateMemCpy(Address(Cur, CurAlign),
1778 createUnnamedGlobalForMemcpyFrom(
1779 CGM, D, Builder, Constant, ConstantAlign),
1780 BaseSizeInChars, isVolatile);
1781 I->addAnnotationMetadata("auto-init");
1782 llvm::Value *Next =
1783 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1784 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1785 Builder.CreateCondBr(Done, ContBB, LoopBB);
1786 Cur->addIncoming(Next, LoopBB);
1787 EmitBlock(ContBB);
1788 } break;
1789 }
1790 }
1791
EmitAutoVarInit(const AutoVarEmission & emission)1792 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1793 assert(emission.Variable && "emission was not valid!");
1794
1795 // If this was emitted as a global constant, we're done.
1796 if (emission.wasEmittedAsGlobal()) return;
1797
1798 const VarDecl &D = *emission.Variable;
1799 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1800 QualType type = D.getType();
1801
1802 // If this local has an initializer, emit it now.
1803 const Expr *Init = D.getInit();
1804
1805 // If we are at an unreachable point, we don't need to emit the initializer
1806 // unless it contains a label.
1807 if (!HaveInsertPoint()) {
1808 if (!Init || !ContainsLabel(Init)) return;
1809 EnsureInsertPoint();
1810 }
1811
1812 // Initialize the structure of a __block variable.
1813 if (emission.IsEscapingByRef)
1814 emitByrefStructureInit(emission);
1815
1816 // Initialize the variable here if it doesn't have a initializer and it is a
1817 // C struct that is non-trivial to initialize or an array containing such a
1818 // struct.
1819 if (!Init &&
1820 type.isNonTrivialToPrimitiveDefaultInitialize() ==
1821 QualType::PDIK_Struct) {
1822 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1823 if (emission.IsEscapingByRef)
1824 drillIntoBlockVariable(*this, Dst, &D);
1825 defaultInitNonTrivialCStructVar(Dst);
1826 return;
1827 }
1828
1829 // Check whether this is a byref variable that's potentially
1830 // captured and moved by its own initializer. If so, we'll need to
1831 // emit the initializer first, then copy into the variable.
1832 bool capturedByInit =
1833 Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1834
1835 bool locIsByrefHeader = !capturedByInit;
1836 const Address Loc =
1837 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1838
1839 // Note: constexpr already initializes everything correctly.
1840 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1841 (D.isConstexpr()
1842 ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1843 : (D.getAttr<UninitializedAttr>()
1844 ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1845 : getContext().getLangOpts().getTrivialAutoVarInit()));
1846
1847 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1848 if (trivialAutoVarInit ==
1849 LangOptions::TrivialAutoVarInitKind::Uninitialized)
1850 return;
1851
1852 // Only initialize a __block's storage: we always initialize the header.
1853 if (emission.IsEscapingByRef && !locIsByrefHeader)
1854 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1855
1856 return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1857 };
1858
1859 if (isTrivialInitializer(Init))
1860 return initializeWhatIsTechnicallyUninitialized(Loc);
1861
1862 llvm::Constant *constant = nullptr;
1863 if (emission.IsConstantAggregate ||
1864 D.mightBeUsableInConstantExpressions(getContext())) {
1865 assert(!capturedByInit && "constant init contains a capturing block?");
1866 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1867 if (constant && !constant->isZeroValue() &&
1868 (trivialAutoVarInit !=
1869 LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1870 IsPattern isPattern =
1871 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1872 ? IsPattern::Yes
1873 : IsPattern::No;
1874 // C guarantees that brace-init with fewer initializers than members in
1875 // the aggregate will initialize the rest of the aggregate as-if it were
1876 // static initialization. In turn static initialization guarantees that
1877 // padding is initialized to zero bits. We could instead pattern-init if D
1878 // has any ImplicitValueInitExpr, but that seems to be unintuitive
1879 // behavior.
1880 constant = constWithPadding(CGM, IsPattern::No,
1881 replaceUndef(CGM, isPattern, constant));
1882 }
1883 }
1884
1885 if (!constant) {
1886 initializeWhatIsTechnicallyUninitialized(Loc);
1887 LValue lv = MakeAddrLValue(Loc, type);
1888 lv.setNonGC(true);
1889 return EmitExprAsInit(Init, &D, lv, capturedByInit);
1890 }
1891
1892 if (!emission.IsConstantAggregate) {
1893 // For simple scalar/complex initialization, store the value directly.
1894 LValue lv = MakeAddrLValue(Loc, type);
1895 lv.setNonGC(true);
1896 return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1897 }
1898
1899 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1900 emitStoresForConstant(
1901 CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
1902 type.isVolatileQualified(), Builder, constant, /*IsAutoInit=*/false);
1903 }
1904
1905 /// Emit an expression as an initializer for an object (variable, field, etc.)
1906 /// at the given location. The expression is not necessarily the normal
1907 /// initializer for the object, and the address is not necessarily
1908 /// its normal location.
1909 ///
1910 /// \param init the initializing expression
1911 /// \param D the object to act as if we're initializing
1912 /// \param lvalue the lvalue to initialize
1913 /// \param capturedByInit true if \p D is a __block variable
1914 /// whose address is potentially changed by the initializer
EmitExprAsInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)1915 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1916 LValue lvalue, bool capturedByInit) {
1917 QualType type = D->getType();
1918
1919 if (type->isReferenceType()) {
1920 RValue rvalue = EmitReferenceBindingToExpr(init);
1921 if (capturedByInit)
1922 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1923 EmitStoreThroughLValue(rvalue, lvalue, true);
1924 return;
1925 }
1926 switch (getEvaluationKind(type)) {
1927 case TEK_Scalar:
1928 EmitScalarInit(init, D, lvalue, capturedByInit);
1929 return;
1930 case TEK_Complex: {
1931 ComplexPairTy complex = EmitComplexExpr(init);
1932 if (capturedByInit)
1933 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1934 EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1935 return;
1936 }
1937 case TEK_Aggregate:
1938 if (type->isAtomicType()) {
1939 EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1940 } else {
1941 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1942 if (isa<VarDecl>(D))
1943 Overlap = AggValueSlot::DoesNotOverlap;
1944 else if (auto *FD = dyn_cast<FieldDecl>(D))
1945 Overlap = getOverlapForFieldInit(FD);
1946 // TODO: how can we delay here if D is captured by its initializer?
1947 EmitAggExpr(init, AggValueSlot::forLValue(
1948 lvalue, *this, AggValueSlot::IsDestructed,
1949 AggValueSlot::DoesNotNeedGCBarriers,
1950 AggValueSlot::IsNotAliased, Overlap));
1951 }
1952 return;
1953 }
1954 llvm_unreachable("bad evaluation kind");
1955 }
1956
1957 /// Enter a destroy cleanup for the given local variable.
emitAutoVarTypeCleanup(const CodeGenFunction::AutoVarEmission & emission,QualType::DestructionKind dtorKind)1958 void CodeGenFunction::emitAutoVarTypeCleanup(
1959 const CodeGenFunction::AutoVarEmission &emission,
1960 QualType::DestructionKind dtorKind) {
1961 assert(dtorKind != QualType::DK_none);
1962
1963 // Note that for __block variables, we want to destroy the
1964 // original stack object, not the possibly forwarded object.
1965 Address addr = emission.getObjectAddress(*this);
1966
1967 const VarDecl *var = emission.Variable;
1968 QualType type = var->getType();
1969
1970 CleanupKind cleanupKind = NormalAndEHCleanup;
1971 CodeGenFunction::Destroyer *destroyer = nullptr;
1972
1973 switch (dtorKind) {
1974 case QualType::DK_none:
1975 llvm_unreachable("no cleanup for trivially-destructible variable");
1976
1977 case QualType::DK_cxx_destructor:
1978 // If there's an NRVO flag on the emission, we need a different
1979 // cleanup.
1980 if (emission.NRVOFlag) {
1981 assert(!type->isArrayType());
1982 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1983 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
1984 emission.NRVOFlag);
1985 return;
1986 }
1987 break;
1988
1989 case QualType::DK_objc_strong_lifetime:
1990 // Suppress cleanups for pseudo-strong variables.
1991 if (var->isARCPseudoStrong()) return;
1992
1993 // Otherwise, consider whether to use an EH cleanup or not.
1994 cleanupKind = getARCCleanupKind();
1995
1996 // Use the imprecise destroyer by default.
1997 if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1998 destroyer = CodeGenFunction::destroyARCStrongImprecise;
1999 break;
2000
2001 case QualType::DK_objc_weak_lifetime:
2002 break;
2003
2004 case QualType::DK_nontrivial_c_struct:
2005 destroyer = CodeGenFunction::destroyNonTrivialCStruct;
2006 if (emission.NRVOFlag) {
2007 assert(!type->isArrayType());
2008 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
2009 emission.NRVOFlag, type);
2010 return;
2011 }
2012 break;
2013 }
2014
2015 // If we haven't chosen a more specific destroyer, use the default.
2016 if (!destroyer) destroyer = getDestroyer(dtorKind);
2017
2018 // Use an EH cleanup in array destructors iff the destructor itself
2019 // is being pushed as an EH cleanup.
2020 bool useEHCleanup = (cleanupKind & EHCleanup);
2021 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2022 useEHCleanup);
2023 }
2024
EmitAutoVarCleanups(const AutoVarEmission & emission)2025 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2026 assert(emission.Variable && "emission was not valid!");
2027
2028 // If this was emitted as a global constant, we're done.
2029 if (emission.wasEmittedAsGlobal()) return;
2030
2031 // If we don't have an insertion point, we're done. Sema prevents
2032 // us from jumping into any of these scopes anyway.
2033 if (!HaveInsertPoint()) return;
2034
2035 const VarDecl &D = *emission.Variable;
2036
2037 // Check the type for a cleanup.
2038 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
2039 emitAutoVarTypeCleanup(emission, dtorKind);
2040
2041 // In GC mode, honor objc_precise_lifetime.
2042 if (getLangOpts().getGC() != LangOptions::NonGC &&
2043 D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2044 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2045 }
2046
2047 // Handle the cleanup attribute.
2048 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2049 const FunctionDecl *FD = CA->getFunctionDecl();
2050
2051 llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2052 assert(F && "Could not find function!");
2053
2054 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2055 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2056 }
2057
2058 // If this is a block variable, call _Block_object_destroy
2059 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2060 // mode.
2061 if (emission.IsEscapingByRef &&
2062 CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2063 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2064 if (emission.Variable->getType().isObjCGCWeak())
2065 Flags |= BLOCK_FIELD_IS_WEAK;
2066 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2067 /*LoadBlockVarAddr*/ false,
2068 cxxDestructorCanThrow(emission.Variable->getType()));
2069 }
2070 }
2071
2072 CodeGenFunction::Destroyer *
getDestroyer(QualType::DestructionKind kind)2073 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2074 switch (kind) {
2075 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2076 case QualType::DK_cxx_destructor:
2077 return destroyCXXObject;
2078 case QualType::DK_objc_strong_lifetime:
2079 return destroyARCStrongPrecise;
2080 case QualType::DK_objc_weak_lifetime:
2081 return destroyARCWeak;
2082 case QualType::DK_nontrivial_c_struct:
2083 return destroyNonTrivialCStruct;
2084 }
2085 llvm_unreachable("Unknown DestructionKind");
2086 }
2087
2088 /// pushEHDestroy - Push the standard destructor for the given type as
2089 /// an EH-only cleanup.
pushEHDestroy(QualType::DestructionKind dtorKind,Address addr,QualType type)2090 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2091 Address addr, QualType type) {
2092 assert(dtorKind && "cannot push destructor for trivial type");
2093 assert(needsEHCleanup(dtorKind));
2094
2095 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2096 }
2097
2098 /// pushDestroy - Push the standard destructor for the given type as
2099 /// at least a normal cleanup.
pushDestroy(QualType::DestructionKind dtorKind,Address addr,QualType type)2100 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2101 Address addr, QualType type) {
2102 assert(dtorKind && "cannot push destructor for trivial type");
2103
2104 CleanupKind cleanupKind = getCleanupKind(dtorKind);
2105 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2106 cleanupKind & EHCleanup);
2107 }
2108
pushDestroy(CleanupKind cleanupKind,Address addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)2109 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2110 QualType type, Destroyer *destroyer,
2111 bool useEHCleanupForArray) {
2112 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2113 destroyer, useEHCleanupForArray);
2114 }
2115
pushStackRestore(CleanupKind Kind,Address SPMem)2116 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2117 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2118 }
2119
pushLifetimeExtendedDestroy(CleanupKind cleanupKind,Address addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)2120 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind,
2121 Address addr, QualType type,
2122 Destroyer *destroyer,
2123 bool useEHCleanupForArray) {
2124 // If we're not in a conditional branch, we don't need to bother generating a
2125 // conditional cleanup.
2126 if (!isInConditionalBranch()) {
2127 // Push an EH-only cleanup for the object now.
2128 // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2129 // around in case a temporary's destructor throws an exception.
2130 if (cleanupKind & EHCleanup)
2131 EHStack.pushCleanup<DestroyObject>(
2132 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2133 destroyer, useEHCleanupForArray);
2134
2135 return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
2136 cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray);
2137 }
2138
2139 // Otherwise, we should only destroy the object if it's been initialized.
2140 // Re-use the active flag and saved address across both the EH and end of
2141 // scope cleanups.
2142
2143 using SavedType = typename DominatingValue<Address>::saved_type;
2144 using ConditionalCleanupType =
2145 EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType,
2146 Destroyer *, bool>;
2147
2148 Address ActiveFlag = createCleanupActiveFlag();
2149 SavedType SavedAddr = saveValueInCond(addr);
2150
2151 if (cleanupKind & EHCleanup) {
2152 EHStack.pushCleanup<ConditionalCleanupType>(
2153 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type,
2154 destroyer, useEHCleanupForArray);
2155 initFullExprCleanupWithFlag(ActiveFlag);
2156 }
2157
2158 pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
2159 cleanupKind, ActiveFlag, SavedAddr, type, destroyer,
2160 useEHCleanupForArray);
2161 }
2162
2163 /// emitDestroy - Immediately perform the destruction of the given
2164 /// object.
2165 ///
2166 /// \param addr - the address of the object; a type*
2167 /// \param type - the type of the object; if an array type, all
2168 /// objects are destroyed in reverse order
2169 /// \param destroyer - the function to call to destroy individual
2170 /// elements
2171 /// \param useEHCleanupForArray - whether an EH cleanup should be
2172 /// used when destroying array elements, in case one of the
2173 /// destructions throws an exception
emitDestroy(Address addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)2174 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2175 Destroyer *destroyer,
2176 bool useEHCleanupForArray) {
2177 const ArrayType *arrayType = getContext().getAsArrayType(type);
2178 if (!arrayType)
2179 return destroyer(*this, addr, type);
2180
2181 llvm::Value *length = emitArrayLength(arrayType, type, addr);
2182
2183 CharUnits elementAlign =
2184 addr.getAlignment()
2185 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2186
2187 // Normally we have to check whether the array is zero-length.
2188 bool checkZeroLength = true;
2189
2190 // But if the array length is constant, we can suppress that.
2191 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2192 // ...and if it's constant zero, we can just skip the entire thing.
2193 if (constLength->isZero()) return;
2194 checkZeroLength = false;
2195 }
2196
2197 llvm::Value *begin = addr.getPointer();
2198 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2199 emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2200 checkZeroLength, useEHCleanupForArray);
2201 }
2202
2203 /// emitArrayDestroy - Destroys all the elements of the given array,
2204 /// beginning from last to first. The array cannot be zero-length.
2205 ///
2206 /// \param begin - a type* denoting the first element of the array
2207 /// \param end - a type* denoting one past the end of the array
2208 /// \param elementType - the element type of the array
2209 /// \param destroyer - the function to call to destroy elements
2210 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2211 /// the remaining elements in case the destruction of a single
2212 /// element throws
emitArrayDestroy(llvm::Value * begin,llvm::Value * end,QualType elementType,CharUnits elementAlign,Destroyer * destroyer,bool checkZeroLength,bool useEHCleanup)2213 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2214 llvm::Value *end,
2215 QualType elementType,
2216 CharUnits elementAlign,
2217 Destroyer *destroyer,
2218 bool checkZeroLength,
2219 bool useEHCleanup) {
2220 assert(!elementType->isArrayType());
2221
2222 // The basic structure here is a do-while loop, because we don't
2223 // need to check for the zero-element case.
2224 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2225 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2226
2227 if (checkZeroLength) {
2228 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2229 "arraydestroy.isempty");
2230 Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2231 }
2232
2233 // Enter the loop body, making that address the current address.
2234 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2235 EmitBlock(bodyBB);
2236 llvm::PHINode *elementPast =
2237 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2238 elementPast->addIncoming(end, entryBB);
2239
2240 // Shift the address back by one element.
2241 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2242 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2243 "arraydestroy.element");
2244
2245 if (useEHCleanup)
2246 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2247 destroyer);
2248
2249 // Perform the actual destruction there.
2250 destroyer(*this, Address(element, elementAlign), elementType);
2251
2252 if (useEHCleanup)
2253 PopCleanupBlock();
2254
2255 // Check whether we've reached the end.
2256 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2257 Builder.CreateCondBr(done, doneBB, bodyBB);
2258 elementPast->addIncoming(element, Builder.GetInsertBlock());
2259
2260 // Done.
2261 EmitBlock(doneBB);
2262 }
2263
2264 /// Perform partial array destruction as if in an EH cleanup. Unlike
2265 /// emitArrayDestroy, the element type here may still be an array type.
emitPartialArrayDestroy(CodeGenFunction & CGF,llvm::Value * begin,llvm::Value * end,QualType type,CharUnits elementAlign,CodeGenFunction::Destroyer * destroyer)2266 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2267 llvm::Value *begin, llvm::Value *end,
2268 QualType type, CharUnits elementAlign,
2269 CodeGenFunction::Destroyer *destroyer) {
2270 // If the element type is itself an array, drill down.
2271 unsigned arrayDepth = 0;
2272 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2273 // VLAs don't require a GEP index to walk into.
2274 if (!isa<VariableArrayType>(arrayType))
2275 arrayDepth++;
2276 type = arrayType->getElementType();
2277 }
2278
2279 if (arrayDepth) {
2280 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2281
2282 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2283 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2284 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2285 }
2286
2287 // Destroy the array. We don't ever need an EH cleanup because we
2288 // assume that we're in an EH cleanup ourselves, so a throwing
2289 // destructor causes an immediate terminate.
2290 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2291 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2292 }
2293
2294 namespace {
2295 /// RegularPartialArrayDestroy - a cleanup which performs a partial
2296 /// array destroy where the end pointer is regularly determined and
2297 /// does not need to be loaded from a local.
2298 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2299 llvm::Value *ArrayBegin;
2300 llvm::Value *ArrayEnd;
2301 QualType ElementType;
2302 CodeGenFunction::Destroyer *Destroyer;
2303 CharUnits ElementAlign;
2304 public:
RegularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CharUnits elementAlign,CodeGenFunction::Destroyer * destroyer)2305 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2306 QualType elementType, CharUnits elementAlign,
2307 CodeGenFunction::Destroyer *destroyer)
2308 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2309 ElementType(elementType), Destroyer(destroyer),
2310 ElementAlign(elementAlign) {}
2311
Emit(CodeGenFunction & CGF,Flags flags)2312 void Emit(CodeGenFunction &CGF, Flags flags) override {
2313 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2314 ElementType, ElementAlign, Destroyer);
2315 }
2316 };
2317
2318 /// IrregularPartialArrayDestroy - a cleanup which performs a
2319 /// partial array destroy where the end pointer is irregularly
2320 /// determined and must be loaded from a local.
2321 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2322 llvm::Value *ArrayBegin;
2323 Address ArrayEndPointer;
2324 QualType ElementType;
2325 CodeGenFunction::Destroyer *Destroyer;
2326 CharUnits ElementAlign;
2327 public:
IrregularPartialArrayDestroy(llvm::Value * arrayBegin,Address arrayEndPointer,QualType elementType,CharUnits elementAlign,CodeGenFunction::Destroyer * destroyer)2328 IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2329 Address arrayEndPointer,
2330 QualType elementType,
2331 CharUnits elementAlign,
2332 CodeGenFunction::Destroyer *destroyer)
2333 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2334 ElementType(elementType), Destroyer(destroyer),
2335 ElementAlign(elementAlign) {}
2336
Emit(CodeGenFunction & CGF,Flags flags)2337 void Emit(CodeGenFunction &CGF, Flags flags) override {
2338 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2339 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2340 ElementType, ElementAlign, Destroyer);
2341 }
2342 };
2343 } // end anonymous namespace
2344
2345 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2346 /// already-constructed elements of the given array. The cleanup
2347 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2348 ///
2349 /// \param elementType - the immediate element type of the array;
2350 /// possibly still an array type
pushIrregularPartialArrayCleanup(llvm::Value * arrayBegin,Address arrayEndPointer,QualType elementType,CharUnits elementAlign,Destroyer * destroyer)2351 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2352 Address arrayEndPointer,
2353 QualType elementType,
2354 CharUnits elementAlign,
2355 Destroyer *destroyer) {
2356 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2357 arrayBegin, arrayEndPointer,
2358 elementType, elementAlign,
2359 destroyer);
2360 }
2361
2362 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2363 /// already-constructed elements of the given array. The cleanup
2364 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2365 ///
2366 /// \param elementType - the immediate element type of the array;
2367 /// possibly still an array type
pushRegularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CharUnits elementAlign,Destroyer * destroyer)2368 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2369 llvm::Value *arrayEnd,
2370 QualType elementType,
2371 CharUnits elementAlign,
2372 Destroyer *destroyer) {
2373 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2374 arrayBegin, arrayEnd,
2375 elementType, elementAlign,
2376 destroyer);
2377 }
2378
2379 /// Lazily declare the @llvm.lifetime.start intrinsic.
getLLVMLifetimeStartFn()2380 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2381 if (LifetimeStartFn)
2382 return LifetimeStartFn;
2383 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2384 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2385 return LifetimeStartFn;
2386 }
2387
2388 /// Lazily declare the @llvm.lifetime.end intrinsic.
getLLVMLifetimeEndFn()2389 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2390 if (LifetimeEndFn)
2391 return LifetimeEndFn;
2392 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2393 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2394 return LifetimeEndFn;
2395 }
2396
2397 namespace {
2398 /// A cleanup to perform a release of an object at the end of a
2399 /// function. This is used to balance out the incoming +1 of a
2400 /// ns_consumed argument when we can't reasonably do that just by
2401 /// not doing the initial retain for a __block argument.
2402 struct ConsumeARCParameter final : EHScopeStack::Cleanup {
ConsumeARCParameter__anon53e8cf900511::ConsumeARCParameter2403 ConsumeARCParameter(llvm::Value *param,
2404 ARCPreciseLifetime_t precise)
2405 : Param(param), Precise(precise) {}
2406
2407 llvm::Value *Param;
2408 ARCPreciseLifetime_t Precise;
2409
Emit__anon53e8cf900511::ConsumeARCParameter2410 void Emit(CodeGenFunction &CGF, Flags flags) override {
2411 CGF.EmitARCRelease(Param, Precise);
2412 }
2413 };
2414 } // end anonymous namespace
2415
2416 /// Emit an alloca (or GlobalValue depending on target)
2417 /// for the specified parameter and set up LocalDeclMap.
EmitParmDecl(const VarDecl & D,ParamValue Arg,unsigned ArgNo)2418 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2419 unsigned ArgNo) {
2420 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2421 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2422 "Invalid argument to EmitParmDecl");
2423
2424 Arg.getAnyValue()->setName(D.getName());
2425
2426 QualType Ty = D.getType();
2427
2428 // Use better IR generation for certain implicit parameters.
2429 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2430 // The only implicit argument a block has is its literal.
2431 // This may be passed as an inalloca'ed value on Windows x86.
2432 if (BlockInfo) {
2433 llvm::Value *V = Arg.isIndirect()
2434 ? Builder.CreateLoad(Arg.getIndirectAddress())
2435 : Arg.getDirectValue();
2436 setBlockContextParameter(IPD, ArgNo, V);
2437 return;
2438 }
2439 }
2440
2441 Address DeclPtr = Address::invalid();
2442 bool DoStore = false;
2443 bool IsScalar = hasScalarEvaluationKind(Ty);
2444 // If we already have a pointer to the argument, reuse the input pointer.
2445 if (Arg.isIndirect()) {
2446 DeclPtr = Arg.getIndirectAddress();
2447 // If we have a prettier pointer type at this point, bitcast to that.
2448 unsigned AS = DeclPtr.getType()->getAddressSpace();
2449 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2450 if (DeclPtr.getType() != IRTy)
2451 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2452 // Indirect argument is in alloca address space, which may be different
2453 // from the default address space.
2454 auto AllocaAS = CGM.getASTAllocaAddressSpace();
2455 auto *V = DeclPtr.getPointer();
2456 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2457 auto DestLangAS =
2458 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2459 if (SrcLangAS != DestLangAS) {
2460 assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2461 CGM.getDataLayout().getAllocaAddrSpace());
2462 auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2463 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2464 DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2465 *this, V, SrcLangAS, DestLangAS, T, true),
2466 DeclPtr.getAlignment());
2467 }
2468
2469 // Push a destructor cleanup for this parameter if the ABI requires it.
2470 // Don't push a cleanup in a thunk for a method that will also emit a
2471 // cleanup.
2472 if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2473 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2474 if (QualType::DestructionKind DtorKind =
2475 D.needsDestruction(getContext())) {
2476 assert((DtorKind == QualType::DK_cxx_destructor ||
2477 DtorKind == QualType::DK_nontrivial_c_struct) &&
2478 "unexpected destructor type");
2479 pushDestroy(DtorKind, DeclPtr, Ty);
2480 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2481 EHStack.stable_begin();
2482 }
2483 }
2484 } else {
2485 // Check if the parameter address is controlled by OpenMP runtime.
2486 Address OpenMPLocalAddr =
2487 getLangOpts().OpenMP
2488 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2489 : Address::invalid();
2490 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2491 DeclPtr = OpenMPLocalAddr;
2492 } else {
2493 // Otherwise, create a temporary to hold the value.
2494 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2495 D.getName() + ".addr");
2496 }
2497 DoStore = true;
2498 }
2499
2500 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2501
2502 LValue lv = MakeAddrLValue(DeclPtr, Ty);
2503 if (IsScalar) {
2504 Qualifiers qs = Ty.getQualifiers();
2505 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2506 // We honor __attribute__((ns_consumed)) for types with lifetime.
2507 // For __strong, it's handled by just skipping the initial retain;
2508 // otherwise we have to balance out the initial +1 with an extra
2509 // cleanup to do the release at the end of the function.
2510 bool isConsumed = D.hasAttr<NSConsumedAttr>();
2511
2512 // If a parameter is pseudo-strong then we can omit the implicit retain.
2513 if (D.isARCPseudoStrong()) {
2514 assert(lt == Qualifiers::OCL_Strong &&
2515 "pseudo-strong variable isn't strong?");
2516 assert(qs.hasConst() && "pseudo-strong variable should be const!");
2517 lt = Qualifiers::OCL_ExplicitNone;
2518 }
2519
2520 // Load objects passed indirectly.
2521 if (Arg.isIndirect() && !ArgVal)
2522 ArgVal = Builder.CreateLoad(DeclPtr);
2523
2524 if (lt == Qualifiers::OCL_Strong) {
2525 if (!isConsumed) {
2526 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2527 // use objc_storeStrong(&dest, value) for retaining the
2528 // object. But first, store a null into 'dest' because
2529 // objc_storeStrong attempts to release its old value.
2530 llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2531 EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2532 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2533 DoStore = false;
2534 }
2535 else
2536 // Don't use objc_retainBlock for block pointers, because we
2537 // don't want to Block_copy something just because we got it
2538 // as a parameter.
2539 ArgVal = EmitARCRetainNonBlock(ArgVal);
2540 }
2541 } else {
2542 // Push the cleanup for a consumed parameter.
2543 if (isConsumed) {
2544 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2545 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2546 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2547 precise);
2548 }
2549
2550 if (lt == Qualifiers::OCL_Weak) {
2551 EmitARCInitWeak(DeclPtr, ArgVal);
2552 DoStore = false; // The weak init is a store, no need to do two.
2553 }
2554 }
2555
2556 // Enter the cleanup scope.
2557 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2558 }
2559 }
2560
2561 // Store the initial value into the alloca.
2562 if (DoStore)
2563 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2564
2565 setAddrOfLocalVar(&D, DeclPtr);
2566
2567 // Emit debug info for param declarations in non-thunk functions.
2568 if (CGDebugInfo *DI = getDebugInfo()) {
2569 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) {
2570 DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2571 }
2572 }
2573
2574 if (D.hasAttr<AnnotateAttr>())
2575 EmitVarAnnotations(&D, DeclPtr.getPointer());
2576
2577 // We can only check return value nullability if all arguments to the
2578 // function satisfy their nullability preconditions. This makes it necessary
2579 // to emit null checks for args in the function body itself.
2580 if (requiresReturnValueNullabilityCheck()) {
2581 auto Nullability = Ty->getNullability(getContext());
2582 if (Nullability && *Nullability == NullabilityKind::NonNull) {
2583 SanitizerScope SanScope(this);
2584 RetValNullabilityPrecondition =
2585 Builder.CreateAnd(RetValNullabilityPrecondition,
2586 Builder.CreateIsNotNull(Arg.getAnyValue()));
2587 }
2588 }
2589 }
2590
EmitOMPDeclareReduction(const OMPDeclareReductionDecl * D,CodeGenFunction * CGF)2591 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2592 CodeGenFunction *CGF) {
2593 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2594 return;
2595 getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2596 }
2597
EmitOMPDeclareMapper(const OMPDeclareMapperDecl * D,CodeGenFunction * CGF)2598 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2599 CodeGenFunction *CGF) {
2600 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2601 (!LangOpts.EmitAllDecls && !D->isUsed()))
2602 return;
2603 getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2604 }
2605
EmitOMPRequiresDecl(const OMPRequiresDecl * D)2606 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2607 getOpenMPRuntime().processRequiresDirective(D);
2608 }
2609