1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Type.h"
40 
41 using namespace clang;
42 using namespace CodeGen;
43 
44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
45               "Clang max alignment greater than what LLVM supports?");
46 
EmitDecl(const Decl & D)47 void CodeGenFunction::EmitDecl(const Decl &D) {
48   switch (D.getKind()) {
49   case Decl::BuiltinTemplate:
50   case Decl::TranslationUnit:
51   case Decl::ExternCContext:
52   case Decl::Namespace:
53   case Decl::UnresolvedUsingTypename:
54   case Decl::ClassTemplateSpecialization:
55   case Decl::ClassTemplatePartialSpecialization:
56   case Decl::VarTemplateSpecialization:
57   case Decl::VarTemplatePartialSpecialization:
58   case Decl::TemplateTypeParm:
59   case Decl::UnresolvedUsingValue:
60   case Decl::NonTypeTemplateParm:
61   case Decl::CXXDeductionGuide:
62   case Decl::CXXMethod:
63   case Decl::CXXConstructor:
64   case Decl::CXXDestructor:
65   case Decl::CXXConversion:
66   case Decl::Field:
67   case Decl::MSProperty:
68   case Decl::IndirectField:
69   case Decl::ObjCIvar:
70   case Decl::ObjCAtDefsField:
71   case Decl::ParmVar:
72   case Decl::ImplicitParam:
73   case Decl::ClassTemplate:
74   case Decl::VarTemplate:
75   case Decl::FunctionTemplate:
76   case Decl::TypeAliasTemplate:
77   case Decl::TemplateTemplateParm:
78   case Decl::ObjCMethod:
79   case Decl::ObjCCategory:
80   case Decl::ObjCProtocol:
81   case Decl::ObjCInterface:
82   case Decl::ObjCCategoryImpl:
83   case Decl::ObjCImplementation:
84   case Decl::ObjCProperty:
85   case Decl::ObjCCompatibleAlias:
86   case Decl::PragmaComment:
87   case Decl::PragmaDetectMismatch:
88   case Decl::AccessSpec:
89   case Decl::LinkageSpec:
90   case Decl::Export:
91   case Decl::ObjCPropertyImpl:
92   case Decl::FileScopeAsm:
93   case Decl::Friend:
94   case Decl::FriendTemplate:
95   case Decl::Block:
96   case Decl::Captured:
97   case Decl::ClassScopeFunctionSpecialization:
98   case Decl::UsingShadow:
99   case Decl::ConstructorUsingShadow:
100   case Decl::ObjCTypeParam:
101   case Decl::Binding:
102     llvm_unreachable("Declaration should not be in declstmts!");
103   case Decl::Record:    // struct/union/class X;
104   case Decl::CXXRecord: // struct/union/class X; [C++]
105     if (CGDebugInfo *DI = getDebugInfo())
106       if (cast<RecordDecl>(D).getDefinition())
107         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
108     return;
109   case Decl::Enum:      // enum X;
110     if (CGDebugInfo *DI = getDebugInfo())
111       if (cast<EnumDecl>(D).getDefinition())
112         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
113     return;
114   case Decl::Function:     // void X();
115   case Decl::EnumConstant: // enum ? { X = ? }
116   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
117   case Decl::Label:        // __label__ x;
118   case Decl::Import:
119   case Decl::MSGuid:    // __declspec(uuid("..."))
120   case Decl::TemplateParamObject:
121   case Decl::OMPThreadPrivate:
122   case Decl::OMPAllocate:
123   case Decl::OMPCapturedExpr:
124   case Decl::OMPRequires:
125   case Decl::Empty:
126   case Decl::Concept:
127   case Decl::LifetimeExtendedTemporary:
128   case Decl::RequiresExprBody:
129     // None of these decls require codegen support.
130     return;
131 
132   case Decl::NamespaceAlias:
133     if (CGDebugInfo *DI = getDebugInfo())
134         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
135     return;
136   case Decl::Using:          // using X; [C++]
137     if (CGDebugInfo *DI = getDebugInfo())
138         DI->EmitUsingDecl(cast<UsingDecl>(D));
139     return;
140   case Decl::UsingPack:
141     for (auto *Using : cast<UsingPackDecl>(D).expansions())
142       EmitDecl(*Using);
143     return;
144   case Decl::UsingDirective: // using namespace X; [C++]
145     if (CGDebugInfo *DI = getDebugInfo())
146       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
147     return;
148   case Decl::Var:
149   case Decl::Decomposition: {
150     const VarDecl &VD = cast<VarDecl>(D);
151     assert(VD.isLocalVarDecl() &&
152            "Should not see file-scope variables inside a function!");
153     EmitVarDecl(VD);
154     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
155       for (auto *B : DD->bindings())
156         if (auto *HD = B->getHoldingVar())
157           EmitVarDecl(*HD);
158     return;
159   }
160 
161   case Decl::OMPDeclareReduction:
162     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
163 
164   case Decl::OMPDeclareMapper:
165     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
166 
167   case Decl::Typedef:      // typedef int X;
168   case Decl::TypeAlias: {  // using X = int; [C++0x]
169     QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
170     if (CGDebugInfo *DI = getDebugInfo())
171       DI->EmitAndRetainType(Ty);
172     if (Ty->isVariablyModifiedType())
173       EmitVariablyModifiedType(Ty);
174     return;
175   }
176   }
177 }
178 
179 /// EmitVarDecl - This method handles emission of any variable declaration
180 /// inside a function, including static vars etc.
EmitVarDecl(const VarDecl & D)181 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
182   if (D.hasExternalStorage())
183     // Don't emit it now, allow it to be emitted lazily on its first use.
184     return;
185 
186   // Some function-scope variable does not have static storage but still
187   // needs to be emitted like a static variable, e.g. a function-scope
188   // variable in constant address space in OpenCL.
189   if (D.getStorageDuration() != SD_Automatic) {
190     // Static sampler variables translated to function calls.
191     if (D.getType()->isSamplerT())
192       return;
193 
194     llvm::GlobalValue::LinkageTypes Linkage =
195         CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
196 
197     // FIXME: We need to force the emission/use of a guard variable for
198     // some variables even if we can constant-evaluate them because
199     // we can't guarantee every translation unit will constant-evaluate them.
200 
201     return EmitStaticVarDecl(D, Linkage);
202   }
203 
204   if (D.getType().getAddressSpace() == LangAS::opencl_local)
205     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
206 
207   assert(D.hasLocalStorage());
208   return EmitAutoVarDecl(D);
209 }
210 
getStaticDeclName(CodeGenModule & CGM,const VarDecl & D)211 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
212   if (CGM.getLangOpts().CPlusPlus)
213     return CGM.getMangledName(&D).str();
214 
215   // If this isn't C++, we don't need a mangled name, just a pretty one.
216   assert(!D.isExternallyVisible() && "name shouldn't matter");
217   std::string ContextName;
218   const DeclContext *DC = D.getDeclContext();
219   if (auto *CD = dyn_cast<CapturedDecl>(DC))
220     DC = cast<DeclContext>(CD->getNonClosureContext());
221   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
222     ContextName = std::string(CGM.getMangledName(FD));
223   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
224     ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
225   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
226     ContextName = OMD->getSelector().getAsString();
227   else
228     llvm_unreachable("Unknown context for static var decl");
229 
230   ContextName += "." + D.getNameAsString();
231   return ContextName;
232 }
233 
getOrCreateStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)234 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
235     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
236   // In general, we don't always emit static var decls once before we reference
237   // them. It is possible to reference them before emitting the function that
238   // contains them, and it is possible to emit the containing function multiple
239   // times.
240   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
241     return ExistingGV;
242 
243   QualType Ty = D.getType();
244   assert(Ty->isConstantSizeType() && "VLAs can't be static");
245 
246   // Use the label if the variable is renamed with the asm-label extension.
247   std::string Name;
248   if (D.hasAttr<AsmLabelAttr>())
249     Name = std::string(getMangledName(&D));
250   else
251     Name = getStaticDeclName(*this, D);
252 
253   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
254   LangAS AS = GetGlobalVarAddressSpace(&D);
255   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
256 
257   // OpenCL variables in local address space and CUDA shared
258   // variables cannot have an initializer.
259   llvm::Constant *Init = nullptr;
260   if (Ty.getAddressSpace() == LangAS::opencl_local ||
261       D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
262     Init = llvm::UndefValue::get(LTy);
263   else
264     Init = EmitNullConstant(Ty);
265 
266   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
267       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
268       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
269   GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
270 
271   if (supportsCOMDAT() && GV->isWeakForLinker())
272     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
273 
274   if (D.getTLSKind())
275     setTLSMode(GV, D);
276 
277   setGVProperties(GV, &D);
278 
279   // Make sure the result is of the correct type.
280   LangAS ExpectedAS = Ty.getAddressSpace();
281   llvm::Constant *Addr = GV;
282   if (AS != ExpectedAS) {
283     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
284         *this, GV, AS, ExpectedAS,
285         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
286   }
287 
288   setStaticLocalDeclAddress(&D, Addr);
289 
290   // Ensure that the static local gets initialized by making sure the parent
291   // function gets emitted eventually.
292   const Decl *DC = cast<Decl>(D.getDeclContext());
293 
294   // We can't name blocks or captured statements directly, so try to emit their
295   // parents.
296   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
297     DC = DC->getNonClosureContext();
298     // FIXME: Ensure that global blocks get emitted.
299     if (!DC)
300       return Addr;
301   }
302 
303   GlobalDecl GD;
304   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
305     GD = GlobalDecl(CD, Ctor_Base);
306   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
307     GD = GlobalDecl(DD, Dtor_Base);
308   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
309     GD = GlobalDecl(FD);
310   else {
311     // Don't do anything for Obj-C method decls or global closures. We should
312     // never defer them.
313     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
314   }
315   if (GD.getDecl()) {
316     // Disable emission of the parent function for the OpenMP device codegen.
317     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
318     (void)GetAddrOfGlobal(GD);
319   }
320 
321   return Addr;
322 }
323 
324 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
325 /// global variable that has already been created for it.  If the initializer
326 /// has a different type than GV does, this may free GV and return a different
327 /// one.  Otherwise it just returns GV.
328 llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl & D,llvm::GlobalVariable * GV)329 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
330                                                llvm::GlobalVariable *GV) {
331   ConstantEmitter emitter(*this);
332   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
333 
334   // If constant emission failed, then this should be a C++ static
335   // initializer.
336   if (!Init) {
337     if (!getLangOpts().CPlusPlus)
338       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
339     else if (HaveInsertPoint()) {
340       // Since we have a static initializer, this global variable can't
341       // be constant.
342       GV->setConstant(false);
343 
344       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
345     }
346     return GV;
347   }
348 
349   // The initializer may differ in type from the global. Rewrite
350   // the global to match the initializer.  (We have to do this
351   // because some types, like unions, can't be completely represented
352   // in the LLVM type system.)
353   if (GV->getValueType() != Init->getType()) {
354     llvm::GlobalVariable *OldGV = GV;
355 
356     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
357                                   OldGV->isConstant(),
358                                   OldGV->getLinkage(), Init, "",
359                                   /*InsertBefore*/ OldGV,
360                                   OldGV->getThreadLocalMode(),
361                            CGM.getContext().getTargetAddressSpace(D.getType()));
362     GV->setVisibility(OldGV->getVisibility());
363     GV->setDSOLocal(OldGV->isDSOLocal());
364     GV->setComdat(OldGV->getComdat());
365 
366     // Steal the name of the old global
367     GV->takeName(OldGV);
368 
369     // Replace all uses of the old global with the new global
370     llvm::Constant *NewPtrForOldDecl =
371     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
372     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
373 
374     // Erase the old global, since it is no longer used.
375     OldGV->eraseFromParent();
376   }
377 
378   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
379   GV->setInitializer(Init);
380 
381   emitter.finalize(GV);
382 
383   if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
384       HaveInsertPoint()) {
385     // We have a constant initializer, but a nontrivial destructor. We still
386     // need to perform a guarded "initialization" in order to register the
387     // destructor.
388     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
389   }
390 
391   return GV;
392 }
393 
EmitStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)394 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
395                                       llvm::GlobalValue::LinkageTypes Linkage) {
396   // Check to see if we already have a global variable for this
397   // declaration.  This can happen when double-emitting function
398   // bodies, e.g. with complete and base constructors.
399   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
400   CharUnits alignment = getContext().getDeclAlign(&D);
401 
402   // Store into LocalDeclMap before generating initializer to handle
403   // circular references.
404   setAddrOfLocalVar(&D, Address(addr, alignment));
405 
406   // We can't have a VLA here, but we can have a pointer to a VLA,
407   // even though that doesn't really make any sense.
408   // Make sure to evaluate VLA bounds now so that we have them for later.
409   if (D.getType()->isVariablyModifiedType())
410     EmitVariablyModifiedType(D.getType());
411 
412   // Save the type in case adding the initializer forces a type change.
413   llvm::Type *expectedType = addr->getType();
414 
415   llvm::GlobalVariable *var =
416     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
417 
418   // CUDA's local and local static __shared__ variables should not
419   // have any non-empty initializers. This is ensured by Sema.
420   // Whatever initializer such variable may have when it gets here is
421   // a no-op and should not be emitted.
422   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
423                          D.hasAttr<CUDASharedAttr>();
424   // If this value has an initializer, emit it.
425   if (D.getInit() && !isCudaSharedVar)
426     var = AddInitializerToStaticVarDecl(D, var);
427 
428   var->setAlignment(alignment.getAsAlign());
429 
430   if (D.hasAttr<AnnotateAttr>())
431     CGM.AddGlobalAnnotations(&D, var);
432 
433   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
434     var->addAttribute("bss-section", SA->getName());
435   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
436     var->addAttribute("data-section", SA->getName());
437   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
438     var->addAttribute("rodata-section", SA->getName());
439   if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
440     var->addAttribute("relro-section", SA->getName());
441 
442   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
443     var->setSection(SA->getName());
444 
445   if (D.hasAttr<UsedAttr>())
446     CGM.addUsedGlobal(var);
447 
448   // We may have to cast the constant because of the initializer
449   // mismatch above.
450   //
451   // FIXME: It is really dangerous to store this in the map; if anyone
452   // RAUW's the GV uses of this constant will be invalid.
453   llvm::Constant *castedAddr =
454     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
455   if (var != castedAddr)
456     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
457   CGM.setStaticLocalDeclAddress(&D, castedAddr);
458 
459   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
460 
461   // Emit global variable debug descriptor for static vars.
462   CGDebugInfo *DI = getDebugInfo();
463   if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
464     DI->setLocation(D.getLocation());
465     DI->EmitGlobalVariable(var, &D);
466   }
467 }
468 
469 namespace {
470   struct DestroyObject final : EHScopeStack::Cleanup {
DestroyObject__anon53e8cf900111::DestroyObject471     DestroyObject(Address addr, QualType type,
472                   CodeGenFunction::Destroyer *destroyer,
473                   bool useEHCleanupForArray)
474       : addr(addr), type(type), destroyer(destroyer),
475         useEHCleanupForArray(useEHCleanupForArray) {}
476 
477     Address addr;
478     QualType type;
479     CodeGenFunction::Destroyer *destroyer;
480     bool useEHCleanupForArray;
481 
Emit__anon53e8cf900111::DestroyObject482     void Emit(CodeGenFunction &CGF, Flags flags) override {
483       // Don't use an EH cleanup recursively from an EH cleanup.
484       bool useEHCleanupForArray =
485         flags.isForNormalCleanup() && this->useEHCleanupForArray;
486 
487       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
488     }
489   };
490 
491   template <class Derived>
492   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable__anon53e8cf900111::DestroyNRVOVariable493     DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
494         : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
495 
496     llvm::Value *NRVOFlag;
497     Address Loc;
498     QualType Ty;
499 
Emit__anon53e8cf900111::DestroyNRVOVariable500     void Emit(CodeGenFunction &CGF, Flags flags) override {
501       // Along the exceptions path we always execute the dtor.
502       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
503 
504       llvm::BasicBlock *SkipDtorBB = nullptr;
505       if (NRVO) {
506         // If we exited via NRVO, we skip the destructor call.
507         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
508         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
509         llvm::Value *DidNRVO =
510           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
511         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
512         CGF.EmitBlock(RunDtorBB);
513       }
514 
515       static_cast<Derived *>(this)->emitDestructorCall(CGF);
516 
517       if (NRVO) CGF.EmitBlock(SkipDtorBB);
518     }
519 
520     virtual ~DestroyNRVOVariable() = default;
521   };
522 
523   struct DestroyNRVOVariableCXX final
524       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
DestroyNRVOVariableCXX__anon53e8cf900111::DestroyNRVOVariableCXX525     DestroyNRVOVariableCXX(Address addr, QualType type,
526                            const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
527         : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
528           Dtor(Dtor) {}
529 
530     const CXXDestructorDecl *Dtor;
531 
emitDestructorCall__anon53e8cf900111::DestroyNRVOVariableCXX532     void emitDestructorCall(CodeGenFunction &CGF) {
533       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
534                                 /*ForVirtualBase=*/false,
535                                 /*Delegating=*/false, Loc, Ty);
536     }
537   };
538 
539   struct DestroyNRVOVariableC final
540       : DestroyNRVOVariable<DestroyNRVOVariableC> {
DestroyNRVOVariableC__anon53e8cf900111::DestroyNRVOVariableC541     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
542         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
543 
emitDestructorCall__anon53e8cf900111::DestroyNRVOVariableC544     void emitDestructorCall(CodeGenFunction &CGF) {
545       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
546     }
547   };
548 
549   struct CallStackRestore final : EHScopeStack::Cleanup {
550     Address Stack;
CallStackRestore__anon53e8cf900111::CallStackRestore551     CallStackRestore(Address Stack) : Stack(Stack) {}
Emit__anon53e8cf900111::CallStackRestore552     void Emit(CodeGenFunction &CGF, Flags flags) override {
553       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
554       llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
555       CGF.Builder.CreateCall(F, V);
556     }
557   };
558 
559   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
560     const VarDecl &Var;
ExtendGCLifetime__anon53e8cf900111::ExtendGCLifetime561     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
562 
Emit__anon53e8cf900111::ExtendGCLifetime563     void Emit(CodeGenFunction &CGF, Flags flags) override {
564       // Compute the address of the local variable, in case it's a
565       // byref or something.
566       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
567                       Var.getType(), VK_LValue, SourceLocation());
568       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
569                                                 SourceLocation());
570       CGF.EmitExtendGCLifetime(value);
571     }
572   };
573 
574   struct CallCleanupFunction final : EHScopeStack::Cleanup {
575     llvm::Constant *CleanupFn;
576     const CGFunctionInfo &FnInfo;
577     const VarDecl &Var;
578 
CallCleanupFunction__anon53e8cf900111::CallCleanupFunction579     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
580                         const VarDecl *Var)
581       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
582 
Emit__anon53e8cf900111::CallCleanupFunction583     void Emit(CodeGenFunction &CGF, Flags flags) override {
584       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
585                       Var.getType(), VK_LValue, SourceLocation());
586       // Compute the address of the local variable, in case it's a byref
587       // or something.
588       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
589 
590       // In some cases, the type of the function argument will be different from
591       // the type of the pointer. An example of this is
592       // void f(void* arg);
593       // __attribute__((cleanup(f))) void *g;
594       //
595       // To fix this we insert a bitcast here.
596       QualType ArgTy = FnInfo.arg_begin()->type;
597       llvm::Value *Arg =
598         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
599 
600       CallArgList Args;
601       Args.add(RValue::get(Arg),
602                CGF.getContext().getPointerType(Var.getType()));
603       auto Callee = CGCallee::forDirect(CleanupFn);
604       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
605     }
606   };
607 } // end anonymous namespace
608 
609 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
610 /// variable with lifetime.
EmitAutoVarWithLifetime(CodeGenFunction & CGF,const VarDecl & var,Address addr,Qualifiers::ObjCLifetime lifetime)611 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
612                                     Address addr,
613                                     Qualifiers::ObjCLifetime lifetime) {
614   switch (lifetime) {
615   case Qualifiers::OCL_None:
616     llvm_unreachable("present but none");
617 
618   case Qualifiers::OCL_ExplicitNone:
619     // nothing to do
620     break;
621 
622   case Qualifiers::OCL_Strong: {
623     CodeGenFunction::Destroyer *destroyer =
624       (var.hasAttr<ObjCPreciseLifetimeAttr>()
625        ? CodeGenFunction::destroyARCStrongPrecise
626        : CodeGenFunction::destroyARCStrongImprecise);
627 
628     CleanupKind cleanupKind = CGF.getARCCleanupKind();
629     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
630                     cleanupKind & EHCleanup);
631     break;
632   }
633   case Qualifiers::OCL_Autoreleasing:
634     // nothing to do
635     break;
636 
637   case Qualifiers::OCL_Weak:
638     // __weak objects always get EH cleanups; otherwise, exceptions
639     // could cause really nasty crashes instead of mere leaks.
640     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
641                     CodeGenFunction::destroyARCWeak,
642                     /*useEHCleanup*/ true);
643     break;
644   }
645 }
646 
isAccessedBy(const VarDecl & var,const Stmt * s)647 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
648   if (const Expr *e = dyn_cast<Expr>(s)) {
649     // Skip the most common kinds of expressions that make
650     // hierarchy-walking expensive.
651     s = e = e->IgnoreParenCasts();
652 
653     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
654       return (ref->getDecl() == &var);
655     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
656       const BlockDecl *block = be->getBlockDecl();
657       for (const auto &I : block->captures()) {
658         if (I.getVariable() == &var)
659           return true;
660       }
661     }
662   }
663 
664   for (const Stmt *SubStmt : s->children())
665     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
666     if (SubStmt && isAccessedBy(var, SubStmt))
667       return true;
668 
669   return false;
670 }
671 
isAccessedBy(const ValueDecl * decl,const Expr * e)672 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
673   if (!decl) return false;
674   if (!isa<VarDecl>(decl)) return false;
675   const VarDecl *var = cast<VarDecl>(decl);
676   return isAccessedBy(*var, e);
677 }
678 
tryEmitARCCopyWeakInit(CodeGenFunction & CGF,const LValue & destLV,const Expr * init)679 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
680                                    const LValue &destLV, const Expr *init) {
681   bool needsCast = false;
682 
683   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
684     switch (castExpr->getCastKind()) {
685     // Look through casts that don't require representation changes.
686     case CK_NoOp:
687     case CK_BitCast:
688     case CK_BlockPointerToObjCPointerCast:
689       needsCast = true;
690       break;
691 
692     // If we find an l-value to r-value cast from a __weak variable,
693     // emit this operation as a copy or move.
694     case CK_LValueToRValue: {
695       const Expr *srcExpr = castExpr->getSubExpr();
696       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
697         return false;
698 
699       // Emit the source l-value.
700       LValue srcLV = CGF.EmitLValue(srcExpr);
701 
702       // Handle a formal type change to avoid asserting.
703       auto srcAddr = srcLV.getAddress(CGF);
704       if (needsCast) {
705         srcAddr = CGF.Builder.CreateElementBitCast(
706             srcAddr, destLV.getAddress(CGF).getElementType());
707       }
708 
709       // If it was an l-value, use objc_copyWeak.
710       if (srcExpr->getValueKind() == VK_LValue) {
711         CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
712       } else {
713         assert(srcExpr->getValueKind() == VK_XValue);
714         CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
715       }
716       return true;
717     }
718 
719     // Stop at anything else.
720     default:
721       return false;
722     }
723 
724     init = castExpr->getSubExpr();
725   }
726   return false;
727 }
728 
drillIntoBlockVariable(CodeGenFunction & CGF,LValue & lvalue,const VarDecl * var)729 static void drillIntoBlockVariable(CodeGenFunction &CGF,
730                                    LValue &lvalue,
731                                    const VarDecl *var) {
732   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
733 }
734 
EmitNullabilityCheck(LValue LHS,llvm::Value * RHS,SourceLocation Loc)735 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
736                                            SourceLocation Loc) {
737   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
738     return;
739 
740   auto Nullability = LHS.getType()->getNullability(getContext());
741   if (!Nullability || *Nullability != NullabilityKind::NonNull)
742     return;
743 
744   // Check if the right hand side of the assignment is nonnull, if the left
745   // hand side must be nonnull.
746   SanitizerScope SanScope(this);
747   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
748   llvm::Constant *StaticData[] = {
749       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
750       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
751       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
752   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
753             SanitizerHandler::TypeMismatch, StaticData, RHS);
754 }
755 
EmitScalarInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)756 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
757                                      LValue lvalue, bool capturedByInit) {
758   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
759   if (!lifetime) {
760     llvm::Value *value = EmitScalarExpr(init);
761     if (capturedByInit)
762       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
763     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
764     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
765     return;
766   }
767 
768   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
769     init = DIE->getExpr();
770 
771   // If we're emitting a value with lifetime, we have to do the
772   // initialization *before* we leave the cleanup scopes.
773   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(init))
774     init = EWC->getSubExpr();
775   CodeGenFunction::RunCleanupsScope Scope(*this);
776 
777   // We have to maintain the illusion that the variable is
778   // zero-initialized.  If the variable might be accessed in its
779   // initializer, zero-initialize before running the initializer, then
780   // actually perform the initialization with an assign.
781   bool accessedByInit = false;
782   if (lifetime != Qualifiers::OCL_ExplicitNone)
783     accessedByInit = (capturedByInit || isAccessedBy(D, init));
784   if (accessedByInit) {
785     LValue tempLV = lvalue;
786     // Drill down to the __block object if necessary.
787     if (capturedByInit) {
788       // We can use a simple GEP for this because it can't have been
789       // moved yet.
790       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
791                                               cast<VarDecl>(D),
792                                               /*follow*/ false));
793     }
794 
795     auto ty =
796         cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
797     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
798 
799     // If __weak, we want to use a barrier under certain conditions.
800     if (lifetime == Qualifiers::OCL_Weak)
801       EmitARCInitWeak(tempLV.getAddress(*this), zero);
802 
803     // Otherwise just do a simple store.
804     else
805       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
806   }
807 
808   // Emit the initializer.
809   llvm::Value *value = nullptr;
810 
811   switch (lifetime) {
812   case Qualifiers::OCL_None:
813     llvm_unreachable("present but none");
814 
815   case Qualifiers::OCL_Strong: {
816     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
817       value = EmitARCRetainScalarExpr(init);
818       break;
819     }
820     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
821     // that we omit the retain, and causes non-autoreleased return values to be
822     // immediately released.
823     LLVM_FALLTHROUGH;
824   }
825 
826   case Qualifiers::OCL_ExplicitNone:
827     value = EmitARCUnsafeUnretainedScalarExpr(init);
828     break;
829 
830   case Qualifiers::OCL_Weak: {
831     // If it's not accessed by the initializer, try to emit the
832     // initialization with a copy or move.
833     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
834       return;
835     }
836 
837     // No way to optimize a producing initializer into this.  It's not
838     // worth optimizing for, because the value will immediately
839     // disappear in the common case.
840     value = EmitScalarExpr(init);
841 
842     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
843     if (accessedByInit)
844       EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
845     else
846       EmitARCInitWeak(lvalue.getAddress(*this), value);
847     return;
848   }
849 
850   case Qualifiers::OCL_Autoreleasing:
851     value = EmitARCRetainAutoreleaseScalarExpr(init);
852     break;
853   }
854 
855   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
856 
857   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
858 
859   // If the variable might have been accessed by its initializer, we
860   // might have to initialize with a barrier.  We have to do this for
861   // both __weak and __strong, but __weak got filtered out above.
862   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
863     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
864     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
865     EmitARCRelease(oldValue, ARCImpreciseLifetime);
866     return;
867   }
868 
869   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
870 }
871 
872 /// Decide whether we can emit the non-zero parts of the specified initializer
873 /// with equal or fewer than NumStores scalar stores.
canEmitInitWithFewStoresAfterBZero(llvm::Constant * Init,unsigned & NumStores)874 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
875                                                unsigned &NumStores) {
876   // Zero and Undef never requires any extra stores.
877   if (isa<llvm::ConstantAggregateZero>(Init) ||
878       isa<llvm::ConstantPointerNull>(Init) ||
879       isa<llvm::UndefValue>(Init))
880     return true;
881   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
882       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
883       isa<llvm::ConstantExpr>(Init))
884     return Init->isNullValue() || NumStores--;
885 
886   // See if we can emit each element.
887   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
888     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
889       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
890       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
891         return false;
892     }
893     return true;
894   }
895 
896   if (llvm::ConstantDataSequential *CDS =
897         dyn_cast<llvm::ConstantDataSequential>(Init)) {
898     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
899       llvm::Constant *Elt = CDS->getElementAsConstant(i);
900       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
901         return false;
902     }
903     return true;
904   }
905 
906   // Anything else is hard and scary.
907   return false;
908 }
909 
910 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
911 /// the scalar stores that would be required.
emitStoresForInitAfterBZero(CodeGenModule & CGM,llvm::Constant * Init,Address Loc,bool isVolatile,CGBuilderTy & Builder,bool IsAutoInit)912 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
913                                         llvm::Constant *Init, Address Loc,
914                                         bool isVolatile, CGBuilderTy &Builder,
915                                         bool IsAutoInit) {
916   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
917          "called emitStoresForInitAfterBZero for zero or undef value.");
918 
919   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
920       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
921       isa<llvm::ConstantExpr>(Init)) {
922     auto *I = Builder.CreateStore(Init, Loc, isVolatile);
923     if (IsAutoInit)
924       I->addAnnotationMetadata("auto-init");
925     return;
926   }
927 
928   if (llvm::ConstantDataSequential *CDS =
929           dyn_cast<llvm::ConstantDataSequential>(Init)) {
930     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
931       llvm::Constant *Elt = CDS->getElementAsConstant(i);
932 
933       // If necessary, get a pointer to the element and emit it.
934       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
935         emitStoresForInitAfterBZero(
936             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
937             Builder, IsAutoInit);
938     }
939     return;
940   }
941 
942   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
943          "Unknown value type!");
944 
945   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
946     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
947 
948     // If necessary, get a pointer to the element and emit it.
949     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
950       emitStoresForInitAfterBZero(CGM, Elt,
951                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
952                                   isVolatile, Builder, IsAutoInit);
953   }
954 }
955 
956 /// Decide whether we should use bzero plus some stores to initialize a local
957 /// variable instead of using a memcpy from a constant global.  It is beneficial
958 /// to use bzero if the global is all zeros, or mostly zeros and large.
shouldUseBZeroPlusStoresToInitialize(llvm::Constant * Init,uint64_t GlobalSize)959 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
960                                                  uint64_t GlobalSize) {
961   // If a global is all zeros, always use a bzero.
962   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
963 
964   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
965   // do it if it will require 6 or fewer scalar stores.
966   // TODO: Should budget depends on the size?  Avoiding a large global warrants
967   // plopping in more stores.
968   unsigned StoreBudget = 6;
969   uint64_t SizeLimit = 32;
970 
971   return GlobalSize > SizeLimit &&
972          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
973 }
974 
975 /// Decide whether we should use memset to initialize a local variable instead
976 /// of using a memcpy from a constant global. Assumes we've already decided to
977 /// not user bzero.
978 /// FIXME We could be more clever, as we are for bzero above, and generate
979 ///       memset followed by stores. It's unclear that's worth the effort.
shouldUseMemSetToInitialize(llvm::Constant * Init,uint64_t GlobalSize,const llvm::DataLayout & DL)980 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
981                                                 uint64_t GlobalSize,
982                                                 const llvm::DataLayout &DL) {
983   uint64_t SizeLimit = 32;
984   if (GlobalSize <= SizeLimit)
985     return nullptr;
986   return llvm::isBytewiseValue(Init, DL);
987 }
988 
989 /// Decide whether we want to split a constant structure or array store into a
990 /// sequence of its fields' stores. This may cost us code size and compilation
991 /// speed, but plays better with store optimizations.
shouldSplitConstantStore(CodeGenModule & CGM,uint64_t GlobalByteSize)992 static bool shouldSplitConstantStore(CodeGenModule &CGM,
993                                      uint64_t GlobalByteSize) {
994   // Don't break things that occupy more than one cacheline.
995   uint64_t ByteSizeLimit = 64;
996   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
997     return false;
998   if (GlobalByteSize <= ByteSizeLimit)
999     return true;
1000   return false;
1001 }
1002 
1003 enum class IsPattern { No, Yes };
1004 
1005 /// Generate a constant filled with either a pattern or zeroes.
patternOrZeroFor(CodeGenModule & CGM,IsPattern isPattern,llvm::Type * Ty)1006 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1007                                         llvm::Type *Ty) {
1008   if (isPattern == IsPattern::Yes)
1009     return initializationPatternFor(CGM, Ty);
1010   else
1011     return llvm::Constant::getNullValue(Ty);
1012 }
1013 
1014 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1015                                         llvm::Constant *constant);
1016 
1017 /// Helper function for constWithPadding() to deal with padding in structures.
constStructWithPadding(CodeGenModule & CGM,IsPattern isPattern,llvm::StructType * STy,llvm::Constant * constant)1018 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1019                                               IsPattern isPattern,
1020                                               llvm::StructType *STy,
1021                                               llvm::Constant *constant) {
1022   const llvm::DataLayout &DL = CGM.getDataLayout();
1023   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1024   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1025   unsigned SizeSoFar = 0;
1026   SmallVector<llvm::Constant *, 8> Values;
1027   bool NestedIntact = true;
1028   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1029     unsigned CurOff = Layout->getElementOffset(i);
1030     if (SizeSoFar < CurOff) {
1031       assert(!STy->isPacked());
1032       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1033       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1034     }
1035     llvm::Constant *CurOp;
1036     if (constant->isZeroValue())
1037       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1038     else
1039       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1040     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1041     if (CurOp != NewOp)
1042       NestedIntact = false;
1043     Values.push_back(NewOp);
1044     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1045   }
1046   unsigned TotalSize = Layout->getSizeInBytes();
1047   if (SizeSoFar < TotalSize) {
1048     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1049     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1050   }
1051   if (NestedIntact && Values.size() == STy->getNumElements())
1052     return constant;
1053   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1054 }
1055 
1056 /// Replace all padding bytes in a given constant with either a pattern byte or
1057 /// 0x00.
constWithPadding(CodeGenModule & CGM,IsPattern isPattern,llvm::Constant * constant)1058 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1059                                         llvm::Constant *constant) {
1060   llvm::Type *OrigTy = constant->getType();
1061   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1062     return constStructWithPadding(CGM, isPattern, STy, constant);
1063   if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1064     llvm::SmallVector<llvm::Constant *, 8> Values;
1065     uint64_t Size = ArrayTy->getNumElements();
1066     if (!Size)
1067       return constant;
1068     llvm::Type *ElemTy = ArrayTy->getElementType();
1069     bool ZeroInitializer = constant->isNullValue();
1070     llvm::Constant *OpValue, *PaddedOp;
1071     if (ZeroInitializer) {
1072       OpValue = llvm::Constant::getNullValue(ElemTy);
1073       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1074     }
1075     for (unsigned Op = 0; Op != Size; ++Op) {
1076       if (!ZeroInitializer) {
1077         OpValue = constant->getAggregateElement(Op);
1078         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1079       }
1080       Values.push_back(PaddedOp);
1081     }
1082     auto *NewElemTy = Values[0]->getType();
1083     if (NewElemTy == ElemTy)
1084       return constant;
1085     auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1086     return llvm::ConstantArray::get(NewArrayTy, Values);
1087   }
1088   // FIXME: Add handling for tail padding in vectors. Vectors don't
1089   // have padding between or inside elements, but the total amount of
1090   // data can be less than the allocated size.
1091   return constant;
1092 }
1093 
createUnnamedGlobalFrom(const VarDecl & D,llvm::Constant * Constant,CharUnits Align)1094 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1095                                                llvm::Constant *Constant,
1096                                                CharUnits Align) {
1097   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1098     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1099       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1100         return CC->getNameAsString();
1101       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1102         return CD->getNameAsString();
1103       return std::string(getMangledName(FD));
1104     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1105       return OM->getNameAsString();
1106     } else if (isa<BlockDecl>(DC)) {
1107       return "<block>";
1108     } else if (isa<CapturedDecl>(DC)) {
1109       return "<captured>";
1110     } else {
1111       llvm_unreachable("expected a function or method");
1112     }
1113   };
1114 
1115   // Form a simple per-variable cache of these values in case we find we
1116   // want to reuse them.
1117   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1118   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1119     auto *Ty = Constant->getType();
1120     bool isConstant = true;
1121     llvm::GlobalVariable *InsertBefore = nullptr;
1122     unsigned AS =
1123         getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
1124     std::string Name;
1125     if (D.hasGlobalStorage())
1126       Name = getMangledName(&D).str() + ".const";
1127     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1128       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1129     else
1130       llvm_unreachable("local variable has no parent function or method");
1131     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1132         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1133         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1134     GV->setAlignment(Align.getAsAlign());
1135     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1136     CacheEntry = GV;
1137   } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
1138     CacheEntry->setAlignment(Align.getAsAlign());
1139   }
1140 
1141   return Address(CacheEntry, Align);
1142 }
1143 
createUnnamedGlobalForMemcpyFrom(CodeGenModule & CGM,const VarDecl & D,CGBuilderTy & Builder,llvm::Constant * Constant,CharUnits Align)1144 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1145                                                 const VarDecl &D,
1146                                                 CGBuilderTy &Builder,
1147                                                 llvm::Constant *Constant,
1148                                                 CharUnits Align) {
1149   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1150   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
1151                                                    SrcPtr.getAddressSpace());
1152   if (SrcPtr.getType() != BP)
1153     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1154   return SrcPtr;
1155 }
1156 
emitStoresForConstant(CodeGenModule & CGM,const VarDecl & D,Address Loc,bool isVolatile,CGBuilderTy & Builder,llvm::Constant * constant,bool IsAutoInit)1157 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1158                                   Address Loc, bool isVolatile,
1159                                   CGBuilderTy &Builder,
1160                                   llvm::Constant *constant, bool IsAutoInit) {
1161   auto *Ty = constant->getType();
1162   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1163   if (!ConstantSize)
1164     return;
1165 
1166   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1167                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1168   if (canDoSingleStore) {
1169     auto *I = Builder.CreateStore(constant, Loc, isVolatile);
1170     if (IsAutoInit)
1171       I->addAnnotationMetadata("auto-init");
1172     return;
1173   }
1174 
1175   auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1176 
1177   // If the initializer is all or mostly the same, codegen with bzero / memset
1178   // then do a few stores afterward.
1179   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1180     auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0),
1181                                    SizeVal, isVolatile);
1182     if (IsAutoInit)
1183       I->addAnnotationMetadata("auto-init");
1184 
1185     bool valueAlreadyCorrect =
1186         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1187     if (!valueAlreadyCorrect) {
1188       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1189       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder,
1190                                   IsAutoInit);
1191     }
1192     return;
1193   }
1194 
1195   // If the initializer is a repeated byte pattern, use memset.
1196   llvm::Value *Pattern =
1197       shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1198   if (Pattern) {
1199     uint64_t Value = 0x00;
1200     if (!isa<llvm::UndefValue>(Pattern)) {
1201       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1202       assert(AP.getBitWidth() <= 8);
1203       Value = AP.getLimitedValue();
1204     }
1205     auto *I = Builder.CreateMemSet(
1206         Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile);
1207     if (IsAutoInit)
1208       I->addAnnotationMetadata("auto-init");
1209     return;
1210   }
1211 
1212   // If the initializer is small, use a handful of stores.
1213   if (shouldSplitConstantStore(CGM, ConstantSize)) {
1214     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1215       // FIXME: handle the case when STy != Loc.getElementType().
1216       if (STy == Loc.getElementType()) {
1217         for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1218           Address EltPtr = Builder.CreateStructGEP(Loc, i);
1219           emitStoresForConstant(
1220               CGM, D, EltPtr, isVolatile, Builder,
1221               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
1222               IsAutoInit);
1223         }
1224         return;
1225       }
1226     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1227       // FIXME: handle the case when ATy != Loc.getElementType().
1228       if (ATy == Loc.getElementType()) {
1229         for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1230           Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1231           emitStoresForConstant(
1232               CGM, D, EltPtr, isVolatile, Builder,
1233               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
1234               IsAutoInit);
1235         }
1236         return;
1237       }
1238     }
1239   }
1240 
1241   // Copy from a global.
1242   auto *I =
1243       Builder.CreateMemCpy(Loc,
1244                            createUnnamedGlobalForMemcpyFrom(
1245                                CGM, D, Builder, constant, Loc.getAlignment()),
1246                            SizeVal, isVolatile);
1247   if (IsAutoInit)
1248     I->addAnnotationMetadata("auto-init");
1249 }
1250 
emitStoresForZeroInit(CodeGenModule & CGM,const VarDecl & D,Address Loc,bool isVolatile,CGBuilderTy & Builder)1251 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1252                                   Address Loc, bool isVolatile,
1253                                   CGBuilderTy &Builder) {
1254   llvm::Type *ElTy = Loc.getElementType();
1255   llvm::Constant *constant =
1256       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1257   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1258                         /*IsAutoInit=*/true);
1259 }
1260 
emitStoresForPatternInit(CodeGenModule & CGM,const VarDecl & D,Address Loc,bool isVolatile,CGBuilderTy & Builder)1261 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1262                                      Address Loc, bool isVolatile,
1263                                      CGBuilderTy &Builder) {
1264   llvm::Type *ElTy = Loc.getElementType();
1265   llvm::Constant *constant = constWithPadding(
1266       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1267   assert(!isa<llvm::UndefValue>(constant));
1268   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1269                         /*IsAutoInit=*/true);
1270 }
1271 
containsUndef(llvm::Constant * constant)1272 static bool containsUndef(llvm::Constant *constant) {
1273   auto *Ty = constant->getType();
1274   if (isa<llvm::UndefValue>(constant))
1275     return true;
1276   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1277     for (llvm::Use &Op : constant->operands())
1278       if (containsUndef(cast<llvm::Constant>(Op)))
1279         return true;
1280   return false;
1281 }
1282 
replaceUndef(CodeGenModule & CGM,IsPattern isPattern,llvm::Constant * constant)1283 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1284                                     llvm::Constant *constant) {
1285   auto *Ty = constant->getType();
1286   if (isa<llvm::UndefValue>(constant))
1287     return patternOrZeroFor(CGM, isPattern, Ty);
1288   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1289     return constant;
1290   if (!containsUndef(constant))
1291     return constant;
1292   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1293   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1294     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1295     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1296   }
1297   if (Ty->isStructTy())
1298     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1299   if (Ty->isArrayTy())
1300     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1301   assert(Ty->isVectorTy());
1302   return llvm::ConstantVector::get(Values);
1303 }
1304 
1305 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1306 /// variable declaration with auto, register, or no storage class specifier.
1307 /// These turn into simple stack objects, or GlobalValues depending on target.
EmitAutoVarDecl(const VarDecl & D)1308 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1309   AutoVarEmission emission = EmitAutoVarAlloca(D);
1310   EmitAutoVarInit(emission);
1311   EmitAutoVarCleanups(emission);
1312 }
1313 
1314 /// Emit a lifetime.begin marker if some criteria are satisfied.
1315 /// \return a pointer to the temporary size Value if a marker was emitted, null
1316 /// otherwise
EmitLifetimeStart(uint64_t Size,llvm::Value * Addr)1317 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1318                                                 llvm::Value *Addr) {
1319   if (!ShouldEmitLifetimeMarkers)
1320     return nullptr;
1321 
1322   assert(Addr->getType()->getPointerAddressSpace() ==
1323              CGM.getDataLayout().getAllocaAddrSpace() &&
1324          "Pointer should be in alloca address space");
1325   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1326   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1327   llvm::CallInst *C =
1328       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1329   C->setDoesNotThrow();
1330   return SizeV;
1331 }
1332 
EmitLifetimeEnd(llvm::Value * Size,llvm::Value * Addr)1333 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1334   assert(Addr->getType()->getPointerAddressSpace() ==
1335              CGM.getDataLayout().getAllocaAddrSpace() &&
1336          "Pointer should be in alloca address space");
1337   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1338   llvm::CallInst *C =
1339       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1340   C->setDoesNotThrow();
1341 }
1342 
EmitAndRegisterVariableArrayDimensions(CGDebugInfo * DI,const VarDecl & D,bool EmitDebugInfo)1343 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1344     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1345   // For each dimension stores its QualType and corresponding
1346   // size-expression Value.
1347   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1348   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1349 
1350   // Break down the array into individual dimensions.
1351   QualType Type1D = D.getType();
1352   while (getContext().getAsVariableArrayType(Type1D)) {
1353     auto VlaSize = getVLAElements1D(Type1D);
1354     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1355       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1356     else {
1357       // Generate a locally unique name for the size expression.
1358       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1359       SmallString<12> Buffer;
1360       StringRef NameRef = Name.toStringRef(Buffer);
1361       auto &Ident = getContext().Idents.getOwn(NameRef);
1362       VLAExprNames.push_back(&Ident);
1363       auto SizeExprAddr =
1364           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1365       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1366       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1367                               Type1D.getUnqualifiedType());
1368     }
1369     Type1D = VlaSize.Type;
1370   }
1371 
1372   if (!EmitDebugInfo)
1373     return;
1374 
1375   // Register each dimension's size-expression with a DILocalVariable,
1376   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1377   // to describe this array.
1378   unsigned NameIdx = 0;
1379   for (auto &VlaSize : Dimensions) {
1380     llvm::Metadata *MD;
1381     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1382       MD = llvm::ConstantAsMetadata::get(C);
1383     else {
1384       // Create an artificial VarDecl to generate debug info for.
1385       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1386       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1387       auto QT = getContext().getIntTypeForBitwidth(
1388           VlaExprTy->getScalarSizeInBits(), false);
1389       auto *ArtificialDecl = VarDecl::Create(
1390           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1391           D.getLocation(), D.getLocation(), NameIdent, QT,
1392           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1393       ArtificialDecl->setImplicit();
1394 
1395       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1396                                          Builder);
1397     }
1398     assert(MD && "No Size expression debug node created");
1399     DI->registerVLASizeExpression(VlaSize.Type, MD);
1400   }
1401 }
1402 
1403 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1404 /// local variable.  Does not emit initialization or destruction.
1405 CodeGenFunction::AutoVarEmission
EmitAutoVarAlloca(const VarDecl & D)1406 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1407   QualType Ty = D.getType();
1408   assert(
1409       Ty.getAddressSpace() == LangAS::Default ||
1410       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1411 
1412   AutoVarEmission emission(D);
1413 
1414   bool isEscapingByRef = D.isEscapingByref();
1415   emission.IsEscapingByRef = isEscapingByRef;
1416 
1417   CharUnits alignment = getContext().getDeclAlign(&D);
1418 
1419   // If the type is variably-modified, emit all the VLA sizes for it.
1420   if (Ty->isVariablyModifiedType())
1421     EmitVariablyModifiedType(Ty);
1422 
1423   auto *DI = getDebugInfo();
1424   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1425 
1426   Address address = Address::invalid();
1427   Address AllocaAddr = Address::invalid();
1428   Address OpenMPLocalAddr = Address::invalid();
1429   if (CGM.getLangOpts().OpenMPIRBuilder)
1430     OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1431   else
1432     OpenMPLocalAddr =
1433         getLangOpts().OpenMP
1434             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1435             : Address::invalid();
1436 
1437   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1438 
1439   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1440     address = OpenMPLocalAddr;
1441   } else if (Ty->isConstantSizeType()) {
1442     // If this value is an array or struct with a statically determinable
1443     // constant initializer, there are optimizations we can do.
1444     //
1445     // TODO: We should constant-evaluate the initializer of any variable,
1446     // as long as it is initialized by a constant expression. Currently,
1447     // isConstantInitializer produces wrong answers for structs with
1448     // reference or bitfield members, and a few other cases, and checking
1449     // for POD-ness protects us from some of these.
1450     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1451         (D.isConstexpr() ||
1452          ((Ty.isPODType(getContext()) ||
1453            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1454           D.getInit()->isConstantInitializer(getContext(), false)))) {
1455 
1456       // If the variable's a const type, and it's neither an NRVO
1457       // candidate nor a __block variable and has no mutable members,
1458       // emit it as a global instead.
1459       // Exception is if a variable is located in non-constant address space
1460       // in OpenCL.
1461       if ((!getLangOpts().OpenCL ||
1462            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1463           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1464            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1465         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1466 
1467         // Signal this condition to later callbacks.
1468         emission.Addr = Address::invalid();
1469         assert(emission.wasEmittedAsGlobal());
1470         return emission;
1471       }
1472 
1473       // Otherwise, tell the initialization code that we're in this case.
1474       emission.IsConstantAggregate = true;
1475     }
1476 
1477     // A normal fixed sized variable becomes an alloca in the entry block,
1478     // unless:
1479     // - it's an NRVO variable.
1480     // - we are compiling OpenMP and it's an OpenMP local variable.
1481     if (NRVO) {
1482       // The named return value optimization: allocate this variable in the
1483       // return slot, so that we can elide the copy when returning this
1484       // variable (C++0x [class.copy]p34).
1485       address = ReturnValue;
1486 
1487       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1488         const auto *RD = RecordTy->getDecl();
1489         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1490         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1491             RD->isNonTrivialToPrimitiveDestroy()) {
1492           // Create a flag that is used to indicate when the NRVO was applied
1493           // to this variable. Set it to zero to indicate that NRVO was not
1494           // applied.
1495           llvm::Value *Zero = Builder.getFalse();
1496           Address NRVOFlag =
1497             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1498           EnsureInsertPoint();
1499           Builder.CreateStore(Zero, NRVOFlag);
1500 
1501           // Record the NRVO flag for this variable.
1502           NRVOFlags[&D] = NRVOFlag.getPointer();
1503           emission.NRVOFlag = NRVOFlag.getPointer();
1504         }
1505       }
1506     } else {
1507       CharUnits allocaAlignment;
1508       llvm::Type *allocaTy;
1509       if (isEscapingByRef) {
1510         auto &byrefInfo = getBlockByrefInfo(&D);
1511         allocaTy = byrefInfo.Type;
1512         allocaAlignment = byrefInfo.ByrefAlignment;
1513       } else {
1514         allocaTy = ConvertTypeForMem(Ty);
1515         allocaAlignment = alignment;
1516       }
1517 
1518       // Create the alloca.  Note that we set the name separately from
1519       // building the instruction so that it's there even in no-asserts
1520       // builds.
1521       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1522                                  /*ArraySize=*/nullptr, &AllocaAddr);
1523 
1524       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1525       // the catch parameter starts in the catchpad instruction, and we can't
1526       // insert code in those basic blocks.
1527       bool IsMSCatchParam =
1528           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1529 
1530       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1531       // if we don't have a valid insertion point (?).
1532       if (HaveInsertPoint() && !IsMSCatchParam) {
1533         // If there's a jump into the lifetime of this variable, its lifetime
1534         // gets broken up into several regions in IR, which requires more work
1535         // to handle correctly. For now, just omit the intrinsics; this is a
1536         // rare case, and it's better to just be conservatively correct.
1537         // PR28267.
1538         //
1539         // We have to do this in all language modes if there's a jump past the
1540         // declaration. We also have to do it in C if there's a jump to an
1541         // earlier point in the current block because non-VLA lifetimes begin as
1542         // soon as the containing block is entered, not when its variables
1543         // actually come into scope; suppressing the lifetime annotations
1544         // completely in this case is unnecessarily pessimistic, but again, this
1545         // is rare.
1546         if (!Bypasses.IsBypassed(&D) &&
1547             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1548           llvm::TypeSize size =
1549               CGM.getDataLayout().getTypeAllocSize(allocaTy);
1550           emission.SizeForLifetimeMarkers =
1551               size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer())
1552                                 : EmitLifetimeStart(size.getFixedSize(),
1553                                                     AllocaAddr.getPointer());
1554         }
1555       } else {
1556         assert(!emission.useLifetimeMarkers());
1557       }
1558     }
1559   } else {
1560     EnsureInsertPoint();
1561 
1562     if (!DidCallStackSave) {
1563       // Save the stack.
1564       Address Stack =
1565         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1566 
1567       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1568       llvm::Value *V = Builder.CreateCall(F);
1569       Builder.CreateStore(V, Stack);
1570 
1571       DidCallStackSave = true;
1572 
1573       // Push a cleanup block and restore the stack there.
1574       // FIXME: in general circumstances, this should be an EH cleanup.
1575       pushStackRestore(NormalCleanup, Stack);
1576     }
1577 
1578     auto VlaSize = getVLASize(Ty);
1579     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1580 
1581     // Allocate memory for the array.
1582     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1583                                &AllocaAddr);
1584 
1585     // If we have debug info enabled, properly describe the VLA dimensions for
1586     // this type by registering the vla size expression for each of the
1587     // dimensions.
1588     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1589   }
1590 
1591   setAddrOfLocalVar(&D, address);
1592   emission.Addr = address;
1593   emission.AllocaAddr = AllocaAddr;
1594 
1595   // Emit debug info for local var declaration.
1596   if (EmitDebugInfo && HaveInsertPoint()) {
1597     Address DebugAddr = address;
1598     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1599     DI->setLocation(D.getLocation());
1600 
1601     // If NRVO, use a pointer to the return address.
1602     if (UsePointerValue)
1603       DebugAddr = ReturnValuePointer;
1604 
1605     (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
1606                                         UsePointerValue);
1607   }
1608 
1609   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1610     EmitVarAnnotations(&D, address.getPointer());
1611 
1612   // Make sure we call @llvm.lifetime.end.
1613   if (emission.useLifetimeMarkers())
1614     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1615                                          emission.getOriginalAllocatedAddress(),
1616                                          emission.getSizeForLifetimeMarkers());
1617 
1618   return emission;
1619 }
1620 
1621 static bool isCapturedBy(const VarDecl &, const Expr *);
1622 
1623 /// Determines whether the given __block variable is potentially
1624 /// captured by the given statement.
isCapturedBy(const VarDecl & Var,const Stmt * S)1625 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1626   if (const Expr *E = dyn_cast<Expr>(S))
1627     return isCapturedBy(Var, E);
1628   for (const Stmt *SubStmt : S->children())
1629     if (isCapturedBy(Var, SubStmt))
1630       return true;
1631   return false;
1632 }
1633 
1634 /// Determines whether the given __block variable is potentially
1635 /// captured by the given expression.
isCapturedBy(const VarDecl & Var,const Expr * E)1636 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1637   // Skip the most common kinds of expressions that make
1638   // hierarchy-walking expensive.
1639   E = E->IgnoreParenCasts();
1640 
1641   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1642     const BlockDecl *Block = BE->getBlockDecl();
1643     for (const auto &I : Block->captures()) {
1644       if (I.getVariable() == &Var)
1645         return true;
1646     }
1647 
1648     // No need to walk into the subexpressions.
1649     return false;
1650   }
1651 
1652   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1653     const CompoundStmt *CS = SE->getSubStmt();
1654     for (const auto *BI : CS->body())
1655       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1656         if (isCapturedBy(Var, BIE))
1657           return true;
1658       }
1659       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1660           // special case declarations
1661           for (const auto *I : DS->decls()) {
1662               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1663                 const Expr *Init = VD->getInit();
1664                 if (Init && isCapturedBy(Var, Init))
1665                   return true;
1666               }
1667           }
1668       }
1669       else
1670         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1671         // Later, provide code to poke into statements for capture analysis.
1672         return true;
1673     return false;
1674   }
1675 
1676   for (const Stmt *SubStmt : E->children())
1677     if (isCapturedBy(Var, SubStmt))
1678       return true;
1679 
1680   return false;
1681 }
1682 
1683 /// Determine whether the given initializer is trivial in the sense
1684 /// that it requires no code to be generated.
isTrivialInitializer(const Expr * Init)1685 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1686   if (!Init)
1687     return true;
1688 
1689   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1690     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1691       if (Constructor->isTrivial() &&
1692           Constructor->isDefaultConstructor() &&
1693           !Construct->requiresZeroInitialization())
1694         return true;
1695 
1696   return false;
1697 }
1698 
emitZeroOrPatternForAutoVarInit(QualType type,const VarDecl & D,Address Loc)1699 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1700                                                       const VarDecl &D,
1701                                                       Address Loc) {
1702   auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1703   CharUnits Size = getContext().getTypeSizeInChars(type);
1704   bool isVolatile = type.isVolatileQualified();
1705   if (!Size.isZero()) {
1706     switch (trivialAutoVarInit) {
1707     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1708       llvm_unreachable("Uninitialized handled by caller");
1709     case LangOptions::TrivialAutoVarInitKind::Zero:
1710       if (CGM.stopAutoInit())
1711         return;
1712       emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1713       break;
1714     case LangOptions::TrivialAutoVarInitKind::Pattern:
1715       if (CGM.stopAutoInit())
1716         return;
1717       emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1718       break;
1719     }
1720     return;
1721   }
1722 
1723   // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1724   // them, so emit a memcpy with the VLA size to initialize each element.
1725   // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1726   // will catch that code, but there exists code which generates zero-sized
1727   // VLAs. Be nice and initialize whatever they requested.
1728   const auto *VlaType = getContext().getAsVariableArrayType(type);
1729   if (!VlaType)
1730     return;
1731   auto VlaSize = getVLASize(VlaType);
1732   auto SizeVal = VlaSize.NumElts;
1733   CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1734   switch (trivialAutoVarInit) {
1735   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1736     llvm_unreachable("Uninitialized handled by caller");
1737 
1738   case LangOptions::TrivialAutoVarInitKind::Zero: {
1739     if (CGM.stopAutoInit())
1740       return;
1741     if (!EltSize.isOne())
1742       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1743     auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0),
1744                                    SizeVal, isVolatile);
1745     I->addAnnotationMetadata("auto-init");
1746     break;
1747   }
1748 
1749   case LangOptions::TrivialAutoVarInitKind::Pattern: {
1750     if (CGM.stopAutoInit())
1751       return;
1752     llvm::Type *ElTy = Loc.getElementType();
1753     llvm::Constant *Constant = constWithPadding(
1754         CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1755     CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1756     llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1757     llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1758     llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1759     llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1760         SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1761         "vla.iszerosized");
1762     Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1763     EmitBlock(SetupBB);
1764     if (!EltSize.isOne())
1765       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1766     llvm::Value *BaseSizeInChars =
1767         llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1768     Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1769     llvm::Value *End =
1770         Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1771     llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1772     EmitBlock(LoopBB);
1773     llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1774     Cur->addIncoming(Begin.getPointer(), OriginBB);
1775     CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1776     auto *I =
1777         Builder.CreateMemCpy(Address(Cur, CurAlign),
1778                              createUnnamedGlobalForMemcpyFrom(
1779                                  CGM, D, Builder, Constant, ConstantAlign),
1780                              BaseSizeInChars, isVolatile);
1781     I->addAnnotationMetadata("auto-init");
1782     llvm::Value *Next =
1783         Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1784     llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1785     Builder.CreateCondBr(Done, ContBB, LoopBB);
1786     Cur->addIncoming(Next, LoopBB);
1787     EmitBlock(ContBB);
1788   } break;
1789   }
1790 }
1791 
EmitAutoVarInit(const AutoVarEmission & emission)1792 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1793   assert(emission.Variable && "emission was not valid!");
1794 
1795   // If this was emitted as a global constant, we're done.
1796   if (emission.wasEmittedAsGlobal()) return;
1797 
1798   const VarDecl &D = *emission.Variable;
1799   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1800   QualType type = D.getType();
1801 
1802   // If this local has an initializer, emit it now.
1803   const Expr *Init = D.getInit();
1804 
1805   // If we are at an unreachable point, we don't need to emit the initializer
1806   // unless it contains a label.
1807   if (!HaveInsertPoint()) {
1808     if (!Init || !ContainsLabel(Init)) return;
1809     EnsureInsertPoint();
1810   }
1811 
1812   // Initialize the structure of a __block variable.
1813   if (emission.IsEscapingByRef)
1814     emitByrefStructureInit(emission);
1815 
1816   // Initialize the variable here if it doesn't have a initializer and it is a
1817   // C struct that is non-trivial to initialize or an array containing such a
1818   // struct.
1819   if (!Init &&
1820       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1821           QualType::PDIK_Struct) {
1822     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1823     if (emission.IsEscapingByRef)
1824       drillIntoBlockVariable(*this, Dst, &D);
1825     defaultInitNonTrivialCStructVar(Dst);
1826     return;
1827   }
1828 
1829   // Check whether this is a byref variable that's potentially
1830   // captured and moved by its own initializer.  If so, we'll need to
1831   // emit the initializer first, then copy into the variable.
1832   bool capturedByInit =
1833       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1834 
1835   bool locIsByrefHeader = !capturedByInit;
1836   const Address Loc =
1837       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1838 
1839   // Note: constexpr already initializes everything correctly.
1840   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1841       (D.isConstexpr()
1842            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1843            : (D.getAttr<UninitializedAttr>()
1844                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1845                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1846 
1847   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1848     if (trivialAutoVarInit ==
1849         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1850       return;
1851 
1852     // Only initialize a __block's storage: we always initialize the header.
1853     if (emission.IsEscapingByRef && !locIsByrefHeader)
1854       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1855 
1856     return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1857   };
1858 
1859   if (isTrivialInitializer(Init))
1860     return initializeWhatIsTechnicallyUninitialized(Loc);
1861 
1862   llvm::Constant *constant = nullptr;
1863   if (emission.IsConstantAggregate ||
1864       D.mightBeUsableInConstantExpressions(getContext())) {
1865     assert(!capturedByInit && "constant init contains a capturing block?");
1866     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1867     if (constant && !constant->isZeroValue() &&
1868         (trivialAutoVarInit !=
1869          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1870       IsPattern isPattern =
1871           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1872               ? IsPattern::Yes
1873               : IsPattern::No;
1874       // C guarantees that brace-init with fewer initializers than members in
1875       // the aggregate will initialize the rest of the aggregate as-if it were
1876       // static initialization. In turn static initialization guarantees that
1877       // padding is initialized to zero bits. We could instead pattern-init if D
1878       // has any ImplicitValueInitExpr, but that seems to be unintuitive
1879       // behavior.
1880       constant = constWithPadding(CGM, IsPattern::No,
1881                                   replaceUndef(CGM, isPattern, constant));
1882     }
1883   }
1884 
1885   if (!constant) {
1886     initializeWhatIsTechnicallyUninitialized(Loc);
1887     LValue lv = MakeAddrLValue(Loc, type);
1888     lv.setNonGC(true);
1889     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1890   }
1891 
1892   if (!emission.IsConstantAggregate) {
1893     // For simple scalar/complex initialization, store the value directly.
1894     LValue lv = MakeAddrLValue(Loc, type);
1895     lv.setNonGC(true);
1896     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1897   }
1898 
1899   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1900   emitStoresForConstant(
1901       CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
1902       type.isVolatileQualified(), Builder, constant, /*IsAutoInit=*/false);
1903 }
1904 
1905 /// Emit an expression as an initializer for an object (variable, field, etc.)
1906 /// at the given location.  The expression is not necessarily the normal
1907 /// initializer for the object, and the address is not necessarily
1908 /// its normal location.
1909 ///
1910 /// \param init the initializing expression
1911 /// \param D the object to act as if we're initializing
1912 /// \param lvalue the lvalue to initialize
1913 /// \param capturedByInit true if \p D is a __block variable
1914 ///   whose address is potentially changed by the initializer
EmitExprAsInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)1915 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1916                                      LValue lvalue, bool capturedByInit) {
1917   QualType type = D->getType();
1918 
1919   if (type->isReferenceType()) {
1920     RValue rvalue = EmitReferenceBindingToExpr(init);
1921     if (capturedByInit)
1922       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1923     EmitStoreThroughLValue(rvalue, lvalue, true);
1924     return;
1925   }
1926   switch (getEvaluationKind(type)) {
1927   case TEK_Scalar:
1928     EmitScalarInit(init, D, lvalue, capturedByInit);
1929     return;
1930   case TEK_Complex: {
1931     ComplexPairTy complex = EmitComplexExpr(init);
1932     if (capturedByInit)
1933       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1934     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1935     return;
1936   }
1937   case TEK_Aggregate:
1938     if (type->isAtomicType()) {
1939       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1940     } else {
1941       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1942       if (isa<VarDecl>(D))
1943         Overlap = AggValueSlot::DoesNotOverlap;
1944       else if (auto *FD = dyn_cast<FieldDecl>(D))
1945         Overlap = getOverlapForFieldInit(FD);
1946       // TODO: how can we delay here if D is captured by its initializer?
1947       EmitAggExpr(init, AggValueSlot::forLValue(
1948                             lvalue, *this, AggValueSlot::IsDestructed,
1949                             AggValueSlot::DoesNotNeedGCBarriers,
1950                             AggValueSlot::IsNotAliased, Overlap));
1951     }
1952     return;
1953   }
1954   llvm_unreachable("bad evaluation kind");
1955 }
1956 
1957 /// Enter a destroy cleanup for the given local variable.
emitAutoVarTypeCleanup(const CodeGenFunction::AutoVarEmission & emission,QualType::DestructionKind dtorKind)1958 void CodeGenFunction::emitAutoVarTypeCleanup(
1959                             const CodeGenFunction::AutoVarEmission &emission,
1960                             QualType::DestructionKind dtorKind) {
1961   assert(dtorKind != QualType::DK_none);
1962 
1963   // Note that for __block variables, we want to destroy the
1964   // original stack object, not the possibly forwarded object.
1965   Address addr = emission.getObjectAddress(*this);
1966 
1967   const VarDecl *var = emission.Variable;
1968   QualType type = var->getType();
1969 
1970   CleanupKind cleanupKind = NormalAndEHCleanup;
1971   CodeGenFunction::Destroyer *destroyer = nullptr;
1972 
1973   switch (dtorKind) {
1974   case QualType::DK_none:
1975     llvm_unreachable("no cleanup for trivially-destructible variable");
1976 
1977   case QualType::DK_cxx_destructor:
1978     // If there's an NRVO flag on the emission, we need a different
1979     // cleanup.
1980     if (emission.NRVOFlag) {
1981       assert(!type->isArrayType());
1982       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1983       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
1984                                                   emission.NRVOFlag);
1985       return;
1986     }
1987     break;
1988 
1989   case QualType::DK_objc_strong_lifetime:
1990     // Suppress cleanups for pseudo-strong variables.
1991     if (var->isARCPseudoStrong()) return;
1992 
1993     // Otherwise, consider whether to use an EH cleanup or not.
1994     cleanupKind = getARCCleanupKind();
1995 
1996     // Use the imprecise destroyer by default.
1997     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1998       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1999     break;
2000 
2001   case QualType::DK_objc_weak_lifetime:
2002     break;
2003 
2004   case QualType::DK_nontrivial_c_struct:
2005     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
2006     if (emission.NRVOFlag) {
2007       assert(!type->isArrayType());
2008       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
2009                                                 emission.NRVOFlag, type);
2010       return;
2011     }
2012     break;
2013   }
2014 
2015   // If we haven't chosen a more specific destroyer, use the default.
2016   if (!destroyer) destroyer = getDestroyer(dtorKind);
2017 
2018   // Use an EH cleanup in array destructors iff the destructor itself
2019   // is being pushed as an EH cleanup.
2020   bool useEHCleanup = (cleanupKind & EHCleanup);
2021   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2022                                      useEHCleanup);
2023 }
2024 
EmitAutoVarCleanups(const AutoVarEmission & emission)2025 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2026   assert(emission.Variable && "emission was not valid!");
2027 
2028   // If this was emitted as a global constant, we're done.
2029   if (emission.wasEmittedAsGlobal()) return;
2030 
2031   // If we don't have an insertion point, we're done.  Sema prevents
2032   // us from jumping into any of these scopes anyway.
2033   if (!HaveInsertPoint()) return;
2034 
2035   const VarDecl &D = *emission.Variable;
2036 
2037   // Check the type for a cleanup.
2038   if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
2039     emitAutoVarTypeCleanup(emission, dtorKind);
2040 
2041   // In GC mode, honor objc_precise_lifetime.
2042   if (getLangOpts().getGC() != LangOptions::NonGC &&
2043       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2044     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2045   }
2046 
2047   // Handle the cleanup attribute.
2048   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2049     const FunctionDecl *FD = CA->getFunctionDecl();
2050 
2051     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2052     assert(F && "Could not find function!");
2053 
2054     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2055     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2056   }
2057 
2058   // If this is a block variable, call _Block_object_destroy
2059   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2060   // mode.
2061   if (emission.IsEscapingByRef &&
2062       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2063     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2064     if (emission.Variable->getType().isObjCGCWeak())
2065       Flags |= BLOCK_FIELD_IS_WEAK;
2066     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2067                       /*LoadBlockVarAddr*/ false,
2068                       cxxDestructorCanThrow(emission.Variable->getType()));
2069   }
2070 }
2071 
2072 CodeGenFunction::Destroyer *
getDestroyer(QualType::DestructionKind kind)2073 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2074   switch (kind) {
2075   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2076   case QualType::DK_cxx_destructor:
2077     return destroyCXXObject;
2078   case QualType::DK_objc_strong_lifetime:
2079     return destroyARCStrongPrecise;
2080   case QualType::DK_objc_weak_lifetime:
2081     return destroyARCWeak;
2082   case QualType::DK_nontrivial_c_struct:
2083     return destroyNonTrivialCStruct;
2084   }
2085   llvm_unreachable("Unknown DestructionKind");
2086 }
2087 
2088 /// pushEHDestroy - Push the standard destructor for the given type as
2089 /// an EH-only cleanup.
pushEHDestroy(QualType::DestructionKind dtorKind,Address addr,QualType type)2090 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2091                                     Address addr, QualType type) {
2092   assert(dtorKind && "cannot push destructor for trivial type");
2093   assert(needsEHCleanup(dtorKind));
2094 
2095   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2096 }
2097 
2098 /// pushDestroy - Push the standard destructor for the given type as
2099 /// at least a normal cleanup.
pushDestroy(QualType::DestructionKind dtorKind,Address addr,QualType type)2100 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2101                                   Address addr, QualType type) {
2102   assert(dtorKind && "cannot push destructor for trivial type");
2103 
2104   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2105   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2106               cleanupKind & EHCleanup);
2107 }
2108 
pushDestroy(CleanupKind cleanupKind,Address addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)2109 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2110                                   QualType type, Destroyer *destroyer,
2111                                   bool useEHCleanupForArray) {
2112   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2113                                      destroyer, useEHCleanupForArray);
2114 }
2115 
pushStackRestore(CleanupKind Kind,Address SPMem)2116 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2117   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2118 }
2119 
pushLifetimeExtendedDestroy(CleanupKind cleanupKind,Address addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)2120 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind,
2121                                                   Address addr, QualType type,
2122                                                   Destroyer *destroyer,
2123                                                   bool useEHCleanupForArray) {
2124   // If we're not in a conditional branch, we don't need to bother generating a
2125   // conditional cleanup.
2126   if (!isInConditionalBranch()) {
2127     // Push an EH-only cleanup for the object now.
2128     // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2129     // around in case a temporary's destructor throws an exception.
2130     if (cleanupKind & EHCleanup)
2131       EHStack.pushCleanup<DestroyObject>(
2132           static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2133           destroyer, useEHCleanupForArray);
2134 
2135     return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
2136         cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray);
2137   }
2138 
2139   // Otherwise, we should only destroy the object if it's been initialized.
2140   // Re-use the active flag and saved address across both the EH and end of
2141   // scope cleanups.
2142 
2143   using SavedType = typename DominatingValue<Address>::saved_type;
2144   using ConditionalCleanupType =
2145       EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType,
2146                                        Destroyer *, bool>;
2147 
2148   Address ActiveFlag = createCleanupActiveFlag();
2149   SavedType SavedAddr = saveValueInCond(addr);
2150 
2151   if (cleanupKind & EHCleanup) {
2152     EHStack.pushCleanup<ConditionalCleanupType>(
2153         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type,
2154         destroyer, useEHCleanupForArray);
2155     initFullExprCleanupWithFlag(ActiveFlag);
2156   }
2157 
2158   pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
2159       cleanupKind, ActiveFlag, SavedAddr, type, destroyer,
2160       useEHCleanupForArray);
2161 }
2162 
2163 /// emitDestroy - Immediately perform the destruction of the given
2164 /// object.
2165 ///
2166 /// \param addr - the address of the object; a type*
2167 /// \param type - the type of the object; if an array type, all
2168 ///   objects are destroyed in reverse order
2169 /// \param destroyer - the function to call to destroy individual
2170 ///   elements
2171 /// \param useEHCleanupForArray - whether an EH cleanup should be
2172 ///   used when destroying array elements, in case one of the
2173 ///   destructions throws an exception
emitDestroy(Address addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)2174 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2175                                   Destroyer *destroyer,
2176                                   bool useEHCleanupForArray) {
2177   const ArrayType *arrayType = getContext().getAsArrayType(type);
2178   if (!arrayType)
2179     return destroyer(*this, addr, type);
2180 
2181   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2182 
2183   CharUnits elementAlign =
2184     addr.getAlignment()
2185         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2186 
2187   // Normally we have to check whether the array is zero-length.
2188   bool checkZeroLength = true;
2189 
2190   // But if the array length is constant, we can suppress that.
2191   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2192     // ...and if it's constant zero, we can just skip the entire thing.
2193     if (constLength->isZero()) return;
2194     checkZeroLength = false;
2195   }
2196 
2197   llvm::Value *begin = addr.getPointer();
2198   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2199   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2200                    checkZeroLength, useEHCleanupForArray);
2201 }
2202 
2203 /// emitArrayDestroy - Destroys all the elements of the given array,
2204 /// beginning from last to first.  The array cannot be zero-length.
2205 ///
2206 /// \param begin - a type* denoting the first element of the array
2207 /// \param end - a type* denoting one past the end of the array
2208 /// \param elementType - the element type of the array
2209 /// \param destroyer - the function to call to destroy elements
2210 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2211 ///   the remaining elements in case the destruction of a single
2212 ///   element throws
emitArrayDestroy(llvm::Value * begin,llvm::Value * end,QualType elementType,CharUnits elementAlign,Destroyer * destroyer,bool checkZeroLength,bool useEHCleanup)2213 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2214                                        llvm::Value *end,
2215                                        QualType elementType,
2216                                        CharUnits elementAlign,
2217                                        Destroyer *destroyer,
2218                                        bool checkZeroLength,
2219                                        bool useEHCleanup) {
2220   assert(!elementType->isArrayType());
2221 
2222   // The basic structure here is a do-while loop, because we don't
2223   // need to check for the zero-element case.
2224   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2225   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2226 
2227   if (checkZeroLength) {
2228     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2229                                                 "arraydestroy.isempty");
2230     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2231   }
2232 
2233   // Enter the loop body, making that address the current address.
2234   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2235   EmitBlock(bodyBB);
2236   llvm::PHINode *elementPast =
2237     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2238   elementPast->addIncoming(end, entryBB);
2239 
2240   // Shift the address back by one element.
2241   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2242   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2243                                                    "arraydestroy.element");
2244 
2245   if (useEHCleanup)
2246     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2247                                    destroyer);
2248 
2249   // Perform the actual destruction there.
2250   destroyer(*this, Address(element, elementAlign), elementType);
2251 
2252   if (useEHCleanup)
2253     PopCleanupBlock();
2254 
2255   // Check whether we've reached the end.
2256   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2257   Builder.CreateCondBr(done, doneBB, bodyBB);
2258   elementPast->addIncoming(element, Builder.GetInsertBlock());
2259 
2260   // Done.
2261   EmitBlock(doneBB);
2262 }
2263 
2264 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2265 /// emitArrayDestroy, the element type here may still be an array type.
emitPartialArrayDestroy(CodeGenFunction & CGF,llvm::Value * begin,llvm::Value * end,QualType type,CharUnits elementAlign,CodeGenFunction::Destroyer * destroyer)2266 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2267                                     llvm::Value *begin, llvm::Value *end,
2268                                     QualType type, CharUnits elementAlign,
2269                                     CodeGenFunction::Destroyer *destroyer) {
2270   // If the element type is itself an array, drill down.
2271   unsigned arrayDepth = 0;
2272   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2273     // VLAs don't require a GEP index to walk into.
2274     if (!isa<VariableArrayType>(arrayType))
2275       arrayDepth++;
2276     type = arrayType->getElementType();
2277   }
2278 
2279   if (arrayDepth) {
2280     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2281 
2282     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2283     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2284     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2285   }
2286 
2287   // Destroy the array.  We don't ever need an EH cleanup because we
2288   // assume that we're in an EH cleanup ourselves, so a throwing
2289   // destructor causes an immediate terminate.
2290   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2291                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2292 }
2293 
2294 namespace {
2295   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2296   /// array destroy where the end pointer is regularly determined and
2297   /// does not need to be loaded from a local.
2298   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2299     llvm::Value *ArrayBegin;
2300     llvm::Value *ArrayEnd;
2301     QualType ElementType;
2302     CodeGenFunction::Destroyer *Destroyer;
2303     CharUnits ElementAlign;
2304   public:
RegularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CharUnits elementAlign,CodeGenFunction::Destroyer * destroyer)2305     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2306                                QualType elementType, CharUnits elementAlign,
2307                                CodeGenFunction::Destroyer *destroyer)
2308       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2309         ElementType(elementType), Destroyer(destroyer),
2310         ElementAlign(elementAlign) {}
2311 
Emit(CodeGenFunction & CGF,Flags flags)2312     void Emit(CodeGenFunction &CGF, Flags flags) override {
2313       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2314                               ElementType, ElementAlign, Destroyer);
2315     }
2316   };
2317 
2318   /// IrregularPartialArrayDestroy - a cleanup which performs a
2319   /// partial array destroy where the end pointer is irregularly
2320   /// determined and must be loaded from a local.
2321   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2322     llvm::Value *ArrayBegin;
2323     Address ArrayEndPointer;
2324     QualType ElementType;
2325     CodeGenFunction::Destroyer *Destroyer;
2326     CharUnits ElementAlign;
2327   public:
IrregularPartialArrayDestroy(llvm::Value * arrayBegin,Address arrayEndPointer,QualType elementType,CharUnits elementAlign,CodeGenFunction::Destroyer * destroyer)2328     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2329                                  Address arrayEndPointer,
2330                                  QualType elementType,
2331                                  CharUnits elementAlign,
2332                                  CodeGenFunction::Destroyer *destroyer)
2333       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2334         ElementType(elementType), Destroyer(destroyer),
2335         ElementAlign(elementAlign) {}
2336 
Emit(CodeGenFunction & CGF,Flags flags)2337     void Emit(CodeGenFunction &CGF, Flags flags) override {
2338       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2339       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2340                               ElementType, ElementAlign, Destroyer);
2341     }
2342   };
2343 } // end anonymous namespace
2344 
2345 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2346 /// already-constructed elements of the given array.  The cleanup
2347 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2348 ///
2349 /// \param elementType - the immediate element type of the array;
2350 ///   possibly still an array type
pushIrregularPartialArrayCleanup(llvm::Value * arrayBegin,Address arrayEndPointer,QualType elementType,CharUnits elementAlign,Destroyer * destroyer)2351 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2352                                                        Address arrayEndPointer,
2353                                                        QualType elementType,
2354                                                        CharUnits elementAlign,
2355                                                        Destroyer *destroyer) {
2356   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2357                                                     arrayBegin, arrayEndPointer,
2358                                                     elementType, elementAlign,
2359                                                     destroyer);
2360 }
2361 
2362 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2363 /// already-constructed elements of the given array.  The cleanup
2364 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2365 ///
2366 /// \param elementType - the immediate element type of the array;
2367 ///   possibly still an array type
pushRegularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CharUnits elementAlign,Destroyer * destroyer)2368 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2369                                                      llvm::Value *arrayEnd,
2370                                                      QualType elementType,
2371                                                      CharUnits elementAlign,
2372                                                      Destroyer *destroyer) {
2373   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2374                                                   arrayBegin, arrayEnd,
2375                                                   elementType, elementAlign,
2376                                                   destroyer);
2377 }
2378 
2379 /// Lazily declare the @llvm.lifetime.start intrinsic.
getLLVMLifetimeStartFn()2380 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2381   if (LifetimeStartFn)
2382     return LifetimeStartFn;
2383   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2384     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2385   return LifetimeStartFn;
2386 }
2387 
2388 /// Lazily declare the @llvm.lifetime.end intrinsic.
getLLVMLifetimeEndFn()2389 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2390   if (LifetimeEndFn)
2391     return LifetimeEndFn;
2392   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2393     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2394   return LifetimeEndFn;
2395 }
2396 
2397 namespace {
2398   /// A cleanup to perform a release of an object at the end of a
2399   /// function.  This is used to balance out the incoming +1 of a
2400   /// ns_consumed argument when we can't reasonably do that just by
2401   /// not doing the initial retain for a __block argument.
2402   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
ConsumeARCParameter__anon53e8cf900511::ConsumeARCParameter2403     ConsumeARCParameter(llvm::Value *param,
2404                         ARCPreciseLifetime_t precise)
2405       : Param(param), Precise(precise) {}
2406 
2407     llvm::Value *Param;
2408     ARCPreciseLifetime_t Precise;
2409 
Emit__anon53e8cf900511::ConsumeARCParameter2410     void Emit(CodeGenFunction &CGF, Flags flags) override {
2411       CGF.EmitARCRelease(Param, Precise);
2412     }
2413   };
2414 } // end anonymous namespace
2415 
2416 /// Emit an alloca (or GlobalValue depending on target)
2417 /// for the specified parameter and set up LocalDeclMap.
EmitParmDecl(const VarDecl & D,ParamValue Arg,unsigned ArgNo)2418 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2419                                    unsigned ArgNo) {
2420   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2421   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2422          "Invalid argument to EmitParmDecl");
2423 
2424   Arg.getAnyValue()->setName(D.getName());
2425 
2426   QualType Ty = D.getType();
2427 
2428   // Use better IR generation for certain implicit parameters.
2429   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2430     // The only implicit argument a block has is its literal.
2431     // This may be passed as an inalloca'ed value on Windows x86.
2432     if (BlockInfo) {
2433       llvm::Value *V = Arg.isIndirect()
2434                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2435                            : Arg.getDirectValue();
2436       setBlockContextParameter(IPD, ArgNo, V);
2437       return;
2438     }
2439   }
2440 
2441   Address DeclPtr = Address::invalid();
2442   bool DoStore = false;
2443   bool IsScalar = hasScalarEvaluationKind(Ty);
2444   // If we already have a pointer to the argument, reuse the input pointer.
2445   if (Arg.isIndirect()) {
2446     DeclPtr = Arg.getIndirectAddress();
2447     // If we have a prettier pointer type at this point, bitcast to that.
2448     unsigned AS = DeclPtr.getType()->getAddressSpace();
2449     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2450     if (DeclPtr.getType() != IRTy)
2451       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2452     // Indirect argument is in alloca address space, which may be different
2453     // from the default address space.
2454     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2455     auto *V = DeclPtr.getPointer();
2456     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2457     auto DestLangAS =
2458         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2459     if (SrcLangAS != DestLangAS) {
2460       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2461              CGM.getDataLayout().getAllocaAddrSpace());
2462       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2463       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2464       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2465                             *this, V, SrcLangAS, DestLangAS, T, true),
2466                         DeclPtr.getAlignment());
2467     }
2468 
2469     // Push a destructor cleanup for this parameter if the ABI requires it.
2470     // Don't push a cleanup in a thunk for a method that will also emit a
2471     // cleanup.
2472     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2473         Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2474       if (QualType::DestructionKind DtorKind =
2475               D.needsDestruction(getContext())) {
2476         assert((DtorKind == QualType::DK_cxx_destructor ||
2477                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2478                "unexpected destructor type");
2479         pushDestroy(DtorKind, DeclPtr, Ty);
2480         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2481             EHStack.stable_begin();
2482       }
2483     }
2484   } else {
2485     // Check if the parameter address is controlled by OpenMP runtime.
2486     Address OpenMPLocalAddr =
2487         getLangOpts().OpenMP
2488             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2489             : Address::invalid();
2490     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2491       DeclPtr = OpenMPLocalAddr;
2492     } else {
2493       // Otherwise, create a temporary to hold the value.
2494       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2495                               D.getName() + ".addr");
2496     }
2497     DoStore = true;
2498   }
2499 
2500   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2501 
2502   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2503   if (IsScalar) {
2504     Qualifiers qs = Ty.getQualifiers();
2505     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2506       // We honor __attribute__((ns_consumed)) for types with lifetime.
2507       // For __strong, it's handled by just skipping the initial retain;
2508       // otherwise we have to balance out the initial +1 with an extra
2509       // cleanup to do the release at the end of the function.
2510       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2511 
2512       // If a parameter is pseudo-strong then we can omit the implicit retain.
2513       if (D.isARCPseudoStrong()) {
2514         assert(lt == Qualifiers::OCL_Strong &&
2515                "pseudo-strong variable isn't strong?");
2516         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2517         lt = Qualifiers::OCL_ExplicitNone;
2518       }
2519 
2520       // Load objects passed indirectly.
2521       if (Arg.isIndirect() && !ArgVal)
2522         ArgVal = Builder.CreateLoad(DeclPtr);
2523 
2524       if (lt == Qualifiers::OCL_Strong) {
2525         if (!isConsumed) {
2526           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2527             // use objc_storeStrong(&dest, value) for retaining the
2528             // object. But first, store a null into 'dest' because
2529             // objc_storeStrong attempts to release its old value.
2530             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2531             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2532             EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2533             DoStore = false;
2534           }
2535           else
2536           // Don't use objc_retainBlock for block pointers, because we
2537           // don't want to Block_copy something just because we got it
2538           // as a parameter.
2539             ArgVal = EmitARCRetainNonBlock(ArgVal);
2540         }
2541       } else {
2542         // Push the cleanup for a consumed parameter.
2543         if (isConsumed) {
2544           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2545                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2546           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2547                                                    precise);
2548         }
2549 
2550         if (lt == Qualifiers::OCL_Weak) {
2551           EmitARCInitWeak(DeclPtr, ArgVal);
2552           DoStore = false; // The weak init is a store, no need to do two.
2553         }
2554       }
2555 
2556       // Enter the cleanup scope.
2557       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2558     }
2559   }
2560 
2561   // Store the initial value into the alloca.
2562   if (DoStore)
2563     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2564 
2565   setAddrOfLocalVar(&D, DeclPtr);
2566 
2567   // Emit debug info for param declarations in non-thunk functions.
2568   if (CGDebugInfo *DI = getDebugInfo()) {
2569     if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) {
2570       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2571     }
2572   }
2573 
2574   if (D.hasAttr<AnnotateAttr>())
2575     EmitVarAnnotations(&D, DeclPtr.getPointer());
2576 
2577   // We can only check return value nullability if all arguments to the
2578   // function satisfy their nullability preconditions. This makes it necessary
2579   // to emit null checks for args in the function body itself.
2580   if (requiresReturnValueNullabilityCheck()) {
2581     auto Nullability = Ty->getNullability(getContext());
2582     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2583       SanitizerScope SanScope(this);
2584       RetValNullabilityPrecondition =
2585           Builder.CreateAnd(RetValNullabilityPrecondition,
2586                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2587     }
2588   }
2589 }
2590 
EmitOMPDeclareReduction(const OMPDeclareReductionDecl * D,CodeGenFunction * CGF)2591 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2592                                             CodeGenFunction *CGF) {
2593   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2594     return;
2595   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2596 }
2597 
EmitOMPDeclareMapper(const OMPDeclareMapperDecl * D,CodeGenFunction * CGF)2598 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2599                                          CodeGenFunction *CGF) {
2600   if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2601       (!LangOpts.EmitAllDecls && !D->isUsed()))
2602     return;
2603   getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2604 }
2605 
EmitOMPRequiresDecl(const OMPRequiresDecl * D)2606 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2607   getOpenMPRuntime().processRequiresDirective(D);
2608 }
2609