1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 
12 #ifndef EIGEN_SPARSE_LU_H
13 #define EIGEN_SPARSE_LU_H
14 
15 namespace Eigen {
16 
17 template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::StorageIndex> > class SparseLU;
18 template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
19 template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
20 
21 /** \ingroup SparseLU_Module
22   * \class SparseLU
23   *
24   * \brief Sparse supernodal LU factorization for general matrices
25   *
26   * This class implements the supernodal LU factorization for general matrices.
27   * It uses the main techniques from the sequential SuperLU package
28   * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
29   * and complex arithmetics with single and double precision, depending on the
30   * scalar type of your input matrix.
31   * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
32   * It benefits directly from the built-in high-performant Eigen BLAS routines.
33   * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
34   * enable a better optimization from the compiler. For best performance,
35   * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
36   *
37   * An important parameter of this class is the ordering method. It is used to reorder the columns
38   * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
39   * numerical factorization. The cheapest method available is COLAMD.
40   * See  \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
41   * built-in and external ordering methods.
42   *
43   * Simple example with key steps
44   * \code
45   * VectorXd x(n), b(n);
46   * SparseMatrix<double, ColMajor> A;
47   * SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<Index> >   solver;
48   * // fill A and b;
49   * // Compute the ordering permutation vector from the structural pattern of A
50   * solver.analyzePattern(A);
51   * // Compute the numerical factorization
52   * solver.factorize(A);
53   * //Use the factors to solve the linear system
54   * x = solver.solve(b);
55   * \endcode
56   *
57   * \warning The input matrix A should be in a \b compressed and \b column-major form.
58   * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
59   *
60   * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
61   * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
62   * If this is the case for your matrices, you can try the basic scaling method at
63   *  "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
64   *
65   * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
66   * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
67   *
68   * \implsparsesolverconcept
69   *
70   * \sa \ref TutorialSparseSolverConcept
71   * \sa \ref OrderingMethods_Module
72   */
73 template <typename _MatrixType, typename _OrderingType>
74 class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::StorageIndex>
75 {
76   protected:
77     typedef SparseSolverBase<SparseLU<_MatrixType,_OrderingType> > APIBase;
78     using APIBase::m_isInitialized;
79   public:
80     using APIBase::_solve_impl;
81 
82     typedef _MatrixType MatrixType;
83     typedef _OrderingType OrderingType;
84     typedef typename MatrixType::Scalar Scalar;
85     typedef typename MatrixType::RealScalar RealScalar;
86     typedef typename MatrixType::StorageIndex StorageIndex;
87     typedef SparseMatrix<Scalar,ColMajor,StorageIndex> NCMatrix;
88     typedef internal::MappedSuperNodalMatrix<Scalar, StorageIndex> SCMatrix;
89     typedef Matrix<Scalar,Dynamic,1> ScalarVector;
90     typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
91     typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
92     typedef internal::SparseLUImpl<Scalar, StorageIndex> Base;
93 
94     enum {
95       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
96       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
97     };
98 
99   public:
SparseLU()100     SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
101     {
102       initperfvalues();
103     }
SparseLU(const MatrixType & matrix)104     explicit SparseLU(const MatrixType& matrix)
105       : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
106     {
107       initperfvalues();
108       compute(matrix);
109     }
110 
~SparseLU()111     ~SparseLU()
112     {
113       // Free all explicit dynamic pointers
114     }
115 
116     void analyzePattern (const MatrixType& matrix);
117     void factorize (const MatrixType& matrix);
118     void simplicialfactorize(const MatrixType& matrix);
119 
120     /**
121       * Compute the symbolic and numeric factorization of the input sparse matrix.
122       * The input matrix should be in column-major storage.
123       */
compute(const MatrixType & matrix)124     void compute (const MatrixType& matrix)
125     {
126       // Analyze
127       analyzePattern(matrix);
128       //Factorize
129       factorize(matrix);
130     }
131 
rows()132     inline Index rows() const { return m_mat.rows(); }
cols()133     inline Index cols() const { return m_mat.cols(); }
134     /** Indicate that the pattern of the input matrix is symmetric */
isSymmetric(bool sym)135     void isSymmetric(bool sym)
136     {
137       m_symmetricmode = sym;
138     }
139 
140     /** \returns an expression of the matrix L, internally stored as supernodes
141       * The only operation available with this expression is the triangular solve
142       * \code
143       * y = b; matrixL().solveInPlace(y);
144       * \endcode
145       */
matrixL()146     SparseLUMatrixLReturnType<SCMatrix> matrixL() const
147     {
148       return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
149     }
150     /** \returns an expression of the matrix U,
151       * The only operation available with this expression is the triangular solve
152       * \code
153       * y = b; matrixU().solveInPlace(y);
154       * \endcode
155       */
matrixU()156     SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,StorageIndex> > matrixU() const
157     {
158       return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,StorageIndex> >(m_Lstore, m_Ustore);
159     }
160 
161     /**
162       * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
163       * \sa colsPermutation()
164       */
rowsPermutation()165     inline const PermutationType& rowsPermutation() const
166     {
167       return m_perm_r;
168     }
169     /**
170       * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
171       * \sa rowsPermutation()
172       */
colsPermutation()173     inline const PermutationType& colsPermutation() const
174     {
175       return m_perm_c;
176     }
177     /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
setPivotThreshold(const RealScalar & thresh)178     void setPivotThreshold(const RealScalar& thresh)
179     {
180       m_diagpivotthresh = thresh;
181     }
182 
183 #ifdef EIGEN_PARSED_BY_DOXYGEN
184     /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
185       *
186       * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
187       *
188       * \sa compute()
189       */
190     template<typename Rhs>
191     inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const;
192 #endif // EIGEN_PARSED_BY_DOXYGEN
193 
194     /** \brief Reports whether previous computation was successful.
195       *
196       * \returns \c Success if computation was succesful,
197       *          \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
198       *          \c InvalidInput if the input matrix is invalid
199       *
200       * \sa iparm()
201       */
info()202     ComputationInfo info() const
203     {
204       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
205       return m_info;
206     }
207 
208     /**
209       * \returns A string describing the type of error
210       */
lastErrorMessage()211     std::string lastErrorMessage() const
212     {
213       return m_lastError;
214     }
215 
216     template<typename Rhs, typename Dest>
_solve_impl(const MatrixBase<Rhs> & B,MatrixBase<Dest> & X_base)217     bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
218     {
219       Dest& X(X_base.derived());
220       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
221       EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
222                         THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
223 
224       // Permute the right hand side to form X = Pr*B
225       // on return, X is overwritten by the computed solution
226       X.resize(B.rows(),B.cols());
227 
228       // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
229       for(Index j = 0; j < B.cols(); ++j)
230         X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
231 
232       //Forward substitution with L
233       this->matrixL().solveInPlace(X);
234       this->matrixU().solveInPlace(X);
235 
236       // Permute back the solution
237       for (Index j = 0; j < B.cols(); ++j)
238         X.col(j) = colsPermutation().inverse() * X.col(j);
239 
240       return true;
241     }
242 
243     /**
244       * \returns the absolute value of the determinant of the matrix of which
245       * *this is the QR decomposition.
246       *
247       * \warning a determinant can be very big or small, so for matrices
248       * of large enough dimension, there is a risk of overflow/underflow.
249       * One way to work around that is to use logAbsDeterminant() instead.
250       *
251       * \sa logAbsDeterminant(), signDeterminant()
252       */
absDeterminant()253     Scalar absDeterminant()
254     {
255       using std::abs;
256       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
257       // Initialize with the determinant of the row matrix
258       Scalar det = Scalar(1.);
259       // Note that the diagonal blocks of U are stored in supernodes,
260       // which are available in the  L part :)
261       for (Index j = 0; j < this->cols(); ++j)
262       {
263         for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
264         {
265           if(it.index() == j)
266           {
267             det *= abs(it.value());
268             break;
269           }
270         }
271       }
272       return det;
273     }
274 
275     /** \returns the natural log of the absolute value of the determinant of the matrix
276       * of which **this is the QR decomposition
277       *
278       * \note This method is useful to work around the risk of overflow/underflow that's
279       * inherent to the determinant computation.
280       *
281       * \sa absDeterminant(), signDeterminant()
282       */
logAbsDeterminant()283     Scalar logAbsDeterminant() const
284     {
285       using std::log;
286       using std::abs;
287 
288       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
289       Scalar det = Scalar(0.);
290       for (Index j = 0; j < this->cols(); ++j)
291       {
292         for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
293         {
294           if(it.row() < j) continue;
295           if(it.row() == j)
296           {
297             det += log(abs(it.value()));
298             break;
299           }
300         }
301       }
302       return det;
303     }
304 
305     /** \returns A number representing the sign of the determinant
306       *
307       * \sa absDeterminant(), logAbsDeterminant()
308       */
signDeterminant()309     Scalar signDeterminant()
310     {
311       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
312       // Initialize with the determinant of the row matrix
313       Index det = 1;
314       // Note that the diagonal blocks of U are stored in supernodes,
315       // which are available in the  L part :)
316       for (Index j = 0; j < this->cols(); ++j)
317       {
318         for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
319         {
320           if(it.index() == j)
321           {
322             if(it.value()<0)
323               det = -det;
324             else if(it.value()==0)
325               return 0;
326             break;
327           }
328         }
329       }
330       return det * m_detPermR * m_detPermC;
331     }
332 
333     /** \returns The determinant of the matrix.
334       *
335       * \sa absDeterminant(), logAbsDeterminant()
336       */
determinant()337     Scalar determinant()
338     {
339       eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
340       // Initialize with the determinant of the row matrix
341       Scalar det = Scalar(1.);
342       // Note that the diagonal blocks of U are stored in supernodes,
343       // which are available in the  L part :)
344       for (Index j = 0; j < this->cols(); ++j)
345       {
346         for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
347         {
348           if(it.index() == j)
349           {
350             det *= it.value();
351             break;
352           }
353         }
354       }
355       return (m_detPermR * m_detPermC) > 0 ? det : -det;
356     }
357 
358   protected:
359     // Functions
initperfvalues()360     void initperfvalues()
361     {
362       m_perfv.panel_size = 16;
363       m_perfv.relax = 1;
364       m_perfv.maxsuper = 128;
365       m_perfv.rowblk = 16;
366       m_perfv.colblk = 8;
367       m_perfv.fillfactor = 20;
368     }
369 
370     // Variables
371     mutable ComputationInfo m_info;
372     bool m_factorizationIsOk;
373     bool m_analysisIsOk;
374     std::string m_lastError;
375     NCMatrix m_mat; // The input (permuted ) matrix
376     SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
377     MappedSparseMatrix<Scalar,ColMajor,StorageIndex> m_Ustore; // The upper triangular matrix
378     PermutationType m_perm_c; // Column permutation
379     PermutationType m_perm_r ; // Row permutation
380     IndexVector m_etree; // Column elimination tree
381 
382     typename Base::GlobalLU_t m_glu;
383 
384     // SparseLU options
385     bool m_symmetricmode;
386     // values for performance
387     internal::perfvalues m_perfv;
388     RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
389     Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
390     Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
391   private:
392     // Disable copy constructor
393     SparseLU (const SparseLU& );
394 
395 }; // End class SparseLU
396 
397 
398 
399 // Functions needed by the anaysis phase
400 /**
401   * Compute the column permutation to minimize the fill-in
402   *
403   *  - Apply this permutation to the input matrix -
404   *
405   *  - Compute the column elimination tree on the permuted matrix
406   *
407   *  - Postorder the elimination tree and the column permutation
408   *
409   */
410 template <typename MatrixType, typename OrderingType>
analyzePattern(const MatrixType & mat)411 void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
412 {
413 
414   //TODO  It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
415 
416   // Firstly, copy the whole input matrix.
417   m_mat = mat;
418 
419   // Compute fill-in ordering
420   OrderingType ord;
421   ord(m_mat,m_perm_c);
422 
423   // Apply the permutation to the column of the input  matrix
424   if (m_perm_c.size())
425   {
426     m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
427     // Then, permute only the column pointers
428     ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast<StorageIndex*>(mat.outerIndexPtr()):0);
429 
430     // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed.
431     if(!mat.isCompressed())
432       IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1);
433 
434     // Apply the permutation and compute the nnz per column.
435     for (Index i = 0; i < mat.cols(); i++)
436     {
437       m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
438       m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
439     }
440   }
441 
442   // Compute the column elimination tree of the permuted matrix
443   IndexVector firstRowElt;
444   internal::coletree(m_mat, m_etree,firstRowElt);
445 
446   // In symmetric mode, do not do postorder here
447   if (!m_symmetricmode) {
448     IndexVector post, iwork;
449     // Post order etree
450     internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post);
451 
452 
453     // Renumber etree in postorder
454     Index m = m_mat.cols();
455     iwork.resize(m+1);
456     for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
457     m_etree = iwork;
458 
459     // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
460     PermutationType post_perm(m);
461     for (Index i = 0; i < m; i++)
462       post_perm.indices()(i) = post(i);
463 
464     // Combine the two permutations : postorder the permutation for future use
465     if(m_perm_c.size()) {
466       m_perm_c = post_perm * m_perm_c;
467     }
468 
469   } // end postordering
470 
471   m_analysisIsOk = true;
472 }
473 
474 // Functions needed by the numerical factorization phase
475 
476 
477 /**
478   *  - Numerical factorization
479   *  - Interleaved with the symbolic factorization
480   * On exit,  info is
481   *
482   *    = 0: successful factorization
483   *
484   *    > 0: if info = i, and i is
485   *
486   *       <= A->ncol: U(i,i) is exactly zero. The factorization has
487   *          been completed, but the factor U is exactly singular,
488   *          and division by zero will occur if it is used to solve a
489   *          system of equations.
490   *
491   *       > A->ncol: number of bytes allocated when memory allocation
492   *         failure occurred, plus A->ncol. If lwork = -1, it is
493   *         the estimated amount of space needed, plus A->ncol.
494   */
495 template <typename MatrixType, typename OrderingType>
factorize(const MatrixType & matrix)496 void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
497 {
498   using internal::emptyIdxLU;
499   eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
500   eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
501 
502   typedef typename IndexVector::Scalar StorageIndex;
503 
504   m_isInitialized = true;
505 
506 
507   // Apply the column permutation computed in analyzepattern()
508   //   m_mat = matrix * m_perm_c.inverse();
509   m_mat = matrix;
510   if (m_perm_c.size())
511   {
512     m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
513     //Then, permute only the column pointers
514     const StorageIndex * outerIndexPtr;
515     if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
516     else
517     {
518       StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1];
519       for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
520       outerIndexPtr = outerIndexPtr_t;
521     }
522     for (Index i = 0; i < matrix.cols(); i++)
523     {
524       m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
525       m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
526     }
527     if(!matrix.isCompressed()) delete[] outerIndexPtr;
528   }
529   else
530   { //FIXME This should not be needed if the empty permutation is handled transparently
531     m_perm_c.resize(matrix.cols());
532     for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
533   }
534 
535   Index m = m_mat.rows();
536   Index n = m_mat.cols();
537   Index nnz = m_mat.nonZeros();
538   Index maxpanel = m_perfv.panel_size * m;
539   // Allocate working storage common to the factor routines
540   Index lwork = 0;
541   Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
542   if (info)
543   {
544     m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
545     m_factorizationIsOk = false;
546     return ;
547   }
548 
549   // Set up pointers for integer working arrays
550   IndexVector segrep(m); segrep.setZero();
551   IndexVector parent(m); parent.setZero();
552   IndexVector xplore(m); xplore.setZero();
553   IndexVector repfnz(maxpanel);
554   IndexVector panel_lsub(maxpanel);
555   IndexVector xprune(n); xprune.setZero();
556   IndexVector marker(m*internal::LUNoMarker); marker.setZero();
557 
558   repfnz.setConstant(-1);
559   panel_lsub.setConstant(-1);
560 
561   // Set up pointers for scalar working arrays
562   ScalarVector dense;
563   dense.setZero(maxpanel);
564   ScalarVector tempv;
565   tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
566 
567   // Compute the inverse of perm_c
568   PermutationType iperm_c(m_perm_c.inverse());
569 
570   // Identify initial relaxed snodes
571   IndexVector relax_end(n);
572   if ( m_symmetricmode == true )
573     Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
574   else
575     Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
576 
577 
578   m_perm_r.resize(m);
579   m_perm_r.indices().setConstant(-1);
580   marker.setConstant(-1);
581   m_detPermR = 1; // Record the determinant of the row permutation
582 
583   m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
584   m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
585 
586   // Work on one 'panel' at a time. A panel is one of the following :
587   //  (a) a relaxed supernode at the bottom of the etree, or
588   //  (b) panel_size contiguous columns, <panel_size> defined by the user
589   Index jcol;
590   IndexVector panel_histo(n);
591   Index pivrow; // Pivotal row number in the original row matrix
592   Index nseg1; // Number of segments in U-column above panel row jcol
593   Index nseg; // Number of segments in each U-column
594   Index irep;
595   Index i, k, jj;
596   for (jcol = 0; jcol < n; )
597   {
598     // Adjust panel size so that a panel won't overlap with the next relaxed snode.
599     Index panel_size = m_perfv.panel_size; // upper bound on panel width
600     for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
601     {
602       if (relax_end(k) != emptyIdxLU)
603       {
604         panel_size = k - jcol;
605         break;
606       }
607     }
608     if (k == n)
609       panel_size = n - jcol;
610 
611     // Symbolic outer factorization on a panel of columns
612     Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
613 
614     // Numeric sup-panel updates in topological order
615     Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
616 
617     // Sparse LU within the panel, and below the panel diagonal
618     for ( jj = jcol; jj< jcol + panel_size; jj++)
619     {
620       k = (jj - jcol) * m; // Column index for w-wide arrays
621 
622       nseg = nseg1; // begin after all the panel segments
623       //Depth-first-search for the current column
624       VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
625       VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
626       info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
627       if ( info )
628       {
629         m_lastError =  "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
630         m_info = NumericalIssue;
631         m_factorizationIsOk = false;
632         return;
633       }
634       // Numeric updates to this column
635       VectorBlock<ScalarVector> dense_k(dense, k, m);
636       VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
637       info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
638       if ( info )
639       {
640         m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
641         m_info = NumericalIssue;
642         m_factorizationIsOk = false;
643         return;
644       }
645 
646       // Copy the U-segments to ucol(*)
647       info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
648       if ( info )
649       {
650         m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
651         m_info = NumericalIssue;
652         m_factorizationIsOk = false;
653         return;
654       }
655 
656       // Form the L-segment
657       info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
658       if ( info )
659       {
660         m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
661         std::ostringstream returnInfo;
662         returnInfo << info;
663         m_lastError += returnInfo.str();
664         m_info = NumericalIssue;
665         m_factorizationIsOk = false;
666         return;
667       }
668 
669       // Update the determinant of the row permutation matrix
670       // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
671       if (pivrow != jj) m_detPermR = -m_detPermR;
672 
673       // Prune columns (0:jj-1) using column jj
674       Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
675 
676       // Reset repfnz for this column
677       for (i = 0; i < nseg; i++)
678       {
679         irep = segrep(i);
680         repfnz_k(irep) = emptyIdxLU;
681       }
682     } // end SparseLU within the panel
683     jcol += panel_size;  // Move to the next panel
684   } // end for -- end elimination
685 
686   m_detPermR = m_perm_r.determinant();
687   m_detPermC = m_perm_c.determinant();
688 
689   // Count the number of nonzeros in factors
690   Base::countnz(n, m_nnzL, m_nnzU, m_glu);
691   // Apply permutation  to the L subscripts
692   Base::fixupL(n, m_perm_r.indices(), m_glu);
693 
694   // Create supernode matrix L
695   m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
696   // Create the column major upper sparse matrix  U;
697   new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, StorageIndex> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
698 
699   m_info = Success;
700   m_factorizationIsOk = true;
701 }
702 
703 template<typename MappedSupernodalType>
704 struct SparseLUMatrixLReturnType : internal::no_assignment_operator
705 {
706   typedef typename MappedSupernodalType::Scalar Scalar;
SparseLUMatrixLReturnTypeSparseLUMatrixLReturnType707   explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
708   { }
rowsSparseLUMatrixLReturnType709   Index rows() { return m_mapL.rows(); }
colsSparseLUMatrixLReturnType710   Index cols() { return m_mapL.cols(); }
711   template<typename Dest>
solveInPlaceSparseLUMatrixLReturnType712   void solveInPlace( MatrixBase<Dest> &X) const
713   {
714     m_mapL.solveInPlace(X);
715   }
716   const MappedSupernodalType& m_mapL;
717 };
718 
719 template<typename MatrixLType, typename MatrixUType>
720 struct SparseLUMatrixUReturnType : internal::no_assignment_operator
721 {
722   typedef typename MatrixLType::Scalar Scalar;
SparseLUMatrixUReturnTypeSparseLUMatrixUReturnType723   SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
724   : m_mapL(mapL),m_mapU(mapU)
725   { }
rowsSparseLUMatrixUReturnType726   Index rows() { return m_mapL.rows(); }
colsSparseLUMatrixUReturnType727   Index cols() { return m_mapL.cols(); }
728 
solveInPlaceSparseLUMatrixUReturnType729   template<typename Dest>   void solveInPlace(MatrixBase<Dest> &X) const
730   {
731     Index nrhs = X.cols();
732     Index n    = X.rows();
733     // Backward solve with U
734     for (Index k = m_mapL.nsuper(); k >= 0; k--)
735     {
736       Index fsupc = m_mapL.supToCol()[k];
737       Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
738       Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
739       Index luptr = m_mapL.colIndexPtr()[fsupc];
740 
741       if (nsupc == 1)
742       {
743         for (Index j = 0; j < nrhs; j++)
744         {
745           X(fsupc, j) /= m_mapL.valuePtr()[luptr];
746         }
747       }
748       else
749       {
750         Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
751         Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
752         U = A.template triangularView<Upper>().solve(U);
753       }
754 
755       for (Index j = 0; j < nrhs; ++j)
756       {
757         for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
758         {
759           typename MatrixUType::InnerIterator it(m_mapU, jcol);
760           for ( ; it; ++it)
761           {
762             Index irow = it.index();
763             X(irow, j) -= X(jcol, j) * it.value();
764           }
765         }
766       }
767     } // End For U-solve
768   }
769   const MatrixLType& m_mapL;
770   const MatrixUType& m_mapU;
771 };
772 
773 } // End namespace Eigen
774 
775 #endif
776