1 //===------ FlattenAlgo.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Main algorithm of the FlattenSchedulePass. This is a separate file to avoid
10 // the unittest for this requiring linking against LLVM.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "polly/FlattenAlgo.h"
15 #include "polly/Support/ISLOStream.h"
16 #include "polly/Support/ISLTools.h"
17 #include "llvm/Support/Debug.h"
18 #define DEBUG_TYPE "polly-flatten-algo"
19 
20 using namespace polly;
21 using namespace llvm;
22 
23 namespace {
24 
25 /// Whether a dimension of a set is bounded (lower and upper) by a constant,
26 /// i.e. there are two constants Min and Max, such that every value x of the
27 /// chosen dimensions is Min <= x <= Max.
isDimBoundedByConstant(isl::set Set,unsigned dim)28 bool isDimBoundedByConstant(isl::set Set, unsigned dim) {
29   auto ParamDims = Set.dim(isl::dim::param);
30   Set = Set.project_out(isl::dim::param, 0, ParamDims);
31   Set = Set.project_out(isl::dim::set, 0, dim);
32   auto SetDims = Set.dim(isl::dim::set);
33   Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
34   return bool(Set.is_bounded());
35 }
36 
37 /// Whether a dimension of a set is (lower and upper) bounded by a constant or
38 /// parameters, i.e. there are two expressions Min_p and Max_p of the parameters
39 /// p, such that every value x of the chosen dimensions is
40 /// Min_p <= x <= Max_p.
isDimBoundedByParameter(isl::set Set,unsigned dim)41 bool isDimBoundedByParameter(isl::set Set, unsigned dim) {
42   Set = Set.project_out(isl::dim::set, 0, dim);
43   auto SetDims = Set.dim(isl::dim::set);
44   Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
45   return bool(Set.is_bounded());
46 }
47 
48 /// Whether BMap's first out-dimension is not a constant.
isVariableDim(const isl::basic_map & BMap)49 bool isVariableDim(const isl::basic_map &BMap) {
50   auto FixedVal = BMap.plain_get_val_if_fixed(isl::dim::out, 0);
51   return !FixedVal || FixedVal.is_nan();
52 }
53 
54 /// Whether Map's first out dimension is no constant nor piecewise constant.
isVariableDim(const isl::map & Map)55 bool isVariableDim(const isl::map &Map) {
56   for (isl::basic_map BMap : Map.get_basic_map_list())
57     if (isVariableDim(BMap))
58       return false;
59 
60   return true;
61 }
62 
63 /// Whether UMap's first out dimension is no (piecewise) constant.
isVariableDim(const isl::union_map & UMap)64 bool isVariableDim(const isl::union_map &UMap) {
65   for (isl::map Map : UMap.get_map_list())
66     if (isVariableDim(Map))
67       return false;
68   return true;
69 }
70 
71 /// Compute @p UPwAff - @p Val.
subtract(isl::union_pw_aff UPwAff,isl::val Val)72 isl::union_pw_aff subtract(isl::union_pw_aff UPwAff, isl::val Val) {
73   if (Val.is_zero())
74     return UPwAff;
75 
76   auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
77   isl::stat Stat =
78       UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
79         auto ValAff =
80             isl::pw_aff(isl::set::universe(PwAff.get_space().domain()), Val);
81         auto Subtracted = PwAff.sub(ValAff);
82         Result = Result.union_add(isl::union_pw_aff(Subtracted));
83         return isl::stat::ok();
84       });
85   if (Stat.is_error())
86     return {};
87   return Result;
88 }
89 
90 /// Compute @UPwAff * @p Val.
multiply(isl::union_pw_aff UPwAff,isl::val Val)91 isl::union_pw_aff multiply(isl::union_pw_aff UPwAff, isl::val Val) {
92   if (Val.is_one())
93     return UPwAff;
94 
95   auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
96   isl::stat Stat =
97       UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
98         auto ValAff =
99             isl::pw_aff(isl::set::universe(PwAff.get_space().domain()), Val);
100         auto Multiplied = PwAff.mul(ValAff);
101         Result = Result.union_add(Multiplied);
102         return isl::stat::ok();
103       });
104   if (Stat.is_error())
105     return {};
106   return Result;
107 }
108 
109 /// Remove @p n dimensions from @p UMap's range, starting at @p first.
110 ///
111 /// It is assumed that all maps in the maps have at least the necessary number
112 /// of out dimensions.
scheduleProjectOut(const isl::union_map & UMap,unsigned first,unsigned n)113 isl::union_map scheduleProjectOut(const isl::union_map &UMap, unsigned first,
114                                   unsigned n) {
115   if (n == 0)
116     return UMap; /* isl_map_project_out would also reset the tuple, which should
117                     have no effect on schedule ranges */
118 
119   auto Result = isl::union_map::empty(UMap.get_space());
120   for (isl::map Map : UMap.get_map_list()) {
121     auto Outprojected = Map.project_out(isl::dim::out, first, n);
122     Result = Result.add_map(Outprojected);
123   }
124   return Result;
125 }
126 
127 /// Return the number of dimensions in the input map's range.
128 ///
129 /// Because this function takes an isl_union_map, the out dimensions could be
130 /// different. We return the maximum number in this case. However, a different
131 /// number of dimensions is not supported by the other code in this file.
scheduleScatterDims(const isl::union_map & Schedule)132 size_t scheduleScatterDims(const isl::union_map &Schedule) {
133   unsigned Dims = 0;
134   for (isl::map Map : Schedule.get_map_list())
135     Dims = std::max(Dims, Map.dim(isl::dim::out));
136   return Dims;
137 }
138 
139 /// Return the @p pos' range dimension, converted to an isl_union_pw_aff.
scheduleExtractDimAff(isl::union_map UMap,unsigned pos)140 isl::union_pw_aff scheduleExtractDimAff(isl::union_map UMap, unsigned pos) {
141   auto SingleUMap = isl::union_map::empty(UMap.get_space());
142   for (isl::map Map : UMap.get_map_list()) {
143     unsigned MapDims = Map.dim(isl::dim::out);
144     isl::map SingleMap = Map.project_out(isl::dim::out, 0, pos);
145     SingleMap = SingleMap.project_out(isl::dim::out, 1, MapDims - pos - 1);
146     SingleUMap = SingleUMap.add_map(SingleMap);
147   };
148 
149   auto UAff = isl::union_pw_multi_aff(SingleUMap);
150   auto FirstMAff = isl::multi_union_pw_aff(UAff);
151   return FirstMAff.get_union_pw_aff(0);
152 }
153 
154 /// Flatten a sequence-like first dimension.
155 ///
156 /// A sequence-like scatter dimension is constant, or at least only small
157 /// variation, typically the result of ordering a sequence of different
158 /// statements. An example would be:
159 ///   { Stmt_A[] -> [0, X, ...]; Stmt_B[] -> [1, Y, ...] }
160 /// to schedule all instances of Stmt_A before any instance of Stmt_B.
161 ///
162 /// To flatten, first begin with an offset of zero. Then determine the lowest
163 /// possible value of the dimension, call it "i" [In the example we start at 0].
164 /// Considering only schedules with that value, consider only instances with
165 /// that value and determine the extent of the next dimension. Let l_X(i) and
166 /// u_X(i) its minimum (lower bound) and maximum (upper bound) value. Add them
167 /// as "Offset + X - l_X(i)" to the new schedule, then add "u_X(i) - l_X(i) + 1"
168 /// to Offset and remove all i-instances from the old schedule. Repeat with the
169 /// remaining lowest value i' until there are no instances in the old schedule
170 /// left.
171 /// The example schedule would be transformed to:
172 ///   { Stmt_X[] -> [X - l_X, ...]; Stmt_B -> [l_X - u_X + 1 + Y - l_Y, ...] }
tryFlattenSequence(isl::union_map Schedule)173 isl::union_map tryFlattenSequence(isl::union_map Schedule) {
174   auto IslCtx = Schedule.get_ctx();
175   auto ScatterSet = isl::set(Schedule.range());
176 
177   auto ParamSpace = Schedule.get_space().params();
178   auto Dims = ScatterSet.dim(isl::dim::set);
179   assert(Dims >= 2);
180 
181   // Would cause an infinite loop.
182   if (!isDimBoundedByConstant(ScatterSet, 0)) {
183     LLVM_DEBUG(dbgs() << "Abort; dimension is not of fixed size\n");
184     return nullptr;
185   }
186 
187   auto AllDomains = Schedule.domain();
188   auto AllDomainsToNull = isl::union_pw_multi_aff(AllDomains);
189 
190   auto NewSchedule = isl::union_map::empty(ParamSpace);
191   auto Counter = isl::pw_aff(isl::local_space(ParamSpace.set_from_params()));
192 
193   while (!ScatterSet.is_empty()) {
194     LLVM_DEBUG(dbgs() << "Next counter:\n  " << Counter << "\n");
195     LLVM_DEBUG(dbgs() << "Remaining scatter set:\n  " << ScatterSet << "\n");
196     auto ThisSet = ScatterSet.project_out(isl::dim::set, 1, Dims - 1);
197     auto ThisFirst = ThisSet.lexmin();
198     auto ScatterFirst = ThisFirst.add_dims(isl::dim::set, Dims - 1);
199 
200     auto SubSchedule = Schedule.intersect_range(ScatterFirst);
201     SubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
202     SubSchedule = flattenSchedule(SubSchedule);
203 
204     auto SubDims = scheduleScatterDims(SubSchedule);
205     auto FirstSubSchedule = scheduleProjectOut(SubSchedule, 1, SubDims - 1);
206     auto FirstScheduleAff = scheduleExtractDimAff(FirstSubSchedule, 0);
207     auto RemainingSubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
208 
209     auto FirstSubScatter = isl::set(FirstSubSchedule.range());
210     LLVM_DEBUG(dbgs() << "Next step in sequence is:\n  " << FirstSubScatter
211                       << "\n");
212 
213     if (!isDimBoundedByParameter(FirstSubScatter, 0)) {
214       LLVM_DEBUG(dbgs() << "Abort; sequence step is not bounded\n");
215       return nullptr;
216     }
217 
218     auto FirstSubScatterMap = isl::map::from_range(FirstSubScatter);
219 
220     // isl_set_dim_max returns a strange isl_pw_aff with domain tuple_id of
221     // 'none'. It doesn't match with any space including a 0-dimensional
222     // anonymous tuple.
223     // Interesting, one can create such a set using
224     // isl_set_universe(ParamSpace). Bug?
225     auto PartMin = FirstSubScatterMap.dim_min(0);
226     auto PartMax = FirstSubScatterMap.dim_max(0);
227     auto One = isl::pw_aff(isl::set::universe(ParamSpace.set_from_params()),
228                            isl::val::one(IslCtx));
229     auto PartLen = PartMax.add(PartMin.neg()).add(One);
230 
231     auto AllPartMin = isl::union_pw_aff(PartMin).pullback(AllDomainsToNull);
232     auto FirstScheduleAffNormalized = FirstScheduleAff.sub(AllPartMin);
233     auto AllCounter = isl::union_pw_aff(Counter).pullback(AllDomainsToNull);
234     auto FirstScheduleAffWithOffset =
235         FirstScheduleAffNormalized.add(AllCounter);
236 
237     auto ScheduleWithOffset = isl::union_map(FirstScheduleAffWithOffset)
238                                   .flat_range_product(RemainingSubSchedule);
239     NewSchedule = NewSchedule.unite(ScheduleWithOffset);
240 
241     ScatterSet = ScatterSet.subtract(ScatterFirst);
242     Counter = Counter.add(PartLen);
243   }
244 
245   LLVM_DEBUG(dbgs() << "Sequence-flatten result is:\n  " << NewSchedule
246                     << "\n");
247   return NewSchedule;
248 }
249 
250 /// Flatten a loop-like first dimension.
251 ///
252 /// A loop-like dimension is one that depends on a variable (usually a loop's
253 /// induction variable). Let the input schedule look like this:
254 ///   { Stmt[i] -> [i, X, ...] }
255 ///
256 /// To flatten, we determine the largest extent of X which may not depend on the
257 /// actual value of i. Let l_X() the smallest possible value of X and u_X() its
258 /// largest value. Then, construct a new schedule
259 ///   { Stmt[i] -> [i * (u_X() - l_X() + 1), ...] }
tryFlattenLoop(isl::union_map Schedule)260 isl::union_map tryFlattenLoop(isl::union_map Schedule) {
261   assert(scheduleScatterDims(Schedule) >= 2);
262 
263   auto Remaining = scheduleProjectOut(Schedule, 0, 1);
264   auto SubSchedule = flattenSchedule(Remaining);
265   auto SubDims = scheduleScatterDims(SubSchedule);
266 
267   auto SubExtent = isl::set(SubSchedule.range());
268   auto SubExtentDims = SubExtent.dim(isl::dim::param);
269   SubExtent = SubExtent.project_out(isl::dim::param, 0, SubExtentDims);
270   SubExtent = SubExtent.project_out(isl::dim::set, 1, SubDims - 1);
271 
272   if (!isDimBoundedByConstant(SubExtent, 0)) {
273     LLVM_DEBUG(dbgs() << "Abort; dimension not bounded by constant\n");
274     return nullptr;
275   }
276 
277   auto Min = SubExtent.dim_min(0);
278   LLVM_DEBUG(dbgs() << "Min bound:\n  " << Min << "\n");
279   auto MinVal = getConstant(Min, false, true);
280   auto Max = SubExtent.dim_max(0);
281   LLVM_DEBUG(dbgs() << "Max bound:\n  " << Max << "\n");
282   auto MaxVal = getConstant(Max, true, false);
283 
284   if (!MinVal || !MaxVal || MinVal.is_nan() || MaxVal.is_nan()) {
285     LLVM_DEBUG(dbgs() << "Abort; dimension bounds could not be determined\n");
286     return nullptr;
287   }
288 
289   auto FirstSubScheduleAff = scheduleExtractDimAff(SubSchedule, 0);
290   auto RemainingSubSchedule = scheduleProjectOut(std::move(SubSchedule), 0, 1);
291 
292   auto LenVal = MaxVal.sub(MinVal).add_ui(1);
293   auto FirstSubScheduleNormalized = subtract(FirstSubScheduleAff, MinVal);
294 
295   // TODO: Normalize FirstAff to zero (convert to isl_map, determine minimum,
296   // subtract it)
297   auto FirstAff = scheduleExtractDimAff(Schedule, 0);
298   auto Offset = multiply(FirstAff, LenVal);
299   auto Index = FirstSubScheduleNormalized.add(Offset);
300   auto IndexMap = isl::union_map(Index);
301 
302   auto Result = IndexMap.flat_range_product(RemainingSubSchedule);
303   LLVM_DEBUG(dbgs() << "Loop-flatten result is:\n  " << Result << "\n");
304   return Result;
305 }
306 } // anonymous namespace
307 
flattenSchedule(isl::union_map Schedule)308 isl::union_map polly::flattenSchedule(isl::union_map Schedule) {
309   auto Dims = scheduleScatterDims(Schedule);
310   LLVM_DEBUG(dbgs() << "Recursive schedule to process:\n  " << Schedule
311                     << "\n");
312 
313   // Base case; no dimensions left
314   if (Dims == 0) {
315     // TODO: Add one dimension?
316     return Schedule;
317   }
318 
319   // Base case; already one-dimensional
320   if (Dims == 1)
321     return Schedule;
322 
323   // Fixed dimension; no need to preserve variabledness.
324   if (!isVariableDim(Schedule)) {
325     LLVM_DEBUG(dbgs() << "Fixed dimension; try sequence flattening\n");
326     auto NewScheduleSequence = tryFlattenSequence(Schedule);
327     if (NewScheduleSequence)
328       return NewScheduleSequence;
329   }
330 
331   // Constant stride
332   LLVM_DEBUG(dbgs() << "Try loop flattening\n");
333   auto NewScheduleLoop = tryFlattenLoop(Schedule);
334   if (NewScheduleLoop)
335     return NewScheduleLoop;
336 
337   // Try again without loop condition (may blow up the number of pieces!!)
338   LLVM_DEBUG(dbgs() << "Try sequence flattening again\n");
339   auto NewScheduleSequence = tryFlattenSequence(Schedule);
340   if (NewScheduleSequence)
341     return NewScheduleSequence;
342 
343   // Cannot flatten
344   return Schedule;
345 }
346