1 /*
2  * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 
29 #include "mpdecimal.h"
30 
31 #include <assert.h>
32 
33 #include "bits.h"
34 #include "constants.h"
35 #include "difradix2.h"
36 #include "numbertheory.h"
37 #include "umodarith.h"
38 
39 
40 /* Bignum: The actual transform routine (decimation in frequency). */
41 
42 
43 /*
44  * Generate index pairs (x, bitreverse(x)) and carry out the permutation.
45  * n must be a power of two.
46  * Algorithm due to Brent/Lehmann, see Joerg Arndt, "Matters Computational",
47  * Chapter 1.14.4. [http://www.jjj.de/fxt/]
48  */
49 static inline void
bitreverse_permute(mpd_uint_t a[],mpd_size_t n)50 bitreverse_permute(mpd_uint_t a[], mpd_size_t n)
51 {
52     mpd_size_t x = 0;
53     mpd_size_t r = 0;
54     mpd_uint_t t;
55 
56     do { /* Invariant: r = bitreverse(x) */
57         if (r > x) {
58             t = a[x];
59             a[x] = a[r];
60             a[r] = t;
61         }
62         /* Flip trailing consecutive 1 bits and the first zero bit
63          * that absorbs a possible carry. */
64         x += 1;
65         /* Mirror the operation on r: Flip n_trailing_zeros(x)+1
66            high bits of r. */
67         r ^= (n - (n >> (mpd_bsf(x)+1)));
68         /* The loop invariant is preserved. */
69     } while (x < n);
70 }
71 
72 
73 /* Fast Number Theoretic Transform, decimation in frequency. */
74 void
fnt_dif2(mpd_uint_t a[],mpd_size_t n,struct fnt_params * tparams)75 fnt_dif2(mpd_uint_t a[], mpd_size_t n, struct fnt_params *tparams)
76 {
77     mpd_uint_t *wtable = tparams->wtable;
78     mpd_uint_t umod;
79 #ifdef PPRO
80     double dmod;
81     uint32_t dinvmod[3];
82 #endif
83     mpd_uint_t u0, u1, v0, v1;
84     mpd_uint_t w, w0, w1, wstep;
85     mpd_size_t m, mhalf;
86     mpd_size_t j, r;
87 
88 
89     assert(ispower2(n));
90     assert(n >= 4);
91 
92     SETMODULUS(tparams->modnum);
93 
94     /* m == n */
95     mhalf = n / 2;
96     for (j = 0; j < mhalf; j += 2) {
97 
98         w0 = wtable[j];
99         w1 = wtable[j+1];
100 
101         u0 = a[j];
102         v0 = a[j+mhalf];
103 
104         u1 = a[j+1];
105         v1 = a[j+1+mhalf];
106 
107         a[j] = addmod(u0, v0, umod);
108         v0 = submod(u0, v0, umod);
109 
110         a[j+1] = addmod(u1, v1, umod);
111         v1 = submod(u1, v1, umod);
112 
113         MULMOD2(&v0, w0, &v1, w1);
114 
115         a[j+mhalf] = v0;
116         a[j+1+mhalf] = v1;
117 
118     }
119 
120     wstep = 2;
121     for (m = n/2; m >= 2; m>>=1, wstep<<=1) {
122 
123         mhalf = m / 2;
124 
125         /* j == 0 */
126         for (r = 0; r < n; r += 2*m) {
127 
128             u0 = a[r];
129             v0 = a[r+mhalf];
130 
131             u1 = a[m+r];
132             v1 = a[m+r+mhalf];
133 
134             a[r] = addmod(u0, v0, umod);
135             v0 = submod(u0, v0, umod);
136 
137             a[m+r] = addmod(u1, v1, umod);
138             v1 = submod(u1, v1, umod);
139 
140             a[r+mhalf] = v0;
141             a[m+r+mhalf] = v1;
142         }
143 
144         for (j = 1; j < mhalf; j++) {
145 
146             w = wtable[j*wstep];
147 
148             for (r = 0; r < n; r += 2*m) {
149 
150                 u0 = a[r+j];
151                 v0 = a[r+j+mhalf];
152 
153                 u1 = a[m+r+j];
154                 v1 = a[m+r+j+mhalf];
155 
156                 a[r+j] = addmod(u0, v0, umod);
157                 v0 = submod(u0, v0, umod);
158 
159                 a[m+r+j] = addmod(u1, v1, umod);
160                 v1 = submod(u1, v1, umod);
161 
162                 MULMOD2C(&v0, &v1, w);
163 
164                 a[r+j+mhalf] = v0;
165                 a[m+r+j+mhalf] = v1;
166             }
167 
168         }
169 
170     }
171 
172     bitreverse_permute(a, n);
173 }
174