1 // Copyright 2018 Developers of the Rand project.
2 // Copyright 2017-2018 The Rust Project Developers.
3 //
4 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5 // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7 // option. This file may not be copied, modified, or distributed
8 // except according to those terms.
9 
10 //! Random number generation traits
11 //!
12 //! This crate is mainly of interest to crates publishing implementations of
13 //! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead
14 //! which re-exports the main traits and error types.
15 //!
16 //! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number
17 //! generators and external random-number sources.
18 //!
19 //! [`SeedableRng`] is an extension trait for construction from fixed seeds and
20 //! other random number generators.
21 //!
22 //! [`Error`] is provided for error-handling. It is safe to use in `no_std`
23 //! environments.
24 //!
25 //! The [`impls`] and [`le`] sub-modules include a few small functions to assist
26 //! implementation of [`RngCore`].
27 //!
28 //! [`rand`]: https://docs.rs/rand
29 
30 #![doc(
31     html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
32     html_favicon_url = "https://www.rust-lang.org/favicon.ico",
33     html_root_url = "https://rust-random.github.io/rand/"
34 )]
35 #![deny(missing_docs)]
36 #![deny(missing_debug_implementations)]
37 #![doc(test(attr(allow(unused_variables), deny(warnings))))]
38 #![cfg_attr(doc_cfg, feature(doc_cfg))]
39 #![no_std]
40 
41 use core::convert::AsMut;
42 use core::default::Default;
43 
44 #[cfg(feature = "std")] extern crate std;
45 #[cfg(feature = "alloc")] extern crate alloc;
46 #[cfg(feature = "alloc")] use alloc::boxed::Box;
47 
48 pub use error::Error;
49 #[cfg(feature = "getrandom")] pub use os::OsRng;
50 
51 
52 pub mod block;
53 mod error;
54 pub mod impls;
55 pub mod le;
56 #[cfg(feature = "getrandom")] mod os;
57 
58 
59 /// The core of a random number generator.
60 ///
61 /// This trait encapsulates the low-level functionality common to all
62 /// generators, and is the "back end", to be implemented by generators.
63 /// End users should normally use the `Rng` trait from the [`rand`] crate,
64 /// which is automatically implemented for every type implementing `RngCore`.
65 ///
66 /// Three different methods for generating random data are provided since the
67 /// optimal implementation of each is dependent on the type of generator. There
68 /// is no required relationship between the output of each; e.g. many
69 /// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64`
70 /// values and drop any remaining unused bytes. The same can happen with the
71 /// [`next_u32`] and [`next_u64`] methods, implementations may discard some
72 /// random bits for efficiency.
73 ///
74 /// The [`try_fill_bytes`] method is a variant of [`fill_bytes`] allowing error
75 /// handling; it is not deemed sufficiently useful to add equivalents for
76 /// [`next_u32`] or [`next_u64`] since the latter methods are almost always used
77 /// with algorithmic generators (PRNGs), which are normally infallible.
78 ///
79 /// Algorithmic generators implementing [`SeedableRng`] should normally have
80 /// *portable, reproducible* output, i.e. fix Endianness when converting values
81 /// to avoid platform differences, and avoid making any changes which affect
82 /// output (except by communicating that the release has breaking changes).
83 ///
84 /// Typically implementators will implement only one of the methods available
85 /// in this trait directly, then use the helper functions from the
86 /// [`impls`] module to implement the other methods.
87 ///
88 /// It is recommended that implementations also implement:
89 ///
90 /// - `Debug` with a custom implementation which *does not* print any internal
91 ///   state (at least, [`CryptoRng`]s should not risk leaking state through
92 ///   `Debug`).
93 /// - `Serialize` and `Deserialize` (from Serde), preferably making Serde
94 ///   support optional at the crate level in PRNG libs.
95 /// - `Clone`, if possible.
96 /// - *never* implement `Copy` (accidental copies may cause repeated values).
97 /// - *do not* implement `Default` for pseudorandom generators, but instead
98 ///   implement [`SeedableRng`], to guide users towards proper seeding.
99 ///   External / hardware RNGs can choose to implement `Default`.
100 /// - `Eq` and `PartialEq` could be implemented, but are probably not useful.
101 ///
102 /// # Example
103 ///
104 /// A simple example, obviously not generating very *random* output:
105 ///
106 /// ```
107 /// #![allow(dead_code)]
108 /// use rand_core::{RngCore, Error, impls};
109 ///
110 /// struct CountingRng(u64);
111 ///
112 /// impl RngCore for CountingRng {
113 ///     fn next_u32(&mut self) -> u32 {
114 ///         self.next_u64() as u32
115 ///     }
116 ///
117 ///     fn next_u64(&mut self) -> u64 {
118 ///         self.0 += 1;
119 ///         self.0
120 ///     }
121 ///
122 ///     fn fill_bytes(&mut self, dest: &mut [u8]) {
123 ///         impls::fill_bytes_via_next(self, dest)
124 ///     }
125 ///
126 ///     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
127 ///         Ok(self.fill_bytes(dest))
128 ///     }
129 /// }
130 /// ```
131 ///
132 /// [`rand`]: https://docs.rs/rand
133 /// [`try_fill_bytes`]: RngCore::try_fill_bytes
134 /// [`fill_bytes`]: RngCore::fill_bytes
135 /// [`next_u32`]: RngCore::next_u32
136 /// [`next_u64`]: RngCore::next_u64
137 pub trait RngCore {
138     /// Return the next random `u32`.
139     ///
140     /// RNGs must implement at least one method from this trait directly. In
141     /// the case this method is not implemented directly, it can be implemented
142     /// using `self.next_u64() as u32` or via [`impls::next_u32_via_fill`].
next_u32(&mut self) -> u32143     fn next_u32(&mut self) -> u32;
144 
145     /// Return the next random `u64`.
146     ///
147     /// RNGs must implement at least one method from this trait directly. In
148     /// the case this method is not implemented directly, it can be implemented
149     /// via [`impls::next_u64_via_u32`] or via [`impls::next_u64_via_fill`].
next_u64(&mut self) -> u64150     fn next_u64(&mut self) -> u64;
151 
152     /// Fill `dest` with random data.
153     ///
154     /// RNGs must implement at least one method from this trait directly. In
155     /// the case this method is not implemented directly, it can be implemented
156     /// via [`impls::fill_bytes_via_next`] or
157     /// via [`RngCore::try_fill_bytes`]; if this generator can
158     /// fail the implementation must choose how best to handle errors here
159     /// (e.g. panic with a descriptive message or log a warning and retry a few
160     /// times).
161     ///
162     /// This method should guarantee that `dest` is entirely filled
163     /// with new data, and may panic if this is impossible
164     /// (e.g. reading past the end of a file that is being used as the
165     /// source of randomness).
fill_bytes(&mut self, dest: &mut [u8])166     fn fill_bytes(&mut self, dest: &mut [u8]);
167 
168     /// Fill `dest` entirely with random data.
169     ///
170     /// This is the only method which allows an RNG to report errors while
171     /// generating random data thus making this the primary method implemented
172     /// by external (true) RNGs (e.g. `OsRng`) which can fail. It may be used
173     /// directly to generate keys and to seed (infallible) PRNGs.
174     ///
175     /// Other than error handling, this method is identical to [`RngCore::fill_bytes`];
176     /// thus this may be implemented using `Ok(self.fill_bytes(dest))` or
177     /// `fill_bytes` may be implemented with
178     /// `self.try_fill_bytes(dest).unwrap()` or more specific error handling.
try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>179     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>;
180 }
181 
182 /// A marker trait used to indicate that an [`RngCore`] or [`BlockRngCore`]
183 /// implementation is supposed to be cryptographically secure.
184 ///
185 /// *Cryptographically secure generators*, also known as *CSPRNGs*, should
186 /// satisfy an additional properties over other generators: given the first
187 /// *k* bits of an algorithm's output
188 /// sequence, it should not be possible using polynomial-time algorithms to
189 /// predict the next bit with probability significantly greater than 50%.
190 ///
191 /// Some generators may satisfy an additional property, however this is not
192 /// required by this trait: if the CSPRNG's state is revealed, it should not be
193 /// computationally-feasible to reconstruct output prior to this. Some other
194 /// generators allow backwards-computation and are consided *reversible*.
195 ///
196 /// Note that this trait is provided for guidance only and cannot guarantee
197 /// suitability for cryptographic applications. In general it should only be
198 /// implemented for well-reviewed code implementing well-regarded algorithms.
199 ///
200 /// Note also that use of a `CryptoRng` does not protect against other
201 /// weaknesses such as seeding from a weak entropy source or leaking state.
202 ///
203 /// [`BlockRngCore`]: block::BlockRngCore
204 pub trait CryptoRng {}
205 
206 /// A random number generator that can be explicitly seeded.
207 ///
208 /// This trait encapsulates the low-level functionality common to all
209 /// pseudo-random number generators (PRNGs, or algorithmic generators).
210 ///
211 /// [`rand`]: https://docs.rs/rand
212 pub trait SeedableRng: Sized {
213     /// Seed type, which is restricted to types mutably-dereferencable as `u8`
214     /// arrays (we recommend `[u8; N]` for some `N`).
215     ///
216     /// It is recommended to seed PRNGs with a seed of at least circa 100 bits,
217     /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with
218     /// partially overlapping periods.
219     ///
220     /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`.
221     ///
222     ///
223     /// # Implementing `SeedableRng` for RNGs with large seeds
224     ///
225     /// Note that the required traits `core::default::Default` and
226     /// `core::convert::AsMut<u8>` are not implemented for large arrays
227     /// `[u8; N]` with `N` > 32. To be able to implement the traits required by
228     /// `SeedableRng` for RNGs with such large seeds, the newtype pattern can be
229     /// used:
230     ///
231     /// ```
232     /// use rand_core::SeedableRng;
233     ///
234     /// const N: usize = 64;
235     /// pub struct MyRngSeed(pub [u8; N]);
236     /// pub struct MyRng(MyRngSeed);
237     ///
238     /// impl Default for MyRngSeed {
239     ///     fn default() -> MyRngSeed {
240     ///         MyRngSeed([0; N])
241     ///     }
242     /// }
243     ///
244     /// impl AsMut<[u8]> for MyRngSeed {
245     ///     fn as_mut(&mut self) -> &mut [u8] {
246     ///         &mut self.0
247     ///     }
248     /// }
249     ///
250     /// impl SeedableRng for MyRng {
251     ///     type Seed = MyRngSeed;
252     ///
253     ///     fn from_seed(seed: MyRngSeed) -> MyRng {
254     ///         MyRng(seed)
255     ///     }
256     /// }
257     /// ```
258     type Seed: Sized + Default + AsMut<[u8]>;
259 
260     /// Create a new PRNG using the given seed.
261     ///
262     /// PRNG implementations are allowed to assume that bits in the seed are
263     /// well distributed. That means usually that the number of one and zero
264     /// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely.
265     /// Note that many non-cryptographic PRNGs will show poor quality output
266     /// if this is not adhered to. If you wish to seed from simple numbers, use
267     /// `seed_from_u64` instead.
268     ///
269     /// All PRNG implementations should be reproducible unless otherwise noted:
270     /// given a fixed `seed`, the same sequence of output should be produced
271     /// on all runs, library versions and architectures (e.g. check endianness).
272     /// Any "value-breaking" changes to the generator should require bumping at
273     /// least the minor version and documentation of the change.
274     ///
275     /// It is not required that this function yield the same state as a
276     /// reference implementation of the PRNG given equivalent seed; if necessary
277     /// another constructor replicating behaviour from a reference
278     /// implementation can be added.
279     ///
280     /// PRNG implementations should make sure `from_seed` never panics. In the
281     /// case that some special values (like an all zero seed) are not viable
282     /// seeds it is preferable to map these to alternative constant value(s),
283     /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
284     /// seed"). This is assuming only a small number of values must be rejected.
from_seed(seed: Self::Seed) -> Self285     fn from_seed(seed: Self::Seed) -> Self;
286 
287     /// Create a new PRNG using a `u64` seed.
288     ///
289     /// This is a convenience-wrapper around `from_seed` to allow construction
290     /// of any `SeedableRng` from a simple `u64` value. It is designed such that
291     /// low Hamming Weight numbers like 0 and 1 can be used and should still
292     /// result in good, independent seeds to the PRNG which is returned.
293     ///
294     /// This **is not suitable for cryptography**, as should be clear given that
295     /// the input size is only 64 bits.
296     ///
297     /// Implementations for PRNGs *may* provide their own implementations of
298     /// this function, but the default implementation should be good enough for
299     /// all purposes. *Changing* the implementation of this function should be
300     /// considered a value-breaking change.
seed_from_u64(mut state: u64) -> Self301     fn seed_from_u64(mut state: u64) -> Self {
302         // We use PCG32 to generate a u32 sequence, and copy to the seed
303         fn pcg32(state: &mut u64) -> [u8; 4] {
304             const MUL: u64 = 6364136223846793005;
305             const INC: u64 = 11634580027462260723;
306 
307             // We advance the state first (to get away from the input value,
308             // in case it has low Hamming Weight).
309             *state = state.wrapping_mul(MUL).wrapping_add(INC);
310             let state = *state;
311 
312             // Use PCG output function with to_le to generate x:
313             let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
314             let rot = (state >> 59) as u32;
315             let x = xorshifted.rotate_right(rot);
316             x.to_le_bytes()
317         }
318 
319         let mut seed = Self::Seed::default();
320         let mut iter = seed.as_mut().chunks_exact_mut(4);
321         for chunk in &mut iter {
322             chunk.copy_from_slice(&pcg32(&mut state));
323         }
324         let rem = iter.into_remainder();
325         if !rem.is_empty() {
326             rem.copy_from_slice(&pcg32(&mut state)[..rem.len()]);
327         }
328 
329         Self::from_seed(seed)
330     }
331 
332     /// Create a new PRNG seeded from another `Rng`.
333     ///
334     /// This may be useful when needing to rapidly seed many PRNGs from a master
335     /// PRNG, and to allow forking of PRNGs. It may be considered deterministic.
336     ///
337     /// The master PRNG should be at least as high quality as the child PRNGs.
338     /// When seeding non-cryptographic child PRNGs, we recommend using a
339     /// different algorithm for the master PRNG (ideally a CSPRNG) to avoid
340     /// correlations between the child PRNGs. If this is not possible (e.g.
341     /// forking using small non-crypto PRNGs) ensure that your PRNG has a good
342     /// mixing function on the output or consider use of a hash function with
343     /// `from_seed`.
344     ///
345     /// Note that seeding `XorShiftRng` from another `XorShiftRng` provides an
346     /// extreme example of what can go wrong: the new PRNG will be a clone
347     /// of the parent.
348     ///
349     /// PRNG implementations are allowed to assume that a good RNG is provided
350     /// for seeding, and that it is cryptographically secure when appropriate.
351     /// As of `rand` 0.7 / `rand_core` 0.5, implementations overriding this
352     /// method should ensure the implementation satisfies reproducibility
353     /// (in prior versions this was not required).
354     ///
355     /// [`rand`]: https://docs.rs/rand
from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error>356     fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> {
357         let mut seed = Self::Seed::default();
358         rng.try_fill_bytes(seed.as_mut())?;
359         Ok(Self::from_seed(seed))
360     }
361 
362     /// Creates a new instance of the RNG seeded via [`getrandom`].
363     ///
364     /// This method is the recommended way to construct non-deterministic PRNGs
365     /// since it is convenient and secure.
366     ///
367     /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
368     /// issue, one may prefer to seed from a local PRNG, e.g.
369     /// `from_rng(thread_rng()).unwrap()`.
370     ///
371     /// # Panics
372     ///
373     /// If [`getrandom`] is unable to provide secure entropy this method will panic.
374     ///
375     /// [`getrandom`]: https://docs.rs/getrandom
376     #[cfg(feature = "getrandom")]
377     #[cfg_attr(doc_cfg, doc(cfg(feature = "getrandom")))]
from_entropy() -> Self378     fn from_entropy() -> Self {
379         let mut seed = Self::Seed::default();
380         if let Err(err) = getrandom::getrandom(seed.as_mut()) {
381             panic!("from_entropy failed: {}", err);
382         }
383         Self::from_seed(seed)
384     }
385 }
386 
387 // Implement `RngCore` for references to an `RngCore`.
388 // Force inlining all functions, so that it is up to the `RngCore`
389 // implementation and the optimizer to decide on inlining.
390 impl<'a, R: RngCore + ?Sized> RngCore for &'a mut R {
391     #[inline(always)]
next_u32(&mut self) -> u32392     fn next_u32(&mut self) -> u32 {
393         (**self).next_u32()
394     }
395 
396     #[inline(always)]
next_u64(&mut self) -> u64397     fn next_u64(&mut self) -> u64 {
398         (**self).next_u64()
399     }
400 
401     #[inline(always)]
fill_bytes(&mut self, dest: &mut [u8])402     fn fill_bytes(&mut self, dest: &mut [u8]) {
403         (**self).fill_bytes(dest)
404     }
405 
406     #[inline(always)]
try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>407     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
408         (**self).try_fill_bytes(dest)
409     }
410 }
411 
412 // Implement `RngCore` for boxed references to an `RngCore`.
413 // Force inlining all functions, so that it is up to the `RngCore`
414 // implementation and the optimizer to decide on inlining.
415 #[cfg(feature = "alloc")]
416 impl<R: RngCore + ?Sized> RngCore for Box<R> {
417     #[inline(always)]
next_u32(&mut self) -> u32418     fn next_u32(&mut self) -> u32 {
419         (**self).next_u32()
420     }
421 
422     #[inline(always)]
next_u64(&mut self) -> u64423     fn next_u64(&mut self) -> u64 {
424         (**self).next_u64()
425     }
426 
427     #[inline(always)]
fill_bytes(&mut self, dest: &mut [u8])428     fn fill_bytes(&mut self, dest: &mut [u8]) {
429         (**self).fill_bytes(dest)
430     }
431 
432     #[inline(always)]
try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>433     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
434         (**self).try_fill_bytes(dest)
435     }
436 }
437 
438 #[cfg(feature = "std")]
439 impl std::io::Read for dyn RngCore {
read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error>440     fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
441         self.try_fill_bytes(buf)?;
442         Ok(buf.len())
443     }
444 }
445 
446 // Implement `CryptoRng` for references to an `CryptoRng`.
447 impl<'a, R: CryptoRng + ?Sized> CryptoRng for &'a mut R {}
448 
449 // Implement `CryptoRng` for boxed references to an `CryptoRng`.
450 #[cfg(feature = "alloc")]
451 impl<R: CryptoRng + ?Sized> CryptoRng for Box<R> {}
452 
453 #[cfg(test)]
454 mod test {
455     use super::*;
456 
457     #[test]
test_seed_from_u64()458     fn test_seed_from_u64() {
459         struct SeedableNum(u64);
460         impl SeedableRng for SeedableNum {
461             type Seed = [u8; 8];
462 
463             fn from_seed(seed: Self::Seed) -> Self {
464                 let mut x = [0u64; 1];
465                 le::read_u64_into(&seed, &mut x);
466                 SeedableNum(x[0])
467             }
468         }
469 
470         const N: usize = 8;
471         const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64];
472         let mut results = [0u64; N];
473         for (i, seed) in SEEDS.iter().enumerate() {
474             let SeedableNum(x) = SeedableNum::seed_from_u64(*seed);
475             results[i] = x;
476         }
477 
478         for (i1, r1) in results.iter().enumerate() {
479             let weight = r1.count_ones();
480             // This is the binomial distribution B(64, 0.5), so chance of
481             // weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for
482             // weight > 44.
483             assert!(weight >= 20 && weight <= 44);
484 
485             for (i2, r2) in results.iter().enumerate() {
486                 if i1 == i2 {
487                     continue;
488                 }
489                 let diff_weight = (r1 ^ r2).count_ones();
490                 assert!(diff_weight >= 20);
491             }
492         }
493 
494         // value-breakage test:
495         assert_eq!(results[0], 5029875928683246316);
496     }
497 }
498